
Knowledge-Based Systems 242 (2022) 108245

s
A
A
D

s
a
i
d
t
r
r
l
p
i
M
o
t
A
c

(
(

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

roadscene2vec: A tool for extracting and embedding road
cene-graphs
rnav Vaibhav Malawade ∗,1, Shih-Yuan Yu1, Brandon Hsu, Harsimrat Kaeley,
nurag Karra, Mohammad Abdullah Al Faruque
epartment of Electrical Engineering & Computer Science, University of California - Irvine, Irvine, CA 92697, USA

a r t i c l e i n f o

Article history:
Received 2 September 2021
Received in revised form 30 December 2021
Accepted 19 January 2022
Available online 29 January 2022

Keywords:
Scene-graph
Autonomous vehicles
Graph embedding
Vehicle safety
Graph learning
Knowledge graph

a b s t r a c t

Recently, road scene-graph representations used in conjunction with graph learning techniques
have been shown to outperform state-of-the-art deep learning techniques in tasks including action
classification, risk assessment, and collision prediction. To enable the exploration of applications of
road scene-graph representations, we introduce roadscene2vec: an open-source tool for extracting and
embedding road scene-graphs. The goal of roadscene2vec is to enable research into the applications
and capabilities of road scene-graphs by providing tools for generating scene-graphs, graph learning
models to create spatio-temporal scene-graph embeddings, and tools for visualizing and analyzing
scene-graph-based methodologies. The capabilities of roadscene2vec include (i) customized scene-
graph generation from either video clips or data from the CARLA simulator, (ii) multiple configurable
spatio-temporal graph embedding models and baseline CNN-based models, (iii) built-in functionality
for using graph and sequence embeddings for risk assessment and collision prediction applications,
(iv) tools for evaluating transfer learning, and (v) utilities for visualizing scene-graphs and analyzing
the explainability of graph learning models. We demonstrate the utility of roadscene2vec for these
use cases with experimental results and qualitative evaluations for both graph learning models and
CNN-based models. roadscene2vec is available at https://github.com/AICPS/roadscene2vec.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Autonomous Vehicles (AVs) are expected to revolutionize per-
onal mobility, logistics, and road safety [1]. However, recent
ccidents involving Tesla Autopilot and Uber’s self-driving cars
ndicate that the development of safe and robust AVs remains a
ifficult challenge [2–4]. Current statistics indicate that percep-
ion and prediction errors were factors in over 40% of driver-
elated crashes between conventional vehicles [5], leading both
esearchers and industry leaders to race to address these prob-
ems via advanced AV perception systems. Until recently, most AV
erception architectures relied entirely on either (i) deep learn-
ng techniques using Convolutional Neural Networks (CNNs) and
ulti-Layer Perceptrons (MLPs) [6–9]; or (ii) model-based meth-
ds, which use known road geometry information and vehicle
rajectory models to estimate the state of the road scene [10,11].
lthough these approaches have been successful in typical use
ases, they cannot obtain a high-level, human-like understanding

∗ Corresponding author.
E-mail addresses: malawada@uci.edu (A.V. Malawade), shihyuay@uci.edu

S.-Y. Yu), bdhsu@uci.edu (B. Hsu), kaeleyh@uci.edu (H. Kaeley), karraa@uci.edu
A. Karra), alfaruqu@uci.edu (M.A. Al Faruque).
1 Both authors contributed equally to this research.
ttps://doi.org/10.1016/j.knosys.2022.108245
950-7051/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
of complex road scenarios. This limitation is due to their inabil-
ity to explicitly capture inter-object relationships or the overall
structure of the road scene.

Research has suggested that humans rely on cognitive mech-
anisms to identify the structure of a scene and reason about
inter-object relations when performing complex tasks (e.g., iden-
tifying risk) [12]. As such, the capability to capture and identify
the complex relationships between road objects is critical in
designing an effective human-like AV perception system. To
address the limitations of existing AV perception methods, sev-
eral groups have adopted a variant of knowledge graphs known
as scene-graphs to model the road state and the relationships
between objects [13–16]. A scene-graph representation encodes
rich semantic information of an image or observed scene, es-
sentially bringing an abstraction of objects and their complex
relationships as illustrated in Fig. 1. While each of these related
works proposes a different form of scene-graph representation,
all demonstrate significant performance improvements over con-
ventional perception methods. In [15], the authors propose a
3D-aware egocentric spatio-temporal interaction framework that
uses both an Ego-Thing graph and an Ego-Stuff graph, which
together encode how the ego vehicle interacts with both moving

and stationary objects in a scene, respectively. In [14], the authors

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.knosys.2022.108245
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.108245&domain=pdf
https://github.com/AICPS/roadscene2vec
http://creativecommons.org/licenses/by/4.0/
mailto:malawada@uci.edu
mailto:shihyuay@uci.edu
mailto:bdhsu@uci.edu
mailto:kaeleyh@uci.edu
mailto:karraa@uci.edu
mailto:alfaruqu@uci.edu
https://doi.org/10.1016/j.knosys.2022.108245
http://creativecommons.org/licenses/by/4.0/

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

p
n
p
m
a
s
s
o
t

q
u
d
e
t
c

Fig. 1. How camera data can be used to construct a road scene-graph representation.
1

d
t
u
w
c

2

p
i
a

2

e
a
o
A
e
b
a
t
d
v
a

ropose a pipeline using a multi-relational graph convolutional
etwork (MR-GCN) for classifying the driving behaviors of traffic
articipants. The MR-GCN combines spatial and temporal infor-
ation, including relational information between moving objects
nd landmark objects. Our prior work has demonstrated that a
patio-temporal scene-graph embedding can be used to assess the
ubjective risk of driving maneuvers more effectively than state-
f-the-art methods [13,16]. In addition, our method can better
ransfer knowledge and is more explainable.

Although a wide range of scene-graph based AV perception
approaches have been proposed, each method was developed
from scratch, requiring significant time and resource investment
by each research group. Although tools exist to perform pre-
processing and graph learning (e.g., Pytorch and Pytorch Ge-
ometric), to the best of our knowledge, there exists no tool
for systematically converting road scenes into scene-graphs in
this field. As a result, each research group must start develop-
ing their scene-graph construction methodology from the ground
up, wasting time and effort that could be better spent using
the resultant scene-graph representations to solve more com-
plex research problems. To address this problem, we propose
roadscene2vec: a tool for systematically extracting and embed-
ding road scene-graphs. roadscene2vec enables researchers to
uickly and easily extract scene graphs from camera data, eval-
ate different graph construction methodologies, and use several
ifferent graph learning and machine learning algorithms to gen-
rate spatio-temporal graph embeddings for a wide range of AV
asks. We envision roadscene2vec to serve the following use
ases:

• Converting image-based datasets as well as datasets gener-
ated by the CARLA simulator [17] into scene-graphs.
• Enabling the exploration of different scene-graph construc-

tion methodologies for a given application via a flexible, re-
configurable, and user-friendly scene-graph extraction
framework.
• Allowing researchers to explore various spatio-temporal

graph embedding methods, supporting customized algo-
rithms for further design exploration.
• Providing a set of baselines drawn from state-of-the-art

works for different AV applications (CNN and CNN-LSTM
based algorithms).
• We provide scene-graph visualization utilities to enhance

design space exploration for graph construction.

We target camera data since images are the most rich and de-
tailed modality, providing high-resolution details about the scene
as well as color information. This information can be used for
better identifying the context of the scene and relations between
participants. If other modalities are added, it is unlikely that
much more information will be added to the scene graph; only
the robustness of the system and precision of the graph will be
improved. Besides, current state-of-the-art AV perception archi-
tectures utilizing sensor fusion still have shortcomings [18]. Fur-
thermore, most publicly available AV datasets primarily contain
image data.
2

1.1. Novel contributions

Our novel contributions for this research community are:

1. We present roadscene2vec: a flexible scene-graph con-
struction and embedding framework that allows resear-
chers to experiment with different graph extraction
formulations to find the best one for their problem.

2. We provide an end-to-end graph learning framework for
modeling the scene-graph representations. Our framework
enables automated experimentation and metrics logging
over a wide range of graph learning AV applications. We
also provide a graph learning model template defining the
core structure and functions used by our framework to
facilitate users defining their own models and problems.

3. We provide many visualization tools and utilities for in-
specting and understanding the scene-graphs including at-
tention maps, color-coding by classes or relation type,
birds-eye view projection, embedding projection, etc.
These tools enable users to interpret their results easily
without having to design their own visualizer.

4. We provide state-of-the-art CNN-based models drawn
from recent AV papers for cross-comparison with graph-
learning-based techniques.

