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Abstract

Voting is used widely to identify a collective decision for a group of agents, based on
their preferences. In this paper, we focus on evaluating and designing voting rules that
support both the privacy of the voting agents and a notion of fairness over such agents. To
do this, we introduce a novel notion of group fairness and adopt the existing notion of local
differential privacy. We then evaluate the level of group fairness in several existing voting
rules, as well as the trade-offs between fairness and privacy, showing that it is not possible to
always obtain maximal economic efficiency with high fairness or high privacy levels. Then,
we present both a machine learning and a constrained optimization approach to design new
voting rules that are fair while maintaining a high level of economic efficiency. Finally, we
empirically examine the effect of adding noise to create local differentially private voting
rules and discuss the three-way trade-off between economic efficiency, fairness, and privacy.

1. Introduction

Voting is one of the most used and well-studied methods to make a collective decision (Brandt
et al., 2016). In the relevant literature, voting rules have been designed, evaluated, and
compared w.r.t. various desirable normative properties. Some desiderata concern economic
efficiency; for example, Condorcet efficiency requires that a decision (also usually termed
“alternative”) that beats other alternatives in pairwise comparisons be chosen. Others con-
cern fairness; for example, anonymity requires that the selection of the collective decision
should only be based on the agents’ reported preferences and must be insensitive to their
identities or features.

While anonymity preserves the “one person, one vote” principle (often used in political
elections), it may not be suitable for many other applications of voting. In fact, the use of
anonymous voting rules may lead to the well-known “tyranny of the majority” (Mill, 1859)
issue, where the majority of voting agents dictates the decision, which may not be favorable
to the minority. This motivated us to consider other properties that ensure fairness over
groups of agents.

Recently, various notions of group fairness (Chouldechova & Roth, 2020) have been
proposed to address fairness in algorithmic decision-making, mainly focusing on classifica-
tion problems in machine learning (ML). Due to bias in data or training methodologies, an
algorithmic decision-making system can be biased towards one group of people in terms of
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important metrics such as accuracy, positive predictive value, etc. This can lead to unfair
decisions, creating discrimination. To avoid this, fairness is defined over protected features
(e.g., gender, race, etc.) that indicate group membership. For example, we may require
that the prediction accuracy is equal for different groups, such as men and women.

While voting does not have metrics like prediction accuracy, we can consider an analo-
gous scenario where the average utility received by different groups of agents is equal. We,
therefore, define a novel way to measure group fairness in voting (Definitions 1–2), focusing
on how voting outcomes (that is, the collective decisions) affect different groups of agents.
We then investigate existing voting rules in terms of the trade-off between fairness and
economic efficiency and find worst-case results for fairness (Theorems 1–6) that show that
well-studied voting rules can be very unfair in the worst case.

This way of defining and achieving fairness over groups of agents needs to expose features
of agents, since such features define the group that each agent belongs to. This means that
the voting process is not anonymous, which leads to privacy concerns. To circumvent this,
we employ the well-studied notion of differential privacy (DP) (Dwork et al., 2006) to ensure
that an adversary cannot learn too much about the voting behaviors of the agents from the
voting outcome. This is usually done by adding noise to the outcome of the collective
decision process, to ensure that it does not compromise privacy regarding individual voting
behavior. However, since aggregating votes is a centralized process where an aggregator
collects all votes and applies a voting rule to determine the collecting decision, adversarial
attacks on the aggregator can be privacy-compromising as well. This compels us to consider
an extension of local differential privacy (local DP) (Evfimievski et al., 2003) where noise
is rather added to individual votes, so even an attack on the aggregator is not privacy-
compromising for the agents.

We study theoretically the effect of adding local differential privacy to fair voting rules
and analyze the three-way trade-off between fairness, economic efficiency, and privacy (The-
orem 7). We show that, while a high privacy requirement results in higher efficiency loss,
we can have moderate privacy with a small decrease in either efficiency or fairness.

To add to our theoretical work, on the practical front we present two frameworks to
design voting rules with varying levels of fairness, privacy, and economic efficiency. For the
first framework, we define a family of voting rules that maximize fairness under efficiency
constraints and can be thought of as a natural extension of positional scoring rules such as
Plurality, Borda, etc. The extension comes from looking at alternative scores as indicators
for group utilities. The second framework employs a machine learning-based approach that
allows us to design fair and efficient voting rules that go beyond just positional scoring rules
and work with fairness definitions under more general notions of utility. Similarly, notions
of economic efficiency other than utilities, e.g., Condorcet efficiency, are considered. We
use a mixture of synthetic voting data that is fair and efficient to learn voting rules that
achieve different levels of efficiency and group fairness.

Experimentally, we show that the learned family of voting rules succeeds in achieving
high fairness and efficiency satisfaction levels, based on simulations on synthetic data. In
particular, our newly designed voting rules are never dominated by a voting rule that focuses
on purely economic efficiency or group fairness. Additionally, we analyze the effect of adding
local noise to design local differentially private voting rules. Finally, we experimentally
verify our theoretical results for the fairness-efficiency-privacy trade-off, showing that for
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moderate privacy requirements (when the noise level is not very high), the loss in efficiency
and fairness is small.

To summarize, the goal of this paper is to study and design collective decision-making
processes that support group fairness, economic efficiency, and privacy. Often these prop-
erties will conflict with each other. So, we first discuss and define notions of group fairness
and privacy in voting frameworks and theoretically analyze how they affect voting rules. We
then empirically analyze the trade-off between efficiency, fairness, and privacy, and propose
methods to design fair and private voting rules.

Economic efficiency, other notions of fairness, and privacy have all been studied before.
However, we are not aware of previous work that designs and studies voting rules with a
focus on group fairness in a single-winner setting, or that discusses the three-way trade-off
between efficiency, fairness, and privacy.

2. Related Work

Fairness in Voting and Beyond. The term fairness lends itself to various concepts,
some related to our work, in voting theory. Diversity constraints and fairness constraints
including statistical parity have been discussed by Bredereck et al. (2018), Celis et al.
(2018) in a multi-winner setting. Other ways of looking at fairness in voting have been
introduced: justified representation in multi-winner scenarios (Chamberlin & Courant, 1983;
Monroe, 1995; Skowron et al., 2015; Sánchez-Fernández et al., 2017; Aziz et al., 2017, 2018),
sortition (Stone, 2016), proportional apportionment (Balinski & Young, 2010; Cembrano
et al., 2021). Many of these works focus on multi-winner elections, and some assume implicit
group membership among the agents. Fair social choice in a dynamic setting has also been
studied, where in a scenario of repeated voting, the goal is to get fair outcomes in the long
term (Parkes & Procaccia, 2013; Freeman et al., 2017; Lackner, 2020). In comparison to
this, we focus on a single-winner in a static setting and explicit group membership in terms
of protected features. Still, the motivation behind these works is relevant to our work.

Our approach to fairness in voting can also be considered a form of egalitarian voting
(Myerson, 1981; Brams et al., 2007; Contucci et al., 2016). However, we present a set-
ting with an explicit specification of group memberships for agents, motivated by recent
work in the machine learning literature about group fairness. When individuals are di-
vided into groups according to certain protected features (e.g., gender, race), group fairness
requires (approximate) parity between the groups for some statistical measure. We refer
to Chouldechova (2017), Corbett-Davies et al. (2017), Kleinberg (2018), Verma and Rubin
(2018), Chouldechova and Roth (2020) for more exposition to the topic. The notion of
treating different groups of agents similarly leads to a discussion about group equitabil-
ity and group envy-freeness (Hossain et al., 2020; Aleksandrov & Walsh, 2018) and also
fairness gerrymandering (Kearns et al., 2018). We study similar notions in a voting based
decision-making scenario.

Differential Privacy (DP). A vast number of mechanisms have been proposed to achieve
DP (Dwork et al., 2006) by perturbing the output of voting rules (Shang et al., 2014; Hay
et al., 2017; Lee, 2015; Birrell & Pass, 2011). However, these mechanisms usually cannot
guarantee privacy in distributed settings like collective decisions, where the central aggre-
gator may become compromised. Local DP (Evfimievski et al., 2003) is a similar notion as
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DP, designed to avoid the potential privacy risks in distributed systems, and widely used
to protect the sensitive personal data in the procedure of data collection (Ye et al., 2019;
Cormode et al., 2018; Gursoy et al., 2019). Joseph et al. (2018) first introduced the concept
of local DP to voting systems. However, they only studied voting settings with two possible
decisions (agree and disagree). Recently, local DP has become a common privacy notion for
voting systems, especially in the application scenarios where the rank-aggregators are not
trustworthy. Yan et al. (2020) proposed a local DP voting rule able to aggregate pairwise
comparisons. Wang et al. (2019) demonstrated the usefulness, soundness, truthfulness and
indistinguishability properties of local DP voting rules. Besides this, Liu et al. (2020) theo-
retically connected privacy with the intrinsic randomness of votes. In this paper, we study
the local DP properties of general voting rules and focus on exploring the trade-off among
fairness, economic efficiency, and local DP.

Automated Mechanism Design. Voting rules fall under the umbrella of social choice
mechanisms that are used for making decisions with desired properties from agent inputs.
The notion of automating the mechanism design (Conitzer & Sandholm, 2002, 2003) process
has a growing body of literature, but most of the work has focused on mechanisms involving
money. For example, in the auction setting, incentive-compatible revenue maximizing tech-
niques have been developed under various constraints using deep neural networks (Dütting
et al., 2019; Shen et al., 2019; Curry et al., 2020). In social choice, (Feng et al., 2018;
Golowich et al., 2018) used deep learning to design mechanisms without money for prob-
lems like multi-facility location, double-sided matching, social choice for single-peaked pref-
erences, etc. Machine learning frameworks have also been explored to learn specific families
of voting rules (scoring rules, tree-based rules) (Procaccia et al., 2009; Jha & Zick, 2020).
The idea of incorporating social choice axioms into an ML framework through a synthetic
data generation process has been considered for designing voting rules as well (Xia, 2013;
Armstrong & Larson, 2019). Anil and Bao (2021) use neural network architectures such as
deep sets, set transformers, and graph neural networks to learn utility maximizing voting
rules. As opposed to this final work, we consider feature representations of preference pro-
files so that the learning mechanism is scalable to large elections. We expand the idea of
designing learned voting rules from synthetic data by adding our novel fairness criterion as
additional requirements to the system.

