
Computing Complex Temporal Join�eries E�iciently∗

Xiao Hu
xh102@cs.duke.edu
Duke University

NC, USA

Stavros Sintos
sintos@uchicago.edu
University of Chicago

IL, USA

Junyang Gao
jygao@google.com

Google
NY, USA

Pankaj K. Agarwal
pankaj@cs.duke.edu
Duke University

NC, USA

Jun Yang
junyang@cs.duke.edu

Duke University
NC, USA

ABSTRACT
This paper studies multi-way join queries over temporal data, where
each tuple is associated with a valid time interval indicating when
the tuple is valid. A temporal join requires that joining tuples’ valid
intervals intersect. Previous work on temporal joins has focused on
joining two relations, but pairwise processing is often ine�cient
because it may generate unnecessarily large intermediate results.
This paper investigates how to e�ciently process complex temporal
joins involving multiple relations. We also consider a useful exten-
sion, durable temporal joins, which further selects results with long
enough valid intervals so they are not merely transient patterns.

We classify temporal join queries into di�erent classes based
on their computational complexity. We identify the class of r-
hierarchical joins and show that a linear-time algorithm exists for
a temporal join if and only it is r-hierarchical (assuming the 3SUM
conjecture holds). We further propose output-sensitive algorithms
for non-r-hierarchical joins. We implement our algorithms and
evaluate them on both synthetic and real datasets.

CCS CONCEPTS
• Theory of computation! Database query processing and
optimization (theory); • Information systems ! Database
query processing.

KEYWORDS
temporal database, join queries, durable temporal joins

ACM Reference Format:
Xiao Hu, Stavros Sintos, Junyang Gao, Pankaj K. Agarwal, and Jun Yang.
2022. Computing Complex Temporal Join Queries E�ciently. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22),
June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3514221.3517893

∗This work was supported by NSF awards IIS-1814493, CCF-2007556, and IIS-2008107.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9249-5/22/06.
https://doi.org/10.1145/3514221.3517893

1 INTRODUCTION
Temporal data analysis [25, 35, 51, 52, 76] is an essential feature
of modern database systems, as most of the data we encounter in
practice are temporal in nature—from business transactions and
social interactions to system logs and observations of natural phe-
nomena. Temporal joins are fundamental to temporal data analysis.
Consider a temporal database where each tuple is associated with
a valid(-time) interval, which indicates when the tuple is “valid.” A
temporal join �nds tuples that together satisfy, in an addition to
the join condition on their non-temporal attributes, the implicit
temporal join condition that the intersection of their valid intervals
is non-empty. To illustrate, consider the following example.

Example 1. Consider a toy database storing the collaboration net-
work among authors shown in Figure 1. Vertices represent authors
and edges represent collaborations between authors. For example,
tuple (⌫,⇠) with valid interval [2011, 2015] indicates that authors ⌫
and⇠ collaborated over this �ve-year time period. In practice, such
a database may be extracted and constructed from the DBLP [1]
dataset. A temporal join (involving three copies of the edge relation)
can �nd a chain of four authors connected by three pairwise col-
laborations simultaneously at some point in time, e.g., (�,⌫,⇠,⇡)
with collaborations happening simultaneously during 2013–2015. In
contrast, a non-temporal join would �nd a non-answer (�, ⇢,⌫,⇡),
because even though each of the three collaborations existed at
some point, they never took place simultaneously: the valid inter-
vals of (�, ⇢) and (⌫,⇡) do not intersect.

Beyond Binary Temporal Joins. Work on temporal joins to date
has mostly focused on processing binary joins, or e�ciently joining
two relations at a time [41, 77]. The drawback of this approach
is that for complex joins involving multiple relations, such as the
example above, performing a sequence of binary joins may produce
huge intermediate results, even though the �nal result may be small
in size. Ideally, we would like the overall algorithm to run in time
near linear in the input data size and linear in the �nal result size.
In recent years, there have been promising results on e�ciently
processing non-temporal joins involving multiple relations [17, 65,
86]. A natural question is whether we can obtain similar results for
temporal joins as well. However, techniques for non-temporal join
processing fail to deliver in this case because they handle equality
join conditions involving non-temporal attributes, while leaving out
the temporal join condition involving the valid intervals. A simple
join-�rst approach, which applies these techniques �rst to compute
the (non-temporal) join result and the �lters it using the temporal

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2076

https://doi.org/10.1145/3514221.3517893
https://doi.org/10.1145/3514221.3517893

Figure 1: DBLP collaboration network: a toy example (left),
and statistics of durable patterns (right).

join condition, runs the risk of producing intermediate results that
are much bigger. To �ll the gap in existing temporal join algorithms,
we take the �rst step in investigating the hardness of temporal joins
involving multiple relations, and propose a framework that handles
temporal constraints head-on in join evaluation.
Durable Temporal Joins. Beyond joining multiple relations, we
also consider other ways of enriching temporal join queries. One
such enrichment is to add a �nal “durability” check to temporal joins.
A temporal join computes the intersection of joining tuples’ valid
intervals as the valid interval of the result tuple. A very short result
interval, however, implies that the result tuple is valid only brie�y; it
may represent more of a transient glitch than a robust pattern. Many
data analysis tasks are thusmore interested in durable temporal joins,
which return only a result tuple if the length of its valid interval—
which we call durability—is above some threshold g speci�ed as part
of the query. To illustrate the practical use of durability analysis,
consider the following example.

Example 2. We take a subset of the DBLP dataset pertaining to
the “inproceedings” entries and convert it to a temporal coauthor-
ship graph as in Example 1. This graph has 1,764,475 vertices and
9,460,140 edges, each labeled with a valid interval. An interesting
exploratory analysis can be done with a variety of temporal joins
designed to look for di�erent coauthorship patterns among authors,
including length-2 paths (0–1 and 1–2), length-3 paths (0–1, 1–2 ,
and 2–3), 3-way stars (0–1, 0–2 , and 0–3), and triangles (0–1, 1–
2 , and 2–0). The length of the valid interval of a join result tuple
corresponds to the durability of the pattern it represents. Figure 1
counts the number of such patterns in the entire graph at di�er-
ent durability threshold levels. Each data point in this �gure can
be obtained by computing a durable temporal join with a desired
threshold g and counting the number of result tuples.

Once again, we are interested in e�cient algorithms with run-
ning times linear in the �nal result size. This requirement rules
out the naive join-�rst approach of computing the full temporal
join and then �ltering the intermediate result to obtain the durable
tuples. Indeed, as Figure 1 illustrates, high durability thresholds lead
to results that are many orders of magnitudes smaller than those of
full temporal joins (which are equivalent to durable temporal joins
with a trivial threshold 0). We show in this paper how to avoid the
curse of large intermediate result size using a remarkably simple
transformation of the input data, which then allows us to leverage
our e�cient temporal join algorithms to compute the results of
durable temporal joins directly.

A B

A E

B

B

B E

C

D

C D

D E

[2013, 2017]

[2012, 2015]

[2011, 2015]

[2017, 2019]

[2013, 2016]

[2012, 2016]

[2016, 2018]

valid interval x3 x4

E

[2013, 2015]

[2017, 2017]

valid intervalx1 x2

A B C D

A B D

B C D E ��

R1(x1, x2)

y

R2(x2, x3)

R3(x3, x4)

x

Q(R)
copies of join

Figure 2: Temporal database and temporal join query. The
left table is a temporal relation capturing the collaboration graph
in Figure 1. We consider the directed version of edges in alphabetic
ordering for simplicity. Each tuple corresponds to an edge. By making
three copies of this temporal relation and renaming the attributes, we
obtain a temporal instance R = {'1 (G1, G2),'2 (G2, G3),'3 (G3, G4)}.
The right table is the join result of temporal query Q = (V, E) over
R, where V = {G1, G2, G3, G4} and E = {{G1, G2}, {G2, G3}, {G3, G4}},
�nding all length-3 paths (vertices are in alphabetic ordering) in this
graph. (⌫,⇠,⇡, ⇢) is a valid non-temporal join result but not temporal
join result, since it does not have a valid interval.

In the remainder of this paper, we introduce our framework
for systematic study of the evaluation of temporal joins involving
multiple relations. We classify temporal join queries into di�er-
ent classes based on their computational complexity. We design
e�cient algorithms for these query classes, some of which are prov-
ably optimal. We also provide an experimental evaluation of our
proposed algorithms over both synthetic and real-life datasets.

2 MODEL AND RESULTS
2.1 Problem De�nition
Non-temporal Join. A (natural) join can be modeled as a hyper-
graphQ = (V, E) [18], where the set of verticesV = {G1, G2, · · · , G=}
models the attributes and the set of hyperedges E = {41, 42, . . . , 4<} ✓
2V models the relations. Some examples are illustrated in Figure 3.

For each attribute G 2 V , let dom(G) denote its domain. For a
subset of attributes 4 ✓ V , let A4 =

>

G 24 dom(G). We call each
element a of A4 a tuple, and we call 4 the support of a, denoted by
supp(a). For 4 ✓ V , a relation '4 over A4 is a set of tuples from
A4 , each representing an assignment of a value from dom(G) to G
for each G 2 4 . We assume that all tuples in a relation are distinct.
For a tuple a 2 A4 and a subset of the attributes 4 0 ✓ 4 , let c40 (a)
denote the projection of a onto the subspace spanned by 4 0.

An input instance or database of Q is a set of relations R = {'4 |
4 2 E}, where each '4 is a relation over A4 . The result of the
(non-temporal) join of Q on R, noted as Q(R), is de�ned as

Q(R) = {a 2 AV | 84 2 E, 9a4 2 '4 : c4 (a) = a4 }. (1)

i.e., all combinations of tuples from relations in R, such that tuples
in each combination have the same value(s) on common attribute(s).

Temporal Join. A temporal input instance or database of Q further
associates each tuple a in a relation of R with an interval �a =
[C�a , C+a], called the valid interval of a. To show both a and its valid
interval �a explicitly, we will use the notation ha, �ai. The temporal
join of Q on R consists of those tuples a 2 AV that are returned
by the non-temporal join de�ned in (1) and additionally satisfy
the condition �a =

—
42E �c4 (a) < ;; �a is associated with a as its

valid interval in the output. To support joins between temporal

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2077

A

BD

E
F

G

C

x1 x2

· · ·
xnxn+1

y

x1

x2

x3x4

xn x1

x2 x3
QCnQSn

· · ·

QLnQhier

· · ·
xn

hierarchical

line

cyclic

triangle

acyclic

star

Figure 3: Hypergraphs of join queries: (1) Qhier = '1 (�,⌫) Z '2 (�,⌫,⇡) Z '3 (�,⌫, ⇢) Z '4 (�,⇠, �) Z '5 (�,⇠,⌧); (2) star join
QSn = '1 (G1,~) Z '2 (G2,~) Z · · · Z '= (G=,~); (3) line join QLn = '1 (G1, G2) Z '2 (G2, G3) Z · · · Z '= (G=, G=+1) for = � 3; (4) cycle join
QC= = '1 (G1, G2) Z '2 (G2, G3) Z · · · Z '=�1 (G=�1, G=) Z '= (G=, G1) and triangle join Q4 = QC3. Classi�cation of join queries: line, star,
triangle, hierarchical, acyclic and cyclic join. Qhier and QSn are hierarchical, QLn (= � 3) is non-hierarchical but acyclic, and QCn is cyclic.

and non-temporal relations, we can simply set �a = (�1,1) of all
tuples a in a non-temporal relation. We focus on the non-empty
intersection of valid intervals as the temporal join condition.

