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Recently, road scene-graph representations used in conjunction with graph learning techniques
have been shown to outperform state-of-the-art deep learning techniques in tasks including action
classification, risk assessment, and collision prediction. To enable the exploration of applications of
road scene-graph representations, we introduce ROADSCENE2VEC: an open-source tool for extracting and
embedding road scene-graphs. The goal of ROADSCENE2VEC is to enable research into the applications
and capabilities of road scene-graphs by providing tools for generating scene-graphs, graph learning
models to create spatio-temporal scene-graph embeddings, and tools for visualizing and analyzing
scene-graph-based methodologies. The capabilities of ROADSCENE2VEC include (i) customized scene-
graph generation from either video clips or data from the CARLA simulator, (ii) multiple configurable
spatio-temporal graph embedding models and baseline CNN-based models, (iii) built-in functionality
for using graph and sequence embeddings for risk assessment and collision prediction applications,
(iv) tools for evaluating transfer learning, and (v) utilities for visualizing scene-graphs and analyzing
the explainability of graph learning models. We demonstrate the utility of ROADSCENE2VEC for these
use cases with experimental results and qualitative evaluations for both graph learning models and

CNN-based models. ROADSCENE2VEC is available at https://github.com/AICPS/roadscene2vec.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction of complex road scenarios. This limitation is due to their inabil-
ity to explicitly capture inter-object relationships or the overall
structure of the road scene.

Research has suggested that humans rely on cognitive mech-
anisms to identify the structure of a scene and reason about
inter-object relations when performing complex tasks (e.g., iden-
tifying risk) [12]. As such, the capability to capture and identify
the complex relationships between road objects is critical in
designing an effective human-like AV perception system. To
address the limitations of existing AV perception methods, sev-
eral groups have adopted a variant of knowledge graphs known
as scene-graphs to model the road state and the relationships
between objects [13-16]. A scene-graph representation encodes
rich semantic information of an image or observed scene, es-
sentially bringing an abstraction of objects and their complex
relationships as illustrated in Fig. 1. While each of these related
works proposes a different form of scene-graph representation,
all demonstrate significant performance improvements over con-
ventional perception methods. In [15], the authors propose a

Autonomous Vehicles (AVs) are expected to revolutionize per-
sonal mobility, logistics, and road safety [1]. However, recent
accidents involving Tesla Autopilot and Uber’s self-driving cars
indicate that the development of safe and robust AVs remains a
difficult challenge [2-4]. Current statistics indicate that percep-
tion and prediction errors were factors in over 40% of driver-
related crashes between conventional vehicles [5], leading both
researchers and industry leaders to race to address these prob-
lems via advanced AV perception systems. Until recently, most AV
perception architectures relied entirely on either (i) deep learn-
ing techniques using Convolutional Neural Networks (CNNs) and
Multi-Layer Perceptrons (MLPs) [6-9]; or (ii) model-based meth-
ods, which use known road geometry information and vehicle
trajectory models to estimate the state of the road scene [10,11].
Although these approaches have been successful in typical use
cases, they cannot obtain a high-level, human-like understanding
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3D-aware egocentric spatio-temporal interaction framework that
uses both an Ego-Thing graph and an Ego-Stuff graph, which
together encode how the ego vehicle interacts with both moving
and stationary objects in a scene, respectively. In [ 14], the authors
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Fig. 1. How camera data can be used to construct a road scene-graph representation.

propose a pipeline using a multi-relational graph convolutional
network (MR-GCN) for classifying the driving behaviors of traffic
participants. The MR-GCN combines spatial and temporal infor-
mation, including relational information between moving objects
and landmark objects. Our prior work has demonstrated that a
spatio-temporal scene-graph embedding can be used to assess the
subjective risk of driving maneuvers more effectively than state-
of-the-art methods [13,16]. In addition, our method can better
transfer knowledge and is more explainable.

Although a wide range of scene-graph based AV perception
approaches have been proposed, each method was developed
from scratch, requiring significant time and resource investment
by each research group. Although tools exist to perform pre-
processing and graph learning (e.g., Pytorch and Pytorch Ge-
ometric), to the best of our knowledge, there exists no tool
for systematically converting road scenes into scene-graphs in
this field. As a result, each research group must start develop-
ing their scene-graph construction methodology from the ground
up, wasting time and effort that could be better spent using
the resultant scene-graph representations to solve more com-
plex research problems. To address this problem, we propose
ROADSCENE2VEC: a tool for systematically extracting and embed-
ding road scene-graphs. ROADSCENE2VEC enables researchers to
quickly and easily extract scene graphs from camera data, eval-
uate different graph construction methodologies, and use several
different graph learning and machine learning algorithms to gen-
erate spatio-temporal graph embeddings for a wide range of AV
tasks. We envision ROADSCENE2VEC to serve the following use
cases:

e Converting image-based datasets as well as datasets gener-
ated by the CARLA simulator [17] into scene-graphs.

e Enabling the exploration of different scene-graph construc-
tion methodologies for a given application via a flexible, re-
configurable, and user-friendly scene-graph extraction
framework.

e Allowing researchers to explore various spatio-temporal
graph embedding methods, supporting customized algo-
rithms for further design exploration.

e Providing a set of baselines drawn from state-of-the-art
works for different AV applications (CNN and CNN-LSTM
based algorithms).

e We provide scene-graph visualization utilities to enhance
design space exploration for graph construction.

We target camera data since images are the most rich and de-
tailed modality, providing high-resolution details about the scene
as well as color information. This information can be used for
better identifying the context of the scene and relations between
participants. If other modalities are added, it is unlikely that
much more information will be added to the scene graph; only
the robustness of the system and precision of the graph will be
improved. Besides, current state-of-the-art AV perception archi-
tectures utilizing sensor fusion still have shortcomings [18]. Fur-
thermore, most publicly available AV datasets primarily contain
image data.

1.1. Novel contributions

Our novel contributions for this research community are:

1. We present ROADSCENE2VEC: a flexible scene-graph con-
struction and embedding framework that allows resear-
chers to experiment with different graph extraction
formulations to find the best one for their problem.

2. We provide an end-to-end graph learning framework for
modeling the scene-graph representations. Our framework
enables automated experimentation and metrics logging
over a wide range of graph learning AV applications. We
also provide a graph learning model template defining the
core structure and functions used by our framework to
facilitate users defining their own models and problems.