.2. Paper organization

The rest of our paper is laid out as follows. In Section 2 we
iscuss related works. In Section 3 we introduce the core func-
ionality of our tool and its methodology. In Section 4 we provide
sage examples. In Section 6 we demonstrate the practical, real-
orld value of our tool by evaluating it on several common use
ases. Finally, in Section 7 we present our conclusions.

. Related work

In this section, we begin by describing general AV design
hilosophies. Then we elaborate on graph-based approaches used
n scene understanding. Lastly, we briefly discuss existing tools
nd libraries.

.1. AV design methodologies

The two common design approaches for AV systems are (i)
nd-to-end deep learning architectures [19] and (ii) modular
rchitectures. Modular approaches are implemented as a pipeline
f separate components for performing each sub-task of the
V (e.g., perception, localization, planning, control). In contrast,
nd-to-end approaches generate actuator outputs (e.g., steering,
rake, accelerator) directly from their sensory inputs [7]. One
dvantage of a modular design approach is the division of a
ask into an easier-to-solve set of sub-tasks that have been ad-
ressed in other fields such as robotics, computer vision, and
ehicle dynamics, from which prior knowledge can be lever-
ged. However, one disadvantage of such an approach is the

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

c
p
p
c
i
a
i
i
h
t

p
i
t
s
f
f
g
a
u
e
s
i
t
t
c
v
t
g
a
i
s

2

s
e
a
e
s
m
s
c
i
a
c
a
a
i
r
p
v
a
M
g

2

e

i

3

s
d
p
t
d
T
t
i

d
d
a
r
c
t

C
r
t
a
t
p
t
t
s
e
i
i
w

omplexity of implementing, running and validating the com-
lete pipeline [19]. End-to-end approaches can achieve good
erformance with smaller network size and low implementation
osts because they perform feature extraction from sensor inputs
mplicitly through the network’s hidden layers [7]. However, the
uthors in [20] point out that the needed level of supervision
s too weak for the end-to-end model to learn critical control
nformation (e.g., from image to steering angle), so it can fail to
andle complicated driving maneuvers or be insufficiently robust
o disturbances.

A third approach called the direct perception approach was first
roposed by DeepDriving [20]. In this approach, a set of affordance
ndicators, such as the distance to lane markings and other cars in
he current and adjacent lanes, are extracted from an image and
erve as an intermediate representation (IR) for generating the
inal control output. They show that this IR improves performance
or simple driving tasks such as lane following and enables better
eneralization to real-world environments. Similarly, [21] uses
collection of filtered images as the IR. They state that the IR
sed in their approach allows the training to be conducted on
ither real or simulated data, facilitating testing and validation in
imulations before testing on a real car. Moreover, they show that
t is easier to synthesize perturbations to the driving trajectory in
he IR than at the raw sensor inputs themselves, enabling them
o produce non-expert behaviors such as off-road driving and
ollisions. The authors in [6] use Mask-RCNN [22] to color the
ehicles in each input image, producing a form of IR. In contrast
o the works mentioned above, roadscene2vec utilizes a scene-
raph IR that encodes the spatial and semantic relations between
ll the traffic participants in a frame. This form of representation
s similar to a knowledge graph with the key distinction that
cene-graphs explicitly encode knowledge about a visual scene.

.2. Graph-based driving scene understanding

Several works have applied graph-based formulations for road
cene understanding. In [15], the authors propose a 3D-aware
gocentric Spatio-temporal interaction framework that uses both
n Ego-Thing graph and an Ego-Stuff graph to encode how the
go vehicle interacts with both moving and stationary objects in a
cene, respectively. In [14], the authors propose a pipeline using a
ulti-relational graph convolutional network (MR-GCN) for clas-
ifying the driving behaviors of traffic participants. The MR-GCN
ombines spatial and temporal information, including relational
nformation between moving and landmark objects. In [23], the
uthors propose extracting road scene graphs in a manner that in-
ludes pose information for scene layout reconstruction. A similar
pproach was also proposed in [24]. Authors in [25] propose using
probabilistic graph approach for explainable traffic collision

nference. In our prior work, we demonstrated that a scene-graph
epresentation used with an MRGCN leads to state-of-the-art
erformance at assessing the subjective risk of driving maneu-
ers [13] and collision prediction [16]. Our tool implements ex-
mples of multi-relational graph learning models (MRGCN and
RGIN) and model skeletons, enabling users to evaluate other
raph learning model formulations more easily.

.3. Graph extraction and graph learning libraries

Other libraries for extracting scene-graphs from input images
have been proposed. [26] proposed the Graph R-CNN model,
which extracts scene graphs by identifying the set of individual
objects in the image before identifying the spatial relations be-
tween the objects. With this process, Graph R-CNN can extract
the spatial features of the scene in the form of a scene-graph. [27]

provides a benchmark for evaluating several kinds of scene-graph a

3

generation models on image datasets. The scene-graph repre-
sentations extracted by these tools are then used for semantic
understanding and labeling tasks, such as image captioning and
visual question answering. Although these tools and models are
successful at these tasks, they do not incorporate specific do-
main knowledge relevant to the AV problem space. Autonomous
driving is a highly complex problem on its own, so AV algo-
rithms must utilize domain knowledge, including driving rules,
road layout, and markings, as well as light and sign information.
Furthermore, AV algorithms must account for temporal factors;
the tools mentioned above operate on individual images and thus
do not account for these safety-critical temporal factors.

Regarding graph learning tools and libraries, several tools such
as GraphGYM [28], DGL [29], and OGB [30] exist for quickly and
easily evaluating several graph learning models on problems in-
cluding node/graph classification and regression. However, none
of these pre-existing tools enable scene-graph generation; they
can only be used with existing graph data. Our proposed tool
is the only tool that enables both the extraction and learning of
AV-specific scene-graphs.

3. Roadscene2vec Architecture

This section introduces roadscene2vec’s architecture, features,
and intended workflow. Our roadscene2vec is implemented as
a Python library, integrating various external packages such as
APIs from PyTorch, PyTorch Geometric, Detectron2, and CARLA.
roadscene2vec consists of four key modules: (i) data genera-
tion (data.gen) and preprocessing (data.proc), (ii) scene-graph
xtraction (scene_graph), (iii) model training and evaluation

(learning), and (iv) visualization (util). We detail each module
n the following subsections.

.1. Dataset generation tools (data.gen)

The module data.gen in roadscene2vec allow researchers to
ynthesize driving data for their research. To successfully han-
le complex and long-tail driving scenarios, deep learning ap-
roaches typically train their models on large datasets that con-
ain a wide range of "corner cases’’. However, generating such
atasets is expensive and time-consuming in the real-world [17].
hus, most researchers instead use synthesized datasets con-
aining plenty of these corner cases to evaluate their research
deas.

For this purpose, roadscene2vec integrates the open-source
riving simulator, CARLA [17], which allows users to generate
riving data by controlling a vehicle (either in manual mode or
utopilot mode) in simulated driving scenarios. On top of that,
oadscene2vec also integrates the CARLA Scenario Runner, which
ontains a set of atomic controllers that enable users to automate
he execution of complex driving maneuvers.

In roadscene2vec, data.gen produces each driving clip in
ARLA’s simulated world by (i) selecting one autonomous car
andomly, (ii) switching its mode to manual mode, and (iii) using
he Scenario Runner to command the vehicle to change lanes. In
ddition, the data generation tool in roadscene2vec manipulates
he various presets in CARLA to specify the number of cars,
edestrians, weather and lighting conditions, etc., for making
he generated driving data more diverse. Moreover, through
he APIs provided by the Traffic Manager (TM) of the CARLA
imulator, the tool can customize the driving characteristics of
very autonomous vehicle in the simulated world, such as the
ntended speed considering the current speed limit, the chance of
gnoring the traffic lights, or the chance of neglecting collisions
ith other vehicles. Overall, the tool allows users to simulate

wide range of very realistic urban driving environments and

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

s
d

g
m

w
t
e
u
s
a
a
t
a
r
o
d
u
m
a

a
d
i
s
o
i
i
C
a
t
p
t
r
e
C
1
p
t
u
d

3

t
d
t
c
t
w
d
e
(

t
‘
{
t
t

f

R
T

(
a
d
R
p
i
a
t

Fig. 2. Workflow for using roadscene2vec to preprocess a dataset; extract
cene-graphs from the dataset; and select, train, and evaluate a model on the
ataset.