3. Preliminaries

In the preliminaries section, we present some background literature on voting rules and the
concept of local differential privacy.

3.1 Voting Rules

Let A = {a1, . . . , am} be the set of m alternatives and L be the set of all rankings or
linear orders (linear orders are anti-symmetric, transitive, and total binary relations) over
A. There are n agents (voters), each provides a full ranking, R ∈ L over A as her vote. In a
ranking R, if alternative a is preferred to another alternative b, we write a �R b. A collection
of n votes, P ∈ Ln is called a preference profile. A voting rule is a mapping r : Ln 7→ A
that chooses a winner from the preference profile. To indicate protected features, we assume
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each agent is a member of one of two disjoint groups with group sizes n1, n2 (n1 + n2 = n).
Each group has preference profile Pk ∈ L

nk for k = 1, 2. To consider group memberships,
we redefine voting rule as a mapping from a collection of preference profiles to a winner,
r : Ln1 × Ln2 7→ A. We refer to P as the preference profile with all agents. For voting
rules that do not use group membership, r(P ) and r(P1, P2) are the same. Most of the
theoretical and experimental work in the paper is presented for two groups, so we focus
the preliminaries on two-group scenarios as well. We also briefly discuss how to extend this
notion to more groups in Section 4.2.

A common family of voting rules is positional scoring rules, which have score vector
~s = 〈s1, . . . , sm〉 such that s1 ≥ · · · ≥ sm and s1 > sm. For each ranking R, the j-th ranked
alternative gets a score of sj . Given a preference profile, the alternative with maximum
total score will be the winner. Some popular scoring rules are: Plurality, with scoring
vector 〈1, 0, . . . , 0〉; Borda, with 〈m− 1,m− 2, . . . , 1, 0〉; Veto, with 〈1, 1, . . . , 1, 0〉.

Condorcet rules is a family of voting rules that are defined by a different measure of
efficiency called the Condorcet criterion. For a preference profile, if an alternative beats all
other alternatives in pairwise comparison, it is called the Condorcet winner. An alternative
ai beats another alternative a` if N(aj�a`) > N(a`�aj), where N(ai�a`) is the number of agents
who prefer ai to a` in preference profile P . A voting rule satisfies the Condorcet criterion if
it always selects the Condorcet winner whenever it exists. For example, the Copeland rule
chooses the alternative that maximizes the number of alternatives that it beats in pairwise
comparisons. Formally, define the pairwise comparison variable as follows:

wC(aj , a`, P ) =

{

1 if N(aj�a`) > N(a`�aj),

0 otherwise.

The Copeland winner is the alternative that maximizes the Copeland score, scoreC(aj , P ) =
∑

6̀=j wC(aj , a`, P ).

3.2 Economic Efficiency in Voting

In this paper, we consider two types of economic efficiency that are popular in the social
choice literature, and both are related to the two families of voting rules that we mentioned
before: Condorcet rules and positional scoring rules.

The first is Condorcet efficiency, which is dependent on the Condorcet criterion. For
a preference profile, P , the Condorcet winner exists only if there is an alternative that
beats all other alternatives in pairwise comparison. In cases where the Condorcet winner
exists, the winner according to a voting rule r, r(P ), may be the same or different from
the Condorcet winner. As mentioned before, Copeland satisfies the Condorcet criterion
and will always choose the Condorcet winner when it exists, but the same is not true for
Borda, Plurality, etc. So, we measure Condorcet efficiency as the fraction of preference
profiles where a voting rule winner is identical to the Condorcet winner. For n agents and
m alternatives, Condorcet efficiency (CE) is defined as

CE(r) =

∑

P∈Ln r(P ) is the Condorcet winner
∑

P∈Ln P where the Condorcet winner exists
.
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This is an efficiency measure as efficient decisions (output of voting rules) should be pre-
ferred to all other alternatives. Condorcet rules like Copeland have a CE value of 1, whereas
positional scoring rules have CE values less than one. It is usually not analytically or com-
putationally possible to compute Condorcet efficiency exactly. In this paper, we empirically
estimate Condorcet efficiency for voting rules using sample preference profiles instead of
counting for all preference profiles in Ln.

The other efficiency notion takes a utilitarian view (Boutilier et al., 2015), where each
agent can receive different cardinal utilities from the alternatives. For an agent, a utility
function u : A × L 7→ R defines alternative a’s utility to agent i. A utility function, u,
is consistent with a ranking R if for all a, b ∈ A, a �R b =⇒ u(a,R) > u(b, R). For
this paper, we limit ourselves to every agents having the same utility function, which is
dependent only on the rank. Thus, we assume that a utility function u is defined by a
vector ~u = 〈u1, . . . , um〉 such that u1 ≥ · · · ≥ um and u1 > um. If an alternative a is ranked
j-th in R, then u(a,R) = uj .

We denote the family of all such utility functions as U , hereon. All u ∈ U use a vector
similar in definition to score vectors of positional scoring rules. To reduce confusion, we will
use ~s for the score vectors and ~u for utility functions.1 Given a preference profile P ∈ Ln

and utility function u, the social welfare (SW) is
∑

R∈P u(a,R), the sum of utilities for all
agents. In a utility maximization problem, the social welfare maximizing alternative will
be the winner. However, we are concerned with the amount of utilities received by different
groups. The range of social welfare for different groups will vary greatly based on the size of
the groups. To circumvent this, we define average utility as follows. The average utility for
alternative a is W (a, P ) = 1

n

∑

R∈P u(a,R). For preference profile Pk of group k, average
utility W (a, Pk) is a measure of satisfaction for group k when a is the winner of the election.

3.3 Local Differential Privacy (DP)

We adapt the formal definition of local differential privacy (Evfimievski et al., 2003) to the
domain of voting and state its difference from standard DP. Recall that a voting rule for n
agents is a mapping r : Ln → A.

The notion of differential privacy usually requires a private mechanism to be random.
Thus, we require a randomized version of a voting rule, where the output will be a prob-
ability distribution over the set of alternatives. The randomization usually comes from
adding noise to the original non-private method (Figure 1). A randomized voting rule r is
said to be ε -local DP, if for any agent j, any alternative a ∈ A, and any pair of rankings
R,R′ ∈ L, the following holds: Pr[r(R,P−j) = a] ≤ exp(ε) · Pr[r(R′, P−j) = a], where P−j

is the preference profile with all agents other than agent j. In particular, this indicates
that the vote of any single agent will be hard to infer from the outcome. Hence, it gives
a privacy guarantee to the agents. Smaller ε means stronger privacy guarantee. Local DP
is stronger than standard DP (Dwork, 2006), because it requires the individual votes to
be private, and therefore implies that the aggregation of agents’ data is private due to the
post processing property (Dwork et al., 2014). On the other hand, standard DP does not

1. We want to emphasize that we use different vectors ~s and ~u for the score vectors and utilities intentionally.

While the positional scoring rules has the notion of maximizing some sort of utility measure, the scoring

vector used may be different from a true utility function.
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Utility
#agents Ranking A B C

Group G1 30 A � B � C 60 30 0
30 B � A � C 30 60 0
20 A � C � B 40 0 20

Group G2 10 B � C � A 0 20 10
10 C � B � A 0 10 20

G1 average utility 1.625 1.125 0.25

G2 average utility 0 1.5 1.5

Overall average utility 1.3 1.2 0.5

Table 1: Sample preference profile and group utilities

As mentioned in the introduction, group fairness has become an important notion in the
domain of algorithmic decision-making. In this work, we consider this notion in the domain
of collective decision-making, with consideration of the group identity of the agents. And
this is one of the properties that motivate our definition of group-imbalance and imbalance-
induced fairness. Statistical parity is formalized in the following way: for two groups, an
election winner a satisfies statistical parity in terms of group utility if there exists small ξk
such that |W (a, Pk)−W (a, P )| < ξk for both groups, k = 1, 2. That is, statistical parity
requires that both group’s average utilities be close to the overall average utility.

Definition 1 (Group imbalance). Given a utility function u, an alternative a ∈ A, and
preference profiles P1, P2 for two groups of agents, imbalance between the two groups in
terms of u for a is

Imb(u,a, P1, P2) =

{

|W (a,P1)−W (a,P2)|
W (a,P ) if W (a, P ) > 0,

0 otherwise.

where P is the combined preference profile for all agents.

Remark 1. For any δ → 0, if we have Imb(u, a, P1, P2) < δ, then there exist ξ1, ξ2 → 0 such
that statistical parity is satisfied for the group utilities, i.e., |W (a, Pk)−W (a, P ) < ξk| for
k = 1, 2.

Remark 1 indicates how group imbalance can be useful for defining group fairness in
a similar note to statistical parity. Imbalance indicates the unfairness of an alternative in
terms of two groups. The imbalance values will differ based on how different pairs of groups
value an alternative. An alternative can be considered fair if it has low imbalance for the
two groups. In Lemma 1 and Example 2, we try to give an idea about what kind of values
imbalance can have.

Lemma 1. Given any utility function, u, for any preference profiles P1 ∈ L
n1 , P2 ∈ L

n2,
for all a ∈ A, 0 ≤ Imb(u,a, P1, P2) ≤

n1+n2
min(n1,n2)

.

Proof. W.l.o.g., assume that n1 ≥ n2 and that the score vector associated with u is
〈u1, . . . , um〉. Now, the average utility for the full preference profile,W (a, P ) = n1

n1+n2
W (a, P1)+

n2
n1+n2

W (a, P2). We have two cases.
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1. W (a, P1) ≥W (a, P2),

2. W (a, P1) < w(a, P2).

For case 1,

Imb(u,a, P1, P2) =
(n1 + n2)(W (a, P1)−W (a, P2))

n1W (a, P1) + n2W (a, P2)
.