Let # =
Õ
42E |'4 | be the input size of R. Let = |Q(R)| be the

output size of the temporal join. We study the data complexity of
join algorithms, i.e., their running time in terms of # and ; we
assume the size of Q to be bounded by a constant. An algorithm for
computing temporal join is linear if its running time is $ (# +),
and near-linear if the running time is$ ((# +) polylog(#)). Note
that every algorithm for computing Q(R) must spend ⌦(# +)
time, to read every input tuple once and to report every result.

Remarks on Other Temporal Join Models. First, our proposed
solution can be extended to the settings where each tuple is asso-
ciated with a set of disjoint intervals, which arise when the same
tuple can be inserted and deleted multiple times, or when projection
causes distinct tuples to coalesce.

Second, our solution can be applied to the g-durable temporal
join for a parameter g � 0, which is the subset of temporal join
result tuples whole durability is at least g . It should be noted that a
temporal join is simply an instance of the g-durable join with g = 0,
where the durability criterion is trivially satis�ed. On the other
hand, the general g-durable temporal join of Q on R is equivalent
to the temporal join of Q on Rg , where Rg is a temporal instance
derived from R using a simple “shrinking” transformation: each
tuple a in R has its valid interval [C�a , C+a] shrunk to [C�a + g

2 , C
+
a � g2]

(and removed if this interval is empty). The transformed instance
Rg can be derived from R in$ (#) time; we can then directly apply
our temporal join algorithms.

More generally, a broad class of temporal predicates can be refor-
mulated in terms of the non-empty intersection of valid intervals
by transforming the valid interval appropriately in the query proce-
dure. We give three examples below, and more general applications
of this overlap model are very interesting, but left as future work.

• For instance-stamped data, one looks for joining tuples whose
valid timestamps lie within g of all others. We can support such
a query by transforming each valid timestamp C to interval [C �
g
2 , C + g

2] and answer the query as a (0-durable) temporal join
query on the interval-stamped data.

• For interval-stamped data, one looks for all pairs of joining tuples,
where the �rst leads the second with a gap of at least g . We can
support such a query by transforming each intervals C = [C�, C+]
to [C+, +1) in the �rst relation and to (�1, C�] in the second
relation, and answer the query as a g-durable temporal join.

• For interval-stamped data, one may look for a triangle (0,1, 2) 2
'1 (�,⌫) Z '2 (⌫,⇠) Z '3 (�,⇠) where relative positioning of the

three edge intervals follows the pattern given by three intervals
�1, �2, �3 (possibly non-overlapping); more precisely, there exists
some time shift � such that �01 + � ✓ �1, �12 + � ✓ �2, and
�02 + � ✓ �3. We can support such a query by transforming
intervals C 2 '1 into [C����1 , C+��+1], C 2 '2 into [C����2 , C+��+2],
C 2 '3 into [C� � ��3 , C+ � �+3], and answer it as a (0-durable)
temporal join query on the transformed data.

2.2 Classes of Join Queries
We introduce two important classes of join queries (see Figure 3),
which are frequently used in this paper.

Acyclic joins [23]. A join query Q is acyclic if the hypergraph Q
is acyclic, as de�ned by Beeri et al. [23] (called U-acyclicity in [37]).
There are several equivalent notions of acyclic joins, and we use
the one based on join tree: Q is acyclic if there exists a tree T , called
a join tree of Q, with the set E of nodes such that for any G 2 V ,
all nodes of T containing G form a connected subtree of T .

Hierarchical joins [32]. An interesting subclass of acyclic join
is hierarchical join, de�ned as follows. A join query Q = (V, E) is
hierarchical if for every pair of vertices G,~, EG ✓ E~ , E~ ✓ EG ,
or EG \ E~ = ;, where EI = {4 2 E : I 2 4}. E�cient algorithms
have been developed for hierarchical joins in probabilistic databases
[32, 38] and dynamic query processing [24].

2.3 Our Contribution
Our theoretical results are summarized in Figure 4. In particular:
• Time-�rst Approach. Corresponding to the join-�rst approach,
we present a time-�rst approach, which was also known as sweep-
plane-based algorithm in the literature [20]. Intuitively, it sorts the
endpoints of input tuples �rst, virtually sweeps a time axis, and
computes the join results intersecting with this axis. Using this
framework, we can obtain a near-linear algorithm for hierarchical
temporal joins, by designing an e�cient data structure over the
very special query structures, and an output-sensitive algorithm
for general temporal joins, by resorting to an output-sensitive
non-temporal join algorithm. (Section 3)

• Hybrid Approach. To further improve general temporal joins,
we propose a hybrid approach as a combination of join-�rst and
time-�rst approaches. The complexity of this hybrid approach
depends on two query-dependent quantities: the fractional hyper-
tree width [43], measuring how far the join query is from being
acyclic, and hierarchical hypertree width, measuring how far the
join query is from being hierarchical. Moreover, we present a
few simpli�cation and improvement on some speci�c class of

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2078

Join Queries Non-Temporal Join Temporal Join

Hierarchical
$ (# +) [86]

$ (# · log# +)
[Theorem 6]

Acyclic

General
$ (# d) [65, 66, 80] $

⇣
#min{fhtw+1,hhtw} +

⌘
$ (# fhtw +) [43] [Theorem 12]
$ (# subw +) [17]

Figure 4: Summary of Results. # is the input size. is the output
size of join results. d is the optimal fractional edge covering number
of the query; subw is the sub-modular width of the query; fhtw is
the fractional hypertree width of the query; hhtw is the hierarchical
hypertree width of the query de�ned in Section 3.3.

temporal joins. At last, we provide a guideline for this uni�ed
framework, on how to choose the best evaluation strategy for a
temporal join, which depends on the query structure. (Section 4)

• Hardness. We show two hardness results for temporal joins.
Firstly, any temporal join query can be reduced to its non-temporal
counterpart, by converting the time interval into a join attribute.
The hardness relies on the open question: is there a non-temporal
join algorithm running in $ (# subw�n +) time, for arbitrarily
small constant n > 0, where subw is the submodular width [17]
of the query? Moreover, for any non-r-hierarchical temporal join,
a slight subset of non-hierarchical temporal joins, we prove that
any algorithm takes ⌦(# 4

3�n) time for arbitrarily small constant
n > 0, assuming the 3SUM conjecture1 holds. (Section 5)

• Experimental evaluation. We perform an extensive experi-
mental evaluation for practical temporal joins on both synthetic
and real-life datasets. We implement our proposed temporal join
algorithms, together with the pairwise framework building on
the mature binary temporal join algorithm, as the baseline. The
experimental results verify the power of our toolkit of temporal
join algorithms on di�erent classes of queries. (Section 6)

3 TIME-FIRST APPROACH
In this section, we present the time-�rst approach for temporal join
evaluation, by extending the sweep-plane-based algorithm to general
temporal joins. As mentioned, it sorts the endpoints of input tuples
�rst, virtually sweeps a time axis, and computes the join results
intersecting with this axis. We �rst give a general framework in
Section 3.1, and then show how to instantiate it for hierarchical tem-
poral joins in Section 3.2, and general temporal join in Section 3.3.

3.1 Framework
We introduce the whole framework in Algorithm 1, and then give
an analysis of its time complexity.
Overview of the algorithm. Let R be a temporal instance of the
above join query. Our goal is to compute Q(R). A tuple a 2 '4 for
some 4 2 E, is active at time C if C 2 �a. For a time C , let '4 (C) ✓ '4
be the set of active intervals at time C among the tuples in '4 , and
let R(C) = {'4 (C) | 4 2 E}. Let a be a tuple in temporal join
Q(R) with valid interval �a = [C�a , C+a]. Suppose a =Z42E a4 . Then
1The 3SUM conjecture states that given three sets �,⌫,⇠ 2 R, there is no strongly
sub-quadratic algorithm to determine whether there exists (0,1, 2) 2 � ⇥⌫ ⇥⇠ such
that 0 + 1 = 2 .

Algorithm 1: T���F����(Q,R)
Input : Join query Q = (V, E) and temporal database R;
Output :Temporal join results Q(R);

1 (Endpoints of valid intervals in R sorted increasingly;
2 D ;, ! ;;
3 foreach ? 2 (do
4 Assume ? 2 {C�a , C+a } for some tuple a 2 '4 with 4 2 E;
5 if ? = C�a then
6 D I�����(Q,R,D, a);
7 else
8 ! ! [E��������(Q,R,D, a);
9 D D�����(Q,R,D, a);

10 return !;

�a = \42E �a4 and the right endpoint C+a is the same with the right
endpoint of a tuple that de�nes a, say a40 2 '40 , i.e., C+a = �+a40 .
Then, a is just a tuple in the natural join Q(R(C+a)) of R(C+a), so the
problem of temporal join reduces to a dynamic instance of natural
join, where we maintain the join result over time as tuples are
inserted and deleted according to their valid intervals. In view of
this observation, here is an outline of the overall algorithm. The
algorithm sweeps the time axis from the left to right and maintains
the set R(C) in a data structure D. It stops at the endpoints of
the valid intervals, updates D, and reports the tuples of Q(R),
as follows. Let (be the sequence of interval endpoints sorted in
increasing order. The algorithm visits (from left to right. Suppose it
reaches an endpoint C0. If C0 is the left endpoint of the valid interval
�a of a tuple a, it inserts a into D. If C0 is the right endpoint of
�a, then it checks whether a contributes to a tuple in the natural
join Q(R(C+a)). If the answer is yes, then it uses the E��������
procedure (described later) to enumerate all tuples of Q(R(C+a))
that involves a. Finally, we delete a from D.
Run-time Analysis. We next give an abstract analysis of the time
complexity of Algorithm 1. Let # be the input size of R. We assume
that the data structure D can be updated in $ (5 (#)) time (line
6 and line 9), and the temporal join results involving tuple a can
be enumerated in $ (6(#) + (a)) time (line 8), where (a) is the
number of temporal join results participated by a. In Algorithm 1,
the preprocessing step of sorting (line 1) can be done in$ (# log#)
time. In the for loop (lines 3-9), each tuple is inserted into D and
deleted from D exactly once, thus I����� and D����� procedures
together take$ (# · 5 (#)) time. Moreover, the procedure E������
��� is invoked for each tuple exactly once, when the right endpoint
of its valid interval is visited. Summing over all tuples, this proce-

dure takes$

 ’
a2R

(6(#) + (a))
!
= $ (# · 6(#) +) time, where

the equation is implied by the fact that each temporal join result
is enumerated exactly once. Putting everything together, the time
complexity of Algorithm 1 is $ (# · 5 (#) + # · 6(#) +).

A naive application of non-temporal join algorithm at each end-
point of valid interval would not give acceptable performance. The
technical challenge is to design a data structure that can be e�-
ciently updated while supporting enumeration of join results at

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2079

every interval’s right endpoint. For example, simply performing
the linear algorithm [86] (see Figure 4) for non-temporal acyclic
joins leads to an algorithm of time complexity $ (# 2 +) for hier-
archical temporal joins. Using a novel data structure as described
in Section 3.2, we improve this result to$ (# log# +). Moreover,
this specially designed algorithm serves as an important building
block for general temporal join algorithm in Section 4.