enerate synthesized datasets suitable for training and testing a
odel.
Using the CARLA Python API and the CARLA Scenario Runner,

e implemented a tool in the data.gen module for extracting
he road scene’s state information as well as the corresponding
go-centric camera images directly from the CARLA simulator for
se in roadscene2vec. For each frame in a driving sequence, we
tore the attributes of all the objects as a Python dictionary. These
ttributes include object type, location, rotation, lane assignment,
cceleration, velocity, and light status. For static objects such as
raffic lights and signage, we store the type of object, its location,
nd light state (light color) or sign value (e.g., speed limit). We
efer to the datasets in this format as CARLA datasets. In addition,
ur tool supports using image-based datasets, such as the camera
ata extracted from CARLA or the Honda Driving Dataset [31]
sed in our experiments. The code provided in our data.gen
odule can be modified to support other driving actions, such
s turning, accelerating, braking, and overtaking.
Under the data.gen module, roadscene2vec also provides

n annotation tool for quickly and easily labeling both CARLA
atasets and image datasets. The annotator offers a graphical user
nterface (GUI) that enables users to view, label, exclude or trim
pecific driving sequences. Our annotator enables users to assign
ne label for each sequence and supports averaging multiple
ndependent labelers’ decisions. Our annotators GUI is shown
n Fig. 3. In comparison to popular annotation tools, such as
VAT [32] and VoTT [33], our annotator offers a more streamlined
pproach for video clip labeling. These other annotation tools
ypically iterate through only a single image at a time as they are
rimarily designed for tasks such as object detection and seman-
ic segmentation. In contrast, our annotator implements a broader
ange of video playback controls (play, pause, replay, ignore,
tc.), facilitating risk analysis over a complete video sequence.
urrently, our annotator supports sequence-level risk labels from
–5. Still, it can be extended to support other label types for
roblems such as scenario classification and rare event identifica-
ion. In addition to the annotation tool, we also provide dataset
tilities such as train-test splitting, k-fold cross-validation, and
ownsampling as part of the trainers in the learning.util module.

.2. Data preprocessing (roadscene2vec.data.proc)

The data storage and preprocessing functions are implemented
hrough the data.proc module of roadscene2vec. To use a new
ataset with roadscene2vec, it must first have the correct direc-
ory structure defined in our repository. Next, the input dataset
an go through one of the two workflows shown in Fig. 2: (i)
he dataset is preprocessed into a ‘‘RawImageDataset’’ to be used
ith CNNs and other image processing models directly, or (ii) the
ataset is sent to the corresponding scene-graph extractor to gen-
rate scene-graph representations of every frame in the dataset

discussed in Section 3.3). The preprocessing step is necessary

4

Fig. 3. The user interface of the annotator tool, used to label, filter, and trim
datasets.

for the conventional deep-learning models; the input images
often need to be resized, reshaped, or sub-sampled before being
trained with models to meet memory and space constraints.
After preprocessing, the RawImageDataset object stores the sets
of driving video clips as image sequences, the labels associated
with the video clips, and metadata (such as sequence name/action
type). For each image in each clip in the dataset, the image
preprocessor loads the image using OpenCV, resizes and recolors
the image according to the configuration settings, and stores the
image as a PyTorch Tensor. The resulting RawImageDataset object
is then serialized and stored as a pickle (.pkl) file.

3.3. Road scene-graph extraction (roadscene2vec.scene_graph.
extraction)

Here, we describe how an input dataset is converted into a
‘‘SceneGraphDataset’’ object via our scene-graph extraction frame-
work. We first describe how the entities and relations in the
scene-graph are defined and configured before discussing the
specific steps needed to extract scene-graphs from both CARLA
and image-based datasets.

3.3.1. Entity and relation extraction
A list of roadscene2vec’s user-configurable scene-graph ex-

raction settings is shown in Table 1. In our formulation, each
‘actor’’ (object) in the scene-graph is assigned a type from the set
car, motorcycle, bicycle, pedestrian, lane, light, sign}, matching
hose defined by CARLA. Users can reconfigure the set of object
ypes to support other dataset types, applications, or ontologies.

The default relation extraction pipeline we implement identi-
ies three kinds of pair-wise relations: proximity relations (e.g. vis-
ible, near, very_near, etc.), directional relations (e.g. Front_Left,
ear_Right, etc.), and belonging relations (e.g. car_1 isIn left_lane).
wo objects are assigned the proximity relation, r ∈

{Near_Collision (4 ft.), Super_Near (7 ft.), Very_Near (10 ft.), Near
16 ft.), Visible (25 ft.)} provided the objects are physically sep-
rated by a distance that is within that relation’s threshold. The
irectional relation, r ∈ {Front_Left, Left_Front, Left_Rear, Rear_Left,
ear_Right, Right_Rear, Right_Front, Front_Right}, is assigned to a
air of objects, in this case between the ego-car and another car
n the view, based on their relative orientation and only if they
re within the near threshold distance from one another. Addi-
ionally, the isIn relation identifies which vehicles are on which

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245
Table 1
Scene graph configuration options and their descriptions. Each of these
parameters can be reconfigured by the user to produce custom scene-graphs.
Parameter Description

actor_names The list of object types. The default list is
based on the actor types defined by the CARLA
simulator.

relation_names The list of all implemented relation types.
car_names /moto_names
/bicycle_names/etc.

Object names defined in the CARLA simulator.
These lists are used to cross-reference the
object type for a given CARLA vehicle name.

directional_thresholds Defines the set of enabled directional relations
and their thresholds in degrees.

directional_relation_list Defines the pairs of object types for which
directional relations will be extracted.

proximity_thresholds Defines the set of enabled distance relations
and their thresholds in feet.

proximity_relation_list Defines the pairs of object types for which
proximity relations will be extracted.

lane_threshold Represents 50% of the width of a lane in feet.
If an object is more than this distance from
the ego car’s center, it is considered to be in
the left or right lane.

lanes (see Fig. 1). We use each vehicle’s horizontal displacement
relative to the ego vehicle to assign vehicles to either the Left
Lane, Middle Lane, or Right Lane using the known lane width. Our
current abstraction only considers three-lane areas, and, as such,
we map vehicles in all left lanes and all right lanes to the same
Left Lane node Right Lane node, respectively. If a vehicle overlaps
two lanes (i.e., during a lane change), it is mapped to both lanes.

The set of possible entity types, relation types, relation thresh-
olds, and valid object pairs is defined in the scene_graph_config
file. These settings are entirely user re-configurable, enabling
broad design space exploration of different graph extraction
methodologies. After graph extraction is completed, the set of
all scene-graph sequences, metadata, and labels are saved as a
SceneGraphDataset.

3.3.2. CARLA scene-graph extraction
Since the CARLA datasets contain a dictionary with a list of

objects and their attributes, we directly use this dictionary to
initialize the nodes in the scene-graph. Each node is assigned its
type label from the set of actor_names and its corresponding
attributes (e.g., position, angle, velocity, current lane, light status,
etc.) for relation extraction. Once all nodes are added to the scene-
graph, we extract relations between each pair of objects in the
scene.

3.3.3. Image scene-graph extraction
To extract scene-graphs from image-based datasets, we first

need to identify the set of objects in each image along with
their attributes. We use Mask-RCNN [22] to extract the set of
objects in the image as well as their bounding boxes. Next, we
compute the inverse-perspective mapping transformation of the
image, yielding a top-down ’birds-eye view’ (BEV) projection
of the scene. By generating this projection and projecting the
bounding box coordinates from the original image into the birds-
eye view, we can estimate the position of each vehicle relative
to the ego-vehicle with reasonably high fidelity. This position
information, along with the object class information, is used to
construct the scene-graphs. However, the BEV projection needs
to be re-calibrated for each dataset, as typically, each dataset
uses a different camera angle and camera configuration. To facil-
itate this calibration step, we provide a BEV calibration utility in
scene_graph.extraction.bev. This utility provides an interactive
way for the user to select the road area and calibrate the BEV

projection for a new dataset with a single step.

5

3.3.4. Scene-graph visualization
Our scene-graph visualization tool, located in the roadscene-

2vec.util module, consists of a GUI that simultaneously displays
an input image side by side with its corresponding scene-graph,
as is shown in Fig. 8. This tool enables researchers to experiment
with a wide range of relation types and distance thresholds and
quickly optimize their scene-graph extraction settings for their
specific application or dataset.

3.4. Scene-graph embedding (roadscene2vec.learning)

The learning module contains our framework for splitting
datasets as well as training, testing, and scoring models at var-
ious tasks. It also contains our graph learning models, baseline
deep learning models, and a graph learning model template to
enable users to define their own graph models for use with our
framework.. The model submodule contains the model defini-
tions while the util submodule contains the training, evaluation,
and scoring functions. The training code supports implement-
ing k-fold cross-validation, a user-definable train-test split, and
downsampling and class weighting to correct dataset imbalances.
The model specification, training hyperparameters, and dataset
configuration settings are loaded from the learning_config file,
which is user-modifiable. Next, we introduce the models available
in roadscene2vec.