If n1, n2, and W (a, P2) are all fixed, then this is a monotonically increasing function for
W (a, P1) when W (a, P1) > W (a, P2). Similarly for fixed n1, n2 and W (a, P1), this is a
monotonically decreasing function for W (a, P2) when 0 < W (a, P2) < W (a, P1). Both
these facts combined, we observe that the worst-case (largest) imbalance occurs when when
W (a, P1) = max(u1, . . . , um) = u1 and W (a, P2) = min(u1, . . . , um) = um. Plugging in

these values gives us maximum imbalance of (n1+n2)(u1−um)
n1u1

. Using the fact that um ≥ 0 for

any utility function, we get the following bound: Imb(u, a, P1, P2) ≤
n1+n2
n1

.

For case 2, we have

Imb(u,a, P1, P2) =
(n1 + n2)(W (a, P2)−W (a, P1))

n1W (a, P1) + n2W (a, P2)
.

A similar argument as in case 1 gives maximum imbalance of n1+n2
n2

. Since 1
n2
≥ 1

n1
, this

gives the final upper bound in the Lemma.

Example 2. For Example 1, we have group sizes of 80 and 20. We notice that from
Lemma 1, this means that the worst-case imbalance can be 5. This will occur for some
alternative that has highest utility for everyone in the minority group and zero utility for
everyone in the majority group. This leads to a high imbalance and is an undesired output.
On the other hand, for the opposite case of an alternative with high utility for majority group
and zero utility for the minority group will have an imbalance value of 5

4 . This is still high
imbalance (as a fair alternative ideally has close to zero imbalance), but numerically, this
alternative receives a lower imbalance value than the other one. And if these two were the
only available alternatives, choosing the alternative preferred by the minority group would
actually cause an ironic tyranny of the minority and hence has the higher imbalance value.

We define imbalance-based group fairness of a voting rule for a utility function in terms
of the worst-case imbalance achieved by the voting rule winner for any preference profile.
While our notion of fairness can be defined and studied for the general q group setting, we
start with cases with only two group. Since imbalance is always between pairs of groups, we
can work on extending our work naturally to a higher number of groups, which we discuss
in Section 4.2.

Example 2 and Lemma 1 indicate that the ratio of group sizes z = max(n1,n2)
min(n1,n2)

is important

in fairness consideration. We have max(n1, n2) =
z

1+z
n and min(n1, n2) =

1
1+z

n. Thus, total
number of agents, n, and group ratio, z, determine the group sizes.

We now define a normalized notion of fairness for a voting rule, given group size param-
eters, n and z, and a utility function, u. This is done by taking considering the worst-case
imbalance achieved by the voting rule winner out of all possible preference profiles.
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Definition 2 (Group imbalance-based fairness). Given a voting rule, r, utility function, u,
n total agents, and group ratio, z, the group imbalance-based fairness is

F (r, u, n, z) = 1− 1
1+z
· max
P1∈Ln1

P2∈Ln2

Imb(u, r(P1, P2), P1, P2).

Definition 2 gives a notion of fairness that is not specific to a preference profile, but
rather looks at the worst-case imbalance. Not all values of n, z will lead to valid group
sizes, but we still consider all z values, because with n → ∞, any z > 1 will lead to valid
preference profiles and considered for worst-case performance. Because of Lemma 1, it is
guaranteed that F (r, u, n, z) will have a value between 0 and 1 for any r, u, n, and z. A low
fairness value indicates that in the worst case the voting rule winner will have high group
imbalance. On the other hand, a high fairness value indicates that, even in the worst case,
group imbalance for the voting rule winner will not be very high. We will present theoretical
results for fairness for different voting rules in Section 5.

4.2 Fairness for More than Two Groups

While the initial discussion concerned two groups, fairness in cases where there are more
than two groups is also of interest. Our definition can be extended to more than two groups
in two ways, both of which have their own merit. Let there be q groups with preference
profiles P1, . . . , Pq. For a voting rule r, r(P1, . . . , Pq) is the winner given all q groups. For
each group preference profile Pk, we define its complement PC

k as the union of all other
preference profiles.

Group-complement imbalance: For more than two groups, we can define imbalance
from each group’s perspective with respect to its complement; for group k it becomes
Imb(u,a, Pk, P

C
k ) and thus we define the generalized Fairness of Voting Rule in presence of

q groups of size n1, . . . , nq.

For each group, we can think whether the collective decision is fair for that group
specifically by looking at the imbalance between a group and its complement. Thus a
fair collective decision is the one that minimizes imbalance for all group-complement pairs.
Based on this idea, we can have the following definition of generalized group fairness of
voting rules.

Given utility function u, group sizes n1, . . . , nq with n =
∑

k nk, we define group fairness
for voting rule r as

F (r, u,n1, . . . , nq) = 1− max
P1,...,Pq

min(n1,...,nq)
n

·max
k≤q

Imb(u,r(P1, . . . , Pq), Pk, P
C
k ).

As can be expected, the worst-case fairness value comes from the most imbalanced group.

For group-complement imbalance, we define the group size ratio z to be
n−min(n1,...,nq)
min(n1,...,nq)

. As

will be apparent in the following section, when we discuss fairness results based on group
imbalance, the group size ratio z will be an important parameter.

Group-pairwise imbalance: On the other hand, we may be interested in pairwise
group interaction. For example, a collective decision, while not unfair to a group overall,
may be unfair with when compared to some other group. In this scenario, given utility
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function u, group sizes n1, . . . , nq with n =
∑

k nk, we define group fairness for voting rule
r as

F (r, u,n1, . . . , nq) = 1− max
P1,...,Pq

min
k,`≤q

n`

nk+n`
· Imb(u,r(P1, . . . , Pq), Pk, Pl).

We define group size ratio, z, for this scenario as maxk,l
nk

nl
, the worst-case ratio between

any two group sizes.

For most of our theoretical results, the arguments will be based on a two-group scenario.
However, since the notion of imbalance-based fairness is extended to more groups as above,
we will present the results for multi-group scenarios.

5. Fairness Results for Voting Rules

In this section, we consider fairness results for various voting rules, with the aim to analyze
how unfair some voting rule may be in the worst case. First, we present fairness results
as function of a voting rule, r, specific utility function, u and preference profile parameters
n, z. As mentioned in the previous section, n is the size of the number of total agents and
z is the group size ratio parameter.

Before we delve into the theorems and proofs, we briefly discuss the proof technique
here. Most of the proofs of our fairness theorems follow a similar strategy. We will show
the detailed proof for two groups and later describe how the result generalizes to our two
fairness definitions for more groups. We always consider the two cases as mentioned in
the proof for Lemma 1, which corresponds to one group receiving a higher average utility
compared to the other. And then, we find the maximum imbalance for each case which
gives us the fairness result of a voting rule. In particular, we try to see if the worst-case
imbalance value n

n2
can be reached, which gives 0 as fairness value. We will also repeatedly

make use of the fact that the imbalance function is monotonic in terms of W (a, P1) and
W (a, P2) when the other terms are fixed. In the proof for Theorem 3, we explicitly address
the extension of the results to group imbalance-based fairness for more than two groups.
The argument is similar for all of the other theorems about fairness results. So for them,
the proofs are given only for two groups.

5.1 Positional Scoring Rules

Our first results are for positional scoring rules. We first present the fairness results for
popular positional scoring rules like Plurality and Borda. We consider the utility functions
defined by ~utop = 〈1, 0, . . . , 0〉 and ~urank = 〈m− 1,m− 2, . . . , 0〉.

With the top-1 utility function, the agents only receive utility if their top ranked alterna-
tive wins. A fairness value of 0 for Borda means that, for some preference profile, the Borda
winner will have the worst-case imbalance value, being highly unfair. But if we choose the
Plurality winner, at least in some cases we are guaranteed a positive fairness value. On the
other hand, with the rank utility function, where the utility linearly decreases along with
rank, we see that the Borda winner has the same fairness value as the most fair voting rule,
whereas Plurality’s fairness value is 0. In both cases, the voting rule that maximizes the
utility function has better fairness results. See Table 2 for a summary of these results.
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utop (Theorem 1) urank (Theorem 2)

Plurality
0 if z < m− 1
1− 1/z, otherwise

0

Borda
0 if m ≥ 3
1− 1/z otherwise

1− 1/z

Table 2: F (r, u, n, z) for Plurality and Borda under utop and urank.

The fairness results for Plurality (rPlu) and Borda (rBor) under these two utility functions
are formally stated and proven in the following two theorems.

Theorem 1. Given n total agents and group size ratio, z, for m alternatives and utop utility
function,

F (rPlu, utop, n, z) =

{

1− 1
z

if z ≤ m− 1,

1− (m−1)
z

otherwise.

F (rBor, utop, n, z) =

{

0 if m ≥ 3. =,

1− 1
z

otherwise,

Proof. Assume that we have two groups with preference profiles P1 ∈ L
n
1 and P2 ∈ L

n
2 .

W.l.o.g, assume that n1 ≥ n2 and thus z = n1
n2
. 2

Plurality. When n2 ≥
n
m

and for some a ∈ A, u(a, P2) = 1, such an alternative can be
Plurality winner with 0 average top-1 utility for agents in P1. A preference profile where
this happens has Imb(u, a, P1, P2) =

n
n2

which gives the first part of the result.

For n2 < n
m
, this is not possible. For alternatives with u(a, P1) > u(a, P2) for any

preference profile, we know that the worst case imbalance is n
n1
. We need to check what the

worst case can be when u(a, P2) > u(a, P1). For the worst case, assume u(a, P2) = 1 and

u(a, P1) =
n′

1
n1
, which we get when n′

1 agents in P1 has a on top of their ranking. For a to
be a Plurality winner, we need

n2 + n′
1 ≥

n

m

=⇒ n′
1 ≥

n

m
− n2

=⇒ utop(a, P1) ≥
1

n1
(
n

m
− n2).