3.2 Hierarchical Temporal Join
Wenow focus on the class of hierarchical temporal joins and present
a near-linear time algorithm based on the general framework.
Data Structure. The attribute tree of Q, denoted by T := T (Q),
is a tree with V as its nodes such that G is a descendant of ~ if
EG ✓ E~ (see de�nition of hierarchical join in Section 2); any path
from the root to a leaf corresponds to a hyper-edge (relation) in Q.
A path from the root to an internal node may also corresponds to a
hyperedge of E (e.g. �⌫ in Figure 5). We �rst obtain a generalized
join tree [49], as follows. Each node D 2 T is associated with the
subsetVD ✓ V of attributes appearing on the path from D to the
root of T (Figure 5). Let ? (D) be the parent of D, and let ⇠ (D) be
the set of children of D; ? (D) = ; for the root and ⇠ (D) = ; for the
leaves. Let TD be the subtree rooted at D and let !(D) be the set of
leaves in TD . Observe that V? (D) ✓ VD . For an internal node D, if
VD is a hyperedge of E, i.e.,VD 2 E, we add a leaf nodeF as a child
of D withVF = VD . After this transformation, each relation in E
corresponds to a root-to-leaf path, as shown in Figure 5. Note that
T is independent of R and does not change during the algorithm.

We are ready now to describe the dynamic data structure D
building on T , which is a simpli�ed version of that used by dynamic
query evaluation in [49]. We de�ne the projection cD (a) = cVD (a).
At any given time C , each node D 2 T stores a set -D (C) ✓ AD :=
⇧G 2VDdom(G) of relations. If D is a leaf, AD is a hyperedge of E.
For the leaf D, we store 'D (C), the set of active tuples of 'VD . For
an internal node D, -D (C) is the projection onVD of (natural) join
results of tuples stored at the leaves of TD , i.e., -D (C) = cD (ZI2! (D)
-I (C)). By de�nition, -D (C) =

Ÿ
E2⇠ (D)

cD (-E (C)). An example of D

is illustrated in Figure 5. The next lemma shows a nice property of
D, which can be proved by induction.

L���� 3. For any node D 2 T and any time C , -D (C) stores the
projection of temporal join results induced by relations in the subtree
TD on attributes VD , i.e., -D (C) = cD (ZI2! (D) 'I (C)).

To update -D (C) e�ciently, tuples in -D (C) are stored in groups
by their values over attributes V? (D) . The set of distinct values
over attributes V? (D) are stored in a binary-search tree as indexes.
Moreover, tuples in-D (C) with the same value over attributesV? (D)
are stored in a min-heap by C+a .

Initially, D consists of T with sets -D being empty at all nodes
D 2 T . Since we will only refer to the set -D (C) at time C , we simply
drop the argument C and write -D to denote the current -D (C).
E��������. As described in Algorithm 2, we divide the enumer-
ation for a into two steps: (1) check whether a participates in any
temporal results (line 2-5); (2) if no, we just stop (and return an
empty set); otherwise, we invoke R�����(D, A>>C, a) to list out all
temporal join results participated by a (line 6).

A

C

F GED

B

(R2) (R3) (R4) (R5)

(R1)

[A]

[AB] [AC]

[ACF] [ACG][ABE][ABD][AB]

[A]

[AB] [AC]

[ACF] [ACG][ABE][ABD]
a1 b1 d1

a1 b1

a1

a1 c1
a1 c2a2

a1 b1 d2
a2 b1 d1
a2 b2 d2

a1 b1 e1
a2 b1 e2
a2 b2 e2

a1 c1 f1
a1 c1 f2
a1 c2 f1

a1 c1 g1
a1 c2 g2
a2 c1 g1

[AB]
a1 b1
a2
a2 b2

b2

b1

Figure 5: Data structureD forQhier = '1 (�,⌫) Z '2 (�,⌫,⇡) Z
'3 (�,⌫, ⇢) Z '4 (�,⇠, �) Z '5 (�,⇠,⌧). The left is the attribute tree
(upper) and generalized join tree (lower).

Algorithm 2: E��������(Q,R,D, a)
Input : Join query Q = (V, E), temporal database R, tuple

a, and data structure D built on Q over R;
Output :Temporal join results Q(R(C+a));

1 D the leaf node corresponding to 4 2 E such that a 2 '4 ;
2 while D < =D;; do
3 if cD (a) 8 -D (C+a) then
4 return ;;
5 D ? (D);
6 return R�����(D, A>>C, a);

Algorithm 3: R�����(D,D, a)
Input :Data structure D, node D in D and tuple a;
Output :Temporal join results of active tuples stored in the

subtree TD of D, that can be joined with a;
1 if D is a leaf then return -D n {a};
2 S ;;
3 if VD ✓ supp(a) then
4 if cD (a) 2 -D then
5 foreach E 2 ⇠ (D) do
6 S(E, a) R�����(D, E, a);
7 S >

E2⇠ (D) S(E, a);
8 else
9 L -D n {a};

10 foreach b 2 L do
11 S S [R�����(D,D, b);

12 return S;

Given a tuple a 2 '4 for some 4 2 E, line 1-5 checks whether
a participates in any natural join result Q(R(C+a)) of R(C+a), the
currently active sets of tuples. Let D be the leaf of T corresponding
to 4 , i.e., 4 = VD . Algorithm 2 shows that it can be done by checking
for every node E lying on the path from root to D, whether -E (C+a),
i.e., the current set -E at node E , contains the tuple cE (a). This step
takes$ (log#) time, as only$ (1) nodes lie on any root-to-leaf path
and the check procedure takes $ (log#) time for each node.

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2080

We next show a recursive procedure R�����(D,D, a) that out-
puts S(D, a) =

⇣
Z~2! (D) -~

⌘
n {a}, i.e., the (natural) join results

of relations in TD that can be joined with a at timestamp C+a . Then,
our original problem of enumerating all temporal join results par-
ticipated by a can be solved by invoking R�����(D, A>>C, a). The
following de�nition of S(D, a) forms the basis of R�����(D,D, a).

L���� 4. Given node D 2 T and tuple a, S(D, a) is de�ned as:

S(D, a) =
8>>><
>>>:

-D n {a} if D is a leaf
>

E2⇠ (D) S(E, a) if VD ✓ supp(a)–
b2-Dn{a} S(D, b) if VD * supp(a)

(2)

Using (2), R�����(D,D, a) is straightforward, as described in
Algorithm 3. Let I be the node of T such that a 2 -I . In the base
case when D is a leaf, R����� just returns the set of tuples in -D
whose projection on attributes 4 \VD is the same with a (line 1).
Intuitively, these tuples will form semi-join results with a. If D is
not a leaf, R����� distinguishes D into two cases.

In the �rst case (lines 3-7), when VD is a subset of VI , it �rst
checks whether there is a tuple a0 2 -D with a0 = cD (a). If yes, it
invokes this whole procedure recursively for every child node of D
with a (line 5-6), and returns the Cartesian product of enumerated
results over its all children as the �nal join result (line 7).

In the second case (line 8-11), when VD is not a subset of VI , it
�nds all tuples in -D whose projection on attributesVI \VD is the
same with that of tuple a (line 9), denoted as L. Then, it invokes
this procedure recursively on D for each tuple in L, and returns the
union of enumerated results over all tuples in L (line 10-11).

It can be shown by induction that after spending $ (log#) time,
S(D, a) can be reported in $ (|S(D, a) |) time.

Example 5. In Figure 5, enumeration for tuple a = (01,11) 2
'1 proceeds by invoking R�����(D, root, a). The query result
S(root, a) is essentially S({�⌫}, a) ⇥ (S({�⇠}, b) [S({�⇠}, c)),
forb = (01, 21) and c = (01, 22). Moreover,S({�⌫}, a) = {(01,11)}⇥
{(01,11,31), (01,11,32)}⇥{(01,11, 41)},S({�⇠}, b) = {(01, 21, 51),
(01, 21, 52)}⇥{(01, 21,61)},S({�⇠}, c) = {(01, 22, 51)}⇥{(01, 22,62)}.

I�����/D�����. Assume that Algorithm 1 visits an endpoint of
�a for tuple a 2 '4 and 4 2 E. Let I be the leaf of T corresponding
to 4 , i.e., 4 = VI . If we reach the left (resp. right) endpoint of �a,
we insert a into D (resp. delete a from D). We only describe the
insertion procedure, and the deletion is symmetric.

We �rst insert a to -I (C). Next, we update every node lying on
the path from I to the root A , in a bottom-up way. Consider such a
node D. If there is an insertion of tuple a0 in -E for some child E 2
⇠ (D), we check whether a tuple cD (a0) needs to be inserted to -D .
In particular, if there exists a tuple a00 2 -E0 with cE (a00) = cE (a0)
for every child E 0 2 ⇠ (D) � {E}, we insert cD (a0) into -D (C). This
procedure takes $ (log#) time. It updates at most one tuple for
every node lying on the path from I to the root. Note that tuples in
-D with the same value over attributes V? (D) are maintained by a
min-heap. The insertion of a into -D takes $ (log#) time.

Putting everything together, we come to the following result:

T������ 6. For a hierarchical join Q and a temporal instance R,
Algorithm 1 computes Q(R) in $ (# log# +) time.

Remark. Theorem 6 can be extended to r-hierarchical join [47], a
slightly larger class of hierarchical join. A join is r-hierarchical if its
reduced join is hierarchical, where a join is reduced if there exists
no pair of 4, 4 0 2 E such that 4 ✓ 4 0. Any temporal join query can
be reduced in linear time.2

3.3 General Temporal Join
We now turn to general temporal joins, however, the data struc-
ture designed for hierarchical joins cannot be applied. Now, let’s
take one step back. A straightforward instantiation of T���F����
framework is to maintain active tuples and apply any non-temporal
join algorithm on active tuples, whenever needed. Surprisingly,
plugging an output-sensitive non-temporal join algorithm into the
T���F���� framework automatically yield an output-sensitive tem-
poral join algorithm, since the non-temporal join results of active
tuples are essentially the temporal join results. In this section, we
show how to incorporate an output-sensitive non-temporal join
algorithm [43] into the T���F���� framework.
Data structure. We now use a simple data structure D storing
active tuples ofR. More speci�cally, active tuples from each relation,
say '4 , are hashed by attributes in 4 . The insertion or deletion of a
tuple becomes trivial, such that each update takes $ (1) time.
E��������. Similar to Section 3.2, this procedure enumerates all
temporal join results participated by tuple a, i.e., the non-temporal
join results over active tuples R(C+a) participated by a. We resort
to the classical non-temporal join algorithm based on generalized
hypertree decomposition (GHD) [43] (see Figure 6):

De�nition 7 (Generalized Hypertree Decomposition). Given a join
query Q = (V, E), a GHD of Q is a pair (T , _), where T is a tree
as an ordered set of nodes and _ : T ! 2V is a labeling function
which associates to each vertex D 2 T a subset of attributes in V ,
_D , such that the following conditions are satis�ed:
• (coverage) For each 4 2 E, there is a nodeD 2 T such that 4 ✓ _D ;
• (connectivity) For each G 2 V , the set of nodes {D 2 T : G 2 _D }
forms a connected subtree of T .