3.4.1. Graph learning models (roadscene2vec.learning.model)
The graph learning models we provide in roadscene2vec en-

able various configurations of both spatial modeling and temporal
modeling components as shown in Fig. 4. The spatial modeling
components that are configurable include (i) graph convolution
layers, (ii) graph pooling and graph attention layers, and (iii)
graph readout operations. The configurable temporal modeling
components include (i) temporal modeling layers and (ii) tem-
poral attention layers. Our experiments use MRGCN and MRGIN
models that are identical in structure and differ only in the type
of spatial modeling used. Next, we discuss these components in
more detail.

Spatial modeling (spatial_Model). We provide two multi-
relational graph convolution implementations based on (i) graph
convolutional networks (GCNs) [34] and (ii) graph isomorphism
networks (GINs) [35]. These layers propagate node embeddings
across edges via graph convolutions, resulting in a new set of
node embeddings. The two implementations differ in how data is
propagated through successive graph convolutions. Graph pool-
ing filters the set of node embeddings in the graph to only those
most useful for the task. We enable two types of graph pooling
layers extended for multi-relational use cases: Self-Attention
Graph Pooling (SAGPool) [36] and Top-K Pooling (TopkPool) [37].
After pooling, a global readout operation is used to collect the set
of pooled node embeddings into a unified graph embedding. We
implement max, mean, and add readout operations.

Temporal modeling (temporal_Model). The temporal model we
implement uses Long Short-Term Memory (LSTM) layers to con-
vert the sequence of scene-graph embeddings to either (i) one
spatio-temporal embedding (for sequence classification tasks) or
(ii) a sequence of spatio-temporal embeddings (for graph classifi-
cation/prediction tasks). For graph classification/collision predic-
tion tasks, the output from an LSTM layer for each input scene-
graph embedding is collected as a sequence of spatio-temporal
scene-graph embeddings P that is sent to an MLP layer to produce
the final set of model outputs. For sequence classification tasks,
a temporal readout operation is applied to P to compute a single
spatio-temporal sequence embedding z by (i) extracting only the
last hidden state of the LSTM pT (LSTM-last), (ii) taking the sum
over P, or (iii) using a temporal attention layer (LSTM-attn) to
compute an attention-weighted sum of the different elements of

P as described in [38].

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

3

s
f
a
c
u
p
o
a

3

y
m
W
v
a
r
p

4

c
a
i
s
(
i
d
e
r
g

4
g

s
w
g
t
c
f

Fig. 4. Graph learning model configuration options provided in roadscene2vec.
o
o
d
r
d
f
p
b
s
t
t
u

.4.2. Baseline models (roadscene2vec.learning.model)
In addition to the graph learning models that are core to road-

cene2vec, we also provide a set of baseline deep learning models
or quickly and easily comparing to typical image-processing
pproaches. These baselines include (i) a ResNet-50 [39] CNN
lassifier and (ii) a CNN+LSTM classifier [6]. The motivation for
sing these baselines stems from their prevalence in AV image
rocessing tasks, such as risk assessment [6]. Users can easily use
ther graph or deep-learning models with our framework as long
s they follow the same, typical PyTorch model structure.

.4.3. Performance evaluation and hyperparameter optimization
To enable live monitoring of training runs and in-depth anal-

sis of the effects of different hyperparameter settings on perfor-
ance, we integrate our library with Weights and Biases (W&B).2
&B is a free, publicly available tool for tracking experiments,

isualizing performance, identifying hyperparameter importance,
nd organizing results. We believe this integration will enable
esearchers to identify trends in the data and optimize model
erformance more quickly.

. Usage examples

In this section, we describe some of roadscene2vec’s use-
ases. First, Section 4.1 exhibits a fundamental use-case in which
n image frame I is converted into a scene-graph g and then
nto a fixed-length embedding hg . Next, the use cases of road-
cene2vec for two risk-based autonomous driving applications
subjective risk assessment and collision prediction) are described
n Section 4.2 and Section 4.3, respectively. In Section 4.4, we
iscuss how roadscene2vec can be used for performing and
valuating transfer learning. Finally, in Section 4.5, we show how
oadscene2vec can be used to analyze the explainability of the
raph learning models.

.1. Use Case 1: Converting an ego-centric observation into a scene-
raph

Our high-level algorithm for converting an input image into a
cene-graph is shown in Algorithm 1. Let us walk through a typical
orkflow for converting an image dataset into a set of scene-
raph embeddings. First, the preprocessor processes the image
o set the dataset format and image sizing. These scene-graphs
an then be visualized using the visualizer tool we provide. The
ollowing script streamlines the execution of this use case:

2 https://wandb.ai/.
 d

6

> python examples/use_case_1.py

These scripts take configuration information directly from the
data_config and scene_graph_config files in the config module.
The config files indicate which type of dataset is being used
(CARLA or image-based) and the location and extraction set-
tings for the dataset. The scene_graph_config file also allows the
reconfiguration of the relation extraction settings as shown in
Table 1. The choice of relation extraction settings changes the
scene-graph structure, which can change how the graph learning
model processes the data.
Algorithm 1: Use Case 1 - Extracting a sequence of
scene-graphs from a driving clip.
1 Input: A sequence of images from a driving video clip I .
2 Output: A sequence of scene graphs G for I .
3 def IMG2GRAPH (It):
4 Ot ← Obj_Detection(It)
5 At ← Attr_Extraction(It ,Ot)
6 Gt ← Graph_Extraction(Ot , At)
7 return Gt

8 def EXTRACT_SEQ(I):
9 G← { }

10 for It in I do
11 Gt ← IMG2GRAPH (It)
12 end
13 return G
14 G← EXTRACT_SEQ (I)

4.2. Use Case 2: Subjective risk assessment

In prior AV research, attempts to improve vehicle safety have
involved modeling either the objective risk or the subjective risk
f driving scenes [40–42]. The objective risk is defined as the
bjective probability of an accident occurring and is typically
etermined by statistical analysis [40]. In contrast, subjective risk
efers to the driver’s own perceived risk and is an output of the
river’s cognitive process [41,42]. Since subjective risk accounts
or the human behavior perspective and its critical role in antici-
ating risks [41–43], it has the potential to assess contextual risk
etter than objective methods and thus better assure passenger
afety. Further, studies such as [40,44] provide direct evidence
hat a driver’s subjective risk assessment is inversely related to
he risk of traffic accidents. Within this context, AVs must support
nderstanding driving scenes and quantify the subjective risk of
riving decisions.

https://wandb.ai/

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

d
o

4

s
p
s
l
a

t
j
A
p
a
a

c

g

Given this motivation, we show that the graph learning mod-
els available in roadscene2vec can be used to convert these
extracted scene-graphs into spatio-temporal scene-graph embed-
ings for the task of subjective risk assessment, as was done in
ur prior work [13].

.2.1. Problem formulation
In our prior work [13], and here, we make the same as-

umption used in [6] that the set of driving sequences can be
artitioned into two jointly exhaustive and mutually exclusive
ubsets: risky and safe. We denote the sequence of images of
ength T by I = {I1, I2, I3, . . . , IT }. We assume the existence of
spatio-temporal function f that outputs whether a sequence

of driving actions x is safe or risky via a risk label y, as given
in Eq. (1).

y = f (I) = f ({I1, I2, I3, . . . , IT−1, IT }), (1)

where

y =
{

(1, 0), if the driving sequence is safe
(0, 1), if the driving sequence is risky. (2)

Overall, the goal of the model is to learn to approximate the
function f . Our algorithmic implementation of this use case is
shown in Algorithm 2.
Algorithm 2: Use Case 2 - Scene-graph embedding for risk
assessment
1 Input: A sequence of images from a driving video clip I .
2 Output: Risk assessment Ŷ .
3 def SEQ2VEC(G):
4 hG ← { }
5 for Gt in G do
6 hGt ← Spatial_Model(Gt)
7 end
8 Z ← Temporal_Model(hG)
9 ŷ0, ŷ1 ← Activation(MLP(Z))

10 if ŷ1 ≥ ŷ0 then
11 return 1
12 else if ŷ0 > ŷ1 then
13 return 0
14 def RISK_ASSESS(I):
15 G← EXTRACT_SEQ(I)
16 Ŷ ← SEQ2VEC(G)
17 return Ŷ
18 Ŷ ← RISK_ASSESS(I)

4.2.2. Training
To achieve this goal, we train the graph learning model using

he extracted sequences of scene-graphs as inputs and the sub-
ective risk labels given by human annotators for each sequence.
s such, the problem becomes a simple sequence classification
roblem, where the goal is to classify a given sequence of images
s risky or safe. The configuration settings for training the model
re available in the learning_config file in the config module.