Taking the smallest possible value for utop(a, P1) gives–

Imb(utop, a, P1, P2) =
1− 1

n1
( n
m
− n2)

1
m

=
(m− 1)n

n1
≤

n

n1
.

2. How to extend this proof for the general case of more groups are discussed in detail at the end of the

proof of Theorem 3.
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So, this is the worst case imbalance, which gives the fairness result.

Borda. For the Borda winner, we show that group imbalance can be n
n2
, leading

to worst case fairness of 0 for m ≥ 3. The minimum rank utility (or Borda count) the

Borda winner needs is n(m−1)
2 . Consider the preference profile where for alternative a,

utop(a, P2) = 1, utop(a, P1) = 0 but all agents in P1 ranks a second. So, although a would
receive no top-1 utility from agents in P1, it would contribute to Borda count. For a to be
the Borda winner, we need n2(m − 1) + n1(m − 2) ≥ n(m−1)

2 . This is true for all m ≥ 3.
So, for m ≥ 3, such P1, P2 exist that group imbalance is the maximum and thus worst case
fairness is 0 for Borda.

For m = 2, Borda reduces to Plurality and the result immediately follows.

Theorem 2. Given n total agents and group size ratio, z, for m alternatives and urank
utility function,

F (rPlu, urank, n, z) = 0,
F (rBor, urank, n, z) = 1− 1

z
.

Proof. As in Theorem 1, we present the argument for a two group scenario, with group
sizes n1 and n2, where n1 ≥ n2.

Plurality It is trivial from the definition of plurality that as long as n2 ≥
n
m
, an

alternative ranked at top for every ranking in P2 and ranked at the bottom for every
ranking in P1 can be the Plurality winner. This observation indicates that the Plurality
winner achieves the worst-case imbalance for some preference profile. This results in the
fairness value for Plurality being 0.

Borda We again break down into the two cases and find which one leads to a worst
possible imbalance. Assume that the Borda winner is a. Case-1: urank(a, P1) > urank(a, P2),
which gives the worst case imbalance of n

n1
.

Case-2: urank(a, P2) > urank(a, P1). For the Borda winner, minimum Borda score (and

thus, minimum sum of rank utility) needs to be n(m−1)
2 . Even if all rankings in P2 has a on

top, urank(a, P2) = n2(m − 1) ≤ n(m−1)
2 . Thus, urank(a, P1) ≥

1
n1
(n(m−1)

2 − n2(m − 1)) =

(m− 1)n1−n2
2n1

. This gives, in the worst case,

Imb(urank, a, P1, P2) =
(m− 1)− (m− 1)n1−n2

2n1

m−1
2

=
1− n1−n2

2n1

1
2

=
n1 + n2

n1
=

n

n1
,

which gives the same bound as in case-1. This leads to the fairness result for Borda.

In our next theorem, we present general bounds for the fairness value of any positional
scoring rule under any utility function. Let s[k:m] =

sk+···+sm
m−k+1 and u[k:m] =

uk+···+um

m−k+1 . Here,
s[k:m] is the mean score for the lowest m − k + 1 alternatives for score vector ~s. Similarly,
u[k:m] is the mean utility for the lowest m − k + 1 alternatives for utility vector u. In
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Theorem 3, we see that for any positional scoring rule, based on which interval the group
size ratio, z, falls in, we get different upper bounds for the group fairness level. There are
m− 1 intervals that we consider:

[

1,
s1 − sm

s1 − s[m−1:m]

]

,

[

s1 − sm
s1 − s[m−1:m]

,
s1 − sm

s1 − s[m−2:m]

]

, . . . ,

[

s1 − sm
s1 − s[2:m]

,∞

)

For any utility function, the fairness upper bound for different positional scoring rules can
be significantly different, even for the same number of total agents, n, and group size ratio,
z.

Theorem 3 (Fairness for Positional Scoring Rules). Given utility function u, for n
total agents and group size ratio, z, for any positional scoring rule, rs with score vector
〈s1, . . . , sm〉, we have

F (rs, u,n, z) ≤















min
(

1− u1−um

zu1+um
, 1−

u1−u[k:m]

zu[k:m]+u1

)

if z ∈
[

s1−sm
s1−s[k+1:m]

, s1−sm
s1−s[k:m]

]

for k = m− 1, . . . , 2,

1− u1−um

zu1+um
otherwise.

Proof. We assume two groups with n1 and n2 agents with n1 ≥ n2. We start the proof
for positional scoring rules with an intermediate result. For a preference profile, given a
positional scoring rule with score vector ~s, let Sa be the average score for alternative a ∈ A,
i.e., Sa = 1

n

∑n
j=1 Sj(a), where Sj(a) = sk if a was ranked k-th by agent j. Now, call

S = [Sa1 . . . , Sam ] the average score vector. Then we have the following result.

Claim 1. For a positional scoring rule with score vector ~s, as n → ∞, we will always
have a preference profile P ∈ Ln with average score vector arbitrarily close to any vector
〈s′1, . . . , s

′
m〉 as long as

∑m
i=1 s

′
i =

∑m
i=1 si and ∀i, s1 ≥ s′i ≥ sm.

Proof. For the set of alternatives A, there are m! rankings R ∈ L. Assume that there are
nk agents whose ranking is Rk. So,

∑m!
k=1 nk = n. For each ranking Rk, the score that

each alternative gets is a permutation of 〈s1, . . . , sm〉. We denote the permuted score vector
associated with ranking Rk as ~πk. E.g., for R1 = a1 � · · · � am, ~π1 = 〈s1, . . . , sm〉, whereas
for Rm! = am � · · · � a1, ~πm! = 〈sm, . . . , s1〉. Thus, the m! rankings can be mapped to m!
such ordering of scores. If we call the ordered score vector associated with order Rk as ~πk,
then we can say that







| · · · |

πi
. . . πm!

| · · · |













n1/n
...

nm!/n






= [Sa1 . . . Sam ]

We assume

Π =







| · · · |

πi
. . . πm!

| · · · |







Each column of the matrix Π is a permutation of the score vector, ~s. This matrix is trivially
always of rank m. Since Sai for any i is the average score it gets from all alternatives, we
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know that sm ≤ Sai ≤ s1 for any ai. Since the rank of matrix Π is m, for any valid average
score vector S (i.e., if

∑m
i=1 Sai =

∑m
i=1 si, and s1 ≥ Si ≥ sm for all i), we will find real

solutions for n1/n, . . . nm!/n. When n→∞, we can ensure that they lead to integer values
for each nk, which means that for any score vector S, there exist preference profiles such
that the score values get arbitrarily close to those in S. This concludes the proof.

This property for existence of an appropriate preference profile will be used to complete
the proof of the theorem. First, we give a generic bound, which is the second part of the
theorem. In the proof of Remark 1, we showed how extreme values of group utilities lead
to worst imbalance, and thus worst fairness values. Now, for positional scoring rules, we
consider what extremities may occur. The winning alternative has to be more preferred by
either group. So, we have two cases.3

The first case is where the winner is most preferred in preference profile P1. In that case,
for the winner a,W (a, P1) > W (a, P2). Thus the imbalance becomes n · W (a,P1)−W (a,P2)

n1W (a,P1)+n2W (a,P2)
.

From similar arguments to what we made in the proof for Remark 1, we can say that the
worse case occurs when W (a, P1) = u1, W (a, P2) = um. The preference profile that has
a at top of all rankings in P1 and at the bottom of all rankings in P2 will achieve that if
every other alternatives are placed randomly. This will occur because s1 ≥

s2+···+sm−1

m−2 for
all positional scoring rules. Thus, this gives a bound for all scoring rules. The imbalance
in this case becomes n(u1−um)

n1u1+n2um
. Thus, the fairness value is 1 − u1−um

n1
n2

u1+um
. This gives the

bound for the z >
s1 − sm

s1 − s[2:m]
case (the otherwise case) of the theorem.

The second case is where W (a, P2) > W (a, P1). For this part, w.l.o.g., assume that
W (a1, P1) ≥W (a2, P1) ≥ · · · ≥W (am, P1). The winner a is such thatW (a, P2) > W (a, P1).
High imbalance would occur in the case where a is highly scored in the rankings in P2 and
lowly scored in P1. First, similar to our definition of average score of an alternative Sa,
let S(aa, P1) be the average score for alternative a in preference profile P1, and similarly
denote S(aa, P2).

The lowest scored alternative in preference profile, P1, is am. However, it trivially follows
that when n1 > n2, am can never be the winner for any scoring rule if W (am, P1) = um. So,
we try to find what is the lowest ranked ak that can be the winner. Note that am−1 will be
a winner if n1S(a1, P1) + n2S(a1, P2) ≤ n2S(am−1, P1) + n2S(am−1, P2). Additionally, the
average score values of S(a1, P1) = s1, S(a1, P2) = sm, S(am−1, P2) = s1 lead to maximum
extremities. So, we get the following condition:

n1

n2
≤

s1 − sm
s1 − S(am−1, P1)

.

Now, S(am−1, P1) is the score for the second lowest scored alternative in a preference profile.
Dependent on ~s, we may get different values of how low this can be. But one value that we
can always get is if S(am−1, P1) = S(am, P1) =

sm−1+sm
2 . This will happen when the last two

alternatives are tied, and because of previously proven property of existence of preference

3. We may have an alternative most preferred by both groups, but that does not cause worst-case imbalance,

so we ignore that case.
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profiles with arbitrarily close score vectors, we can ensure such a preference profile exists.
This analysis led to the case for k = m− 1 in the first part of the theorem.4

So, when z ∈
[

1, s1−sm

s1−
sm−1+sm

2

]

, then

F (rs, u,n, z) ≤ min

(

1−
u1 − um
zu1 + um

, 1−
u1 −

um−1+um

2

z · um−1+um

2 + u1

)

.