3. We provide many visualization tools and utilities for in-
specting and understanding the scene-graphs including at-
tention maps, color-coding by classes or relation type,
birds-eye view projection, embedding projection, etc.
These tools enable users to interpret their results easily
without having to design their own visualizer.

4, We provide state-of-the-art CNN-based models drawn
from recent AV papers for cross-comparison with graph-
learning-based techniques.

1.2. Paper organization

The rest of our paper is laid out as follows. In Section 2 we
discuss related works. In Section 3 we introduce the core func-
tionality of our tool and its methodology. In Section 4 we provide
usage examples. In Section 6 we demonstrate the practical, real-
world value of our tool by evaluating it on several common use
cases. Finally, in Section 7 we present our conclusions.

2. Related work

In this section, we begin by describing general AV design
philosophies. Then we elaborate on graph-based approaches used
in scene understanding. Lastly, we briefly discuss existing tools
and libraries.

2.1. AV design methodologies

The two common design approaches for AV systems are (i)
end-to-end deep learning architectures [19] and (ii) modular
architectures. Modular approaches are implemented as a pipeline
of separate components for performing each sub-task of the
AV (e.g., perception, localization, planning, control). In contrast,
end-to-end approaches generate actuator outputs (e.g., steering,
brake, accelerator) directly from their sensory inputs [7]. One
advantage of a modular design approach is the division of a
task into an easier-to-solve set of sub-tasks that have been ad-
dressed in other fields such as robotics, computer vision, and
vehicle dynamics, from which prior knowledge can be lever-
aged. However, one disadvantage of such an approach is the
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complexity of implementing, running and validating the com-
plete pipeline [19]. End-to-end approaches can achieve good
performance with smaller network size and low implementation
costs because they perform feature extraction from sensor inputs
implicitly through the network’s hidden layers [7]. However, the
authors in [20] point out that the needed level of supervision
is too weak for the end-to-end model to learn critical control
information (e.g., from image to steering angle), so it can fail to
handle complicated driving maneuvers or be insufficiently robust
to disturbances.

A third approach called the direct perception approach was first
proposed by DeepDriving [20]. In this approach, a set of affordance
indicators, such as the distance to lane markings and other cars in
the current and adjacent lanes, are extracted from an image and
serve as an intermediate representation (IR) for generating the
final control output. They show that this IR improves performance
for simple driving tasks such as lane following and enables better
generalization to real-world environments. Similarly, [21] uses
a collection of filtered images as the IR. They state that the IR
used in their approach allows the training to be conducted on
either real or simulated data, facilitating testing and validation in
simulations before testing on a real car. Moreover, they show that
it is easier to synthesize perturbations to the driving trajectory in
the IR than at the raw sensor inputs themselves, enabling them
to produce non-expert behaviors such as off-road driving and
collisions. The authors in [6] use Mask-RCNN [22] to color the
vehicles in each input image, producing a form of IR. In contrast
to the works mentioned above, ROADSCENE2VEC utilizes a scene-
graph IR that encodes the spatial and semantic relations between
all the traffic participants in a frame. This form of representation
is similar to a knowledge graph with the key distinction that
scene-graphs explicitly encode knowledge about a visual scene.

2.2. Graph-based driving scene understanding

Several works have applied graph-based formulations for road
scene understanding. In [15], the authors propose a 3D-aware
egocentric Spatio-temporal interaction framework that uses both
an Ego-Thing graph and an Ego-Stuff graph to encode how the
ego vehicle interacts with both moving and stationary objects in a
scene, respectively. In [ 14], the authors propose a pipeline using a
multi-relational graph convolutional network (MR-GCN) for clas-
sifying the driving behaviors of traffic participants. The MR-GCN
combines spatial and temporal information, including relational
information between moving and landmark objects. In [23], the
authors propose extracting road scene graphs in a manner that in-
cludes pose information for scene layout reconstruction. A similar
approach was also proposed in [24]. Authors in [25] propose using
a probabilistic graph approach for explainable traffic collision
inference. In our prior work, we demonstrated that a scene-graph
representation used with an MRGCN leads to state-of-the-art
performance at assessing the subjective risk of driving maneu-
vers [13] and collision prediction [16]. Our tool implements ex-
amples of multi-relational graph learning models (MRGCN and
MRGIN) and model skeletons, enabling users to evaluate other
graph learning model formulations more easily.

2.3. Graph extraction and graph learning libraries

Other libraries for extracting scene-graphs from input images
have been proposed. [26] proposed the Graph R-CNN model,
which extracts scene graphs by identifying the set of individual
objects in the image before identifying the spatial relations be-
tween the objects. With this process, Graph R-CNN can extract
the spatial features of the scene in the form of a scene-graph. [27]
provides a benchmark for evaluating several kinds of scene-graph
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generation models on image datasets. The scene-graph repre-
sentations extracted by these tools are then used for semantic
understanding and labeling tasks, such as image captioning and
visual question answering. Although these tools and models are
successful at these tasks, they do not incorporate specific do-
main knowledge relevant to the AV problem space. Autonomous
driving is a highly complex problem on its own, so AV algo-
rithms must utilize domain knowledge, including driving rules,
road layout, and markings, as well as light and sign information.
Furthermore, AV algorithms must account for temporal factors;
the tools mentioned above operate on individual images and thus
do not account for these safety-critical temporal factors.

Regarding graph learning tools and libraries, several tools such
as GraphGYM [28], DGL [29], and OGB [30] exist for quickly and
easily evaluating several graph learning models on problems in-
cluding node/graph classification and regression. However, none
of these pre-existing tools enable scene-graph generation; they
can only be used with existing graph data. Our proposed tool
is the only tool that enables both the extraction and learning of
AV-specific scene-graphs.

3. RoADSCENE2VEC Architecture

This section introduces ROADSCENE2VEC's architecture, features,
and intended workflow. Our ROADSCENE2VEC is implemented as
a Python library, integrating various external packages such as
APIs from PyTorch, PyTorch Geometric, Detectron2, and CARLA.
ROADSCENE2VEC consists of four key modules: (i) data genera-
tion (data.gen) and preprocessing (data.proc), (ii) scene-graph
extraction (scene_graph), (iii) model training and evaluation
(learning), and (iv) visualization (util). We detail each module
in the following subsections.

