

1 **Title:** Tunable Elastomer Materials With Vascular Tissue-Like Rupture Mechanics Behavior

2 **Authors:** Andrea Corti^a, Tariq Shameen^{a,1}, Shivang Sharma^{a,1}, Annalisa De Paolis PhD^a, Luis Cardoso
3 PhD^a

4 **Affiliations:** ^aCity College of the City University of New York, Department of Biomedical Engineering,
5 New York, NY 10029, USA

6 **Present address:** ¹Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA, ²Rimsys
7 Regulatory Management Software, Pittsburgh, PA 15212, USA

8 **Contact email:** Cardoso@ccny.cuny.edu

9 **Authors Contribution Statement**

10 **Andrea Corti:** Conceptualization, Methodology, Data Curation, Validation, Writing-original draft; **Tariq**
11 **Shameen:** Methodology, Data Curation, Validation; **Shivang Sharma:** Methodology, Data
12 Curation; **Annalisa De Paolis:** Methodology, Data Curation, Validation; **Luis Cardoso:**
13 Conceptualization, Methodology, Supervision, Writing-review & editing, Funding acquisition.

14 **Abstract**

15 **Purpose:** Laboratory models of human arterial tissues are advantageous to examine the mechanical
16 response of blood vessels in a simplified and controllable manner. In the present study, we investigated
17 three silicone-based materials for replicating the mechanical properties of human arteries documented in
18 the literature.

19 **Methods:** We performed uniaxial tensile tests up to rupture on Sylgard184, Sylgard170 and DowsilEE-
20 3200 under different curing conditions and obtained their True (Cauchy) stress-strain behavior and
21 Poisson's ratios by means of digital image correlation (DIC). For each formulation, we derived the
22 constitutive parameters of the 3-term Ogden model and designed numerical simulations of tubular models
23 under a radial pressure of 250mmHg.

24 **Results:** Each material exhibits evident non-linear hyperelasticity and dependence on the curing condition.
25 Sylgard184 is the stiffest formulation, with the highest shear moduli and ultimate stresses at relative low
26 strains ($\mu_{184}=0.52-0.88\text{ MPa}$, $\sigma_{184}=15.90-16.54\text{ MPa}$, $\varepsilon_{184}=0.72-0.96$). Conversely, Sylgard170 and DowsilEE-
27 3200 present significantly lower shear moduli and ultimate stresses that are closer to data reported for
28 arterial tissues ($\mu_{170}=0.33-0.7\text{ MPa}$ $\sigma_{170}=2.61-3.67\text{ MPa}$, $\varepsilon_{170}=0.69-0.81$; $\mu_{dow}=0.02-0.09\text{ MPa}$ $\sigma_{dow}=0.83-2.05\text{ MPa}$,
29 $\varepsilon_{dow}=0.91-1.05$). Under radial pressure, all formulations except DowsilEE-3200 at 1:1 curing ratio undergo
30 circumferential stresses that remain in the elastic region with values ranging from 0.1 to 0.18MPa.

31 **Conclusion:** Sylgard170 and DowsilEE-3200 appear to better reproduce the rupture behavior of vascular
32 tissues within their typical ultimate stress and strain range. Numerical models demonstrate that all three
33 materials achieve circumferential stresses similar to human common carotid arteries (Sommer et al. 2010),
34 making these formulations suited for cylindrical laboratory models under physiological and
35 supraphysiological loading.

36
37 **Keywords:** Laboratory models, Mock vessels, Ultimate Tensile Stress, Sylgard, Dowsil, Uniaxial Tensile
38 Testing

39
40

1 **Introduction**

2 Cardiovascular diseases (CVD) have represented the leading cause of death in the last three decades and
3 the rate of mortality has steadily increased since 1990 (Roth et al. 2020; World Health Organization 2020).
4 Unfortunately, this trend is not expected to change any time soon. The underlying pathology of CVD is
5 atherosclerosis, which is initiated by cholesterol build-up beneath the endothelium of artery blood vessels,
6 which ultimately evolves into an atherosclerotic plaque(Burke et al. 2014). The rupture of this plaque can
7 result in major clinical outcomes, including myocardial infarction, sudden coronary death, stroke, transient
8 ischemic attack, and critical limb ischemia. For this reason, intense scientific effort is spent to better
9 understand the biomechanics of the human vascular system. A significant share of this research relies on
10 multiple in-vitro techniques to replicate and predict the behavior of arterial tissues under different types of
11 loading (Macrae, Miller, and Doyle 2016; Holzapfel et al. 2005; Holzapfel, Sommer, and Regitnig 2004;
12 Sommer et al. 2010; Kural et al. 2012; Jankowska, Bartkowiak-Jowsa, and Bedzinski 2015; Maher et al.
13 2009; Teng et al. 2009). Such mechanical tests can be used to investigate the macroscopic behavior of
14 arteries as well as analyze the effect of microscopic features that may influence the biomechanics of
15 vascular tissue rupture and the stability of atherosclerotic plaques. However, performing these experiments
16 on blood vessels presents several challenges. The specimens require delicate handling, and their
17 manipulation can potentially alter the outcome of the experiments. In addition, it can be difficult to isolate
18 the effect of individual aspects of vessel's morphology and composition on plaques stability given the
19 heterogeneous and multifactorial nature of arterial tissues. Therefore, the development of tissue-mimicking
20 materials with similar mechanical properties as human blood vessels to study the behavior of atheroma-like
21 phantoms with reproducible and tunable mechanical properties comprise an alternative to the challenges
22 posed by experimental testing of blood vessels. The use of a laboratory model reduces the complexity of
23 the problem at hand and allows to better examine the significance of specific factors that may otherwise be
24 very difficult to study.