When am−1 cannot be a possible winner (when n1
n2

does not fall into this interval) an earlier
alternative may be the lowest ranked winner. For any alternative ak, we can generalize this
analysis. we will again assume that S(a1, P1) = s1, S(a1, P2) = sm, S(ak, P2) = s1. Again,
ak is guaranteed to have a worst-case S(ak, P1) of

sk+···+sm
m−k+1 in the case that the last m−k+1

alternatives are tied. Now, if S(ak, P1) =
sk+···+sm
m−k+1 , then obviously W (ak, P1) =

uk+···+um

m−k+1
for the utility. Thus, we would have W (a1, P1) = u1,W (a1, P2) = um,W (ak, P2) = u1.
Using these values to calculate group imbalance fairness results in the reported fairness
bound. A minimum is taken over this value and the generic bound for positional scoring
rules that we got in the earlier part of the proof to complete the proof of the theorem.

For the extension to general forms of fairness for more than two groups, we consider
both definitions of fairness for more groups. For each definition, we get a different group
ratio parameter z, dependent on the sizes of each group. The imbalance for a full preference
profile is the worst case over all of the pairwise imbalance values calculated for each group.
So, the worst-case result would come for the most imbalanced group size. Since that is
determined by group ratio z, we see that the result holds directly for both our extensions
for group fairness for higher number of groups. This extension will be the same for all
our theorems for fairness results, so for the following theorems, we will only discuss the
two-group scenarios in the proof.

Theorem 3 provides a quantitative formula for an upper bound to the fairness level under
a fixed utility function. The bounds in Theorem 3 are not tight, and the actual fairness
value can be lower. We give an example of this in Table 3. This theorem is however still
important, because it provides a general result, that works for any positional scoring rule,
under any utility function.

utop urank

Plurality 1− 1/z 1− 1/z

Borda
(m = 4)

0 for z ∈ [1, 3/2]
1− 1/z, otherwise

1− 1/z

Table 3: Upper bounds for F (r, u, n, z) for Plurality and Borda under utop and urank, according to
Theorem 3. Bounds for Borda is dependent on m, and the table shows the result for m = 4.

Table 3 shows the fairness upper bounds for Plurality and Borda for the top-1 and rank
utility functions, as provided by Theorem 3. While for Plurality we get the same bound

4. When n → ∞ is not true, the exact low value given by this bound may not be attainable because of only

discrete values of scores being possible. So, in those cases the upper bound for fairness may be slightly

higher, and dependent on the exact values of n1 and n2.
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for any number of alternatives m, for Borda, the bound depends on m. As an example, we
show the bounds for m = 4 for Borda. We can compare these bounds to the tight fairness
bounds provided by Theorems 1 and 2 (See Table 2). For Plurality, we see that for top-1
utility, the bound is equal to the tight one (1− 1/z) when z > m− 1, while is higher than
the tight bound for urank. On the other hand, for Borda, the bound is tight only when
z ∈ [1, 3/2] for top-1 utility. However, we get the tight bound for rank utility.

5.2 Condorcet Rules

Next, we present a fairness result that is true for all Condorcet rules.

Theorem 4 (Fairness for Condorcet Rules). Given utility function u, n total agents
and group size ratio, z, for any Condorcet rule

F (r, u,n, z) ≤ min
(

1−
u1 − um
zu1 + um

, 1−
u1 − um−k∗

zum−k∗ + u1

)

where k∗ = dm−1
2 (1− 1

z
)e.

Proof. We assume two groups with n1 and n2 agents with n1 ≥ n2.

Now, the first element in the min function is the same generic bound that we found for
positional scoring rules. Whenever everyone from the majority group will have an alternative
at top, that alternative must be the Condorcet winner (beats all other alternatives with at
least n1 ≥ n/2 votes). The result immediately follows from this case.

The second part is from when we have W (a, P2) > W (a, P1) for the winner a. It
makes sense in that case that W (a, P2) = u1, because that will lead to high imbalance.
So, a gets n2 pairwise preferences over all other alternatives from P2. To be Condorcet
winner, a requires at least n

2 − n2 pairwise preferences over each of the other m − 1 al-
ternatives in P1. Since there are n1 agents in P1, this implies that a should have at least
(n
2
−n2)(m−1)

n1
= m−1

2 (1− 1
z
) pairwise preferences over each other alternatives for every agent in

P−1. Let k∗ = dm−1
2 (1− 1

z
)e. If a is ranked at position m−k∗ for all rankings in P1, and all

other alternatives are ranked uniformly randomly, a gets the necessary amount of pairwise
preferences over each alternative. Considering all other alternatives to be ranked uniformly
randomly in both P1, P2 makes sure that a beats every other alternative in pairwise com-
parison as is the unique Condorcet winner. This is also the least k∗ for such preference
profiles, where we have this guarantee. Computing the imbalance for this scenario gives the
second term inside the min function in the theorem.

Theorem 4 indicates how low the fairness values may be for any Condorcet rule. For
specific Condorcet voting rules, e.g., Copeland, the fairness value can be even worse than
the general result. For example, if the utility function is utop with only the top ranked
alternative giving utility, then the fairness value for Copeland is 0.

Consider for example two groups with preference profiles P1 and P2, with group 1 being
the majority group, and assume that every agent in P2 ranks alternative a at the top, while
every agent in P1 ranks a second. For the rest of the m − 1 alternatives, assume that the
rankings are evenly distributed for both P1 and P2. That is, all of the (m − 1)! possible
rankings for the rest of the alternatives are found equally when constrained to just those
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alternatives. This preference profile will lead to a being the winner, with W (a, P1) = 0 and
W (a, P2) = 1. This leads to the fairness value being 0 for Copeland under utop.

5.3 Fair Voting Rules

Both scoring rules and Condorcet rules maximize different efficiency measures. Based on
our definition of imbalance, we can define a family of fairness maximizing voting rules. The
imbalance values are calculated using specific utility functions u. To create a high-fairness
voting rule, we define a family of voting rules as below.

Definition 3 (u-fair voting rules). For utility function u, the u-fair voting rule, rufair, is a
voting rule that chooses the alternative with minimum imbalance with respect to utility
function u for any preference profile.

Remark 2. For a fixed utility function u, for n agents, group size ratio z, the u-fair voting
rule (rufair) has maximum fairness value F (r, u, n, z) out of all voting rules.

Thus, knowing the utility function allows us to calculate fairness bounds for specific
voting rules. Assume the utility function defined by ~utop = 〈1, 0 . . . , 0〉 where only the top
alternative gives utility when chosen. For this, the utop-fair voting rule would be of interest.
Similarly, for ~urank = 〈m− 1,m− 2, . . . , 0〉, urank-fair voting rule would be of interest.

Theorem 5 (Fairness for u-fair Voting Rules). Given n total agents, and group size
ratio z,

F (rtopfair, utop, n, z) = 1−
1

z
,

F (rrankfair , urank, n, z) = 1−
1

z
.

Proof. We will give a constructive proof for the fairness value for the utop-fair voting rule, as-
suming two groups with preference profiles P1 and P2 and group size n1 and n2 respectively.
W.l.o.g., assume that n1 ≥ n2 and that all agents in P1 ranks a1 at top, while all agents
in P2 ranks a2 at top. This gives Imb(utop, a1, P1, P2) =

n
n1

and Imb(utop, a1, P1, P2) =
n
n2
.

Since n1 ≥ n2, if a1 and a2 are the only alternatives, the winner rtopfair(P1, P2) = a1. For
m > 2 alternatives, for any preference profiles in Ln1 ,L

n
2 , there exists at least one alterna-

tive a, such that W (a, P1) > W (a, P2). For preference profiles where no a exists such that
W (a, P1) = W (a, P2), one of the alternatives favored in P1 will be the utop-fair winner. Any
such alternative has a maximum imbalance bound of n

n1
as indicated by Lemma 1, which is

the same as the bound above for m = 2. This proves the fairness result for utop-fair voting
rule.

For the urank-fair voting rule, the utility function is urank. By definition, Borda’s score
vector is the same as the utility vector for urank, thus Borda will be the social welfare
maximizer. With that in mind, we first calculate the fairness value for Borda under urank
Assume that the Borda winner is a. case 1: W (a, P1) > W (a, P2), which gives the worst-case
imbalance of n

n1
, which is what we would get from Theorem 3. case 2: W (a, P2) > W (a, P1).

Since it maximizes the Borda score, the least average score of the Borda winner needs to be
1
m
((m−1)+ · · ·+1) = m−1

2 . Even if all rankings in P2 has a on top, W (a, P2) = n2(m−1) ≤
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n(m−1)
2 . Thus, Wrank(a, P1) ≥

1
n1
(n(m−1)

2 − n2(m− 1)) = (m− 1)n1−n2
2n1

. This gives, in the
worst case,

Imb(urank, a, P1, P2) =
(m− 1)− (m− 1)n1−n2

2n1

m−1
2

=
1− n1−n2

2n1

1
2

=
n1 + n2

n1
=

n

n1
.

This is the same bound as in case 1.

Now, we show an instance where the urank-fair rule winner that has imbalance of n
n1
.

Consider the case where m = 2, all rankings in P1 has a1 � a2 and all rankings in P2 has
a2 � a1. Here, r

rank
fair (P1, P2) = a1 and imbalance is n

n1
. This is the same value as the worst-

case imbalance for Borda under this utility function. The worst-case for urank-fair cannot
be worse than that of Borda according to Remark 2. Thus we have found the worst-case
imbalance for the urank-fair voting rule.

Comparing the fairness results for the u-fair voting rules to those for positional scoring
rules, we notice the following. From Theorem 1, we see that the fairness value for Plurality
is 1−1/z when z > m−1 and we use the top-1 utility. This is the same as the fairness value
for utop-fair for top-1 utility, and hence optimal. Similarly, from Theorem 2, we see that
the fairness value for Borda is the same as that of urank-fair for rank utility. Plurality and
Borda are respectively the social welfare maximizer for the top-1 and rank utility functions,
since they share the same vectors as utility vector and score vector. So, for many z values,
the social welfare maximizer is also optimal in terms of fairness. Whether this is a property
of these two specific utility functions or it generalizes is an interesting question for the
future. However, this also means that just looking at worst-case fairness does not provide a
complete picture, as this indicates that even the fairest voting rule is sometimes only as fair
as the most efficient voting rule. This motivates us to also consider average-case fairness,
and to study whether we can design voting rules that are fairer in average. We will discuss
average-case fairness and the trade-off between fairness and efficiency in depth in Sections 6
and 8.