3.1. Dataset generation tools (data.gen)

The module data.gen in ROADSCENE2VEC allow researchers to
synthesize driving data for their research. To successfully han-
dle complex and long-tail driving scenarios, deep learning ap-
proaches typically train their models on large datasets that con-
tain a wide range of "corner cases”. However, generating such
datasets is expensive and time-consuming in the real-world [17].
Thus, most researchers instead use synthesized datasets con-
taining plenty of these corner cases to evaluate their research
ideas.

For this purpose, ROADSCENE2VEC integrates the open-source
driving simulator, CARLA [17], which allows users to generate
driving data by controlling a vehicle (either in manual mode or
autopilot mode) in simulated driving scenarios. On top of that,
ROADSCENE2VEC also integrates the CARLA Scenario Runner, which
contains a set of atomic controllers that enable users to automate
the execution of complex driving maneuvers.

In ROADSCENE2VEC, data.gen produces each driving clip in
CARLA’s simulated world by (i) selecting one autonomous car
randomly, (ii) switching its mode to manual mode, and (iii) using
the Scenario Runner to command the vehicle to change lanes. In
addition, the data generation tool in ROADSCENE2VEC manipulates
the various presets in CARLA to specify the number of cars,
pedestrians, weather and lighting conditions, etc., for making
the generated driving data more diverse. Moreover, through
the APIs provided by the Traffic Manager (TM) of the CARLA
simulator, the tool can customize the driving characteristics of
every autonomous vehicle in the simulated world, such as the
intended speed considering the current speed limit, the chance of
ignoring the traffic lights, or the chance of neglecting collisions
with other vehicles. Overall, the tool allows users to simulate
a wide range of very realistic urban driving environments and
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1. Preprocess original dataset for CNN models.

image_data_config.yaml
RawlImageDataset
Preprocessor.py Object

Scene_graph_config.yaml
SceneGraphDataset
Object

extractor.py
2. Extract scene-graphs from original dataset.

learning_config.yaml

trainer.py

Trained
Model and
Results

Original
Dataset

3. Select, train, and
evaluate model.

Fig. 2. Workflow for using ROADSCENE2VEC to preprocess a dataset; extract
scene-graphs from the dataset; and select, train, and evaluate a model on the
dataset.

generate synthesized datasets suitable for training and testing a
model.

Using the CARLA Python API and the CARLA Scenario Runner,
we implemented a tool in the data.gen module for extracting
the road scene’s state information as well as the corresponding
ego-centric camera images directly from the CARLA simulator for
use in ROADSCENE2VEC. For each frame in a driving sequence, we
store the attributes of all the objects as a Python dictionary. These
attributes include object type, location, rotation, lane assignment,
acceleration, velocity, and light status. For static objects such as
traffic lights and signage, we store the type of object, its location,
and light state (light color) or sign value (e.g., speed limit). We
refer to the datasets in this format as CARLA datasets. In addition,
our tool supports using image-based datasets, such as the camera
data extracted from CARLA or the Honda Driving Dataset [31]
used in our experiments. The code provided in our data.gen
module can be modified to support other driving actions, such
as turning, accelerating, braking, and overtaking.

Under the data.gen module, ROADSCENE2VEC also provides
an annotation tool for quickly and easily labeling both CARLA
datasets and image datasets. The annotator offers a graphical user
interface (GUI) that enables users to view, label, exclude or trim
specific driving sequences. Our annotator enables users to assign
one label for each sequence and supports averaging multiple
independent labelers’ decisions. Our annotators GUI is shown
in Fig. 3. In comparison to popular annotation tools, such as
CVAT [32] and VOoTT [33], our annotator offers a more streamlined
approach for video clip labeling. These other annotation tools
typically iterate through only a single image at a time as they are
primarily designed for tasks such as object detection and seman-
tic segmentation. In contrast, our annotator implements a broader
range of video playback controls (play, pause, replay, ignore,
etc.), facilitating risk analysis over a complete video sequence.
Currently, our annotator supports sequence-level risk labels from
1-5. Still, it can be extended to support other label types for
problems such as scenario classification and rare event identifica-
tion. In addition to the annotation tool, we also provide dataset
utilities such as train-test splitting, k-fold cross-validation, and
downsampling as part of the trainers in the learning.util module.

3.2. Data preprocessing (roadscene2vec.data.proc)

The data storage and preprocessing functions are implemented
through the data.proc module of ROADSCENE2VEC. To use a new
dataset with ROADSCENE2VEC, it must first have the correct direc-
tory structure defined in our repository. Next, the input dataset
can go through one of the two workflows shown in Fig. 2: (i)
the dataset is preprocessed into a “RawlmageDataset” to be used
with CNNs and other image processing models directly, or (ii) the
dataset is sent to the corresponding scene-graph extractor to gen-
erate scene-graph representations of every frame in the dataset
(discussed in Section 3.3). The preprocessing step is necessary
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Fig. 3. The user interface of the annotator tool, used to label, filter, and trim
datasets.

ReplayCllpl

for the conventional deep-learning models; the input images
often need to be resized, reshaped, or sub-sampled before being
trained with models to meet memory and space constraints.
After preprocessing, the RawlmageDataset object stores the sets
of driving video clips as image sequences, the labels associated
with the video clips, and metadata (such as sequence name/action
type). For each image in each clip in the dataset, the image
preprocessor loads the image using OpenCV, resizes and recolors
the image according to the configuration settings, and stores the
image as a PyTorch Tensor. The resulting RawImageDataset object
is then serialized and stored as a pickle (.pkl) file.

3.3. Road
extraction)

scene-graph extraction (roadscene2vec.scene_graph.

Here, we describe how an input dataset is converted into a
“SceneGraphDataset” object via our scene-graph extraction frame-
work. We first describe how the entities and relations in the
scene-graph are defined and configured before discussing the
specific steps needed to extract scene-graphs from both CARLA
and image-based datasets.

3.3.1. Entity and relation extraction

A list of ROADSCENE2VEC'S user-configurable scene-graph ex-
traction settings is shown in Table 1. In our formulation, each
“actor” (object) in the scene-graph is assigned a type from the set
{car, motorcycle, bicycle, pedestrian, lane, light, sign}, matching
those defined by CARLA. Users can reconfigure the set of object
types to support other dataset types, applications, or ontologies.