The following command can be used to train the model for risk
assessment:

> python examples/use_case_2.py

4.3. Use Case 3: Collision prediction

In our third use case, we demonstrate how roadscene2vec
can be used to study approaches for predicting future vehicle
collisions, as was done in our prior work [16]. In contrast to
Use Case 2, which is a sequence classification problem, collision
7

prediction has safety-critical time constraints. It uses the history
of prior scene-graphs to make predictions about the state of future
graphs. Current statistics indicate that perception and prediction
errors were factors in over 40% of driver-related crashes between
conventional vehicles [5]. However, a significant number of re-
ported AV collisions are also the result of these errors [45,46].
With this motivation, we show that scene-graphs can be used
to represent road scenes and model inter-object relationships to
improve perception and scene understanding. An example of our
methodology is shown in Fig. 6.

4.3.1. Problem formulation
We formulate the problem of collision prediction as a time-

series classification problem where the goal is to predict if a
collision will occur in the near future. Our goal is to accurately
model the spatio-temporal function f , where

Yn = f ({I1, . . . , In−1, In}),Yn ∈ {0, 1}, for n > 2, (3)

where Yn = 1 implies a collision in the near future and Yn = 0
otherwise. Here the variable In denotes the image captured by
the on-board camera at time n. The interval between each frame
varies with the camera sampling rate. Our implementation of Use
Case 3 is shown in Algorithm 2.
Algorithm 3: Use Case 3 - Scene-graph embedding for
ollision prediction
1 Input: A sequence of images from a driving video clip I .
2 Output: Sequence of collision likelihood predictions: Ŷ .
3 def GRAPH2VEC(Gt , pt−1, ct−1):
4 hGt ← Spatial_Model(Gt)
5 pt , ct ← Temporal_Model(hGt , pt−1, ct−1)
6 ŷ0, ŷ1 ← Activation(MLP(pt))
7 if ŷ1 ≥ ŷ0 then
8 return 1, pt
9 else if ŷ0 > ŷ1 then

10 return 0, pt
11 def COLLISION_PRED(I):
12 G← EXTRACT_SEQ(I)
13 p0, c0 ← [0, 0, ..., 0] , [0, 0, ..., 0]
14 Ŷ ← { }
15 for Gt in G do
16 Ŷt , pt ← GRAPH2VEC(Gt , pt−1, ct−1)
17 t ← t + 1
18 end
19 return Ŷ
20 Ŷ ← COLLISION_PRED(I)

4.3.2. Training
To train a model for this application, we adjust the model to

produce one output per graph instead of one output per sequence.
For the application of collision prediction, we also assign each
frame in a video clip a label identical to the entire clip’s label to
train the model to identify the preconditions of a future collision
and predict it as early as possible. The following command can be
used to train the model for collision prediction:

> python examples/use_case_3.py

4.4. Use Case 4: Transfer learning

Models trained on simulated datasets must be able to transfer
their knowledge to real-world driving scenarios as they can differ
significantly from simulations. One key advantage of using scene-
raphs is that they are a form of Intermediate Representation (IR),

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

m
t

c
a
m
t
w
d
s
d
s
o
t
r
s
s
t
a
m

5

p
m

eaning that they provide a higher level of abstraction compared
o image data alone. This abstraction means that scene-graphs are
generally better able to transfer knowledge across datasets and
domains, such as from simulated data to real-world driving data.
Since this is a key benefit of using a graph-based approach and is a
critical use case for validating AV safety, roadscene2vec supports
running transfer learning experiments between any two datasets.
To implement this use case, we use the original dataset to train
the model and use the user-specified transfer dataset to test
the model. No additional domain adaptation is performed. The
workflow for Use Case 4 is shown in Algorithm 4. The following
script runs an example of transfer learning.

> python examples/use_case_4.py

Algorithm 4: Use Case 4 - Transfer learning evaluation
1 Input: Source dataset DS , transfer dataset DT , model m,

and training epochs E.
2 Output: Transfer learning result RT .
3 def TRAIN(D, m, E):
4 for epoch in E do
5 X, Y ← D
6 O← m(X)
7 L← Loss_Function(O, Y)
8 m← Update_Model(L, m)
9 end

10 return m
11 def EVALUATE(D, m):
12 X, Y ← D
13 O← m(X)
14 R← Score(O, Y)
15 return R
16 def TRANSFER_KNOWLEDGE(DS,DT ,m, E):
17 m′ ← TRAIN(DS,m, E)
18 RT ← EVALUATE(DT ,m′)
19 return RT

20 RT ← TRANSFER_KNOWLEDGE(DS,DT ,m, E)

4.5. Use Case 5: Explainability analysis

Explainability refers to the ability of a model to communi-
ate the factors that influenced its decision-making process for
given input, particularly those that might lead the model to
ake incorrect decisions [47,48]. Since deep-learning models are

ypically black-boxes, they are difficult to diagnose and adjust
hen failures occur. Thus, models which can better explain their
ecision-making process are easier to verify, debug, and make
afer. Our library enables users to analyze the explainability of
ifferent model architectures by visualizing the node attention
cores of a graph learning model for a given input. The workflow
f this use case is shown in Algorithm 5. First, using a pre-
rained graph learning model, we run inference on a dataset and
ecord the model’s spatial and temporal attention scores for each
equence to a CSV file. Then, we visualize the node attention
cores for each scene-graph and color code the nodes according
o their attention score. For a given graph, the nodes with higher
ttention scores had a more significant impact on the decision
ade by the model.

. Experiments

In this section, we present results from running each use case
resented in Section 4 as well as details on the datasets and
etrics used to evaluate each model.
8

Algorithm 5: Use Case 5 - Explainability analysis of
scene-graph risk assessment
1 Input: A sequence of images from a driving video clip I ,

trained model m.
2 Output: Risk assessment result Ŷ , node attention scores

αt and temporal attention score βt for each graph in G.
3 def SEQ2VEC_ATTN(G):
4 hG, α← { }, { }
5 for Gt in G do
6 hGt , αt ← Spatial_Model(Gt) // αt from SAGPool

layer
7 end
8 Z, β ← Temporal_Model(hG) // β from LSTM-attn

layer
9 ŷ0, ŷ1 ← Activation(MLP(Z))

10 if ŷ1 ≥ ŷ0 then
11 return 1, α, β

12 else if ŷ0 > ŷ1 then
13 return 0, α, β

14 def GET_ATTENTION_SCORES(I):
15 G← EXTRACT_SEQ(I)
16 Ŷ , α, β ← SEQ2VEC_ATTN(G)
17 return Ŷ , α, β

18 Ŷ , α, β ← GET_ATTENTION_SCORES(I)

5.1. Dataset preparation

For experiments, we prepared two types of driving datasets:
(i) synthesized lane-changing datasets (271-syn and 1043-syn),
and (ii) typical real-world driving datasets (571-honda and 1361-
honda). We labeled all of the datasets using our annotator tool
as described in Section 3.1. More details on the datasets as well
as the labeling process can be found in [13]. We randomly split
each dataset into a training set and a testing set by the ratio
7:3 such that the split is stratified, i.e., the proportion of risky
to safe lane change clips in the training and testing sets is the
same. The models are first trained on the training set before being
evaluated on the testing set. The final score of a model on a
dataset is computed by averaging over the testing set scores for
five different stratified train-test splits.

5.2. Model configuration

In our experiments, we use two graph learning architectures
denoted MRGCN and MRGIN. Both models consist of the following
structure: two graph convolution layers of size 64, one SAGPool-
ing layer with 0.5 pooling ratio, one add readout layer, and one
problem-specific temporal model as defined in Fig. 5. The two
architectures only differ in the way successive graph convolutions
are processed, as discussed in Section 3.4.1. As for the baselines,
we evaluate the ResNet-50 CNN classifier and the CNN+LSTM
classifier in our experiments. All models were evaluated using 5-
fold cross-validation with the average test performance over the
five folds presented as the final result.

5.3. Use Case 1 evaluation: Scene-graph extraction

In Fig. 7, we show an example where two scene graphs are
extracted from the same input image with different relation
extraction settings. The graph at the bottom contains relations be-
tween all pairs of vehicles in the scene; for each pair of vehicles, if

the two vehicles are within some distance threshold, the distance

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

s
c

a
i
v
o
a
F
o
r

5

t
m
U
t
a
i
t
s
(

Fig. 5. The architecture of our configurable scene-graph based AV perception model. Our two pre-implemented temporal modeling pipelines for specific AV tasks are
hown (sequence classification and graph prediction). However, users can remove or replace these model components for performing other AV tasks such as graph
lassification or scenario classification.
Fig. 6. Demonstration of collision prediction using scene-graphs. Each node’s color indicates its attention score (importance to the collision likelihood) from orange
(high) to green (low).
Fig. 7. Demonstration of scene-graph extraction with two different relation extraction settings. Zoom in for details.
nd direction relations are constructed. The graph at the top left
s similar. However, it only contains relations between the ego
ehicle and each other vehicle. This figure shows one example
f how our tool enables flexible graph construction for different
pplications. A demonstration of our visualizer tool is shown in
ig. 8. As shown, our visualizer allows the user to inspect how
bjects detected in the input image translate to the objects and
elations in the scene-graph.