5.4 General Result

These worst-case bound for u-fair rules give us a reference point as to how unfair other rules
can be compared to the most fair rule. Again, referring to Theorems 1–4, we see that the
traditional voting rules can be very unfair, leading to 0 fairness values in some cases. This
negative result can be summarized in the following theorem, which indicates that for any
positional scoring rule or Condorcet voting rule, there exists utility functions such that the
fairness value is 0.

Theorem 6. If r is any positional scoring rule or Condorcet voting rule, there exist some
utility function u ∈ U , and some group size parameters, n and z, such that

min
u∈U

n∈N,z≥1

F (r, u, n, z) = 0.

Proof. For each case, we give an example of u, n, z for which F (r, u, n, z) becomes 0.
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For any positional scoring rule, assume z ∈ [1, s1−sm

s1−
sm−1+sm

2

], now, if um−1 = um = 0,

F (r, u, n, z) ≤ min(1− 1
z
, 0) = 0.

For any Condorcet rule, for all k ≥ m − k∗, take uk = 0, where k∗ is defined as in
Theorem 4. For any preference profile where the Condorcet winner (assume, a) exists, such
a utility function will result in Imb(u, a, P1, P2) = 1+z. Which implies that F (r, u, n, z) = 0
for any Condorcet voting rule.

As we note from the theorems and the examples presented in Table 2 for two groups,
none of the considered voting rules guarantee non-zero group imbalance-based fairness for
arbitrary utility functions. Theorem 6 gives a somewhat negative result, in that all tradi-
tional efficiency-maximizing voting rules may turn out to be unfair under some circumstance.
Hence, we also want to learn about general imbalance-based fairness of voting rules instead
of worst-case only. The empirical analysis regarding both traditional and u-fair voting rules
is in Section 8.

6. Designing Fair and Efficient Voting Rules

The theoretical results in the previous section are about how different voting rules perform in
the worst case in terms of fairness. While traditional voting rule focus on maximizing some
efficiency measure, our proposed u-fair rules maximize group imbalance-based fairness for
different utility function assumptions. We showed via an example that traditional voting
rules can be more unfair. u-fair rules, however, can lead to poor efficiency (in terms of
either social welfare or Condorcet efficiency), because they do not consider maximization
of efficiency as an objective. As we will see in our empirical experiments in Section 8, in
the average case there is a large difference between the most fair and most efficient voting
rules in terms of fairness and efficiency.

In this section, we want to find a compromise between the two; for that we propose two
frameworks to design new voting rules with various efficiency and fairness values.

6.1 Framework 1: Utility-constrained Fair Voting Rules

Based on an assumed utility function, u, we can define constrained fair voting rules as a
compromise between positional scoring rules and u-fair rules. Note that we are not assuming
access to ground truth utility function of agents, but rather assuming a utility function here,
similar to how we defined the u-fair voting rules in Definition 3.

Definition 4 (α-efficient fair Borda (α-FB)). Given preference profiles P1, P2 for two groups
of agents, α ∈ [0, 1], the α-efficient Fair Borda winner, rα−FB(P1, P2) is given by

minimize
a∈A

Imb(urank, a, P1, P2)

subject to Wrank(a, P ) ≥ α ·max
a′∈A

Wrank(a
′, P ).

(1)

Thus, for different utility functions, we can design various new voting rules with different
α parameters. Here α is a measure of how economically efficient we require the voting rule
to be, and varying α should give different levels of fairness and efficiency. When α = 1, it is
the same as Borda, without any fairness requirements. When α = 0, it is the urank-max-fair
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rule. We also define the constrained fair rule in terms of top-1 utility, which is a fairness
constrained version of Plurality, as below.

Definition 5 (α-efficient fair Plurality). Given preference profiles P1, P2, α ∈ [0, 1] the
α-efficient Fair Plurality winner, f top

α−FP (P1, P2) is given by

minimize
a∈A

Imb(utop, a, P1, P2)

subject to Wtop(a, P ) ≥ α · max
ak∈A

Wtop(ak, P ).
(2)

6.2 Framework 2: ML-based Framework for Fair-efficient Voting Rules

We also explore the other direction of designing a fair-efficient voting rule using machine
learning. Framework 1 is particularly helpful when we have a utility function that we
can make use of and the economic efficiency of interest is social welfare. However, if the
economic efficiency is measured in terms of Condorcet efficiency, and we want to design a
voting rule that explores the trade-off between Condorcet efficiency and fairness, we cannot
use such a constrained method easily. Here, the learning framework is much more useful.

We note that a voting rule r can be viewed as a multi-class classifier: the input is
a preference profile P and the classes are the alternatives in A. From this viewpoint,
we propose a learning framework that generates synthetic data with random preference
profiles. As feature vectors, we can use summary features for preference profiles like weighted
majority graph or positional score matrix.

Also, to learn such classifiers, we need proper features to represent voting rules. In
particular, since a preference profile with a large number of agents will have a very high
dimension, we choose to represent preference profiles using some summary features, that
explain the profiles to a large extent. And for many voting rules, the winner can be deter-
mined directly using these features without access to the preference profile themselves. We
define two such features here, that we will use for our learning methods.

Definition 6 (Positional score matrix). Define positional score matrix, Sm×m such that
Sj` is the number of agents who has ranked alternative ai at the `-th position

Definition 7 (Weighted majority graph (WMG)). Given any preference profile P , the
WMG is a directed graph where the nodes are all the alternatives, there exists edges in
both directions for each pair of alternatives and the weight for edge (ai, a`) is D(ai, a`) =
N(ai�a`) − N(a`�ai), where N(ai�a`) is the number of agents who prefer ai over a` in their
ranking.

To create the training data, the high level idea is that we want to create a mixed synthetic
dataset, where part of the labels come from fair winners and the rest of the labels come from
efficient winners. We can choose our notion of efficiency for training this. In particular,
this method is more useful for efficiency measures like Condorcet efficiency. Because in
the previous framework, we directly depended on our ability to compute utilities and thus,
social welfare from a preference profile. Since Condorcet efficiency is not defined on a
single preference profile, we cannot take a similar approach for that. Hence, the ML-based
approach would be more useful.
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We present two ML-based methods. The first one is β-Mix , where β ∈ [0, 1] is a mixing
parameter that determines how economically efficient the learned voting rule should be.
The learning method is defined in Algorithm 1 for the version where the efficiency measure
is Condorcet efficiency. The sampling method (see line 4 of Algorithm 1) is separately
presented in Algorithm 2. Note that while Algorithms 1 and 2 are presented for the version
with Condorcet efficiency, it can be modified slightly to work for any economic efficiency
measure. For example, if the economic efficiency measure is ranked utility, checking if a
Condorcet winner exists will be unnecessary, and instead of picking the Condorcet winner,
we will choose the Borda winner.

The second method is β-Soft, which uses a soft-labeling method where β ∈ [0, 1] is now a
weight parameter. For every preference profile, we add a sample of weight β for the efficient
alternative, and add a sample of weight (1 − β) for the fair alternative. This method is
summarized in Algorithm 3.

Algorithm 1 Learning framework with sample mixing: β-mix.

1: Inputs: Mixing parameter β and learning algorithm F .
2: Generate feature set of random preference profiles P
3: For each P ∈ P, compute fair winner and Condorcet winner (if exists)
4: β-sampling labels from fair and Condorcet winners to get label set Y , with mixture of

Condorcet and fair data (Algorithm 2)
5: Train multi-class classifier P, Y using learning algorithm F to learn model H
6: Output: Learned voting rule, H

Algorithm 2 Data Set Generation with β-sampling

1: Inputs: Mixture parameter β, fair voting rule
2: for i← 1 to T do
3: Sample P uniformly
4: Compute winner F for given fair voting rule
5: if Condorcet winner exists then
6: Compute Condorcet winner, C
7: if C = F then
8: w ← C
9: else

10: with probability β, w ← C
11: with probability 1− β, w ← F
12: end if
13: else
14: w ← F
15: end if
16: Append (P,w) to data set
17: end for
18: Output: Training data {(P,w)} for designing new rule
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The support set X contains all the possible votes a single agent can give as input. When
collective decision take agents’ full ranking as inputs, we have |X | = m!.

We first prove some initial results and definitions for local DP in terms of voting.

Lemma 2. Flipping coin algorithm with p = exp(ε)−1
|X |+exp(ε)−1 can provide ε-local DP.

Proof. By fp(·)’s definition, for any x′ 6= x and x′ ∈ X ,

Pr[fp(x) = x] =
exp(ε)

|X |+ exp(ε)− 1
and Pr[fp(x) = x′] =

1

|X |+ exp(ε)− 1
.

Then, Lemma 2 follows by the definition of local DP.

As shown above, better privacy can be achieved when |X | is smaller. Actually, the
aggregator does not always require all information from full rankings. For example, top-1
utility only requires the top alternative to calculate average utility and imbalance. Similarly,
Plurality only requires the top alternative to calculate the winner. Thus, users need to only
upload the top alternative if using the social welfare maximizing rule for top-1 utility, which
can make |X | = m. Following this idea, we revise our protocol by only uploading the needed
information to calculate winner, average utilities and imbalance.

Next, we introduce our method to recover group (and average) utility and fairness from
noisy votes. To simplify notation, we let fp(P ) to denote a profile where flipping-coin
algorithm is applied to all votes in P .

We use ˆ on top of one value to denote our estimate from the noisy profile. The values
without ˆ denote the ground truth value computed from P . Our estimators are formally
defined as below:

• Ŵ (a, P ) =
W (a,fp(P ))

p
− 1−p

p
· ||~u||1

m
,

•
ˆImb(u, a, P1, P2) =

|Ŵ (a,P1)−Ŵ (a,P2)|

Ŵ (a,P )
,

where ~u defines the utility function. The estimators are unbiased estimators for the ground

truth, i.e., E
[

Ŵ (a, P )
]

= W (a, P ), as stated in Lemma 3.