The default relation extraction pipeline we implement identi-
fies three kinds of pair-wise relations: proximity relations (e.g. vis-
ible, near, very_near, etc.), directional relations (e.g. Front_Left,
Rear_Right, etc.), and belonging relations (e.g. car_1 isin left_lane).
Two objects are assigned the proximity relation, r €
{Near_Collision (4 ft.), Super_Near (7 ft.), Very_Near (10 ft.), Near
(16 ft.), Visible (25 ft.)} provided the objects are physically sep-
arated by a distance that is within that relation’s threshold. The
directional relation, r € {Front_Left, Left_Front, Left_Rear, Rear_Left,
Rear_Right, Right_Rear, Right_Front, Front_Right}, is assigned to a
pair of objects, in this case between the ego-car and another car
in the view, based on their relative orientation and only if they
are within the near threshold distance from one another. Addi-
tionally, the isIn relation identifies which vehicles are on which
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Table 1
Scene graph configuration options and their descriptions. Each of these
parameters can be reconfigured by the user to produce custom scene-graphs.

Parameter Description

actor_names The list of object types. The default list is
based on the actor types defined by the CARLA
simulator.

The list of all implemented relation types.
Object names defined in the CARLA simulator.
These lists are used to cross-reference the

object type for a given CARLA vehicle name.

relation_names
car_names /moto_names
[bicycle_names/etc.

Defines the set of enabled directional relations
and their thresholds in degrees.

Defines the pairs of object types for which
directional relations will be extracted.
Defines the set of enabled distance relations
and their thresholds in feet.

Defines the pairs of object types for which
proximity relations will be extracted.
Represents 50% of the width of a lane in feet.
If an object is more than this distance from
the ego car’s center, it is considered to be in
the left or right lane.

directional_thresholds
directional_relation_list
proximity_thresholds
proximity_relation_list

lane_threshold

lanes (see Fig. 1). We use each vehicle’s horizontal displacement
relative to the ego vehicle to assign vehicles to either the Left
Lane, Middle Lane, or Right Lane using the known lane width. Our
current abstraction only considers three-lane areas, and, as such,
we map vehicles in all left lanes and all right lanes to the same
Left Lane node Right Lane node, respectively. If a vehicle overlaps
two lanes (i.e., during a lane change), it is mapped to both lanes.

The set of possible entity types, relation types, relation thresh-
olds, and valid object pairs is defined in the scene_graph_config
file. These settings are entirely user re-configurable, enabling
broad design space exploration of different graph extraction
methodologies. After graph extraction is completed, the set of
all scene-graph sequences, metadata, and labels are saved as a
SceneGraphDataset.

3.3.2. CARILA scene-graph extraction

Since the CARLA datasets contain a dictionary with a list of
objects and their attributes, we directly use this dictionary to
initialize the nodes in the scene-graph. Each node is assigned its
type label from the set of actor_names and its corresponding
attributes (e.g., position, angle, velocity, current lane, light status,
etc.) for relation extraction. Once all nodes are added to the scene-
graph, we extract relations between each pair of objects in the
scene.

3.3.3. Image scene-graph extraction

To extract scene-graphs from image-based datasets, we first
need to identify the set of objects in each image along with
their attributes. We use Mask-RCNN [22] to extract the set of
objects in the image as well as their bounding boxes. Next, we
compute the inverse-perspective mapping transformation of the
image, yielding a top-down ’birds-eye view’ (BEV) projection
of the scene. By generating this projection and projecting the
bounding box coordinates from the original image into the birds-
eye view, we can estimate the position of each vehicle relative
to the ego-vehicle with reasonably high fidelity. This position
information, along with the object class information, is used to
construct the scene-graphs. However, the BEV projection needs
to be re-calibrated for each dataset, as typically, each dataset
uses a different camera angle and camera configuration. To facil-
itate this calibration step, we provide a BEV calibration utility in
scene_graph.extraction.bev. This utility provides an interactive
way for the user to select the road area and calibrate the BEV
projection for a new dataset with a single step.

Knowledge-Based Systems 242 (2022) 108245

3.3.4. Scene-graph visualization

Our scene-graph visualization tool, located in the roadscene-
2vec.util module, consists of a GUI that simultaneously displays
an input image side by side with its corresponding scene-graph,
as is shown in Fig. 8. This tool enables researchers to experiment
with a wide range of relation types and distance thresholds and
quickly optimize their scene-graph extraction settings for their
specific application or dataset.

3.4. Scene-graph embedding (roadscene2vec.learning)

The learning module contains our framework for splitting
datasets as well as training, testing, and scoring models at var-
ious tasks. It also contains our graph learning models, baseline
deep learning models, and a graph learning model template to
enable users to define their own graph models for use with our
framework.. The model submodule contains the model defini-
tions while the util submodule contains the training, evaluation,
and scoring functions. The training code supports implement-
ing k-fold cross-validation, a user-definable train-test split, and
downsampling and class weighting to correct dataset imbalances.
The model specification, training hyperparameters, and dataset
configuration settings are loaded from the learning _config file,
which is user-modifiable. Next, we introduce the models available
in ROADSCENE2VEC.

3.4.1. Graph learning models (roadscene2vec.learning.model)

The graph learning models we provide in ROADSCENE2VEC en-
able various configurations of both spatial modeling and temporal
modeling components as shown in Fig. 4. The spatial modeling
components that are configurable include (i) graph convolution
layers, (ii) graph pooling and graph attention layers, and (iii)
graph readout operations. The configurable temporal modeling
components include (i) temporal modeling layers and (ii) tem-
poral attention layers. Our experiments use MRGCN and MRGIN
models that are identical in structure and differ only in the type
of spatial modeling used. Next, we discuss these components in
more detail.

Spatial modeling (SPATIAL_MODEL). We provide two multi-
relational graph convolution implementations based on (i) graph
convolutional networks (GCNs) [34] and (ii) graph isomorphism
networks (GINs) [35]. These layers propagate node embeddings
across edges via graph convolutions, resulting in a new set of
node embeddings. The two implementations differ in how data is
propagated through successive graph convolutions. Graph pool-
ing filters the set of node embeddings in the graph to only those
most useful for the task. We enable two types of graph pooling
layers extended for multi-relational use cases: Self-Attention
Graph Pooling (SAGPool) [36] and Top-K Pooling (TopkPool) [37].
After pooling, a global readout operation is used to collect the set
of pooled node embeddings into a unified graph embedding. We
implement max, mean, and add readout operations.