As described in Algorithm 4, E��������(Q,R,D, a) �rst con-
structs an instance RT for a GHD (T , _) of Q, over active tuples
R(C+a). This step is quite standard: (i) each node D derives a sub-
join over attributes _D and relations ED , the projection of active
tuples on attributes _D (line 6); (ii) it materializes the result for
subjoin (_D , ED) over instance RD , by invoking the G������J���
algorithm [66] (line 7). After obtaining an acyclic join query T over
instance RT , E��������(Q,R,D, a) essentially invokes the clas-
sical Y��������� algorithm [86] for enumerating all join results
participated by a (line 9).

We note that procedure G������J���(Q,R) takes as input an
arbitrary join query Q and a non-temporal database R, and outputs
the non-temporal join results Q(R). While, procedure Y���������

2In removing hyperedge 4 2 E, we update'40 with'40 Z '4 , for 40 2 E with 4 ✓ 40.
Recall that there is no pair of tuples in '4 which have the same value on all attributes
in 4 . Together with the fact that 4 ✓ 40, we can rewrite the temporal join '40 Z '4 as:

'40 Z '4 = { ha, �a \ �b i | a 2 '40 , b 2 '4 , b = c4 (a) }
which can be done by computing a non-temporal binary join and then checking validity
intervals for joins result. This way, an r-hierarchical temporal join can be reduced to a
hierarchical temporal join through$ (1) temporal binary joins in linear time.

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2081

(Q,R) takes as input an acyclic join query Q and a non-temporal
database R, and outputs the non-temporal join results Q(R).

Algorithm 4: E��������(Q,R,D, a)
Input : Join query Q = (V, E), temporal database R, tuple

a, and data structure D built on Q over R;
Output :Temporal join results Q(R(C+a));

1 Let (T , _) be a GHD of Q, and RT ;;
2 foreach node D 2 T do
3 RD ;, ED ;;
4 foreach 4 2 E with 4 \ _D < ; do
5 ED ED [{4 \ _D };
6 RD R 0D [{c4_D C | C 2 '4 (C+a)};
7 (D G������J���((_D , ED),RD);
8 RT RT [{(D };
9 return Y���������(T ,RT);

Run-time of E��������. Before analysing the time complexity
of this procedure, we review the complexity for several building
blocks �rst. A fractional edge cover of a join query Q = (V, E) is
a point x = {x4 | 4 2 E} 2 RE such that for any vertex E 2 V ,Õ
42EE

x4 � 1. As proved in [21], the maximum output size of a
join query Q is $ (# kxk1). The running time of G������J���3 is
bounded by $ (# kxk1) [66]. Since the above bound holds for any
fractional edge cover, we de�ne d = d (Q) to be the fractional cover
with the smallest ✓1-norm, i.e., d (Q) is the value of the objective
function of the optimal solution of linear programming (LP):

min
’
42E

x4 , s.t. 84 2 ⇢ : x4 � 0 and 8E 2 V :
’
42EE

x4 � 1. (3)

Moreover, Y��������� can compute the join results of an acyclic
join query Q over a non-temporal database R in $ (# +) time.

Given a join query Q, one of its GHD (T , _) and a node D 2 T ,
the width of D is de�ned as the optimal fractional edge covering
number of its derived hypergraph (_D , ED), where ED = {4 \ _D :
4 2 E} (line 5). Given a join query and a GHD (T , _), the width
of (T , _) is de�ned as the maximum width over all nodes in VT .
Then, the fractional hypertree width of a join query follows:

De�nition 8 (Fractional Hypertree Width [43]). The fractional
hypertree width of a join query Q, denoted as fhtw(Q), is

fhtw(Q) = min
(T,_)

max
D2T

d (_D , ED)

i.e., the minimum width over all GHDs.

Basically, $ (# fhtw) is an upper bound on the number of join
results materialized for each node in T , as well as the time com-
plexity of G������J��� (line 7). Hence, Algorithm 4 can materialize
$ (|R(C+a) |fhtw) join results for each node in $ (|R(C+a) |fhtw) time.
By resorting to the complexity of Y��������� algorithm, the last
step (line 9) incurs a time cost of$

⇣
|R(C+a) |fhtw + Q(R(C+a)) n {a}

⌘
,

dominating the enumeration step.

3Ngo et al. [66] give a more re�ned bound on the running time but since we assume
the size of Q to be a constant, we use$ (# kxk1) as a bound on the running time.

Putting everything together, we come to the following result for
general temporal joins4:

T������ 9. For a join query Q and a temporal instance R, Algo-
rithm 1 computes Q(R) in $ (# fhtw+1 +) time.

As acyclic joins have fhtw = 1, we obtain:

C�������� 10. For an acyclic join query Q and a temporal in-
stance R, Algorithm 1 computes Q(R) in $ (# 2 +) time.

4 A HYBRID APPROACH
So far, we are able to tackle a temporal join query using join-�rst
and time-�rst approaches separately. We highlight the following
two from existing extensive results: a near-linear algorithm for hi-
erarchical temporal joins (optimal), and a quadratic-time algorithm
for general acyclic temporal joins (the best theoretical result we can
achieve in this work). For general cyclic joins, existing results can
be further improved by combing these two approaches together,
noted as hybrid approach.

Our hybrid approach for general temporal joins is still built on
the notion of GHD (see Section 3.3), but involving two observations:
• Hybrid:We �rst compute an instance for GHD, by materializing
the temporal join results for each node using the join-�rst ap-
proach, and invoke the time-�rst approach only once to compute
the derived acyclic temporal join.

• Hierarchical GHD: We identify the hierarchical GHD for a gen-
eral join query, to which the hierarchical temporal join (Sec-
tion 3.2) can be applied, which provides another choice of apply-
ing time-�rst approach to non-hierarchical temporal join queries.
To characterize the time complexity of such a hybrid approach,

we use both the notion of fractional hypertree width (fhtw) of Q
from Section 3.3 and the new notion of hierarchical hypertree width
of Q, denoted by hhtw(Q), which roughly measures how close
Q is to being hierarchical; hhtw(Q) = 1 if Q is hierarchical. The
running time of this hybrid approach, as described in Section 4.1
is $ (#min{fhtw(Q)+1,hhtw(Q) } +), which is strictly better than
both join-�rst and time-�rst approach. In Section 4.2 we give some
simpli�cation and potential improvement on some speci�c tempo-
ral join queries. At last, we conclude with a general guideline for
handling temporal join queries in Section 4.3.

4.1 General Temporal Join Algorithm
As described in Algorithm 5, the overall algorithm follows the stan-
dard GHD-based framework. In lines 1-9, we construct a temporal
instance of R with respect to GHD (T , _) of Q, denoted as RT . This
step is quite similar to Algorithm 4, while the only di�erence is
how to preserve temporal information in the GHD: with respect to
the temporal instance RD de�ned for node D, we note that validity
intervals of tuples from '4 are carried to RD if 4 ✓ _D ; otherwise,
we just set them to be (�1, +1). By De�nition 7, each relation
4 2 E has its attributes fully contained by at least one node D, there-
fore all validity intervals in '4 are preserved in RD for some node
D 2 T , guaranteeing the correctness of the temporal join results.

4The exponent of fhtw in Theorem 9 can be further improved to the sub-modular
width of input query by rewriting the join query into a union of multiple sub-queries,
and apply the (best) GHD-based algorithm for each one [17].

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2082

After obtaining the temporal instance RT , we invoke the T����
F���� framework (line 10): more speci�cally, we use the hierarchical
temporal join algorithm in Section 3.2 if GHD (T , _) is hierarchical,
and acyclic temporal join algorithm in Section 3.3 otherwise.

Algorithm 5: H�����(Q,R)
Input : Join query Q = (V, E) and temporal database R;
Output :Temporal join results Q(R);

1 Let (T , _) be a GHD of Q; RT ;;
2 foreach node D 2 T do
3 RD ;, ED ;;
4 foreach 4 2 E with 4 \ _D < ; do
5 ED ED [{4 \ _D };
6 if 4 � _D = ; then RD RD [{'4 } ;
7 else RD RD [{ha, (�1, +1)i | 9b 2 '4 , a =

c4_D (b)};
8 (D G������J���((_D , ED),RD);
9 RT RT [{ha, �ai : 9a 2 (D , �a < ;};

10 return T���F����(T ,RT);

Run-time Analysis. First, we consider the case when (T , _) is
not hierarchical. From Section 3.3, we note that the size of mate-
rialized join result for each node in the GHD, as well as the time
complexity of G������J��� invoked for each node, can be bounded
by$ (# fhtw).5 Plugging to Corollary 10, the last invocation of T����
F���� on the acyclic join T takes $ (# 2·fhtw +) time, which also
dominates the overall runtime. However, this analysis is not tight.
Recall that the time-�rst approach invokes enumeration procedure
at each right endpoint of a valid interval. The number of distinct end-
points of valid intervals in RT is$ (#), since applying intersection
does not create new endpoints. Hence, the number of enumeration
invocations of is $ (#), each taking $ (# fhtw + (a)) time for enu-
merating results participated by a. Putting everything together, we
can improve it to $ (# fhtw+1 +), matching Theorem 9.

Next, we consider the case when (T , _) is hierarchical. The main
observation is that previous analysis could possibly be improved
if there exists a hierarchical GHD of Q, on which the hierarchical
temporal join algorithm in Section 3.2 can be invoked. To capture
it, we de�ne the hierarchical hypertree width of a join as follows:

De�nition 11 (Hierarchical Hypertree Width). The hierarchical
hypertree width of a join query Q, denoted as hhtw(Q), is

hhtw(Q) = min
(T,_) :T is hierarchical

max
D2T

d (_D , ED)

i.e., the minimum width over all hierarchical GHDs.

In plain language, hhtw is the minimum width over all hierarchical
GHDs of input join. In this way, we obtain another upper bound
$ (# hhtw(&)) on the size of materialized join results for each node
in the hierarchical GHD, as well as the time cost of G������J���
invoked for each node. Plugging to Theorem 6, time-�rst approach
takes $ (# hhtw +) time, which also dominates the overall cost.
Combining these two upper bounds, we come to the main result:
5When the context is clear, we always use fhtw as short for fhtw(&) .

x1

x2

x3

x4

x5

x1x2x3

x1x4x5

hhtw = 1.5

fhtw = 1 hhtw = 2

fhtw = 1.5 hhtw = 2

fhtw = 1.5

x1x2x3

x1x4x5

x1 x2 x3

x4x5

x1x2 x2x3

x4x5 x3x4

x1x2x3

x3x4x5

x1x2x3 x1x6

x4x5x6

x1

x2

x3

x4

x5

x6

x1x2x3x6

x1x4x5x6

Figure 6: Hypergraphs (left), GHDs (middle) and hierarchical
GHDs (right). The �rst join has fhtw = hhtw = 1.5 since
both (G1G2G3), G1G4G5) derive a triangle join with d = 1.5. The
second join is acyclic, thus any join tree is a GHDwith fhtw =
1. But the minimum hierarchical GHD has hhtw = 2, with
two nodes {(G1G2G3), (G3G4G5)}. The third join has a GHDwith
three nodes, where (G1G2G3), (G4G5G6) derive a triangle join
with d = 1.5, so fhtw = 1.5. The minimum hierarchical GHD
has hhtw = 2 with two nodes {(G1G2G3G6), (G1G4G5G6)}.