.4. Use Case 2 evaluation: Subjective risk assessment

Here, we demonstrate how roadscene2vec can be used to
rain and evaluate several models for the subjective risk assess-
ent use case. We used classification accuracy and the Area
nder the Curve (AUC) [49] of the Receiver Operating Charac-
eristic (ROC) to score the models. AUC, sometimes referred to
s a balanced accuracy measure [50], measures the probabil-
ty that a binary classifier ranks a positive sample more highly
han a random negative sample. This is a more balanced mea-
ure for measuring accuracy, especially with imbalanced datasets
i.e., 271-syn, 1043-syn, 571-honda).
9

Fig. 8. A demonstration of our scene-graph visualization tool that enables the
user to inspect: (i) an original input image, (ii) the object detection results, (iii)
the birds-eye view projection of the image, and (iv) the resultant scene-graph.

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

5
T
o
b
m
t
w
l

5

p
r
p
w
b

c

t
5
i
h
M
t
a
e
s

l
i
l
M
f

5

e

d
m

Table 2
Risk assessment result for MRGCN, MRGIN, ResNet-50, and CNN+LSTM.
Metric Dataset MRGCN MRGIN ResNet-50 CNN+LSTM [6]

Accuracy

271-syn 0.9320 0.8561 0.6938 0.8033
1043-syn 0.9580 0.8784 0.9053 0.7742
571-honda 0.8710 0.8310 0.7689 0.6041
1361-honda 0.8655 0.7245 0.6839 0.7158

AUC

271-syn 0.9620 0.9437 0.7371 0.8394
1043-syn 0.9780 0.9591 0.9616 0.8221
571-honda 0.9105 0.8903 0.8343 0.6670
1361-honda 0.9124 0.8164 0.7340 0.7560

Table 3
Collision prediction accuracy, AUC, and MCC for different models in
roadscene2vec.
Metric Dataset MRGCN MRGIN ResNet-50 CNN+LSTM [6]

Accuracy
271-syn 0.8812 0.8028 0.7039 0.7184
1043-syn 0.9095 0.7803 0.8080 0.8029
571-honda 0.6922 0.7230 0.7340 0.5606

AUC
271-syn 0.9457 0.8724 0.7564 0.7607
1043-syn 0.9477 0.8826 0.9026 0.8493
571-honda 0.7775 0.7844 0.7802 0.5871

MCC
271-syn 0.5145 0.3046 0.3320 0.1474
1043-syn 0.5385 0.2852 0.4602 0.2436
571-honda 0.2142 0.1908 0.3547 0.1347

Table 2 shows a comparison between MRGCN, MRGIN, ResNet-
0, and CNN+LSTM [6] models for driving scene risk assessment.
he results show that the MRGCN based approach consistently
utperforms the other models across all the datasets in terms of
oth classification accuracy and AUC. We found that the perfor-
ance difference between the scene-graph based approaches and

he CNN-based approaches increased when the training datasets
ere smaller, indicating that the graph-based methods could

ikely learn a good representation with fewer data.

.5. Use Case 3 evaluation: Collision prediction

Next, we evaluated the models in roadscene2vec at collision
rediction using classification accuracy, AUC, and Matthews Cor-
elation Coefficient (MCC) [51]. MCC is considered a balanced
erformance measure for binary classification, even on datasets
ith significant class imbalances. The MCC score outputs a value
etween −1.0 and 1.0, where 1.0 corresponds to a perfect clas-

sifier, 0.0 to a random classifier, and −1.0 to an always incorrect
lassifier. The results from our evaluation are shown in Table 3.
Once again, MRGCN outperforms the other models on the syn-

hetic datasets. However, on the 571-honda dataset, the ResNet-
0 model outperforms MRGCN across all metrics. Upon deeper
nspection of the results, we found that the ResNet-50 model
ad a higher FNR than the MRGCN and a lower FPR than the
RGCN, suggesting that the ResNet-50 model is less sensitive

han the MRGCN. Given that collision prediction is a safety-critical
pplication, this behavior may not necessarily be desirable; how-
ver, decision boundary tuning could be used to fine-tune the
ensitivity for the final application’s requirements.
On both Use Case 2 and 3, MRGIN underperforms MRGCN,

ikely because MRGCN is a more general framework while MRGIN
s designed to perform well at graph topology analysis prob-
ems, such as graph isomorphism testing. MRGIN may outperform
RGCN on different problem formulations or graph construction

ormulations if they play to these strengths of MRGIN.

.6. Use Case 4 evaluation: Transfer learning

Here, we demonstrate how roadscene2vec can be used to

valuate each model’s ability to transfer the knowledge learned

10
Table 4
The results of comparing transferability between MRGCN, ResNet-50, and
CNN+LSTM [6]. In this experiment, we trained each model on both the 271-syn
ataset and 1043-syn dataset. Then we evaluated the accuracy of the trained
odel on both original dataset and 571-honda dataset without any domain

adaptation.
Experiment Model Original Acc. Transfer Acc.

271-syn to 571-honda
ResNet-50 0.7039 0.1899 (−0.514)
CNN+LSTM [6] 0.8033 0.5244 (−0.279)
MRGCN 0.9040 0.8690 (−0.035)

1043-syn to 571-honda
ResNet-50 0.8080 0.1725 (−0.636)
CNN+LSTM [6] 0.7742 0.6010 (−0.173)
MRGCN 0.9520 0.8870 (−0.065)

from simulated datasets to real-world datasets. As part of this
use case, roadscene2vec uses the model weights and parameters
learned from training on the simulated dataset (271-syn or 1043-
syn in this case) directly for testing on the real-world driving
dataset (571-honda) with no domain adaptation steps. We show
the results of this evaluation for the MRGCN, ResNet-50, and
CNN+LSTM models in Table 4.

As expected, the performance of all models degrades when
tested on 571-honda dataset. However, as Table 4 shows, the
accuracy of the MRGCN only drops by 3.5% and 6.5% when the
model is trained on 271-syn and 1043-syn, respectively, while
the CNN+LSTM’s performance drops by 27.9% and 17.3%, respec-
tively. Furthermore, the MRGCN achieves a higher accuracy score
than the CNN+LSTM when transferring from the smaller 271-syn
dataset, once again indicating that scene-graph models can better
model the problem even when trained on smaller amounts of
data. The ResNet-50 model performs worst and classifies most
of the sequences as risky, resulting in an accuracy score nearly
equivalent to the proportion of risky sequences in the 571-honda
dataset (17.25%). These results suggest that the scene-graph mod-
els can transfer knowledge more effectively than the CNN-based
models.

5.7. Use Case 5 evaluation: Explainability analysis

To demonstrate roadscene2vec’s tools for evaluating explain-
ability, we run our explainability analysis tool on the MRGCN
model trained for risk assessment on the 271-syn dataset. The
result from analyzing one of the sequences from the dataset is
shown in Fig. 9. As shown, the attention scores are highest on
the nodes which present the highest degree of risk. Additionally,
the graph with the highest attention score for the other vehicle
is also the graph corresponding to the collision with the other
vehicle.

6. Discussion

6.1. Practicality

Although roadscene2vec is intended to be a tool that benefits
the research community, its practicality and carryover to real-
world applications are equally important. As shown with Use
Case 4, roadscene2vec enables researchers to directly evalu-
ate the ability of models trained on synthetic data to transfer
their knowledge to real-world driving scenes. Many research
papers often overlook this critical problem, leading to a dis-
connect between simulated trials and real-world performance.
Our tool better enables the study of this crucial problem area
and allows researchers to analyze the real-world practicality of
various graph-based methodologies. Furthermore, we show that
roadscene2vec is directly compatible with both the real-world
Honda driving dataset [31] as well as the popular open-source
driving simulator, CARLA [17], making our tool useful for a wide
range of AV applications.