Temporal modeling (TEMPORAL_MODEL). The temporal model we
implement uses Long Short-Term Memory (LSTM) layers to con-
vert the sequence of scene-graph embeddings to either (i) one
spatio-temporal embedding (for sequence classification tasks) or
(ii) a sequence of spatio-temporal embeddings (for graph classifi-
cation/prediction tasks). For graph classification/collision predic-
tion tasks, the output from an LSTM layer for each input scene-
graph embedding is collected as a sequence of spatio-temporal
scene-graph embeddings P that is sent to an MLP layer to produce
the final set of model outputs. For sequence classification tasks,
a temporal readout operation is applied to P to compute a single
spatio-temporal sequence embedding z by (i) extracting only the
last hidden state of the LSTM pr (LSTM-last), (ii) taking the sum
over P, or (iii) using a temporal attention layer (LSTM-attn) to
compute an attention-weighted sum of the different elements of
P as described in [38].
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Fig. 4. Graph learning model configuration options provided in ROADSCENE2VEC.

3.4.2. Baseline models (roadscene2vec.learning.model)

In addition to the graph learning models that are core to ROAD-
SCENE2VEC, we also provide a set of baseline deep learning models
for quickly and easily comparing to typical image-processing
approaches. These baselines include (i) a ResNet-50 [39] CNN
classifier and (ii) a CNN+LSTM classifier [6]. The motivation for
using these baselines stems from their prevalence in AV image
processing tasks, such as risk assessment [6]. Users can easily use
other graph or deep-learning models with our framework as long
as they follow the same, typical PyTorch model structure.

3.4.3. Performance evaluation and hyperparameter optimization

To enable live monitoring of training runs and in-depth anal-
ysis of the effects of different hyperparameter settings on perfor-
mance, we integrate our library with Weights and Biases (W&B).2
W&B is a free, publicly available tool for tracking experiments,
visualizing performance, identifying hyperparameter importance,
and organizing results. We believe this integration will enable
researchers to identify trends in the data and optimize model
performance more quickly.

4. Usage examples

In this section, we describe some of ROADSCENE2VEC’S use-
cases. First, Section 4.1 exhibits a fundamental use-case in which
an image frame I is converted into a scene-graph g and then
into a fixed-length embedding h,. Next, the use cases of ROAD-
SCENE2VEC for two risk-based autonomous driving applications
(subjective risk assessment and collision prediction) are described
in Section 4.2 and Section 4.3, respectively. In Section 4.4, we
discuss how ROADSCENE2VEC can be used for performing and
evaluating transfer learning. Finally, in Section 4.5, we show how
ROADSCENE2VEC can be used to analyze the explainability of the
graph learning models.

4.1. Use Case 1: Converting an ego-centric observation into a scene-
graph

Our high-level algorithm for converting an input image into a
scene-graph is shown in Algorithm 1. Let us walk through a typical
workflow for converting an image dataset into a set of scene-
graph embeddings. First, the preprocessor processes the image
to set the dataset format and image sizing. These scene-graphs
can then be visualized using the visualizer tool we provide. The
following script streamlines the execution of this use case:

2 https://wandb.ai/.

> python examples/use_case_1.py

These scripts take configuration information directly from the
data_config and scene_graph_config files in the config module.
The config files indicate which type of dataset is being used
(CARLA or image-based) and the location and extraction set-
tings for the dataset. The scene_graph_config file also allows the
reconfiguration of the relation extraction settings as shown in
Table 1. The choice of relation extraction settings changes the
scene-graph structure, which can change how the graph learning
model processes the data.

Algorithm 1: Use Case 1 - Extracting a sequence of
scene-graphs from a driving clip.

Input: A sequence of images from a driving video clip I.
Output: A sequence of scene graphs G for I.
def TMG2GRAPH (I,):
O; < OBJ_DETECTION(I;)
A; < ATTR_EXTRACTION(I;, O;)
G < GRAPH_EXTRACTION(O¢, A;)
return G;
def EXTRACT_SEQ (I):
G<—{}
forI; inI do
| G < IMG2GRAPH(I,)
end
return G
G < EXTRACT_SEQ(I)
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4.2. Use Case 2: Subjective risk assessment

In prior AV research, attempts to improve vehicle safety have
involved modeling either the objective risk or the subjective risk
of driving scenes [40-42]. The objective risk is defined as the
objective probability of an accident occurring and is typically
determined by statistical analysis [40]. In contrast, subjective risk
refers to the driver's own perceived risk and is an output of the
driver’s cognitive process [41,42]. Since subjective risk accounts
for the human behavior perspective and its critical role in antici-
pating risks [41-43], it has the potential to assess contextual risk
better than objective methods and thus better assure passenger
safety. Further, studies such as [40,44] provide direct evidence
that a driver’s subjective risk assessment is inversely related to
the risk of traffic accidents. Within this context, AVs must support
understanding driving scenes and quantify the subjective risk of
driving decisions.
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Given this motivation, we show that the graph learning mod-
els available in ROADSCENE2VEC can be used to convert these
extracted scene-graphs into spatio-temporal scene-graph embed-
dings for the task of subjective risk assessment, as was done in
our prior work [13].

4.2.1. Problem formulation

In our prior work [13], and here, we make the same as-
sumption used in [6] that the set of driving sequences can be
partitioned into two jointly exhaustive and mutually exclusive
subsets: risky and safe. We denote the sequence of images of
length T by I = {I1, 5, I5, ..., Ir}. We assume the existence of
a spatio-temporal function f that outputs whether a sequence
of driving actions x is safe or risky via a risk label y, as given
in Eq. (1).

y=fM=f{h, LI, ...,Ir1,1Ir}), (1)
where

_J (1,0), if the driving sequence is safe 2)
y= (0, 1), if the driving sequence is risky.

Overall, the goal of the model is to learn to approximate the
function f. Our algorithmic implementation of this use case is
shown in Algorithm 2.