T������ 12. Given a join query Q, a temporal instance R and a
parameter g � 0, the g-durable join result Q(R) can be computed in
$ (#min{fhtw+1,hhtw} +) time.

Remark. The relative ordering between fhtw(Q) + 1 and hhtw(Q)
is still unclear for general joins. In Figure 6, we give three examples
and show their relative orderings. On acyclic joins, we observe:
• If Q is hierarchical, hhtw(Q) = 1 < fhtw(Q) + 1 = 2; and
• If Q is acyclic but non-hierarchical, fhtw(Q) + 1 = 2  hhtw(Q),
which implies that (1) time-�rst approach is the best for hierarchical
temporal joins; (2) hybrid approach does not asymptotically im-
prove time-�rst approach for acyclic but non-hierarchical temporal
joins, but may provide another choice in practice.

4.2 Further simpli�cation and improvement
We note that Algorithm 5 can be signi�cantly simpli�ed on some
speci�c GHDs, and further improved by leveraging interval join.
We need to introduce some terminologies �rst. In a join query Q =
(V, E), for a subset of attributes � ✓ V , let E� = {4 2 E : 4\� < ;}
be the set of hyperedges containing at least one attribute in � , and
Q� = (� , {4 \ � : 4 2 E� }) be the subhypergraph induced by � . Then,
we lay out the condition for a guarded GHD (see Figure 6):

De�nition 13 (Guarded GHD). For a join query Q, a GHD (T , _)
for Q is guarded if all nodes in T is a one-to-one mapping with
{4 [� : 4 2 E� }, for � = \D2T_D and � = V � � .

How does Algorithm 5 behave on a guarded GHD? Each node
D 2 T is labeled with attributes � [4 for some 4 2 E� . Recall that
it materializes the temporal join results for every node and then
applies T���F���� to the derived acyclic join. It is very costly to
sort all materialized join results and build indexes on top of them.

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2083

Algorithm 6: H�����G������(Q,R, � , �)
Input : Join query Q = (V, E) and temporal database R;
Output :Temporal join results Q(R);

1 S ;, eE {4 2 E | 4 ✓ � };
2 L G������J���(Q� , {c � '4 | 4 2 E� });
3 foreach a 2 L do
4 if eE < ; then �a \42eE �c4 (a) ;
5 foreach 4 2 E� do
6 '4 (a) { hc� (a0), �a0 i |9a0 2 '4 ,c4\� (a) = c4\� (a0) };
7 Qa T���F���� (Q� , {'4 (a) | 4 2 E� });
8 S S [(Qa ⇥ {a});
9 return S;

Simpli�cation by Rewriting Algorithm 5. We next simplify
Algorithm 5 on a guarded GHD. As described in Algorithm 6, H��
����G������ takes a partition (� , �) of attributesV as input, where
� = \D2T_D is the set of common attributes appearing in all nodes
of T . Our simpli�ed algorithm �rst computes the temporal join
results, denoted by L, on the subquery Q� induced by � , using
G������J���. Each tuple a 2 L derives a residual join Q� involving
only attributes of � , which is then solved by invoking the T���F����
algorithm. As a comparison, T���F���� only sorts the input tuples
in relations '4 for 4 2 E� and builds indexes on top of them.

Further improvement by Interval Join. We show some further
improvement by leveraging the interval join6. The idea is to replace
T���F���� (line 7) by an interval join, when Q� is a Cartesian prod-
uct. We use line-3 join QL3 = '1 (G1, G2) Z '2 (G2, G3) Z '3 (G3, G4)
for illustration. Tuples in relation '1,'3 are grouped by attribute
G2, G3 respectively. Distinct values in dom(G2) are sorted in a binary-
search tree, and the similar applies to dom(G3). Moreover, tuples
in '1 (resp. '3) with the same value on attribute G2 (resp. G3) are
stored in an interval tree by their validity intervals. These indexes
can be built in $ (# log#) time using $ (# log#) space.

As described in Algorithm 6, we identify a partition of V with
� = {G2, G3}. Computing Q� degenerates to two semi-joins. For
tuple a 2 L, let '1 (a) = {ha0, �a0 i | a0 2 '1, cG2 (a0) = cG2 (a)} and
'3 (a) = {ha0, �a0 i | a0 2 '3, cG3 (a0) = cG3 (a)}. Each a 2 ! derives
an residual join of '1 (a) ⇥ {a} ⇥ '3 (a), which can be handled by
interval join. It can be shown that this interval-join-based method
can improve our existing result from $ (# 2 +) to $ (# 1.5 +).
Investigating how to use interval join to speedup general temporal
joins is very interesting, and left as future work.

4.3 Summary: A Guideline for Temporal Joins
Last but not least, we conclude this section by providing a guideline7
of choosing the best evaluation strategy for temporal joins (see
Figure 7). This guideline is built on the worst-case analysis, hence
multiple best candidate algorithms could exist for some queries. We

6Given two sets ',(of intervals, it asks to �nd all pairs (A , B) 2 ' ⇥ (such that
A \ B < ;. W.l.o.g., assume |' |  |(|. After$ (|(| log |(|) pre-processing time, the
query result can be returned in$ (|' | log |(| +) time.
7This guideline can be implemented by taking a temporal join query as input and
going through the tests in the decision tree (Figure 7) automatically. The leaf node it
reaches is the best algorithm suggested from our theoretical analysis. .

Q is acyclic?

Q is hierarchical?

yes

yes no

no

TimeFirst

TimeFirst

fhtw(Q) +1  hhtw(Q)?

yes no

Hybridhhtw(Q)  2?

yes no

Hybrid

Hybrid

TimeFirst

TimeFirst

Figure 7: A guideline of choosing temporal Join algorithms.

don’t distinguish those theoretically-equivalent methods, but we
can see their di�erences in empirical evaluation (Section 6).

The guideline only takes as input a temporal join query Q, and
works as follows. It starts with determining whether Q is acyclic
or not. If Q is acyclic, it further distinguishes whether Q is hierar-
chical or not. If Q is hierarchical, we directly apply the T���F����
approach based on the attribute tree (see Section 3.2). Otherwise,
Q is acyclic but non-hierarchical. In this case, we always have the
T���F���� approach based on GHDs (see Section 3.3) in hand. If
hhtw(&) = 2, the H����� approach based on hierarchical GHD is
also competitive. If Q is cyclic, we always have H����� in hand.
In this case, we note that if fhtw(&) + 1  hhtw(&), T���F����
approach based on the GHD is also a candidate solution. When
H����� approach is invoked, we can always play with the simpli�-
cation and optimization on guarded GHD if applicable. As the join
query has constant size, we can decide which algorithm to pick in
$ (1) time. Overall, the time complexity of temporal join algorithm
chosen by this guideline matches Theorem 12.

5 HARDNESS
In this section, we show hardness of computing temporal joins by
relating them to non-temporal joins. The �rst hardness result is
derived for non-r-hierarchical temporal joins based on the 3SUM
conjecture [40]. The second hardness result is derived for general
temporal joins, by resorting to the open question [17]: whether
there exists a faster output-sensitive algorithm for improving the
sub-modular width of non-temporal joins.

5.1 Non-R-hierarchical Temporal Joins
Our lower bound as stated in Theorem 14 is built upon the 3SUM
conjecture: Given a set (of# numbers, it is conjectured that �nding
distinct G,~, I 2 (such that G + ~ = I requires ⌦(# 2�n) time, for
any small constant n > 0 [40].

T������ 14. The worst-case running time of any algorithm for
the temporal instance R of the non-r-hierarchical join Q of size # is
⌦(# 4/3�n) for any constant n > 0, under the 3SUM conjecture, even
if the output size is $ (#).

P���� �� S�����. Hu et al. [47] (Lemma 5.2) proved that any
non-r-hierarchical join Q = (V, E) has a minimal path of length 3,
i.e., it is always feasible to �nd 41, 42, 43 2 E and G1, G2, G3, G4 2 V
such that G1 2 41 � 42 � 43, G2 2 41 \ 42 � 43, G3 2 42 \ 43 � 41 and
G4 2 43 � 42 � 41. It thus su�ces to prove the theorem for line-3
join &!3 = '1 (G1, G2) Z '2 (G2, G3) Z '3 (G3, G4).

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2084

We show a reduction from triangle-listing problem to computing
temporal join QL3. Patrascu [69] has proved that in an undirected
graph⌧ , listing # triangles takes ⌦(# 4/3�n) time for any constant
n > 0, assuming the 3SUM conjecture. Given an undirected graph⌧ ,
we construct a temporal instance R for QL3. For simplicity, assume
vertices in ⌧ and the domain of attributes in R are integers. For
each edge (D, E) in ⌧ , we add following tuples to R:
• h(D + E,D), [E, E]i and h(D + E, E), [D,D]i to '1;
• h(D, E), (�1, +1)i and h(E,D), (�1, +1)i to '2;
• h(D,D + E), [E, E]i and h(E,D + E), [D,D]i to '3.

Note that there are no identical tuples in one relation, since edges
in ⌧ are distinct. There is a one-to-one correspondence between
QL3 (R) and the set of triangles in ⌧ . The triple {D, E,F} forms a
triangle in⌧ if and only if h(D+F ,D, E, E+F), [F ,F]i,h(E+F , E,D,D+
F), [F ,F]i, h(D + E,D,F ,F + E), [E, E]i, h(F + E,F ,D,D + E), [E, E]i,
h(E +D, E,F ,F +D), [D,D]i, h(F +D,F , E, E +D), [D,D]i are in QL3 (R).
If there are # triangles in ⌧ , there are $ (#) temporal join results
in QL3 (R). Any algorithm correctly computing QL3 (R) in $ (#W)
time can list all triangles in ⌧ in $ (#W) time. Implied by the lower
bound for listing triangles, we can show that computing QL3 (R)
in $ (# 4/3�n) time is 3SUM-hard, for any n > 0. ⇤

5.2 Non-temporal Counterpart
Although we have shown a lower bound ⌦(# 4/3 +) for line-3
temporal join in Theorem 14, it seems quite di�cult to improve
our current upper bound of $ (# 1.5 +) further (Section 4.2). The
intuition is that evaluating a temporal line-3 join is equivalent to
evaluating a non-temporal triangle join, which is formally captured
by Theorem 15 and generalized to arbitrary temporal joins.

T������ 15. A temporal join query Q = (V, E) is as hard as
any non-temporal join Q(for any subset (✓ E, where Q(= (V [
{G}, E � (+ {4 [{G} | 4 2 (}).

The proof of Theorem 15 can be found in the full version [15].
We refer Q(to be a non-temporal counterpart of Q. An example
of non-temporal counterpart of line-3 join is &(= '1 (G1, G2, G) Z
'2 (G2, G3) Z '3 (G3, G4, G) for (= {'1,'3}. So far, a non-temporal
join algorithm of $ (# subw(Q) +) time complexity has been pro-
posed in [17], where subw(Q) is the sub-modular width of Q. No
lower bounds are known to rule out faster algorithms for any spe-
ci�c query, but the known results [17, 62] suggested it very unlikely
that an algorithm with $ (# subw(&)�n +) time complexity exists,
for any small constant n > 0. In view of Theorem 15, we make the
following conjecture:

C��������� 16. For a temporal join queryQ = (V, E), there is an
instanceR such that it is impossible to computeQ(R) in$ (#F�n+)
time whereF = max(✓E subw(Q(), for any small constant n > 0.