25 One of the most adopted elastomers in the field is polydimethylsiloxane (PDMS), in particular the two types
26 Sylgard184 and Sylgard170 (Dow Corning Corporation). These two silicones have a simple manufacturing
27 process, present a nonlinear behavior and Sylgard184 material properties are known to vary with both
28 curing and operational temperatures (Mata, Fleischman, and Roy 2005; Liu et al. 2009; Kim, Kim, and
29 Jeong 2011; Johnston et al. 2014; Choi, Park, and Oh 2014). Sylgard184 is also biocompatible, which
30 makes this silicone a good substrate for cell culture and mechanotransduction studies (Fischer et al. 2017;
31 Hecker et al. 2005; Colombo et al. 2010). The hyperelastic properties of these materials within the low
32 stretch range (30-50% stretch) resemble the typical stress-hardening behavior of soft tissues, which results
33 from stretching the constitutive elastic fibers of the extracellular tissue, in particular collagen (Payan and
34 Ohayon 2017; Fratzl 2008). For this reason, Sylgard184 and Sylgard170 have been previously used to
35 prepare laboratory models of healthy arteries and aortic aneurysm (Colombo et al. 2010; Doyle et al. 2010,
36 2009). While the mechanical tunability of Sylgard 184 has been extensively investigated (Liu, Sun, and
37 Chen 2009; Liu 2007; Liu et al. 2009; Mata, Fleischman, and Roy 2005; Kim, Kim, and Jeong 2011;
38 Johnston et al. 2014), the studies on mechanical properties of Sylgard170 are scarce. Studies on the behavior
39 of Sylgard170 have only been reported for the mix curing ratio recommended by the provider (Doyle et al.
40 2009, 2010); however, there exist the potential for tuning its mechanical properties when modifying the
41 base (pre-polymer) to curing agent (cross-linker) ratio. Importantly, the ultimate strength (i.e. maximal
42 stress at rupture) of Sylgard184 seems to be too high compared to that reported for any type of artery, while
43 the ultimate strain seems comparable to that of arterial tissues (Liu et al. 2009; Mata, Fleischman, and Roy
44 2005; Doyle et al. 2009; Akyildiz, Speelman, and Gijsen 2014; Walsh et al. 2014). This makes Sylgard184
45 less suited for replicating the rupture mechanism of vascular tissues within their typical stress and strain
46 range to rupture. On the other hand, the encapsulant DowsilEE-3200 (Dow Corning Corporation) appears

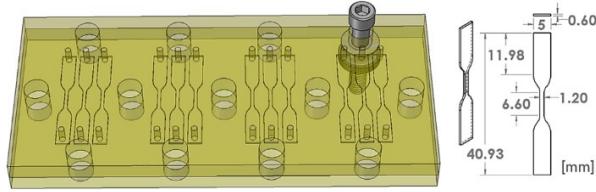
1 to show a significantly lower ultimate strength (0.55MPa, based on the provider's documentation) while
2 maintaining a hyperelastic response under high deformations. Hence, DowsilEE-3200 could be a potential
3 candidate for arterial tissue laboratory models. To the best of our knowledge, there is no literature of a
4 mechanical analysis of DowsilEE-3200 or Sylgard 170 under different curing conditions to develop
5 atheroma-like phantoms that can replicate the biomechanics of rupture of atheromatous plaque tissues.

6 Therefore, the purpose of this study is to provide an accurate characterization of the material properties of
7 Sylgard184, Sylgard170 and DowsilEE-3200 under different curing formulations by combining uniaxial
8 tensile tests, digital image correlation (DIC) and numerical simulations. This analysis is intended to be used
9 as a reference for future application of these materials as vascular laboratory models to investigate the
10 biomechanics of plaque rupture.

11 **Material and methods**

12 *SAMPLES PREPARATION*

13 Samples were manufactured based on 80%-scaled down ASTM D412-Type C geometry to replicate typical
14 dimensions of arterial tissues. Each specimen had a gauge region with a length, width, and thickness of 6.6,
15 1.2 and 0.6 mm respectively (**Fig.1**). To prepare our samples, we injected the material into a custom-
16 designed molding system consisting of two 0.5in (1.27cm)-thick plates. The bottom plate was carved with
17 a total of 12 sample shapes using a milling machine. The top plate was then used to cover the bottom part
18 and the system was tightly closed by a set of screws and nuts (**Fig.1**). The two plates were made of
19 Polyetherimide, which is an amber-transparent thermoplastic with a glass transition temperature of 217 °C
20 (Kyriacos 2017).


21 The three elastomer materials are supplied as a two-part kit, consisting of a pre-polymer and a cross-linker
22 (Sylgard184) or PartA and PartB (Sylgard170 and Dowsil EE-3200).

23 *Sylgard184*: Samples were prepared using 15:1, 10:1 (recommended by the manufacturer) and 5:1 base-to-
24 curing agent ratios. For each group, the PDMS was thoroughly mixed, degassed for about 30 minutes,
25 poured into the molds, cured at 30 °C for 16 hours and then cured again at 100 °C for 4 hours.

26 *Sylgard170*: We tested the material at 1:1 (recommended by the manufacturer), 5:1 and 1:5 Part A-Part B
27 ratios. Samples were prepared following the same protocol as for Sylgard184.

28 *Dowsil EE-3200*: For this material, the mixtures considered were 1:1 (recommended by the manufacturer),
29 1:1.5 and 1:2.5 ratios. The manufacturing process was the same as for the other materials except the final
30 curing temperature was set to 50 °C, as the provider recommends not to heat the material above 60 °C. For
31 every formulation, each ratio between the two mixing parts was considered by weight.

32 After the curing process, samples were carefully removed from their cast and visually inspected using a
33 stereomicroscope (SteREO Discovery.V12, Zeiss). Specimens that presented air bubbles or imperfections
34 at the boundaries were discarded. Finally, the laboratory models were sprayed with water-based ink to
35 perform digital image correlation (DIC). The use of an air brush enabled us to control with accuracy the
36 speckles sizes (3-5 pixels) and the speckles density (20-40% of the sample surface) (Jones et al. 2018).

1
2 *Figure 1. (Left) Representation of the molding system designed in Solidworks (Dassault Systemes, v.2018). (Right) Technical*
3 *drawing of the sample geometry, from the standard ASTM D412-Type C.*

4 **TESTING PROTOCOL**

5 We tested the samples using a custom-made micro material testing system equipped with real-time control
6 and acquisition software (LabVIEW, v. 2018, National Instruments). The machine was equipped with a
7 load cell with a capacity of 10N and sensitivity of 10mN. An extensive description of our testing system
8 can be found in (Corti and Shameen et al. 2022). The experiments consisted of applying 10-cycles
9 preconditioning stretch at 10% strain, followed by one-single pull to rupture. The loading cycle was
10 governed by a ramp waveform under displacement control at a constant strain rate of 1.5mm/s. Throughout
11 the test, the reaction force and displacement were measured by the system and images of the sample were
12 recorded by a FLIR Blackfly S high-resolution camera (Teledyne FLIR) equipped with a Tamron
13 M111FM50 lens (IDS Imaging).