Algorithm 2: Use Case 2 - Scene-graph embedding for risk
assessment

1 Input: A sequence of images from a driving video clip I.

2 Output: Risk assessment Y.
3 def SEQ2VEC(G):

4 hG < { }

5 for G; in G do

6 | hg, < SPATIAL_MODEL(G;)
7 end

8 Z < TEMPORAL_MOoDEL(hg)

9 | 0,91 < AcTIVATION(MLP(Z))

10 | if y; > yo then

1 | return 1
12 | elseif y5 > y; then
13 | return 0

14 def RISK_ASSESS (I):
15 | G < EXTRACT_SEQ(I)

16 | Y < SEQ2VEC(G)
17 return ?
18 Y < RISK_ASSESS(I)

4.2.2. Training

To achieve this goal, we train the graph learning model using
the extracted sequences of scene-graphs as inputs and the sub-
jective risk labels given by human annotators for each sequence.
As such, the problem becomes a simple sequence classification
problem, where the goal is to classify a given sequence of images
as risky or safe. The configuration settings for training the model
are available in the learning config file in the config module.
The following command can be used to train the model for risk
assessment:

> python examples/use_case_2.py
4.3. Use Case 3: Collision prediction

In our third use case, we demonstrate how ROADSCENE2VEC
can be used to study approaches for predicting future vehicle

collisions, as was done in our prior work [16]. In contrast to
Use Case 2, which is a sequence classification problem, collision
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prediction has safety-critical time constraints. It uses the history
of prior scene-graphs to make predictions about the state of future
graphs. Current statistics indicate that perception and prediction
errors were factors in over 40% of driver-related crashes between
conventional vehicles [5]. However, a significant number of re-
ported AV collisions are also the result of these errors [45,46].
With this motivation, we show that scene-graphs can be used
to represent road scenes and model inter-object relationships to
improve perception and scene understanding. An example of our
methodology is shown in Fig. 6.

4.3.1. Problem formulation

We formulate the problem of collision prediction as a time-
series classification problem where the goal is to predict if a
collision will occur in the near future. Our goal is to accurately
model the spatio-temporal function f, where

Yo =f({h, ..., -1, In}), Yn € {0, 1}, for n > 2, (3)

where Y, = 1 implies a collision in the near future and Y, = 0
otherwise. Here the variable I, denotes the image captured by
the on-board camera at time n. The interval between each frame
varies with the camera sampling rate. Our implementation of Use
Case 3 is shown in Algorithm 2.

Algorithm 3: Use Case 3 - Scene-graph embedding for
collision prediction

1 Input: A sequence of images from a driving video clip .

2 Output: Sequence of collision likelihood predictions: Y.
3 def GRAPH2VEC (G, pr_1, Cr—1):

4 h¢, < SpATIAL_MODEL(G;)

5 Pt ¢ < TEMPORAL_MODEL(hg,, pr—1, Cr—1)
6 | ¥o,¥1 < AcTIVATION(MLP(p,))

7 if 5/1 > 5/0 then

8 | return 1, p

9 | elseif y, > y; then

10 | return 0, p;

11 def COLLISION_PRED(I):
12 G < EXTRACT_SEQ(I)
13 | po,Co < [0,0,..,0],][0,0,..0]

14 Y < {}

15 for G; in G do

16 Y, pr < GRAPH2VEC(G;, Pe—1, Ci—1)
17 t<t+1

18 end

19 return ?
20 Y < COLLISION_PRED(I)

4.3.2. Training

To train a model for this application, we adjust the model to
produce one output per graph instead of one output per sequence.
For the application of collision prediction, we also assign each
frame in a video clip a label identical to the entire clip’s label to
train the model to identify the preconditions of a future collision
and predict it as early as possible. The following command can be
used to train the model for collision prediction:

> python examples/use_case_3.py
4.4. Use Case 4: Transfer learning

Models trained on simulated datasets must be able to transfer
their knowledge to real-world driving scenarios as they can differ

significantly from simulations. One key advantage of using scene-
graphs is that they are a form of Intermediate Representation (IR),
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meaning that they provide a higher level of abstraction compared
to image data alone. This abstraction means that scene-graphs are
generally better able to transfer knowledge across datasets and
domains, such as from simulated data to real-world driving data.
Since this is a key benefit of using a graph-based approach and is a
critical use case for validating AV safety, ROADSCENE2VEC supports
running transfer learning experiments between any two datasets.
To implement this use case, we use the original dataset to train
the model and use the user-specified transfer dataset to test
the model. No additional domain adaptation is performed. The
workflow for Use Case 4 is shown in Algorithm 4. The following
script runs an example of transfer learning.

> python examples/use_case_4.py

Algorithm 4: Use Case 4 - Transfer learning evaluation

1 Input: Source dataset Ds, transfer dataset Dy, model m,
and training epochs E.
2 Output: Transfer learning result Ry.
3 def TRAIN(D, m, E):
for epoch in E do
X,Y <D
0 <~ m(X)
L < Loss_FuNcTioN(O, Y)
m < UPDATE_MODEL(L, m)
end
10 return m
11 def EVALUATE(D, m):
12 X,Y <D
13 0 <~ m(X)
14 R < Scorg(0, Y)
15 return R
16 def TRANSFER_KNOWLEDGE (Ds, Dy, m, E):
17 m’ < TRAIN(Ds, m, E)
18 | Ry < EVALUATE(Dy, m')
19 return Ry
20 Ry < TRANSFER_KNOWLEDGE(Ds, Dy, m, E)

© N wn A

4.5, Use Case 5: Explainability analysis

Explainability refers to the ability of a model to communi-
cate the factors that influenced its decision-making process for
a given input, particularly those that might lead the model to
make incorrect decisions [47,48]. Since deep-learning models are
typically black-boxes, they are difficult to diagnose and adjust
when failures occur. Thus, models which can better explain their
decision-making process are easier to verify, debug, and make
safer. Our library enables users to analyze the explainability of
different model architectures by visualizing the node attention
scores of a graph learning model for a given input. The workflow
of this use case is shown in Algorithm 5. First, using a pre-
trained graph learning model, we run inference on a dataset and
record the model’s spatial and temporal attention scores for each
sequence to a CSV file. Then, we visualize the node attention
scores for each scene-graph and color code the nodes according
to their attention score. For a given graph, the nodes with higher
attention scores had a more significant impact on the decision
made by the model.