6 EXPERIMENTS
6.1 Setup
All our experiments were implemented in C++, and performed on
a Linux machine with two Intel Xeon E5-2640 v4 2.4GHz processor
with 256GB of memory. All codes are public at [14].
Algorithms.We have implemented three algorithms for evalua-
tion. (1) T���F����: We have implemented Algorithm 1 for both

hierarchical temporal joins and general temporal acyclic joins. (2)
H�����: We have implemented Algorithm 5 for general tempo-
ral joins, and its optimization versionH�����-I������� as de-
scribed in Algorithm 6. (3) B�������: One baseline algorithm for
general temporal join queries sequentially picks a pair of relations
to join and materializes their join results as a new relation to be
further joined (if applicable, we always pick the best join order).
Two relations are joined by resorting to the forward-scan-based
algorithm [26], which has been experimentally veri�ed as the most
e�cient temporal join algorithm. (4) J���F����: Another baseline
algorithm for temporal graph query processing is an instantiation
of the join-�rst approach, which computes all subgraphs matching
the query pattern using mature subgraph matching techniques [8]
and then checks the validity interval for each subgraph. We note
that the same approach has been adopted by previous work [39].

Datasets and Queries. We use both synthetic and real datasets
for evaluating di�erent classes of temporal join queries.

Synthetic Dataset. The idea is to enlarge the intermediate tem-
poral join size while keeping the �nal (temporal/durable) join size
small, i.e., a large number of intermediate results are dangling with-
out participating in �nal results. This can be achieved by specifying
the distribution of validity intervals of input tuples and adding two
additional relations for controlling intermediate results. Details
can be found in the full version [15].Overall, we guarantee that no
pairwise join ordering can easily compute the join results.

TPC-BiH [50] is the bi-temporal version of the TPC-H bench-
mark dataset, extended with di�erent types of history classes, such
as degenerated, fully bi-temporal or multiple user times. Note that 5
(partsupp, part, lineitem, orders, customer) out of 8 relations have tem-
poral validity intervals. We select out the following 4 join queries:

• &tpc3 = customer Z order Z lineitem;
• &tpc5 = customer Z order Z lineitem Z supplier;
• &tpc9 = partsupp Z lineitem Z order;
• &tpc10 = partsupp Z lineitem Z order Z customer.

of the 22 standard queries from the benchmark [13] by identifying
the underlying temporal join query involving at least 3 relations.

Flights [2] is a graph with 650 vertices and 1,700 edges, storing
the �ight information with 7 attributes: id, �ight-number, departure-
airport, arrival-airport, aircraft-id, departure-time and arrival-time.

DBLP [58] is a common ego-network from SNAP (Stanford
Network Analysis Project) [58] for DBLP. A collaboration graph
is constructed where two authors are connected if they publish
at least one paper together in any inproceeding. This graph has
2,786,059 authors and 9,460,140 edges. Each edge is associated with
a set of disjoint intervals, each one indicating a continuous period
in which these two authors keep publishing paper in every years.

TPC-E [12] is an online transaction processing benchmark for
stock exchange. We aggregate over the temporal dataset and create
a new table '(CustomerKey, SecurityId, StartTime, EndTime) for
customer and security. An interesting task is to mine customers
with similar trading behaviors, e.g.,Qtpce = fcount�4

Õ
('(⇠1, () Z

'(⇠2, () Z · · · Z '(⇠5, () �nds all sets of 5 customers who held
more than 4 common active securities at some timestamp.

LDBC-SNB [3] is a transactional graph processing benchmark,
mimicking a social network’s activity with the evolving of time.

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2085

Table 1: Execution plans for temporal join queries in Section 6. For T���F����, we show the GHD for line joins QL3,QL4,QL5
and the attribute tree for star joins QS3,QS4,QS5. For H�����, we show the GHD for all joins, where each (.) denotes one node.
For H�����-I�������, we show the partition (� , �) for the set of attributes, used by Algorithm 6.

Join T���F���� H����� H�����-I������� Datasets
QL3 (G1G2)-(G2G3)-(G3G4) (G1G2G3) -(G3G4) � = {G1, G4}, � = {G2, G3} allQL4 (G1G2)-(G2G3)-(G3G4)-(G4G5) (G1G2G3) -(G3G4G5) � = {G1, G5}, � = {G2, G3, G4}
QL5 (G1G2)-(G2G3)-(G3G4)-(G4G5)-(G5G6) (G1G2G3G4) -(G4G5G6) � = {G1, G6}, � = {G2, G3, G4, G5} Synthetic

QS3,QS4,QS5 (G1) � {(G2), (G3), · · · , } – – Flights, DBLP
QC3 – (G1G2G3) – SyntheticQC4 – (G1G2G3)-(G1G4G3) – FlightsQC5 – (G1G2G3G4) - (G1G4G5) –

Qbowtie – (G1G2G3)-(G1G4G5) – Flights

Figure 8: Running time (above) and peak memory usage (below) on synthetic datasets. From left to right:
line (QL4), star (Q(4), and cyclic (Q⇠4)

Figure 9: Scalability.

Figure 10: Running time on real datasets (from left to right): TPC-BiH (&tpc3, &tpc5, &tpc9, &tpc10), Flight
(&!3 ,&!4 ,&!5 ,&(3 ,&(4 ,&(5 ,&⇠3 ,&⇠4 ,&⇠5 ,&bowtie) and DBLP (&!3 ,&!4 ,&!5 ,&(3 ,&(4 ,&(5).

Figure 11: Peak Memory us-
age on TPC-BiH.

A temporal table PersonKnowsPerson(PersonId, PersonId, StartTime,
CurruentTime) is used to model relationships among people.

Queries. The set of queries to be evaluated together with their
execution plans are summarized in Table 1.

6.2 Experimental Results
Results on Synthetic Dataset. We generate synthetic datasets
for line (QL4), star (Q(4), and cyclic (Q⇠4) joins, and run our al-
gorithms with B�������. For each query/dataset combination, we
compare the query time and the maximum memory usage for dif-
ferent values of durability threshold g . The results are shown in
Figure 8. We choose g  1000 since the number of �nal results

already decreases to 0 for g � 1000. Generally, the number of �nal
temporal join results increases as g decreases. More speci�cally,
on the synthetic dataset over QL4, there are 109, 98, 69, 10, 8 �nal
results, corresponding to g = 100, 200, 400, 800 respectively. As veri-
�ed in Figure 8, the runtime of B������� increases as g decreases.
In all cases, our algorithms perform better than B�������which suf-
fers from a large number of intermediate results. For line join, the
best algorithms, as expected, are T���F���� and H�����-I�������.
H�����-I������� runs 70⇥ faster and uses 1000⇥ less space than
B�������. The execution of H����� is similar to B������� on line
join queries; there are only small di�erences in their runtime and
memory usage. We also observe this phenomenon on real datasets

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2086

later, because H����� over line joins just degenerates to the pair-
wise framework by B�������, as shown in Table 1. For star join,
T���F���� outperforms B������� signi�cantly since its running
time and memory usage only depend on the input size and �nal
temporal join size (recall Theorem 6), instead of the large number
of intermediate results. In some cases, T���F���� runs 60⇥ faster
while using 1000⇥ less memory than B�������. While H����� per-
forms similarly with B������� over the line join, it outperforms
B������� for the cyclic join query, as the number of intermediate
join results generated by H�����, i.e., the size of materialized rela-
tions for nodes in the GHD, is much smaller than the intermediate
join results generated by B�������. For example, on length-4 cy-
cle join Q⇠4 = '1 (G1, G2) Z '2 (G2, G3) Z '3 (G3, G4) Z '4 (G4, G1),
B������� has to materialize a line-3 join (say '1 Z '2 Z '3) as
intermediate join results, while H����� only materializes line-2
joins (say '1 Z '2) in the process. In most cases, H����� runs 5⇥
faster using 1000⇥ less memory than B�������.

We also experimented with more complicated join queries us-
ing the synthetic data generator in Section 6.1. In all cases, our
algorithms run much faster than B������� while using much less
space. Interestingly, even with small-size tables, B������� some-
times could not �nish its execution because it ran out of memory
with too many intermediate results.

Results on TPC-BiH. In Figure 10, we evaluate di�erent algo-
rithms on four line join queries, and report their runtime as a
ratio to B�������’s runtime. We also report the peak memory con-
sumption in Figure 11. On query &tpc3, only H�����-I������� can
slightly win over B�������—the ratio is 0.96.H����� roughly equals
B�������, but T���F���� is nearly 3 times slower than B�������.
The main reason is that relations involved in these two queries
(e.g., customer, order and lineitem) generally have low multiplicity
between join keys. For example, most customers only place a single
order, and most orders only contain one lineitem. Hence, B����
���� would not su�er from huge intermediate results. In fact, after
the �rst binary temporal join, we observe that the intermediate
table size has almost shrunk to the �nal answer size. Unfortunately,
T���F���� and H����� still have to build and maintain auxiliary
data structures for pruning, but these e�orts are essentially wasted
because there are so few intermediate results. Because of these
data characteristics, the overhead of T���F���� and H����� makes
them less e�cient than B�������. The peak memory consumption
from Figure 11 also con�rms this �nding—on &tpc3, B������� used
signi�cantly less memory than other approaches. Results over&tpc5
are similar to that of &tpc3, but more relations in the query slow
B������� down since longer joins lead to more intermediate results.
On&tpc5, T���F���� and H����� still do not show advantages over
B�������, while H�����-I������� can achieve about 50% speedup.

However, when it comes to &tpc9, we can see our proposed al-
gorithms taking a clear lead — all of them can be at least 10⇥
faster than B�������, with H�����-I������� providing more than
100⇥ speedup. The reason of this dramatic inversion of relative
performance still comes down to the data characteristics of joining
relations. In &tpc9, a one-to-many relationship exists between part-
supp and lineitem, hence the intermediate results explode as soon as
these relations were joined. Again, peak memory consumption from
Figure 11 con�rms this behavior. The memory usages of T���F����,

H����� and H�����-I������� are only 20% of that of B�������,
demonstrating their pruning power on skipping those unnecessary
intermediate results. Similar conclusions can be drawn on &tpc10.

Results on Flight & DBLP. Both of these datasets are graph-
structured. We evaluate a larger class of join queries, including line
joins, star joins and general cyclic joins, by conducting self-joins
on the edge table. For comprehensiveness, we also implemented
J���F���� for subgraph matching over temporal graphs. Results
are summarized in Figure 10 (due to space limit, the results on peak
memory consumption of each approach are included in the full ver-
sion [15]). Same as before, we report running time as a ratio to that
of B�������. On DBLP, for each type of query, J���F���� performs
the worst, up to 3 orders of magnitude slower than B�������, since
it completely ignores temporal predicates until the last. In contrast,
at least one approach from our proposed temporal join toolbox
wins over B�������, o�ering up to 2⇥ speedup. On Flight, a much
smaller graph, J���F����wins on simpler query patterns (QL3, QS3)
by an order of magnitude, but can be more than 10⇥ slower on
more complex queries (QL5, QS5). On the other hand, we can see
J���F���� generally performs well on cyclic queries (QC3, QC4)
with a 10-100⇥ speedup over B�������. But similarly, H����� can
beat J���F���� on complex patterns (QC5, Qbowtie) up to an order
of magnitude. Overall, J���F���� outperforms other methods when
the number of non-temporal join results is very small, due to the
rather simple structure of input query. Moreover, for other types
of query on both datasets, at least one approach from our toolbox
performs better than B�������, achieving 2-100⇥ speedup. Though
J���F���� can be an attractive option when dealing with simple
patterns on small datasets, our proposed solutions are generally
more robust and e�cient across datasets and query patterns.