14 **DATA PROCESSING**

15 To perform DIC analyses we used the GOM Correlate software (ZEISS Group, v.2019) which allowed us
16 to obtain the True (Cauchy) stress and strain for each sample as well as the material Poisson's ratio, ν . The
17 true stress values were calculated by measuring the reduction in cross-sectional area from the change in
18 width in the gauge region throughout the test, assuming the material as isotropic. The average Poisson's
19 ratio for each formulation was obtained considering the material response up to 10% strain and it was
20 computed as (1):

$$21 \quad \nu = -\frac{\varepsilon_{trans}}{\varepsilon_{axial}}, \quad (1)$$

22 where ε_{trans} is the transverse strain (perpendicular to the tensile direction) and ε_{axial} is the axial strain
23 (parallel to the tensile direction). The individual and average true stress and strain curves and the Poisson's
24 ratio were obtained combining the data from the tensile system and the DIC analysis in a custom made
25 MATLAB script. By knowing the nominal (engineering) stress and strain, and the Poisson's ratio, we were
26 also able to determine the constitutive coefficients of the 3-term Ogden model for each tested elastomer
27 formulation. The inverse analysis was carried out using the material evaluation capability in Abaqus
28 (Dassault Systemes, v.2019). The 3-term Ogden constitutive model has been widely used to replicate the
29 hyperelastic behavior of arterial tissues (Schiavone, Zhao, and Abdel-Wahab 2014; Martin 2013; Karimi,
30 Navidbakhsh, and Razaghi 2014; Zahedmanesh and Lally 2009) and it describes the material response to
31 large deformation using the strain energy function given by (2)(Ogden 1997):

$$33 \quad W = \sum_{i=1}^3 \frac{\mu_i}{\alpha_i} (\bar{\lambda}_1^{\alpha_i} + \bar{\lambda}_2^{\alpha_i} + \bar{\lambda}_3^{\alpha_i} - 3) + \sum_{i=1}^3 \frac{1}{D_i} (J^{el} - 1)^{2i}, \quad (2)$$

34 where the first term on the right represents the deviatoric part of the elastic strain energy density function
35 and the second term represents the volumetric part. In the equation, $\bar{\lambda}_i$ are the deviatoric principal
36 stretches $\bar{\lambda}_i = J^{-\frac{1}{3}} \lambda_i$, where J is the third invariant of the deformation gradient \mathbf{F} , $J = \det(\mathbf{F}) = \lambda_1 \lambda_2 \lambda_3$;

1 λ_i are the principal stretches; and α_i are power law coefficients. The initial shear modulus and bulk modulus
2 for the Ogden form are $\mu_0 = \sum_{i=1}^3 \mu_i$, $K_0 = \frac{2}{D_1}$, respectively. The fitting accuracy of the Ogden description
3 was tested by replicating our experiments in finite element method (FEM) simulations in Abaqus. Each
4 material was considered, and the sample was stretched up to the average ultimate displacement of the
5 corresponding formulation. Finally, the Ogden description was used to simulate the expansion of 30mm-
6 long cylindrical tubes by a uniform and linearly increasing pressure up to 250mmHg. Here, the two axial
7 extremes of the vessels were free to move in the radial direction only. These geometries were designed to
8 replicate the average radius ($R=4.15\text{mm}$) and thickness ($H=1.17\text{mm}$) of common carotid arteries walls
9 reported by Sommer et al.(Sommer et al. 2010).

10 **STATISTICAL ANALYSIS**

11 Data are reported as mean \pm SD. Analysis of variance was performed by one-way ANOVA test followed by
12 post-hoc pairwise comparison of the mean strength between the groups. The null hypothesis was rejected
13 if $p<0.05$.

14 **Results**

15 **TENSILE RESPONSE AND RUPTURE THRESHOLD**

16 The average true stress and strain curves for each group (**Fig. 2**) depict the evident hyperelastic non-linear
17 behavior of the elastomers up to rupture, and the influence that different base to curing agent ratios have on
18 this behavior. Our results show that Sylgard184 is the stiffest of the materials considered as it experiences
19 the highest shear modulus and ultimate stress at relative low strain levels. On the other hand, Sylgard170
20 and DowsilEE-3200 present significantly lower shear moduli and ultimate stress levels that are closer to
21 data reported for arterial tissues (Holzapfel et al. 2005; Teng et al. 2009). Importantly, Dowsil is the most
22 compliant material, with the lowest shear modulus among these elastomers, and with ultimate stress and
23 strain values very close to arterial tissue. The right panels in **Figure2** offer a closer view of the behavior of
24 each formulation up to a strain of 0.5, which is a common range of stretch in arteries under physiological
25 and supraphysiological loadings.