5. Experiments
In this section, we present results from running each use case

presented in Section 4 as well as details on the datasets and
metrics used to evaluate each model.
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Algorithm 5: Use Case 5 - Explainability analysis of
scene-graph risk assessment

1 Input: A sequence of images from a driving video clip I,
trained model m.

2 Output: Risk assessment result f’, node attention scores
«; and temporal attention score j3; for each graph in G.

3 def SEQ2VEC_ATTN(G):

4 | hga < {}{}

5 for G; in G do

6 hg,, oy < SPATIAL_MODEL(G;) // o; from SAGPool
layer
7 end
8 Z, B < TEMPORAL_MoDEL(h;) // B from LSTM-attn
layer

9 | Jo,¥1 < AcTIVATION(MLP(Z))
10 if 1 > yo then

1 | return 1, . B
12 | elseif j, > j; then
13 | return 0, «, B

14 def GET_ATTENTION_SCORES(I):
15 G <« EXTRACT_SEQ(I)

16 | Y,a, B < SEQ2VEC_ATIN(G)
17 return 9, o, B
18 Y, a, B < GET_ATTENTION_SCORES(I)

5.1. Dataset preparation

For experiments, we prepared two types of driving datasets:
(i) synthesized lane-changing datasets (271-syn and 1043-syn),
and (ii) typical real-world driving datasets (571-honda and 1361-
honda). We labeled all of the datasets using our annotator tool
as described in Section 3.1. More details on the datasets as well
as the labeling process can be found in [13]. We randomly split
each dataset into a training set and a testing set by the ratio
7:3 such that the split is stratified, i.e., the proportion of risky
to safe lane change clips in the training and testing sets is the
same. The models are first trained on the training set before being
evaluated on the testing set. The final score of a model on a
dataset is computed by averaging over the testing set scores for
five different stratified train-test splits.

5.2. Model configuration

In our experiments, we use two graph learning architectures
denoted MRGCN and MRGIN. Both models consist of the following
structure: two graph convolution layers of size 64, one SAGPool-
ing layer with 0.5 pooling ratio, one add readout layer, and one
problem-specific temporal model as defined in Fig. 5. The two
architectures only differ in the way successive graph convolutions
are processed, as discussed in Section 3.4.1. As for the baselines,
we evaluate the ResNet-50 CNN classifier and the CNN-+LSTM
classifier in our experiments. All models were evaluated using 5-
fold cross-validation with the average test performance over the
five folds presented as the final result.

5.3. Use Case 1 evaluation: Scene-graph extraction

In Fig. 7, we show an example where two scene graphs are
extracted from the same input image with different relation
extraction settings. The graph at the bottom contains relations be-
tween all pairs of vehicles in the scene; for each pair of vehicles, if
the two vehicles are within some distance threshold, the distance
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Fig. 5. The architecture of our configurable scene-graph based AV perception model. Our two pre-implemented temporal modeling pipelines for specific AV tasks are
shown (sequence classification and graph prediction). However, users can remove or replace these model components for performing other AV tasks such as graph
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Fig. 7. Demonstration of scene-graph extraction with two different relation extraction settings. Zoom in for details.

and direction relations are constructed. The graph at the top left
is similar. However, it only contains relations between the ego
vehicle and each other vehicle. This figure shows one example
of how our tool enables flexible graph construction for different
applications. A demonstration of our visualizer tool is shown in
Fig. 8. As shown, our visualizer allows the user to inspect how
objects detected in the input image translate to the objects and
relations in the scene-graph.

5.4. Use Case 2 evaluation: Subjective risk assessment

Here, we demonstrate how ROADSCENE2VEC can be used to
train and evaluate several models for the subjective risk assess-
ment use case. We used classification accuracy and the Area
Under the Curve (AUC) [49] of the Receiver Operating Charac-
teristic (ROC) to score the models. AUC, sometimes referred to
as a balanced accuracy measure [50], measures the probabil-
ity that a binary classifier ranks a positive sample more highly
than a random negative sample. This is a more balanced mea-
sure for measuring accuracy, especially with imbalanced datasets
(i.e., 271-syn, 1043-syn, 571-honda).

Bird's Eye Image
Raw Image

Object Detection Image W
a \

(oLefiOf very near  aiSRearOf  foRig]

Fig. 8. A demonstration of our scene-graph visualization tool that enables the
user to inspect: (i) an original input image, (ii) the object detection results, (iii)
the birds-eye view projection of the image, and (iv) the resultant scene-graph.
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Table 2
Risk assessment result for MRGCN, MRGIN, ResNet-50, and CNN+LSTM.
Metric Dataset MRGCN MRGIN  ResNet-50 CNN+LSTM [6]
271-syn 09320 08561 0.6938 0.8033
Accurac 1043-syn 09580 0.8784 0.9053 0.7742
Y 571-honda 0.8710 0.8310 0.7689 0.6041
1361-honda  0.8655  0.7245  0.6839 0.7158
271-syn 09620 09437 0.7371 0.8394
AUC 1043-syn 0.9780 0.9591 0.9616 0.8221
571-honda 09105 0.8903 0.8343 0.6670
1361-honda  0.9124  0.8164 0.7340 0.7560
Table 3
Collision prediction accuracy, AUC, and MCC for different models in
ROADSCENE2VEC.
Metric Dataset MRGCN  MRGIN  ResNet-50  CNN+LSTM [6]
271-syn 0.8812 0.8028  0.7039 0.7184
Accuracy  1043-syn 0.9095 0.7803 0.8080 0.8029
571-honda  0.6922 0.7230  0.7340 0.5606
271-syn 0.9457 0.8724  0.7564 0.7607
AUC 1043-syn 0.9477 0.8826  0.9026 0.8493
571-honda  0.7775 0.7844 0.7802 0.5871
271-syn 0.5145 0.3046  0.3320 0.1474
MCC 1043-syn 0.5385 0.2852 0.4602 0.2436
571-honda  0.2142 0.1908  0.3547 0.1347

Table 2 shows a comparison between MRGCN, MRGIN, ResNet-
50, and CNN+LSTM [6] models for driving scene risk assessment.
The results show that the MRGCN based approach consistently
outperforms the other models across all the datasets in terms of
both classification accuracy and AUC. We found that the perfor-
mance difference between the scene-graph based approaches and
the CNN-based approaches increased when the training datasets
were smaller, indicating that the graph-based methods could
likely learn a good representation with fewer data.

5.5. Use Case 3 evaluation: Collision prediction

Next, we evaluated the models in ROADSCENE2VEC at collision
prediction using classification accuracy, AUC, and Matthews Cor-
relation Coefficient (MCC) [51]. MCC is considered a balanced
performance measure for binary classification, even on datasets
with significant class imbalances. The MCC score outputs a value
between —1.0 and 1.0, where 1.0 corresponds to a perfect clas-
sifier, 0.0 to a random classifier, and —1.0 to an always incorrect
classifier. The results from our evaluation are shown in Table 3.

Once again, MRGCN outperforms the other models on the syn-
thetic datasets. However, on the 571-honda dataset, the ResNet-
50 model outperforms MRGCN across all metrics. Upon deeper
inspection of the results, we found that the ResNet-50 model
had a higher FNR than the MRGCN and a lower FPR than the
MRGCN, suggesting that the ResNet-50 model is less sensitive
than the MRGCN. Given that collision prediction is a safety-critical
application, this behavior may not necessarily be desirable; how-
ever, decision boundary tuning could be used to fine-tune the
sensitivity for the final application’s requirements.