It is worth mentioning that the improvement on graphs is not as
signi�cant as that on the synthetic datasets or TPC-BiH. One reason
is that self-joins produce signi�cantly di�erent number of inter-
mediate results depending on the input queries. More speci�cally,
no dangling results will be generated for line, star and even-length
cycle joins, as it is always possible to extend an intermediate result
into a �nal result, for example (0 � 1,1 � 0,0 � 1, · · ·) is a line or
an even-length cycle, (0 � 1,0 � 1, · · ·) is a star, etc. These trivial
patterns make it di�cult to trim intermediate results, so such data
characteristic favors B������� and weakens the pruning power
of our techniques. As veri�ed in Figure 10, B������� performs
competitively with the best of our algorithms on QL3, Q!5, Q!6,
Q(3, Q(4, Q(5 and Q⇠4. However, large number of intermediate
join results could be generated for odd-length cycles, for example
(0,1,0,1,0,1) is not a length-5 cycle. On these queries, H�����
performs much better than B�������, con�rmed by Figure 10.

Scalability Results on TPC-E & LDBC-SNB. We evaluate the
scalability of our algorithms on the TPC-E and LDBC-SNB datasets.
For TPC-E, we consider a star join with g = 170 and vary the input
size # from 50 to 1" . For LDBC-SNB, we use a line join with
g = 11 and vary # from 10 to 2" . In order to normalize the per-
formance numbers for better comparison across di�erent datasets,
we de�ne a new measurement throughput as the average number
of join results generated per time unit—the higher the throughput
the better. As shown in Figure 9, the throughput for all algorithms
roughly stays the same across di�erent input size, despite small

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2087

variations, which demonstrates that T���F����, H�����-I�������
and B������� are output-sensitive, when the output size dominates
the input size. On average, T���F���� outperforms B������� with
1.5⇥ higher throughput on star join, and H�����-I������� beats
B������� on line join with roughly 1.6⇥ higher throughput.

6.3 Summary
From our experiments, we make the following observations. (i)
J���F���� performs well only when the input query has a rather
simple structure and the dataset size is small, verifying our theoreti-
cal observation that it bene�ts from small number of non-temporal
join results. But J���F���� behaves the worst when the input query
is complex or the dataset is large, due to the large number of non-
temporal join results, since it �rst ignores temporal predicates in
join processing. (ii) In almost all cases, at least one of our proposed
algorithms (T���F����, H����� and H�����-I�������) is more e�-
cient than B�������. B������� (or J���F����), and provides a good
option even in “easy” scenarios, e.g., when the input size is small,
when there are very few dangling intermediate results, or when the
query is very simple. (iii) Most importantly, our temporal toolkit
is more robust and scalable to query types and input size. Overall,
they are fast over all possible scenarios, and can e�ciently handle
hard instances where B�������/J���F���� performs poorly.

Meanwhile, we �nd that the performance of our proposed algo-
rithms (T���F����, H����� and H�����-I�������) varies depend-
ing on the query structures, which veri�es our theoretical �ndings
in previous sections. Roughly speaking, T���F���� behaves the
best on hierarchical temporal joins (e.g., star join). For acyclic but
non-hierarchical temporal joins (e.g., line join), H�����-I�������
outperforms both T���F���� and H����� if the GHD is guarded,
which illustrates the power of simpli�cation and interval join in
Section 4.2. For cyclic temporal joins, H����� is always better than
the T���F���� on cycle joins, but J���F���� could be competitive
as well depending on the data statistics. All these observations
conform our guideline shown in Figure 7.

An important avenue for future work would be a cost-based
optimizer that is aware of both query structure and the underlying
data characteristics, and can make intelligent decisions on the best
algorithm to use—be it one of the algorithms in our toolbox, or just
B�������, or J���F����—for a given occasion.

7 RELATEDWORK
Temporal Join and Temporal Support in DBMS. Most of previ-
ous e�orts are put to binary temporal join, involving only two rela-
tions. Temporal binary join reduces to a set of interval joins, so most
of previous temporal join algorithms are based on interval joins.
Many di�erent techniques have been proposed such as sort/merge-
based [45], sweep-plane-based [20, 26, 27, 70], index-based [22, 36,
51, 87], partitioning-based techniques [28, 34, 60, 74, 75, 77] and
relational algebra [33]. There are some other works [31, 56] in
parallel/distribution settings; and we will focus on in-memory pro-
cessing in this work. Moreover, how to extend these techniques to
a temporal join query involve multiple relations is still unclear.

The adoption of temporal features in industrial database man-
agement systems (DBMS) was much slower. SQL included temporal

features as part of the SQL:2011 standard [57]. Last decade has wit-
ness a big burst of temporal support in conventional database man-
agement systems, e.g., MariaDB [4], Oracle [6], IBM DB2 [72], Tera-
data [19], PostgreSQL [7], Microsoft SQL server [10], Microsoft Trill
Temporal Analytical Engine [30]. Other non-relational database
management systems also provide temporal features [5, 9, 11, 16].
Query processing over Temporal Graphs/Networks. Exten-
sive research has been performed over temporal graphs and net-
works for various applications (and we refer interested readers to
some nice surveys [29, 46, 54, 63]), depending on di�erent temporal
sources (such as nodes, edges, or both), temporal predicates (such
as overlap, non-overlap but with bounded gap, chronological or-
dering), pattern constraints (such as isomorphic subgraphs, motifs),
etc. Several representative works include temporal journey/path
and its applications [53, 67, 79, 81–83], temporal community de-
tection [42, 59, 84, 85], and temporal motifs search [48, 55, 68, 88].
Closely related to our work, temporal join over graphs/networks
degenerates to the subgraph isomorphism problem as a self-join,
while edges participating in the subgraph are required to have
non-empty intersection among their validity intervals. Temporal
subgraph isomorphism has also been widely studied in [61, 71, 78],
but in a di�erent setting where edges are put into a temporal se-
quence and all timestamps fall into a bounded-size window.

To the best of our knowledge, temporal subgraph isomorphism
under the non-empty overlap constraint on edges has been only
considered in [39] and [73], both of which consider graph patterns
as a special case of our temporal joins over hypergraph. [39] designs
a general index for searching temporal patterns, while our work
provides a toolkit for temporal join that exploits input query struc-
ture. [73] �nds the top-: durable subgraphs, while our work aims
to return all durable join results satisfying the durability condition
g . Moreover, these two works focus on empirical evaluation; our
work provide a combination of theoretical and empirical analysis.
Non-temporal Join Algorithms. Numerous variants of the prob-
lem have been proposed and hundreds of algorithms have been
presented for non-temporal joins. We refer readers to [64] for a sur-
vey on join processing. Here we brie�y mention some of the work
that is directly related to this paper. The tractability of relational
join queries is often characterized by the “acyclicity” of the un-
derlying hypergraph of the join queries. The classical Yannakakis
algorithm [86] computes an acyclic joins in $ (# +) time. As
shown in [69], a triangle join, which is one of the simplest example
of cyclic join, takes ⌦(# 4/3�n) time for any constant n > 0, even
when = $ (#), assuming the 3SUM conjecture. One standard
way of handling cyclic joins is to build a decomposition tree of the
hypergraph, such that each node de�ned by a subquery will be
computed �rst and then apply the Yannakakis algorithm on the de-
composition tree. Algorithms in this line have their time complexity
in terms of$ (#F +), whereF is the width of the decomposition
tree such that $ (#F) time is needed for computing every node
and materializing their results in this tree; see [43, 62]. Grohe and
Marx [44] (see also [21]) established a relationship between the size
of a join query and the fractional edge cover d of the join. Building
on their work, Ngo et al [65] presented a worst-case optimal algo-
rithm for arbitrary join queries of time complexity $ (# d), which
is simpli�ed in subsequent work [66].

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2088

REFERENCES
[1] DBLP. https://snap.stanford.edu/data/com-DBLP.html.
[2] Flights Dataset. https://github.com/IITDBGroup/2019-PVLDB-Reproducibility-

Snapshot-Semantics-For-Temporal-Multiset-Relations/tree/master/datasets/
�ights.

[3] LDBC’s Social Network Benchmark. https://ldbcouncil.org/.
[4] MariaDB. https://mariadb.com/kb/en/library/system-versioned-tables/.
[5] MarkLogic. https://www.marklogic.com/.
[6] Oracle. https://www.oracle.com.
[7] PostgreSQL. https://www.postgresql.org.
[8] RapidMatch. https://github.com/RapidsAtHKUST/RapidMatch.
[9] SirixDB. https://sirix.io/.
[10] SQL Server. https://www.microsoft.com/en-us/sql-server/.
[11] TerminusDB. https://terminusdb.com/.
[12] TPC-E Benchmark. http://www.tpc.org/tpce/.
[13] TPC-H Benchmark. http://www.tpc.org/tpch/.
[14] https://github.com/huxiao2010/TemporalJoin.
[15] https://github.com/huxiao2010/TemporalJoin/blob/main/Temporal_Join_

SIGMOD_Full.pdf.
[16] XTDB. https://github.com/xtdb/xtdb.
[17] M. A. Khamis, H. Q. Ngo, and D. Suciu. 2017. What do Shannon-type Inequalities,

Submodular Width, and Disjunctive Datalog have to do with one another?. In
PODS. 429–444.

[18] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.
Vol. 8. Addison-Wesley Reading.

[19] M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam, J. Chimanchode, and S. Pakala.
2013. Temporal query processing in Teradata. In EDBT. 573–578.

[20] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. 1998. Scalable
sweeping-based spatial join. In VLDB, Vol. 98. 570–581.

[21] A. Atserias, Ma. Grohe, and D. Marx. 2008. Size bounds and query plans for
relational joins. In FOCS. IEEE, 739–748.

[22] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter
Widmayer. 1996. An asymptotically optimal multiversion B-tree. The VLDB
Journal 5, 4 (1996), 264–275.

[23] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. 1983. On the desirability of
acyclic database schemes. JACM 30, 3 (1983), 479–513.

[24] C. Berkholz, J. Keppeler, and N. Schweikardt. 2017. Answering conjunctive
queries under updates. In PODS. 303–318.

[25] M. Böhlen, J. Gamper, and C. S. Jensen. 2006. Multi-dimensional aggregation for
temporal data. In EDBT. 257–275.

[26] P. Bouros, N. Mamoulis, D. Tsitsigkos, and M. Terrovitis. 2021. In-Memory
Interval Joins. The VLDB journal (2021), 1–25.

[27] T. Brinkho�, H. Kriegel, and B. Seeger. 1993. E�cient processing of spatial joins
using R-trees. ACM SIGMOD Record 22, 2 (1993), 237–246.