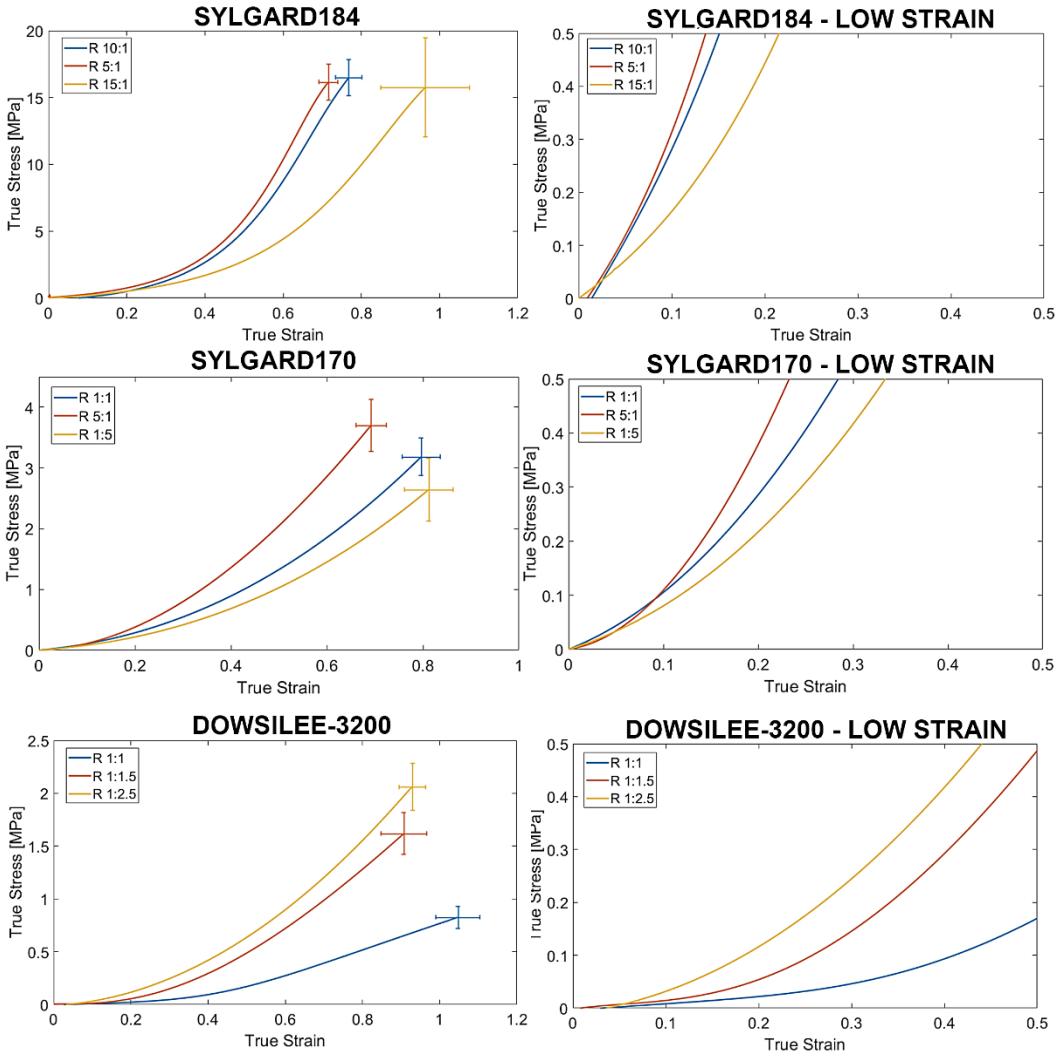
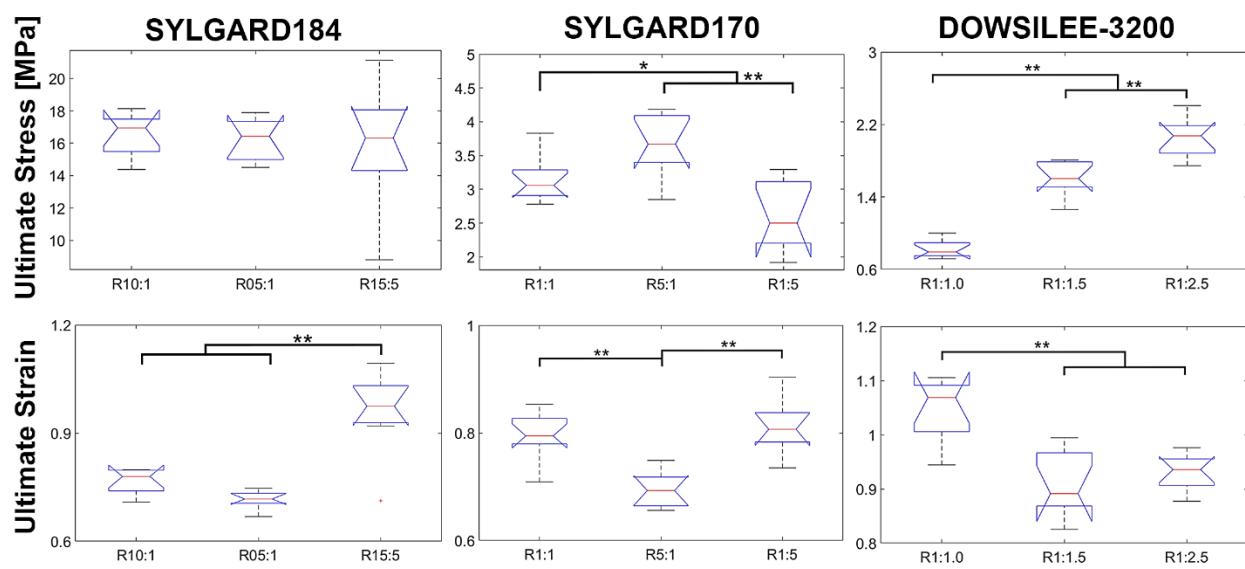


Figure 2. (Left) True stress and strain curves for each mix ratio, with SD error bars at rupture. Top row shows Sylgard 184, Sylgard 170 in the middle row and Dowsil EE-3200 in the bottom row. (Right) True stress and strain curves up to 0.5MPa stress and 0.5 strain. Overall, Sylgard 184 is the stiffest elastomer, followed by Sylgard 170 and the most compliant was found to be Dowsil EE-3200. The stress-strain behavior was found tunable (dependent on the polymer to curing agent ratio) in all formulations.

The average ultimate stress and stretch ratio values as well as the Poisson's ratio of each formulation are reported in **Table1**. For comparison purposes, we have also included the longitudinal and circumferential Cauchy stresses and stretch ratios at rupture that have been reported in the literature for carotid and coronary arteries(Teng et al. 2009; Holzapfel et al. 2005). In the first study, Teng et al. analyzed the mechanical behavior under tensile tension of human carotid arteries presenting sections with fatty streak or pre-atheroma with extracellular lipid pools (lesion II-III). The authors were able to test both intact samples as well as dissected media and adventitia layers. In the second study, Holzapfel et al. considered dissected layers intima, media and adventitia of non-stenotic human coronary arteries presenting intimal thickening. Our data show that Sylgard184 is the material with the highest values of ultimate stress, which are far from those showed by human arterial tissues. Differently, Sylgard170 and DowsilEE-3200 experience significantly lower stresses at rupture, with Dowsil having the highest extensibility. The statistical analysis on the effect of mix ratios for each formulation is illustrated in **Figure3**. For Sylgard184, our results indicate similar stresses at rupture among the three formulations, while there is a significant difference between R15:1 ultimate strain and the other two ratios. Reducing the relative amount of curing agent from the