On both Use Case 2 and 3, MRGIN underperforms MRGCN,
likely because MRGCN is a more general framework while MRGIN
is designed to perform well at graph topology analysis prob-
lems, such as graph isomorphism testing. MRGIN may outperform
MRGCN on different problem formulations or graph construction
formulations if they play to these strengths of MRGIN.

5.6. Use Case 4 evaluation: Transfer learning

Here, we demonstrate how ROADSCENE2VEC can be used to
evaluate each model’s ability to transfer the knowledge learned
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Table 4

The results of comparing transferability between MRGCN, ResNet-50, and
CNN+LSTM [6]. In this experiment, we trained each model on both the 271-syn
dataset and 1043-syn dataset. Then we evaluated the accuracy of the trained
model on both original dataset and 571-honda dataset without any domain
adaptation.

Experiment Model Original Acc.  Transfer Acc.
ResNet-50 0.7039 0.1899 (—0.514)

271-syn to 571-honda CNN+LSTM [6]  0.8033 0.5244 (—0.279)
MRGCN 0.9040 0.8690 (—0.035)
ResNet-50 0.8080 0.1725 (—0.636)

1043-syn to 571-honda  CNN+LSTM [6]  0.7742 0.6010 (—0.173)
MRGCN 0.9520 0.8870 (—0.065)

from simulated datasets to real-world datasets. As part of this
use case, ROADSCENE2VEC uses the model weights and parameters
learned from training on the simulated dataset (271-syn or 1043-
syn in this case) directly for testing on the real-world driving
dataset (571-honda) with no domain adaptation steps. We show
the results of this evaluation for the MRGCN, ResNet-50, and
CNN+LSTM models in Table 4.

As expected, the performance of all models degrades when
tested on 571-honda dataset. However, as Table 4 shows, the
accuracy of the MRGCN only drops by 3.5% and 6.5% when the
model is trained on 271-syn and 1043-syn, respectively, while
the CNN+LSTM’s performance drops by 27.9% and 17.3%, respec-
tively. Furthermore, the MRGCN achieves a higher accuracy score
than the CNN+LSTM when transferring from the smaller 271-syn
dataset, once again indicating that scene-graph models can better
model the problem even when trained on smaller amounts of
data. The ResNet-50 model performs worst and classifies most
of the sequences as risky, resulting in an accuracy score nearly
equivalent to the proportion of risky sequences in the 571-honda
dataset ( 17.25%). These results suggest that the scene-graph mod-
els can transfer knowledge more effectively than the CNN-based
models.

5.7. Use Case 5 evaluation: Explainability analysis

To demonstrate ROADSCENE2VEC’s tools for evaluating explain-
ability, we run our explainability analysis tool on the MRGCN
model trained for risk assessment on the 271-syn dataset. The
result from analyzing one of the sequences from the dataset is
shown in Fig. 9. As shown, the attention scores are highest on
the nodes which present the highest degree of risk. Additionally,
the graph with the highest attention score for the other vehicle
is also the graph corresponding to the collision with the other
vehicle.

6. Discussion
6.1. Practicality

Although ROADSCENE2VEC is intended to be a tool that benefits
the research community, its practicality and carryover to real-
world applications are equally important. As shown with Use
Case 4, ROADSCENE2VEC enables researchers to directly evalu-
ate the ability of models trained on synthetic data to transfer
their knowledge to real-world driving scenes. Many research
papers often overlook this critical problem, leading to a dis-
connect between simulated trials and real-world performance.
Our tool better enables the study of this crucial problem area
and allows researchers to analyze the real-world practicality of
various graph-based methodologies. Furthermore, we show that
ROADSCENE2VEC is directly compatible with both the real-world
Honda driving dataset [31] as well as the popular open-source
driving simulator, CARLA [17], making our tool useful for a wide
range of AV applications.
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Fig. 9. A demonstration of how Use Case 5 enables explainability analysis. For this driving sequence, it can be clearly seen how the node attention scores shift to
give higher weight to the approaching vehicle as its distance to the ego car reduces.

6.2. Limitations and future work

Although ROADSCENE2VEC provides a suite of tools for training
and evaluating both scene-graph-based and CNN-based mod-
els, there are some limitations to its capabilities. For example,
ROADSCENE2VEC currently only supports input data in the format
of ground-truth data from the CARLA simulator or image data
from a forward-facing camera; it currently does not support
radar, lidar, or multi-camera data. We selected image data and
CARLA data as the primary input modalities because these data
types are the ones most used by AV researchers currently. Al-
though radar and lidar data are valuable and well-studied in
specific applications such as localization and sensor fusion, most
AV research papers exploring perception and control method-
ologies use camera-based inputs. However, this limitation can
be overcome by implementing preprocessors for extracting (or
fusing) scene-graphs from these different modalities. Thus, ROAD-
SCENE2VEC does not currently support multiple sensing modalities
but could support them as part of future work. Furthermore,
our tool does not implement more than a few common percep-
tion algorithms and use cases. However, our tool is designed to
be modular and re-configurable to support custom models and
problem formulations. We expect that researchers will develop
custom architectures and models for the various well-studied
problems in the AV domain and provide instructions in our repos-
itory for integrating the custom models with ROADSCENE2VEC'S
workflow. Thus, we leave the study of other AV applications
and model architectures as future work. We also welcome out-
side contributions to our open-source tool to further improve its
utility for the research community.

7. Conclusion

It is clear from current research as well as the examples shown
in this paper that scene-graph representations of road scenes can
be beneficial for a wide range of AV applications. In this paper, we
introduced and demonstrated our tool for exploring and study-
ing the applications of road scene-graphs, named ROADSCENE2VEC.
We showed that our re-configurable graph-construction method-
ology enables the study of different graph layouts for various
problems. We also demonstrated performance evaluations for
conventional CNN architectures and graph-based models for two
common AV perception use cases: risk assessment and colli-
sion prediction. Furthermore, we showed how our tool facilitates
studying the transferability and explainability of graph-based AV
models for both synthetic and real-world data. We believe our
open-source tool fills a significant gap in the research community
and will enable a deeper study of the applicability and practicality
of graph-based solutions for AV problems.
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