Lemma 3 (Expectation for Estimators). Using the notations above, we have,

E

[

Ŵ (a, P )
]

= W (a, P ).

Proof. Given that group utility is the mean of all agents’ utilities, we only need to check
the expected utility for one vote. In this proof, we use Rj to denote the j-th vote in profile
P , and we have,

E[W (a, fp(Rj))] =
∑

R∈L

Pr[fp(Rj) = R] ·W (a,R).

By the definition of fp(·), we know there is probability p to report Pk truthfully and probabil-
ity 1−p for reporting uniformly at random. Thus, we have, E[W (a, fp(Rj))] = p·W (a,Rj)+
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∑

R∈L
1−p
m! · W (a,R). By the definition of W (a,R), we have,

∑

R∈LW (a,R) = ||~u||1·m!
m

.
Combining these two relations, we have,

E[W (a, fp(Rj))] = p ·W (a,Rj) + (1− p) ·
||~u||1
m

. (3)

Using the definition of Ŵ (a, P ), we get

E[Ŵ (a, P )] =
E[W (a, fp(P ))]

p
−

1− p

p
·
||~u||1
m

Calculating E[[W (a, fp(P ))] using Equation 3, the result in Lemma 3 directly follows from
here.

Our framework solves a similar optimization problem as in Problem 1, but instead of
using Imb and W , we would use ˆImb and Ŵ . Thus, the complete input to our framework
are: group preference profiles P1, P2, privacy requirement ε, the inferred noisy profile fp(P )
and a threshold α for utility.

In the next theorem, we show how privacy threshold ε influences our maximized efficiency
and maximized fairness. This result also shows the role of privacy in fairness-privacy-
efficiency trade-off. For this analysis, the efficiency measure that we consider is average
utility or social welfare, as opposed to Condorcet efficiency. Since the results are about
average utility and imbalance rather than fairness, we present all results in term of two
groups of size n1, n2.

Theorem 7 (Fairness-Privacy-utility Trade-off). For any ε-local DP requirement on making
collective decisions with two groups, we have the following:

(1) Pr
[

Ŵ (a, P ) ≥W (a, P )− t
]

≥ 1− exp

[

−
2t2p2n

(∆umax)2

]

,

(2) Pr

[

ˆImb(u, a, P1, P2) ≤ Imb(u, a, P1, P2) +
∆umax

p
·
(Imb(u,a,P1,P2)+1)(n−0.3

1 +n−0.3
2 )

W (a,P )−∆umax
p (n−0.3

1 +n−0.3
2 )

]

≥ 1− 2 exp
(

−2n0.4
1

)

− 2 exp
(

−2n0.4
2

)

,

where p = exp(ε)−1
|X |+exp(ε)−1 and ∆umax , maxi,j |ui − uj | = u1 − um.

Proof. To simplify notations, we let Wk = W (a, Pk) and W = W (a, P ). Similarly, let
Ŵk = Ŵ (a, Pk) and Ŵ = Ŵ (a, P ). First, we apply the Hoeffding bound (Hoeffding, 1963)
to get an upper bound on the probability of how large W (a, fp(P )) can become. Given
independent random variables Xi, · · · , Xn such that ci ≤ Xi ≤ di with Sn =

∑n
i=1Xn.

Then the Hoeffding bound theorem states that for all t ≥ 0,

Pr[Sn ≥ E[Sn] + t] ≤ exp

[

−
2t2

∑n
i=1(di − ci)2

]

, and

Pr[Sn ≤ E[Sn]− t] ≤ exp

[

−
2t2

∑n
i=1(di − ci)2

]

.
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The noise from different agents are added independently. We also note thatW (a, P1),W (a, P2)
and W (a, P ) are all average utilities. So, u1 ≥ W (a, ·) ≥ um, since u1 and um are respec-
tively the highest and lowest possible utility values. For a preference profile P and alterna-
tive a, let Xi =

W (a,Ri)
|P | for agent i’s vote. Here |P | is the size of the preference profile, P .

Thus, applying the Hoeffding bound theorem, we have,

Pr [W (a, fp(P )) ≥ E[W (a, fp(P ))] + t] ≤ exp

[

−
2t2|P |

(∆umax)2

]

.

Here, for the preference profile of all agents, |P | = n, and then |P1| = n1 and |P2| = n2

respectively for two groups. Then, using the definition of Ŵ (a, P ) and the relation between
E[Ŵ (a, P )] and W (a, fp(P )) from Lemma 3, we have,

Pr
[

Ŵ (a, P ) ≥W (a, P ) + t
]

≤ exp

[

−
2t2p2|P |

(∆umax)2

]

. (4)

The p2 factor in exp[·] comes from the 1
p
factor in the definition of Ŵ (a, p). Part (1) of the

theorem directly follows from here.

Next, we prove the concentration bound to our imbalance estimator. Inequality (4) gives
individual bounds for Ŵ1 and Ŵ2. By letting t = ∆umax

p
n−0.3
i for group i in Inequality 4,

we get,

Pr

[

∣

∣

∣
Ŵ1 −W1

∣

∣

∣
≥

(∆umax)

p
n−0.3
1

]

≤ 2 exp(−2n0.4
1 ) and

Pr

[

∣

∣

∣
Ŵ2 −W2

∣

∣

∣
≥

(∆umax)

p
n−0.3
1

]

≤ 2 exp(−2n0.4
2 ).

Both inequalities can be proved in a similar way as (4) using both branches of the Hoeffding
bound. From the union bound (Boole, 1847), for any two events A and B, Pr[A ∪ B] ≤
Pr[A] + Pr[B]. Then, applying the union bound on the bounds for each group’s utility, we
have,

Pr

[(

∣

∣

∣
Ŵ1 −W1

∣

∣

∣
≥

(∆umax)

p
n−0.3
1

)

⋃

(

∣

∣

∣
Ŵ2 −W2

∣

∣

∣
≥

(∆umax)

p
n−0.3
2

)]

≤ 2 exp(−2n0.4
1 ) + 2 exp(−2n0.4

2 ).

(5)

In the next (technical) Lemma, we connect ˆImb(u, a, P1, P2) with the above probability.

Lemma 4. When

ˆImb(u, a, P1, P2) ≥
|W1 −W2|+

∆umax
p

(n−0.3
1 + n−0.3

2 )

W − ∆umax
p
·
|n0.7

1 −n0.7
2 |

n

, (6)

we must have either
∣

∣

∣
Ŵ1 −W1

∣

∣

∣
≥ (∆umax)

p
n−0.3
1 or

∣

∣

∣
Ŵ2 −W2

∣

∣

∣
≥ (∆umax)

p
n−0.3
2 to be true.
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Proof. According to the definition of ˆImb and Ŵ , we know that

ˆImb(u, a, P1, P2) =

∣

∣

∣
Ŵ1 − Ŵ2

∣

∣

∣

Ŵ
=

∣

∣

∣
Ŵ1 − Ŵ2

∣

∣

∣

n1
n
Ŵ1 +

n2
n
Ŵ2

.

If W1 ≥W2, the “worst-case” for ˆImb(u, a, P1, P2) is that Ŵ1 > W1 while Ŵ2 < W2. Then,
we know that if

ˆImb(u, a, P1, P2) ≥

(

W1 +
(∆umax)

p
n−0.3
1

)

−
(

W2 −
(∆umax)

p
n−0.3
2

)

n1
n

(

W1 +
(∆umax)

p
n−0.3
1

)

+ n2
n

(

W2 −
(∆umax)

p
n−0.3
2

)

=
W1 −W2 +

∆umax
p

(n−0.3
1 + n−0.3

2 )

W + ∆umax
p
·
n0.7
1 −n0.7

2
n

,

(7)

we must have either
(

Ŵ1 −W1 ≥
(∆umax)

p
n−0.3
1

)

or
(

W2 − Ŵ2 ≥
(∆umax)

p
n−0.3
2

)

. Since the

condition in Lemma 4, (6), is stronger than (7), Lemma 4 directly follows by repeating the
above analysis for the W2 ≥W1 case.

Combining Lemma 4 with our union bound (5), we have,

Pr




ˆImb(u, a, P1, P2) ≥

|W1 −W2|+
∆umax

p
(n−0.3

1 + n−0.3
2 )

W − ∆umax
p
·
|n0.7

1 −n0.7
2 |

n



 ≤ 2 exp(−2n0.4
1 )+2 exp(−2n0.4

2 ).

We also have

|W1 −W2|+
∆umax

p
(n−0.3

1 + n−0.3
2 )

W − ∆umax
p
·
|n0.7

1 −n0.7
2 |

n

=
|W1 −W2| −

∆umax
p
·
|n0.7

1 −n0.7
2 |

n
· |W1−W2|

W

W − ∆umax
p
·
|n0.7

1 −n0.7
2 |

n

+

∆umax
p
·
|n0.7

1 −n0.7
2 |

n
· |W1−W2|

W
+ ∆umax

p
(n−0.3

1 + n−0.3
2 )

W − ∆umax
p
·
|n0.7

1 −n0.7
2 |

n

=
|W1 −W2|

W
+

∆umax

p
·
n−0.3
1 + n−0.3

2 +
|n0.7

1 −n0.7
2 |

n
· |W1−W2|

W

W − ∆umax
p
·
|n0.7

1 −n0.7
2 |

n

= Imb(u, a, P1, P2) +
∆umax

p
·
n−0.3
1 + n−0.3

2 +
|n0.7

1 −n0.7
2 |

n
· Imb(u, a, P1, P2)

W − ∆umax
p
·
|n0.7

1 −n0.7
2 |

n

≤ Imb(u, a, P1, P2) +
∆umax

p
·
n−0.3
1 + n−0.3

2 +
(

n−0.3
1 + n−0.3

2

)

· Imb(u, a, P1, P2)

W − ∆umax
p
·
(

n−0.3
1 + n−0.3

2

)

= Imb(u, a, P1, P2) +
∆umax

p
·

Imb(u, a, P1, P2) + 1

W − ∆umax
p
·
(

n−0.3
1 + n−0.3

2

) ·
(

n−0.3
1 + n−0.3

2

)

.
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Then, Theorem 7 directly follows by the observation that

ˆImb(u, a, P1, P2) ≥ Imb(u, a, P1, P2)+
∆umax

p
·

Imb(u, a, P1, P2) + 1

W − ∆umax
p
·
(

n−0.3
1 + n−0.3

2

) ·
(

n−0.3
1 + n−0.3

2

)

is a stronger condition than ˆImb(u, a, P1, P2) ≥
|W1−W2|+

∆umax
p

(n−0.3
1 +n−0.3

2 )

W−∆umax
p

·
|n0.7

1 −n0.7
2 |

n

.