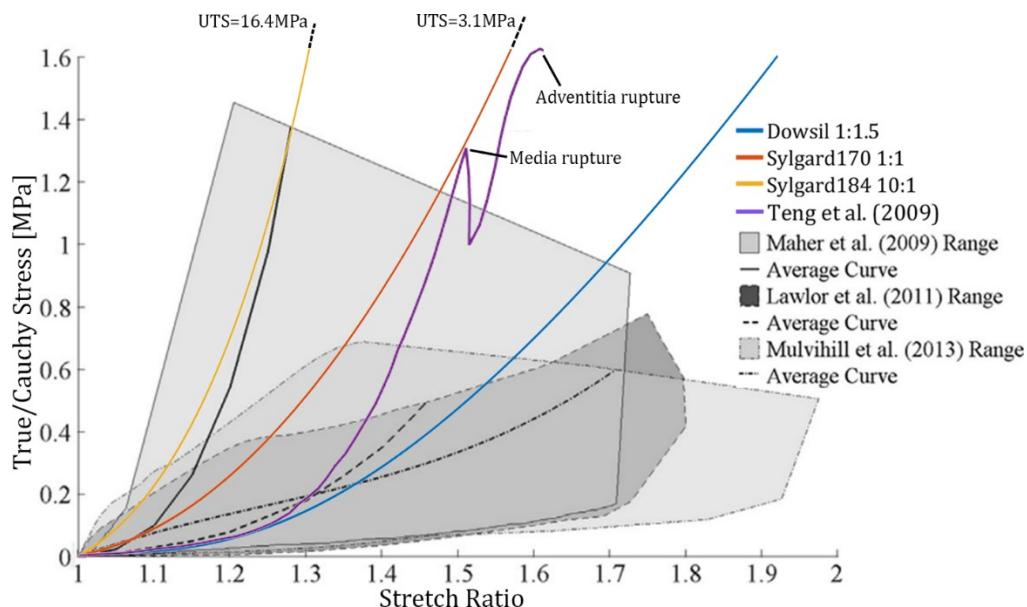

1 recommended mix ratio increases the extensibility of Sylgard184. In the case of Sylgard170, each ratio
 2 presents statistically different ultimate stresses and R5:1 is the only formulation that shows a meaningful
 3 shift in strain levels. A higher concentration of PartA makes Sylgard170 stiffer. The influence of the mix
 4 ratio is also evident for DowsilEE-3200. Each formulation manifests different stress values at rupture with
 5 the amount of PartB being positively correlated to the stress values. The strain deviates only when
 6 considering a higher concentration of PartB than the amount recommended by the provider.

7 *Table 1 List of ultimate stress, ultimate strain and Poisson's ratio for each formulation as well as longitudinal (zz) and*
 8 *circumferential (θθ) stress and strain for human arteries reported in the literature.*

Material	Part A:B ratio	# of samples (n)	Ultimate σ_{true} [MPa]	Ultimate λ	ν
Sylgard 184	15:1	11	15.898±3.741	1.963±0.113	0.496±0.007
	10:1	10	16.541±1.450	1.767±0.0340	0.493±0.004
	5:1	8	16.243±1.316	1.716±0.0243	0.492±0.006
Sylgard 170	5:1	10	3.665±0.430	1.692±0.032	0.472±0.005
	1:1	12	3.147±0.310	1.770±0.023	0.463±0.013
	1:5	9	2.607±0.512	1.812±0.051	0.478±0.001
Dowsil EE-3200	1:1	9	0.825±0.102	2.048±0.057	0.491±0.016
	1:1.5	9	1.609±0.195	1.907±0.059	0.490±0.008
	1:2.5	11	2.049±0.220	1.930±0.035	0.481±0.006
Artery	Tissue	Ultimate σ_{zz} [MPa]	Ultimate λ_{zz}	Ultimate $\sigma_{\theta\theta}$ [MPa]	Ultimate $\lambda_{\theta\theta}$
Human carotid (Teng et al)	Intact	1.570±0.1295	1.50±0.200	1.5637±0.351	1.53±0.270
	Media	0.727±0.52	1.40±0.180	1.8081±1.224	1.47±0.250
	Adventitia	3.074±1.993	1.54±0.230	2.8291±1.655	1.57±0.220
Human coronary (Holzapfel et al)	Intima	0.391±0.144	1.55±0.400	0.394±0.223	1.6±0.290
	Media	0.419±0.188	1.74±0.280	0.446±0.194	1.81±0.370
	Adventitia	1.300±0.692	1.87±0.380	1.430±0.604	1.66±0.240

9

10


11
 12 *Figure 3. Boxplots of ultimate stresses and strains for each formulation with the corresponding statistical significance (*p<0.05,*
 13 ***p<0.01).*

1 *STRESS TO STRETCH RATIO RESPONSE OF LABORATORY MODELS AND ATHEROSCLEROTIC*
 2 *CAROTID TISSUES*

3 To validate the mechanical behavior of our laboratory models, we compared their stress vs stretch ratio
 4 (where the stretch ratio λ = strain+1) response to published data of carotid plaques after endarterectomy
 5 (Mulvihill et al. 2013; Lawlor et al. 2011; Maher et al. 2009) (Fig4). In addition, we included for
 6 comparison the tensile test data of one sample of intact atherosclerotic carotid artery from Teng et al. (Teng
 7 et al. 2009). In this analysis, we considered the formulation of each material that could better fit the arterial
 8 data (Sylgard184 R10:1, Sylgard170 R1:1 and DowsilEE-3200 R1:1.5).

9 Maher et al. and Lawlor et al. performed uniaxial tensile tests in the circumferential direction on surgically
 10 removed carotid plaques. Mulvihill et al. studied carotid plaques specimens under pure shear tests in the
 11 circumferential direction. **Figure 4** shows a significant variability between studies as well as within each
 12 data set. These large variations may be attributed to different plaque types (i.e calcified, soft or mixed). The
 13 stress-stretch ratio curve from Teng et al. presents a higher ultimate stress probably due to the presence of
 14 the media and adventitia layers, which are often missing in endarterectomy samples.

15 Our laboratory models exhibit an axial response that lie within the ranges of carotid tissues. Sylgard184
 16 appears more suited to replicate stiffer behaviors and closely approaches the average curve in Maher et al.
 17 Sylgard170 shows a stress-stretch curve that well fits the range reported by Maher et al. and displays similar
 18 nonlinear stress and stretch levels to the data from Teng et al. DowsilEE-3200 falls within the stress-stretch
 19 ranges of the three studies and better correlates to the data from Lawlor et al. and Mulvihill et al.
 20 Our results reveal that each formulation can potentially replicate the mechanical response of carotid tissues
 21 before rupture. Indeed, Sylgard 184 and Sylgard 170 could be used for modeling the adventitia and/or the
 22 media layer(s) of the laboratory model, but they will not be suited for replicating the rupture of the intima
 23 layer due to the significant different ultimate stress and stress levels shown by these materials when
 24 compared to blood vessels. However, the only material that is able to reproduce similar ultimate stress and
 25 stretch values to rupture of the intima and media layers is DowsilEE-3200, as Sylgard184 and Sylgard170
 26 reaches stress levels that are far beyond the rupture threshold of carotid samples.

27
 28 *Figure 4. Cauchy stress vs stretch ratio of carotid plaques and intact carotid arteries in the circumferential direction vs True stress*
 29 *vs stretch ratio of Sylgard184 R10:1, Sylgard170 R1:1, DowsilEE-3200 R1:1.5. The ultimate stress (UTS) for Sylgard184 and*
 30 *Sylgad170 was also reported as they exceed the maximum stress limit in the graph. (Adapted from Walsh et al. 2014)*

1

2 MATERIAL FITTING AND NUMERICAL SIMULATIONS

3 The nominal stress and strain data as well as the Poisson's ratio of each material were imported into Abaqus
 4 and the Ogden coefficients were evaluated. Every formulation respected Ducker's stability criteria (Drucker
 5 1959) for all ranges of tension and compression strains and the coefficients values are reported in **Table2**.
 6 After obtaining the constitutive description, we performed numerical simulations on samples with the same
 7 geometry as our laboratory models. In these finite element analyses, the samples were stretched until
 8 reaching similar levels of ultimate strain as the test data. The axial stress and strain in the gauge region were
 9 then exported and graphed against the average stress and strain curves of the corresponding formulation.
 10 The fitted Ogden model accurately replicates the mechanical response of all material, as can be seen in
 11 **Figure5A**. The strain distribution computed through DIC is also similar when compared with that of FEM
 12 models, as shown in **Figure 5B**.