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245

g

6

a
e
r
o
f
r
C
t
t
s
A
o
b
f

w
a
s
u

7

i
b
i
i
W
o
p
c
c
s
s
m
o
a
o

Fig. 9. A demonstration of how Use Case 5 enables explainability analysis. For this driving sequence, it can be clearly seen how the node attention scores shift to
ive higher weight to the approaching vehicle as its distance to the ego car reduces.
.2. Limitations and future work

Although roadscene2vec provides a suite of tools for training
nd evaluating both scene-graph-based and CNN-based mod-
ls, there are some limitations to its capabilities. For example,
oadscene2vec currently only supports input data in the format
f ground-truth data from the CARLA simulator or image data
rom a forward-facing camera; it currently does not support
adar, lidar, or multi-camera data. We selected image data and
ARLA data as the primary input modalities because these data
ypes are the ones most used by AV researchers currently. Al-
hough radar and lidar data are valuable and well-studied in
pecific applications such as localization and sensor fusion, most
V research papers exploring perception and control method-
logies use camera-based inputs. However, this limitation can
e overcome by implementing preprocessors for extracting (or
using) scene-graphs from these different modalities. Thus, road-
scene2vec does not currently support multiple sensing modalities
but could support them as part of future work. Furthermore,
our tool does not implement more than a few common percep-
tion algorithms and use cases. However, our tool is designed to
be modular and re-configurable to support custom models and
problem formulations. We expect that researchers will develop
custom architectures and models for the various well-studied
problems in the AV domain and provide instructions in our repos-
itory for integrating the custom models with roadscene2vec’s
orkflow. Thus, we leave the study of other AV applications
nd model architectures as future work. We also welcome out-
ide contributions to our open-source tool to further improve its
tility for the research community.

. Conclusion

It is clear from current research as well as the examples shown
n this paper that scene-graph representations of road scenes can
e beneficial for a wide range of AV applications. In this paper, we
ntroduced and demonstrated our tool for exploring and study-
ng the applications of road scene-graphs, named roadscene2vec.
e showed that our re-configurable graph-construction method-
logy enables the study of different graph layouts for various
roblems. We also demonstrated performance evaluations for
onventional CNN architectures and graph-based models for two
ommon AV perception use cases: risk assessment and colli-
ion prediction. Furthermore, we showed how our tool facilitates
tudying the transferability and explainability of graph-based AV
odels for both synthetic and real-world data. We believe our
pen-source tool fills a significant gap in the research community
nd will enable a deeper study of the applicability and practicality

f graph-based solutions for AV problems.

11
CRediT authorship contribution statement

Arnav Vaibhav Malawade: Conceptualization, Methodology,
Software, Writing – original draft, Investigation, Visualization.
Shih-Yuan Yu: Conceptualization, Methodology, Software, Writ-
ing – original draft, Investigation, Visualization. Brandon Hsu:
Software, Data curation, Validation, Visualization, Investigation.
Harsimrat Kaeley: Software, Data curation, Validation, Visual-
ization, Investigation. Anurag Karra: Software, Data curation,
Validation, Visualization, Investigation. Mohammad Abdullah Al
Faruque: Supervision, Writing – review & editing, Project admin-
istration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partially supported by the National Science
Foundation (NSF), USA under award CMMI-1739503 and by Grad-
uate Assistance in Areas of National Need (GAANN), USA under
award P200A180052. Any opinions, findings, conclusions, or rec-
ommendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding agency.

References

[1] Todd Litman, Autonomous Vehicle Implementation Predictions, Victoria
Transport Policy Institute Victoria, Canada, 2017.

[2] National Transportation Safety Board, Collision Between Vehicle Controlled
by Developmental Automated Driving System and Pedestrian, Technical
Report NTSB/HAR-19/03, National Transportation Safety Board, 2019.

[3] National Transportation Safety Board, Collision Between a Sport Utility
Vehicle Operating With Partial Driving Automation and a Crash Attenuator,
Technical Report NTSB/HAR-20/01, National Transportation Safety Board,
2020.

[4] National Transportation Safety Board, Collision Between Car Operating
with Partial Driving Automation and Truck-Tractor Semitrailer, Technical
Report NTSB/HAB-20/01, National Transportation Safety Board, 2020.

[5] Alexandra S. Mueller, Jessica B. Cicchino, David S. Zuby, What humanlike
errors do autonomous vehicles need to avoid to maximize safety? J. Saf.
Res. (2020).

[6] Ekim Yurtsever, Yongkang Liu, Jacob Lambert, Chiyomi Miyajima, Eijiro
Takeuchi, Kazuya Takeda, John H.L. Hansen, Risky action recognition in lane
change video clips using deep spatiotemporal networks with segmentation
mask transfer, in: 2019 IEEE Intelligent Transportation Systems Conference,
ITSC, IEEE, 2019, pp. 3100–3107.

[7] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner,
Beat Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs
Muller, Jiakai Zhang, et al., End to end learning for self-driving cars, 2016,
arXiv preprint arXiv:1604.07316.

[8] Chongben Tao, Haotian He, Fenglei Xu, Jiecheng Cao, Stereo priori RCNN
based car detection on point level for autonomous driving, Knowl.-Based

Syst. 229 (2021) 107346.

http://refhub.elsevier.com/S0950-7051(22)00073-9/sb1
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb1
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb1
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb2
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb2
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb2
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb2
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb2
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb3
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb3
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb3
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb3
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb3
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb3
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb3
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb4
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb4
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb4
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb4
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb4
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb5
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb5
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb5
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb5
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb5
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb6
http://arxiv.org/abs/1604.07316
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb8
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb8
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb8
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb8
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb8

A.V. Malawade, S.-Y. Yu, B. Hsu et al. Knowledge-Based Systems 242 (2022) 108245
[9] Degui Xiao, Xuefeng Yang, Jianfang Li, Merabtene Islam, Attention deep
neural network for lane marking detection, Knowl.-Based Syst. 194 (2020)
105584.

[10] Sebastian Sontges, Markus Koschi, Matthias Althoff, Worst-case analysis of
the time-to-react using reachable sets, in: 2018 IEEE Intelligent Vehicles
Symposium, IV, IEEE, 2018, pp. 1891–1897.

[11] David Nistér, Hon-Leung Lee, Julia Ng, Yizhou Wang, The safety force field,
2019, NVIDIA White Paper.

[12] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-
Gonzalez, Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David
Raposo, Adam Santoro, Ryan Faulkner, et al., Relational inductive biases,
deep learning, and graph networks, 2018, arXiv preprint arXiv:1806.01261.

[13] Shih-Yuan Yu, Arnav Vaibhav Malawade, Deepan Muthirayan, Pramod P.
Khargonekar, Mohammad Abdullah Al Faruque, Scene-graph augmented
data-driven risk assessment of autonomous vehicle decisions, IEEE Trans.
Intell. Transp. Syst. (2021).

[14] Sravan Mylavarapu, Mahtab Sandhu, Priyesh Vijayan, K. Madhava Krishna,
Balaraman Ravindran, Anoop Namboodiri, Towards accurate vehicle be-
haviour classification with multi-relational graph convolutional networks,
2020, arXiv preprint arXiv:2002.00786.

[15] Chengxi Li, Yue Meng, Stanley H Chan, Yi-Ting Chen, Learning 3D-aware
egocentric spatial-temporal interaction via graph convolutional networks,
2019, arXiv preprint arXiv:1909.09272.

[16] Arnav V. Malawade, Shih-Yuan Yu, Brandon Hsu, Deepan Muthirayan,
Pramod P. Khargonekar, Mohammad A. Al Faruque, Spatio-temporal
scene-graph embedding for autonomous vehicle collision prediction,
IEEE Internet of Things Journal (2022) http://dx.doi.org/10.1109/JIOT.2022.
3141044, 1-1.

[17] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, Vladlen
Koltun, CARLA: An open urban driving simulator, 2017, arXiv preprint
arXiv:1711.03938.

[18] Jin Fang, Ruigang Yang, Qi Alfred Chen, Mingyan Liu, Bo Li, et al.,
Invisible for both camera and LiDAR: Security of multi-sensor fusion based
perception in autonomous driving under physical-world attacks, 2021,
arXiv preprint arXiv:2106.09249.

[19] Ekim Yurtsever, Jacob Lambert, Alexander Carballo, Kazuya Takeda, A sur-
vey of autonomous driving: Common practices and emerging technologies,
2019, arXiv preprint arXiv:1906.05113.

[20] Chenyi Chen, Ari Seff, Alain Kornhauser, Jianxiong Xiao, Deepdriving:
Learning affordance for direct perception in autonomous driving, in:
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 2722–2730.

[21] Mayank Bansal, Alex Krizhevsky, Abhijit Ogale, Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst, 2018, arXiv preprint
arXiv:1812.03079.

[22] Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick, Mask r-cnn,
in: Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2961–2969.

[23] Yafu Tian, Alexander Carballo, Ruifeng Li, Kazuya Takeda, Road scene
graph: A semantic graph-based scene representation dataset for intelligent
vehicles, 2020, arXiv preprint arXiv:2011.13588.

[24] Lars Kunze, Tom Bruls, Tarlan Suleymanov, Paul Newman, Reading
between the lanes: Road layout reconstruction from partially seg-
mented scenes, in: 2018 21st International Conference on Intelligent
Transportation Systems, ITSC, IEEE, 2018, pp. 401–408.

[25] Xiaoming Liu, Yu Lan, Yadong Zhou, Chao Shen, Xiaohong Guan, A
real-time explainable traffic collision inference framework based on
probabilistic graph theory, Knowl.-Based Syst. 212 (2021) 106442.