From part (1) of Theorem 7, we see that with high probability, the utility estimator is
close to the actual utility. And the probability decreases exponentially with the number
of agents n. It also implies that the smaller ε is (stronger privacy, also corresponds to the
smaller value of p), the higher is the probability for our utility estimator to be inaccurate.
From part (2) of the theorem, the additive part in the bound for the imbalance estimate is:

∆umax

p
·
(Imb(u, a, P1, P2) + 1)(n−0.3

1 + n−0.3
2 )

W − ∆umax
p
·
(

n−0.3
1 + n−0.3

2

)

=
∆umax

p
·
(W + |W1 −W2|)(n

−0.3
1 + n−0.3

2 )

W
(

W − ∆umax
p

(n−0.3
1 + n−0.3

2 )
) .

For smaller values of p (better privacy), the additive term gets larger, and the probability
for the imbalance estimator to be inaccurate gets higher. However, for high n1 and n2

values, this term is low compared to the range of imbalance values. Additionally, we note
that this bound is tighter when the actual imbalance value is small and the average utility
is large. This means that for alternatives with low imbalance (fair alternatives) and high
utility (efficient alternatives), the imbalance estimate will tend to be less noisy. So, for these
alternatives, the loss in fairness due to privacy is expected to be low.

The privacy framework uses an assumed utility function, similar to what we have done
for designing constrained fair voting rules. The inaccuracy for the private voting rule will
be in terms of this assumed utility function, which adds to the loss in efficiency and fairness
due to arbitrary ground truth utility functions as discussed in Section 5.

We run experiments with synthetic data with α-FP fair voting rules (Definition 5),
analyzing the three-way trade-off between privacy, group fairness and efficiency. These
experimental results are presented in Section 8. Now, even though our theoretical and ex-
perimental results regarding privacy discuss only the constrained fair voting rule framework,
we suggest that it can be effectively applied to voting rules designed with the ML-based
framework as well. Since the learned voting rule works by first converting votes to the
features weighted majority graph and positional score matrix, both of which depend on the
preference of each alternative in each group (i.e., they can be calculated from the W (a, P )
values for each group), thus the effect of adding local noise would be similar and the features
would also have unbiased estimators. Thus, we can also design local differentially private
versions of voting rules designed using the ML framework with the flipping-coin algorithm.

8. Experimental Results

While our theoretical results deal with worst-case analysis, we contend that average-case
analysis is important as well. If we assume that the agents come from some underlying
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distributions, the expected fairness and expected efficiency are interesting metrics to check
the trade-off. However, theoretically analyzing expected fairness and efficiency is difficult.
So, we do empirical analysis on synthetic data to get an idea about the average fairness-
efficiency trade-off. All our experimental results focus on two-group scenarios. We consider
two type of ranking models to generate all the synthetic election data, as described below.

• Uniform: For any set of all alternatives A with |A| = m, the set of all linear orders L
define all possible rankings over the set of alternatives. In uniform sampling, a ranking
is sampled uniformly at random from L. This sampling technique is also known as
impartial culture.

• Plackett-Luce (PL) (Plackett, 1975; Luce, 1959): The PL model is a widely
used model for human preferences. For the PL model, the parameter space is Θ = {~θ =
{θj |1 ≤ j ≤ m}} and the sample space is L. Given the parameter ~θ ∈ Θ, the probabil-

ity of any full ranking σ = aj1 � aj2 � · · · � ajm is PrPL(σ|~θ) =
∏m−1

p=1
exp(θjp )

∑m
q=p exp(θjq )

.

The PL model can be intuitively thought of as giving a score to each alternative. Then
the alternatives with higher scores have a higher probability of being ranked towards
the top.

For the experiments, we first do uniform sampling for all agents from both groups.
This is representative of scenarios where both groups have similar ranking behavior and
behave uniformly at random. On the other hand, we use the PL model for simulating group
behavior. We assume that agents in a group inherently have similar preferences, while the
two groups in general behave differently. So, first we first get two separate Plackett-Luce
models (with randomly sampled parameters ~θ) for the two groups. Then, each agent’s vote
is sampled from using their group’s PL model.

While creating training and test data, for each data point, first new PL parameters
are sampled randomly. Then, a single preference profile is sampled using these group PL
parameters. This ensures that the training and test data come from different distributions.

The average fairness values that we present for a voting rule are computed from the
winners of the sample preference profiles. For a voting rule r, for particular group size
parameters, n and z, if we have K sample preference profiles, {(P k

1 , P
k
2 )}

K
k=1, then the

average fairness is:

FAverage(r, u,n, z) = 1−
1

K
·

1

1 + z
·

K
∑

k=1

Imb(u,r(P
k
1 , P

k
2 ), P

k
1 , P

k
2 ).

8.1 Trade-off between Fairness and Efficiency

The experiments above consider fairness results for voting rules under the same utility
function. As a contrast to that, we also consider many different utility functions. For
this experiment, for each utility function, we calculate a sample worst-case imbalance value
through simulation, and take the mean over all the sample worst-case imbalance values.
We present the results in Table 4. For u-fair rules, on top of utop, urank, we consider uveto,
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Voting
Rule

utop-fair urank-
fair

uveto-fair Plurality Borda Copeland

Fairness 0.77 0.85 0.81 0.68 0.78 0.78

Table 4: Average fairness value over sampled utility functions

which is defined by ~u = 〈1, 1, 1, 0〉 (for m = 4). For traditional voting rules, we consider
Plurality, Borda and Copeland.

We see that, as expected, even for arbitrary utility functions, the average fairness value
is higher for the u-fair voting rules compared to efficiency-based rules. Among the u-fair
rules, we get the highest average fairness for rank utility. This indicates that rank utility
can work as a good utility function assumption for our voting rule designing frameworks.

For experiment for various group sizes, varying the n1/n2 ratio from 100/20 to 100/100,
and we consider both uniform and Plackett-Luce distributions for randomized preference
profiles to understand the behavior of the voting rules under different circumstances. We
compute average fairness and mean social welfare (presented as average utility). We com-
pute Condorcet Efficiency for a voting rule as the ratio of the number of preference profiles
where a voting rule chooses the Condorcet winner and the number of profiles where the
Condorcet winner exists. First, we run simulations for different α-FB rules.

For our experiments on β-ML rules, we chose boosted gradient trees for learning in
Algorithm 1, making use of the XGBoost (Chen & Guestrin, 2016) library. For each setting,
we generated 2.4 million data points to learn from. Based on the learned voting rule, we
compute Condorcet efficiency and average rank utility for the preference profiles in the test
set. Results for various n1/n2 ratios have similar characteristics, and we present the results
for n1 = 100 and n2 = 40 in Figure 3.

Figure 3a shows that the learned voting rules from both learning methods, β-Mix and
β-Soft , mostly dominate α-FB methods, and provide a good improvement in terms of
fairness compared to Copeland (a Condorcet consistent rule) while achieving almost similar
levels of Condorcet efficiency.

Figure 3b on the other hand shows that the constrained rule (α-FB) achieves the goal
of improving average utility while keeping high fairness values. The learned voting rules
here are trained with the β-Mix method and we show the voting rules for two cases: trained
with Condorcet efficiency as the efficiency measure, and trained with rank utility as the
efficiency measure. We note that even with rank utility as the efficiency measure, the
learned algorithm is outperformed by the α-FB voting rules. We have also repeated this
experiment with the β-Soft method with very similar results.

In both Figures 3a and 3b, we see that none of the voting rules focusing purely on either
economic efficiency or fairness (Plurality, Borda, Copeland and RankFair) dominates the
newly designed voting rules in both economic efficiency and fairness. This is also seen true
for simple mixture type randomized voting rules (e.g., a voting rule that outputs the Borda
winner half of the time and the RankFair winner the other half) from experiments. So, we
find that the newly designed can achieve different levels of economic efficiency and fairness
that is not possible with purely efficient or fair voting rules or simple mixtures of them.
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have the same utility function. While we still consider the worst-case analysis over all such
utility functions, it would be interesting to see how the fairness bounds are for more gen-
eral utility definitions, such as metric preferences (Anshelevich et al., 2018). More general
analysis similar to social choice distortion (Procaccia & Rosenschein, 2006) is also an inter-
esting direction for future work. We can also consider the idea of fairness under composition
when there are multiple properties across which the agents may be grouped, e.g., male vs
female and old vs young. We can compute different imbalance values for an alternative for
both properties. Thus, an alternative that is fair across gender may be unfair across race.
Whether designing fair voting rules under composition leads to more complicated scenarios
is an interesting question.

Regarding the data-driven method for learning new voting rules, our work in using
learning to design voting rules with new properties can be extended. Both of our current
methods focus on getting good fairness and efficiency values in average and does not focus
on individual preference profiles. In the future, we can consider a more general loss-function-
based approach with loss for both group-fairness and efficiency properties such that even
for individual preference profiles, the learned voting rules manage to find alternatives that
are both somewhat fair and efficient.

Finally, when considering local differential privacy, we note that getting a more private
voting rule has a trade-off with having high efficiency and high fairness. However, work
in differential privacy literature has suggested that the randomization required for privacy
may be applied in ways to also preserve like fairness (e.g., in (Zhu et al., 2022)). So, it will
be interesting to see whether local differential privacy can be obtained at the same time
with group fairness properties in randomized voting rules.
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