13 *Table 2. List of the constitutive Ogden coefficients obtained from experimental stress-strain data of each formulation of*
 14 *Sylgard184, Sylgard170 and DowsilEE-3200*

Formulation	μ_1 (MPa)	μ_2	μ_3	α_1	α_2	α_3	D_1 (MPa $^{-1}$)	$D_{2,3}$
Syl184 10:1	-96.70	50.31	47.27	1.71	2.35	0.98	0.02	0
Syl184 15:1	-46.60	23.20	23.92	1.70	2.15	1.19	0.03	0
Syl184 5:1	-12.94	8.76	5.05	1.94	3.23	-0.81	0.09	0
Syl170 1:1	-3.15	1.78	1.76	-2.67	0.31	-5.83	0.39	0
Syl170 1:5	-15.40	7.21	8.52	-2.03	-0.81	-3.35	0.28	0
Syl170 5:1	-35.02	16.30	19.42	-2.14	-0.93	-3.44	0.16	0
DOW 1:1	-17.78	9.10	8.70	0.85	1.12	0.56	2.43	0
DOW 1:1.5	-41.46	21.08	20.42	-0.18	0.24	-0.63	0.78	0
DOW 1:2.5	-38.39	19.17	19.31	-2.46	-1.73	-3.14	0.80	0

15

16

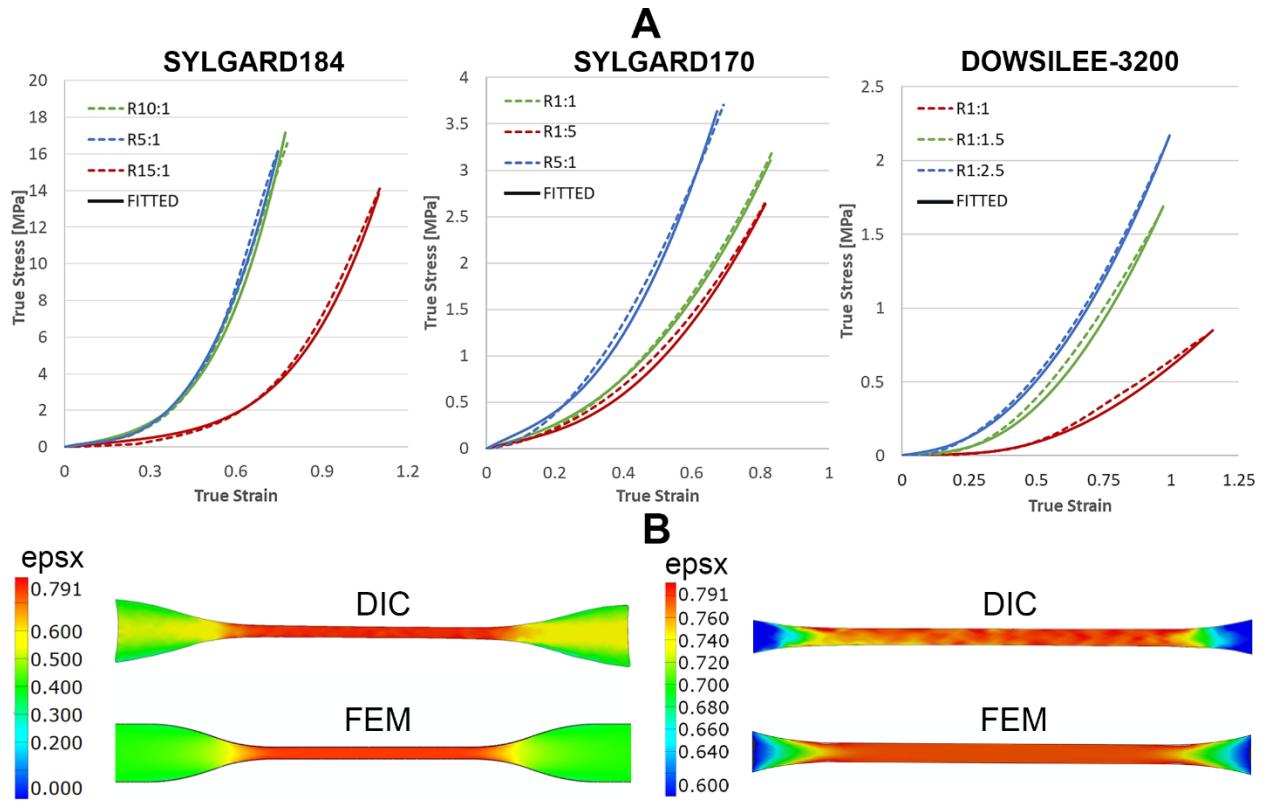


Figure 5. (A) True stress and strain curves of each material and their corresponding numerical model. (B) Comparison of the axial strain (epsx) distribution between the DIC analysis and FEM simulations under the same colour scale on the whole sample (left) and the gauge region (right).

The mechanical behavior of each material under radial pressure is illustrated in **Figure6**, which represents the average values of 30 mesh elements per data set that were selected along the thickness of the vessel. The only formulation that reaches the hyperelastic regime is the Dowsil R1:1, which is the most compliant material considered in this study and undergoes significant degrees of expansion (**Fig6**). It approaches a circumferential stress of 0.5MPa, which corresponds to high levels of strains (0.5-0.9 strain according to Figure 5A). The other materials exhibit similar stress profiles that remain in the elastic region with values that range from 0.1 to 0.18MPa.