[28] F. Cafagna and M. H. Böhlen. 2017. Disjoint interval partitioning. The VLDB
Journal 26, 3 (2017), 447–466.

[29] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. 2012. Time-varying
graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27, 5 (2012),
387–408.

[30] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F.
Terwilliger, and J. Wernsing. 2014. Trill: A high-performance incremental query
processor for diverse analytics. The VLDB journal 8, 4 (2014), 401–412.

[31] B. Chawda, H. Gupta, S. Negi, T. A. Faruquie, L. V. Subramaniam, and M. K.
Mohania. 2014. Processing Interval Joins On Map-Reduce.. In EDBT. 463–474.

[32] N. Dalvi and D. Suciu. 2007. E�cient query evaluation on probabilistic databases.
The VLDB Journal 16, 4 (2007), 523–544.

[33] A. Dignös, M. H. Böhlen, and J. Gamper. 2012. Temporal alignment. In SIGMOD.
433–444.

[34] A. Dignös, M. H. Böhlen, and J. Gamper. 2014. Overlap interval partition join. In
SIGMOD. 1459–1470.

[35] R. Elmasri, G. T. Wuu, and Y. Kim. 1990. The time index: An access structure for
temporal data. In VLDB. 1–12.

[36] J. Enderle, M. Hampel, and T. Seidl. 2004. Joining interval data in relational
databases. In SIGMOD. 683–694.

[37] R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database
schemes. JACM 30, 3 (1983), 514–550.

[38] R. Fagin and D. Olteanu. 2016. Dichotomies for Queries with Negation in Proba-
bilistic Databases. TODS 41, 1 (2016).

[39] M. Franzke, T. Emrich, A. Zü�e, and M. Renz. 2018. Pattern search in temporal
social networks. In EDBT.

[40] A. Gajentaan and M. H. Overmars. 1995. On a class of O (n2) problems in
computational geometry. Computational geometry 5, 3 (1995), 165–185.

[41] D. Gao, C. S. Jensen, R. T. Snodgrass, and Michael D. Soo. 2005. Join operations
in temporal databases. The VLDB journal 14, 1 (2005), 2–29.

[42] M. Gong, L. Zhang, J. Ma, and L. Jiao. 2012. Community detection in dynamic
social networks based on multiobjective immune algorithm. JCST 27, 3 (2012),
455–467.

[43] G. Gottlob, G. Greco, and F. Scarcello. 2014. Treewidth and hypertree width.
Tractability: Practical Approaches to Hard Problems 1 (2014).

[44] M. Grohe and D. Marx. 2014. Constraint solving via fractional edge covers. TALG
11, 1 (2014), 1–20.

[45] H. Gunadhi and A. Segev. 1991. Query processing algorithms for temporal
intersection joins. In ICDE. 336–344.

[46] P. Holme and J. Saramäki. 2012. Temporal networks. Physics reports 519, 3 (2012),
97–125.

[47] X. Hu and K. Yi. 2019. Instance and Output Optimal Parallel Algorithms for
Acyclic Joins. In PODS. 450–463.

[48] Yuriy Hulovatyy, Huili Chen, and Tijana Milenković. 2015. Exploring the struc-
ture and function of temporal networks with dynamic graphlets. Bioinformatics
31, 12 (2015), i171–i180.

[49] M. Idris, M. Ugarte, and S. Vansummeren. 2017. The dynamic yannakakis al-
gorithm: Compact and e�cient query processing under updates. In SIGMOD.
1259–1274.

[50] M. Kaufmann, P. M. Fischer, N. May, A. Tonder, and D. Kossmann. 2013. Tpc-bih:
A benchmark for bitemporal databases. In TPCTC. Springer, 16–31.

[51] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann, F. Färber,
and N. May. 2013. Timeline index: a uni�ed data structure for processing queries
on temporal data in SAP HANA. In SIGMOD. 1173–1184.

[52] N. Kline and R. T. Snodgrass. 1995. Computing temporal aggregates. In ICDE.
222–231.

[53] G. Kossinets, J. Kleinberg, and D. Watts. 2008. The structure of information
pathways in a social communication network. In SIGKDD. 435–443.

[54] V. Kostakos. 2009. Temporal graphs. Physica A: Statistical Mechanics and its
Applications 388, 6 (2009), 1007–1023.

[55] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki.
2011. Temporal motifs in time-dependent networks. Journal of Statistical Me-
chanics: Theory and Experiment 2011, 11 (2011), P11005.

[56] H. Kriegel, P. Kunath, M. Pfei�e, and M. Renz. 2005. Distributed intersection join
of complex interval sequences. In DASFAA. Springer, 748–760.

[57] K. Kulkarni and J. Michels. 2012. Temporal features in SQL: 2011. ACM SIGMOD
Record 41, 3 (2012), 34–43.

[58] J. Leskovec and A. Krevl. June 2014. SNAP Datasets: Stanford large network
dataset collection. (June 2014).

[59] Y. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. 2008. Facetnet: a framework
for analyzing communities and their evolutions in dynamic networks. In WWW.
685–694.

[60] H. Lu, B. C. Ooi, and K. Tan. 1994. On spatially partitioned temporal join. In
VLDB. 546–557.

[61] P. Mackey, K. Porter�eld, E. Fitzhenry, S. Choudhury, and G. Chin. 2018. A
chronological edge-driven approach to temporal subgraph isomorphism. In Big
Data. 3972–3979.

[62] D. Marx. 2013. Tractable hypergraph properties for constraint satisfaction and
conjunctive queries. JACM 60, 6 (2013), 1–51.

[63] O. Michail. 2016. An introduction to temporal graphs: An algorithmic perspective.
Internet Mathematics 12, 4 (2016), 239–280.

[64] H. Q. Ngo. 2018. Worst-case optimal join algorithms: Techniques, results, and
open problems. In PODS. 111–124.

[65] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. 2018. Worst-case optimal join algorithms.
JACM 65, 3 (2018), 1–40.

[66] H. Q. Ngo, C. Ré, and A. Rudra. 2014. Skew strikes back: New developments in
the theory of join algorithms. ACM SIGMOD Record 42, 4 (2014), 5–16.

[67] R. K. Pan and J. Saramäki. 2011. Path lengths, correlations, and centrality in
temporal networks. Physical Review E 84, 1 (2011), 016105.

[68] A. Paranjape, A. R. Benson, and J. Leskovec. 2017. Motifs in temporal networks.
In WSDM. 601–610.

[69] M. Patrascu. 2010. Towards polynomial lower bounds for dynamic problems. In
STOC. 603–610.

[70] D. Piatov, S. Helmer, and A. Dignös. 2016. An interval join optimized for modern
hardware. In ICDE. 1098–1109.

[71] U. Redmond and P. Cunningham. 2013. Temporal subgraph isomorphism. In
ASONAM. IEEE, 1451–1452.

[72] C. M. Saracco, M. Nicola, and L. Gandhi. 2010. A matter of time: Temporal data
management in DB2 for z. Technical Report. IBM Corporation, New York.

[73] K. Semertzidis and E. Pitoura. 2016. Durable graph pattern queries on historical
graphs. In ICDE. 541–552.

[74] H. Shen, B. C. Ooi, and H. Lu. 1994. The TP-Index: A dynamic and e�cient
indexing mechanism for temporal databases. In ICDE. 274–281.

[75] I. Sitzmann and P. J. Stuckey. 2000. Improving temporal joins using histograms.
In DEXA. Springer, 488–498.

[76] R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Cli�ord, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Käfer, et al. 1994. TSQL2 language speci�cation. ACM
SIGMOD Record 23, 1 (1994), 65–86.

[77] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. 1994. E�cient evaluation of the
valid-time natural join. In ICDE. 282–292.

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2089

https://snap.stanford.edu/data/com-DBLP.html
https://github.com/IITDBGroup/2019-PVLDB-Reproducibility-Snapshot-Semantics-For-Temporal-Multiset-Relations/tree/master/datasets/flights
https://github.com/IITDBGroup/2019-PVLDB-Reproducibility-Snapshot-Semantics-For-Temporal-Multiset-Relations/tree/master/datasets/flights
https://github.com/IITDBGroup/2019-PVLDB-Reproducibility-Snapshot-Semantics-For-Temporal-Multiset-Relations/tree/master/datasets/flights
https://ldbcouncil.org/
https://mariadb.com/kb/en/library/system-versioned-tables/
https://www.marklogic.com/
https://www.oracle.com
https://www.postgresql.org.
https://github.com/RapidsAtHKUST/RapidMatch
https://sirix.io/
https://www.microsoft.com/en-us/sql-server/
https://terminusdb.com/
http://www.tpc.org/tpce/.
http://www.tpc.org/tpch/.
https://github.com/huxiao2010/TemporalJoin
https://github.com/huxiao2010/TemporalJoin/blob/main/Temporal_Join_SIGMOD_Full.pdf
https://github.com/huxiao2010/TemporalJoin/blob/main/Temporal_Join_SIGMOD_Full.pdf
https://github.com/xtdb/xtdb

[78] X. Sun, Y. Tan, Q.Wu, B. Chen, and C. Shen. 2019. TM-Miner: TFS-based algorithm
for mining temporal motifs in large temporal network. IEEE Access 7 (2019),
49778–49789.

[79] J. Tang, M. Musolesi, C. Mascolo, and V. Latora. 2010. Characterising temporal
distance and reachability in mobile and online social networks. SIGCOMM 40, 1
(2010), 118–124.

[80] T. L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.
In ICDT. 96–106.

[81] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. 2014. Path problems in
temporal graphs. The VLDB journal 7, 9 (2014), 721–732.

[82] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke. 2016. Reachability and time-based
path queries in temporal graphs. In ICDE. 145–156.

[83] B. B. Xuan, A. Ferreira, and A. Jarry. 2003. Computing shortest, fastest, and
foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14, 02 (2003),
267–285.

[84] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. Lui. 2016. Diversi�ed temporal
subgraph pattern mining. In SIGKDD. 1965–1974.

[85] Z. Yang, A. W. Fu, and R. Liu. 2016. Diversi�ed top-k subgraph querying in a
large graph. In SIGMOD. 1167–1182.

[86] M. Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB, Vol. 81.
82–94.

[87] D. Zhang, V. J. Tsotras, and B. Seeger. 2002. E�cient temporal join processing
using indices. In ICDE. 103–113.

[88] Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, and W. Lee. 2010. Communication
motifs: a tool to characterize social communications. In CIKM. 1645–1648.

Session 28: Spatial, Temporal, and Multimedia Databases SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

2090

	Abstract
	1 Introduction
	2 Model and Results
	2.1 Problem Definition
	2.2 Classes of Join Queries
	2.3 Our Contribution

	3 Time-First Approach
	3.1 Framework
	3.2 Hierarchical Temporal Join
	3.3 General Temporal Join

	4 A Hybrid Approach
	4.1 General Temporal Join Algorithm
	4.2 Further simplification and improvement
	4.3 Summary: A Guideline for Temporal Joins

	5 Hardness
	5.1 Non-R-hierarchical Temporal Joins
	5.2 Non-temporal Counterpart

	6 Experiments
	6.1 Setup
	6.2 Experimental Results
	6.3 Summary

	7 Related Work
	References