[26] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, Devi Parikh, Graph r-cnn
for scene graph generation, in: Proceedings of the European Conference
on Computer Vision, ECCV, 2018, pp. 670–685.

[27] Kaihua Tang, A scene graph generation codebase in PyTorch, 2020, https:
//github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch.

[28] Jiaxuan You, Rex Ying, Jure Leskovec, Design space for graph neural
networks, in: NeurIPS, 2020.
12
[29] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei
Li, Jinjing Zhou, Qi Huang, Chao Ma, et al., Deep graph library: Towards
efficient and scalable deep learning on graphs, 2019.

[30] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, Jure Leskovec, Open graph benchmark:
Datasets for machine learning on graphs, 2020, arXiv preprint arXiv:
2005.00687.

[31] Vasili Ramanishka, Yi-Ting Chen, Teruhisa Misu, Kate Saenko, Toward driv-
ing scene understanding: A dataset for learning driver behavior and causal
reasoning, in: Conference on Computer Vision and Pattern Recognition,
2018.

[32] Boris Sekachev, Nikita Manovich, Maxim Zhiltsov, Andrey Zhavoronkov,
Dmitry Kalinin, D. Hoff, D. Kruchinin, A. Zankevich, D. Sidnev,
Opencv/CVAT: v1. 1.0, 2020, Zenodo, Aug.

[33] Microsoft, Vott, 2021, GitHub Online URL https://github.com/microsoft/
VoTT. (Accessed 29 December 2021).

[34] Thomas N. Kipf, Max Welling, Semi-supervised classification with graph
convolutional networks, 2016, arXiv preprint arXiv:1609.02907.

[35] Keyulu Xu, Weihua Hu, Jure Leskovec, Stefanie Jegelka, How powerful are
graph neural networks? 2018, arXiv preprint arXiv:1810.00826.

[36] Junhyun Lee, Inyeop Lee, Jaewoo Kang, Self-attention graph pooling, 2019,
arXiv preprint arXiv:1904.08082.

[37] Hongyang Gao, Shuiwang Ji, Graph u-nets, 2019, arXiv preprint arXiv:
1905.05178.

[38] Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio, Neural machine trans-
lation by jointly learning to align and translate, 2014, arXiv preprint
arXiv:1409.0473.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning
for image recognition, in: Proceedings of the IEEE Conference on Computer
Vision And Pattern Recognition, 2016, pp. 770–778.

[40] G.B. Grayson, G. Maycock, J.A. Groeger, S.M. Hammond, D.T. Field, Risk,
Hazard Perception and Perceived Control, TRL Report TRL560, TRL Ltd.,
Crowthorne, UK, 2003.

[41] Ray Fuller, Towards a general theory of driver behaviour, Accid. Anal. Prev.
37 (3) (2005) 461–472.

[42] Naren Bao, Dongfang Yang, Alexander Carballo, Ümit Özgüner, Kazuya
Takeda, Personalized safety-focused control by minimizing subjective risk,
in: 2019 IEEE Intelligent Transportation Systems Conference, ITSC, IEEE,
2019, pp. 3853–3858.

[43] Naren Bao, Alexander Carballo, Chiyomi Miyajima, Eijiro Takeuchi, Kazuya
Takeda, Personalized subjective driving risk: Analysis and prediction, J.
Robot. Mechatronics 32 (3) (2020) 503–519.

[44] Ulrich Tränkle, Christhard Gelau, Thomas Metker, Risk perception and
age-specific accidents of young drivers, Accid. Anal. Prev. 22 (2) (1990)
119–125.

[45] Brandon Schoettle, Michael Sivak, A Preliminary Analysis of Real-
World Crashes Involving Self-Driving Vehicles, University of Michigan
Transportation Research Institute, 2015.

[46] Chengcheng Xu, Zijian Ding, Chen Wang, Zhibin Li, Statistical analysis
of the patterns and characteristics of connected and autonomous vehicle
involved crashes, J. Saf. Res. 71 (2019) 41–47.

[47] Amina Adadi, Mohammed Berrada, Peeking inside the black-box: A sur-
vey on explainable artificial intelligence (XAI), IEEE Access 6 (2018)
52138–52160.

[48] Boris Knyazev, Graham W Taylor, Mohamed Amer, Understanding atten-
tion and generalization in graph neural networks, in: Advances in Neural
Information Processing Systems, 2019, pp. 4202–4212.

[49] Andrew P. Bradley, The use of the area under the ROC curve in the
evaluation of machine learning algorithms, Pattern Recognit. 30 (7) (1997)
1145–1159.

[50] Marina Sokolova, Guy Lapalme, A systematic analysis of performance
measures for classification tasks, Inf. Process. Manage. 45 (4) (2009)
427–437.

[51] Davide Chicco, Giuseppe Jurman, The advantages of the matthews corre-
lation coefficient (MCC) over F1 score and accuracy in binary classification
evaluation, BMC Genomics 21 (1) (2020) 6.

http://refhub.elsevier.com/S0950-7051(22)00073-9/sb9
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb9
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb9
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb9
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb9
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb10
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb10
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb10
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb10
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb10
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb11
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb11
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb11
http://arxiv.org/abs/1806.01261
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb13
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb13
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb13
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb13
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb13
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb13
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb13
http://arxiv.org/abs/2002.00786
http://arxiv.org/abs/1909.09272
http://dx.doi.org/10.1109/JIOT.2022.3141044
http://dx.doi.org/10.1109/JIOT.2022.3141044
http://dx.doi.org/10.1109/JIOT.2022.3141044
http://arxiv.org/abs/1711.03938
http://arxiv.org/abs/2106.09249
http://arxiv.org/abs/1906.05113
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb20
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb20
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb20
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb20
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb20
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb20
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb20
http://arxiv.org/abs/1812.03079
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb22
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb22
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb22
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb22
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb22
http://arxiv.org/abs/2011.13588
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb24
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb24
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb24
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb24
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb24
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb24
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb24
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb25
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb25
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb25
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb25
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb25
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb26
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb26
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb26
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb26
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb26
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
https://github.com/KaihuaTang/Scene-Graph-Benchmark.pytorch
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb28
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb28
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb28
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb29
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb29
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb29
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb29
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb29
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2005.00687
http://arxiv.org/abs/2005.00687
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb31
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb31
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb31
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb31
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb31
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb31
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb31
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb32
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb32
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb32
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb32
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb32
https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1904.08082
http://arxiv.org/abs/1905.05178
http://arxiv.org/abs/1905.05178
http://arxiv.org/abs/1905.05178
http://arxiv.org/abs/1409.0473
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb39
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb39
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb39
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb39
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb39
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb40
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb40
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb40
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb40
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb40
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb41
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb41
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb41
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb42
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb42
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb42
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb42
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb42
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb42
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb42
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb43
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb43
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb43
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb43
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb43
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb44
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb44
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb44
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb44
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb44
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb45
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb45
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb45
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb45
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb45
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb46
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb46
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb46
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb46
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb46
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb47
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb47
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb47
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb47
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb47
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb48
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb48
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb48
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb48
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb48
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb49
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb49
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb49
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb49
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb49
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb50
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb50
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb50
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb50
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb50
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb51
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb51
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb51
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb51
http://refhub.elsevier.com/S0950-7051(22)00073-9/sb51

	roadscene2vec: A tool for extracting and embedding road scene-graphs
	Introduction
	Novel contributions
	Paper organization

	Related work
	AV design methodologies
	Graph-based driving scene understanding
	Graph extraction and graph learning libraries

	Roadscene2vec Architecture
	Dataset generation tools (data.gen)
	Data preprocessing (roadscene2vec.data.proc)
	Road Scene-Graph extraction (roadscene2vec.scenegraph. extraction)
	Entity and relation extraction
	CARLA Scene-Graph extraction
	Image Scene-Graph extraction
	Scene-Graph Visualization

	Scene-graph embedding (roadscene2vec.learning)
	Graph learning models (roadscene2vec.learning.model)
	Baseline models (roadscene2vec.learning.model)
	Performance evaluation and hyperparameter optimization

	Usage examples
	Use Case 1: Converting an ego-centric observation into a scene-graph
	Use Case 2: Subjective risk assessment
	Problem formulation
	Training

	Use Case 3: Collision prediction
	Problem formulation
	Training

	Use Case 4: Transfer learning
	Use Case 5: Explainability analysis

	Experiments
	Dataset preparation
	Model configuration
	Use Case 1 evaluation: Scene-Graph extraction
	Use Case 2 evaluation: Subjective risk assessment
	Use Case 3 evaluation: Collision prediction
	Use Case 4 evaluation: Transfer learning
	Use Case 5 evaluation: Explainability analysis

	Discussion
	Practicality
	Limitations and future work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