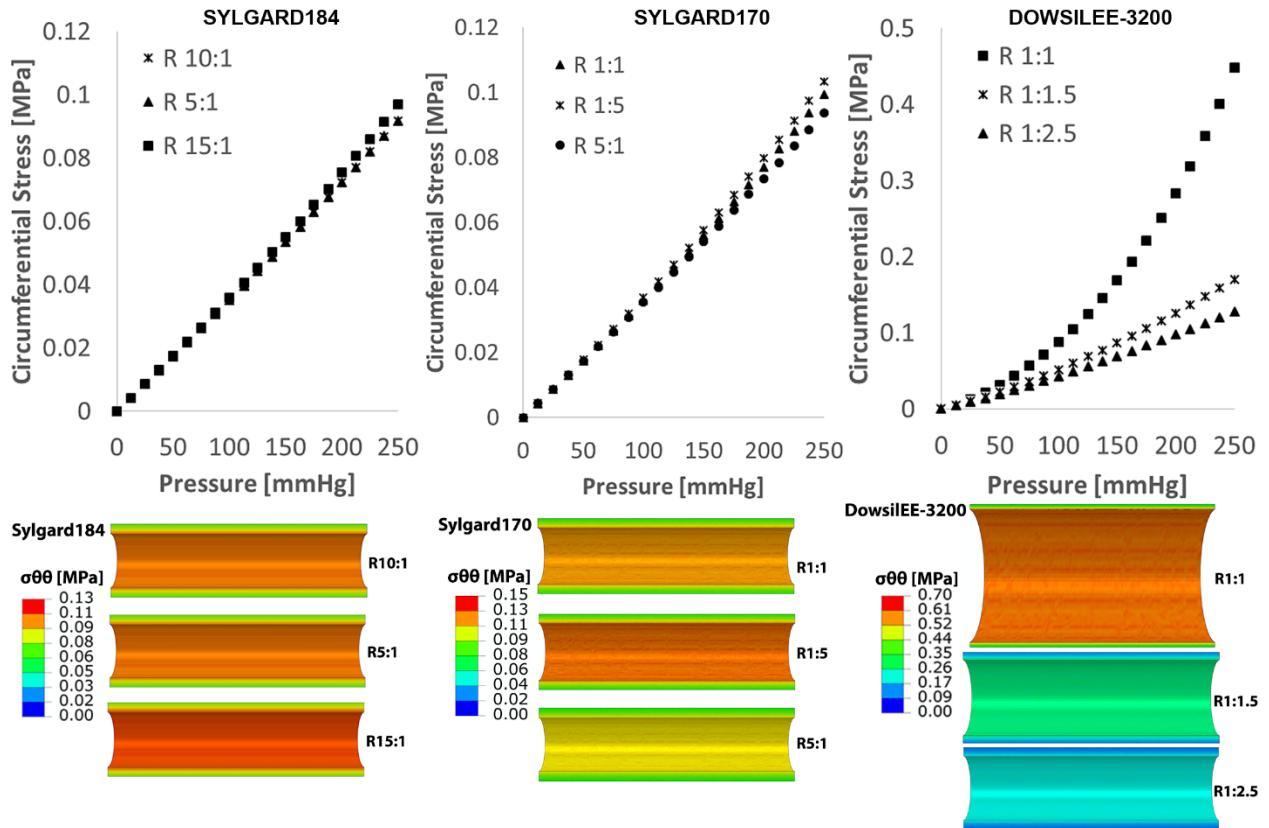


Figure 6. (Top) Stress vs transmural pressure scatter charts for each formulation; (Bottom) Circumferential stress ($\sigma_{\theta\theta}$) distribution on each vessel model. Different color scales were used among Sylgard184, Sylgard170 and DowsilEE-3200.

Discussion

Given Sylgard184 wide range of applications, the tunability of its material properties has been previously studied in terms of morphological features, experimental procedure, curing blends and temperatures. Liu et al. (Liu et al. 2009) documented the effect of the sample thickness on Sylgard184 mechanical properties. The authors demonstrated that a thickness of 200 μm represents the transition point from bulk to thickness-dependent behavior, below which Sylgard184 membranes exhibit 2 to 5-fold increase in stress levels. In this study, we considered 600 μm -thick samples and the stress levels that we obtained are close to those reported by Liu et al. for membranes governed by a bulk behavior.

Other researchers have focused on the effect of varying curing temperatures on the mechanical behavior of Sylgard184. Johnston et al. (Johnston et al. 2014) demonstrated that the material Young's modulus (linear stress-strain behavior at low strains) is directly proportional to the curing temperature, while the maximum strain seems to be inversely proportional to such curing temperature. In the present study, we only focused on one curing temperature for every formulation, but the influence of this factor on Sylgard170 and Dowils EE-3200 might be relevant and worth investigating in the future. In another study, Kim et al. (Kim, Kim, and Jeong 2011) performed uniaxial loadings up to rupture on Sylgard184 samples prepared with different mix ratios. The authors considered blends of 5:1, 10:1 and 15:1 and observed higher stresses and lower strains when increasing the amount of curing agent. The change in strain agrees with what we obtained for ratio 15:1. However, our data show no significant change in ultimate stress regardless of the formulation. We believe this difference originates from the type of stress that is calculated from the raw data. Kim et al. reported the nominal (engineering) stress, which doesn't take into consideration the change in cross-sectional area under stretch, while we were able to derive the True (Cauchy) stress in the sample

1 making use of the DIC technique.

2 Different stress measurements and distinct experimental protocols can potentially be the reason why
3 published data for Sylgard184 fluctuate widely among various studies (Table3). Indeed, the method used
4 to estimate the strain of the sample gauge region plays a relevant role on the accuracy of the results. In the
5 case of dumbbell-shaped geometries, Schneider et al. (Schneider et al. 2008) showed that the deformation
6 of the shouldered sides of the sample has a significant influence on the total strain progression. The authors
7 calculated that the total strain measured automatically by the tensile machine was more than a factor of 2
8 larger than the strain in the test section. This difference appears to remain constant up to 40% strain and so
9 it can be addressed by applying a correction factor. However, for larger deformation regimes this
10 assumption is not valid, and the strain of the sample gauge region should be measured directly, either
11 manually or through video elastography.

12 *Table 3. List of stress and strain measurements reported by different studies of Sylgard184 under uniaxial tensile tests. The*
13 *values listed refer only to formulations that were prepared following the provider's recommendations (mixing ratio 10:1) (ca:*
14 *circa).*

Study	Type of stress	Ultimate stress [MPa]	Strain measurement	Ultimate strain
Mata et al.	Engineering	ca 8	/	/
Liu et al.	Cauchy	ca 25	Logarithmic strain calculated from automatically recorded raw data	ca 140%
Kim et al.	Engineering	ca 1.5	Engineering strain calculated from automatically recorded raw data	ca 160%
Johnston et al.	Engineering	ca 6	Engineering strain calculated from automatically recorded raw data and corrected by a factor of 0.4	ca 110%
Liu et al.	Engineering	ca 9	/	/
Colombo et al.	Engineering	ca 6	Engineering strain from video extensometer	ca 70%
Provider's technical data	Engineering	6.7	/	/

15 Besides Sylgard184, we extended the analysis of varying curing conditions to Sylgard170 and DowsilEE-3200 which show stress and strain levels much similar to those of arterial tissues. We demonstrated that the
16 mechanical behavior of both materials can be controlled by tuning the amount of the base polymer
17 component and cross-linker. In the case of Sylgar170, the relative amount of PartA appears to govern the
18 stiffness and ultimate strength of the material. For DowsilEE-3200, increasing the PartB concentration leads
19 to higher stresses and lower strains. These results reveal the possibility to adjust the curing ratios of these
20 materials to replicate the mechanical properties of specific vascular tissues or arterial layers (i.e. intima,
21 media and adventitia).

22 Multiple research groups have studied the anisotropic response of arterial tissues under tensile tests. Their
23 findings vary broadly due to the heterogeneity of the vascular wall, the type of arteries considered and their
24 relative medical history (Holzapfel, Sommer, and Regitnig 2004; Akyildiz, Speelman, and Gijsen 2014;
25 Walsh et al. 2014). We compared our results with the data reported by Teng et al. (Teng et al. 2009) and
26 Holzapfel et al. (Holzapfel, Sommer, and Regitnig 2004) for carotid and coronary arteries, given their
27 relevance in cardiovascular diseases. These reported values from actual anisotropic vascular tissues in the
28 axial and circumferential directions serve as lower and upper reference limits for comparison against our
29 equivalent isotropic laboratory materials. While the isotropic character of elastomers is a limitation when
30 compared to actual anisotropic tissues, isotropic laboratory models are valuable for a broad range of studies
31 in vascular mechanics research. Future studies may extend the use of the Sylgar170 or DowsilEE-3200 with
32 fibers to transform these materials into anisotropic ones. In addition, we focused our attention on the
33 circumferential stresses and strains, as they are often considered as determinants of plaque vulnerability.
34

1 Sylgard184 exhibits ultimate stretch ratios that are similar to those of carotid and coronary tissues.
2 However, its ultimate strength is too high when compared with the published human tissue data. Every
3 formulation of this material reaches levels of stresses that offset the ultimate strength of arterial layers by
4 5-15 times. This difference makes Sylgard184 an inappropriate laboratory model when trying to reproduce
5 the mechanical failure of arterial tissues under similar ranges of stresses and strains.

6 Sylgard170 also manifests strain levels similar to the data of Teng and Holzapfel. Specifically, ratios 5:1 is
7 the material that most closely approaches the circumferential stretch values of coronary layers. The ultimate
8 stresses are much lower compared to Sylgard184, but they moderately exceed the average values reported
9 for human arteries. However, these levels of stresses appear to lie on the set of values shown by porcine
10 coronary arteries (Lally, Reid, and Prendergast 2004; Noble et al. 2016).

11 DowsilEE-3200 is the most compliant elastomer in this study. It experiences the lowest values of stresses
12 while reaching higher deformations. For this material, Dowsil 1:1.5 is the formulation that best approaches
13 the stress and strain values of the arteries considered. It shows ultimate stresses that are very close to those
14 of carotid intact wall and layers as well as coronary adventitia. However, the average stretch ratio at rupture
15 lies outside the range of arterial tissues, with values that are up to 40% higher than carotid intact wall
16 samples and 10-30% higher than coronary layers.

17 From the stress-strain data, we also derived the material constants of the Ogden strain energy function for
18 each formulation. These values can be used to perform numerical studies of different nature, as they
19 guarantee computational stability for all tensile and compressive strains. We used the constitutive
20 description of the materials to investigate the mechanical response of each formulation under radial pressure
21 by means of FEM simulations. We compared the numerical results of our models to those of common
22 carotid arteries studied by Sommer et al. (Sommer et al. 2010). We found that all material but Dowsil 1:1
23 exhibit a linear increase in stresses up to a pressure of 250mmHg, with maximum values in the range of
24 100-180kPa. These stresses closely replicate those in (Sommer et al. 2010), which span between 100 and
25 175kPa depending on the axial pre-stretch. These results demonstrate that cylindrical tubes made of
26 Sylgard184, Sylgard170 and DowsilEE-3200 (except R1:1) undergo similar intramural stress distributions
27 as common carotid arteries under physiological and supraphysiological hydraulic pressures.

28 Conclusion

29 In the present study, we performed a mechanical characterization and comparative analysis of three
30 potential vascular tissue mimicking-materials, Sylgard184, Sylgard170 and Dowsil EE-3200 under
31 different composition ratio and curing conditions. The average mechanical behavior for each material was
32 then curve-fitted against a constitutive material description based on the 3-term Ogden hyperelastic model,
33 to obtain the parameters characterizing such constitutive model. Numerical simulations were performed to
34 analyze the behavior of the material in a simplified blood vessel under the action of blood pressure. The
35 tensile behavior to rupture was compared against published data of carotid and coronary arteries. On one
36 hand, we demonstrated that Sylgard184 is significantly stiffer than blood vessels, and highly exceed the
37 ultimate tensile strength shown by these blood vessels. Even though Sylgard184 is among the elastomer
38 materials most commonly used for vascular laboratory models, it does not well replicate the tensile
39 properties to rupture of these tissues. On the other hand, Sylgard170 and DowsilEE-3200 are able to better
40 replicate the typical range of stresses and strains of the arteries being considered. We conclude that
41 Sylgard170 and DowsilEE-3200 are easy to use, mechanically tunable, isotropic elastomer materials that
42 can replicate the hyperelastic behavior to rupture of carotid and coronary arteries, to be used as vascular
43 tissue mimicking laboratory models.

44

45

1 **Acknowledgements**

2 Financial support for the conduct of the research was provided by NSF grants CMMI-1662970,
3 MRI-2018485, PSC-CUNY 64696-00 52, and CUNY IRG program. The funding source(s) had no
4 involvement in the study design; in the collection, analysis and interpretation of data; in the writing of the
5 report; and in the decision to submit the article for publication.

6

7 **Declaration of interest:** none

8

9

10

1 **Bibliography**

2 Akyildiz, Ali C., Lambert Speelman, and Frank J H Gijzen. 2014. "Mechanical Properties of
3 Human Atherosclerotic Intima Tissue." *Journal of Biomechanics* 47 (4): 773–83.
4 <https://doi.org/10.1016/j.jbiomech.2014.01.019>.

5 Burke, Allen P, Andrew Farb, Gray T Malcom, and John E Smialek. 2014. "Plaque Rupture and
6 Sudden Death Related Artery Disease" 281 (10): 921–26.

7 Choi, Jung-Yeol, Dae-Woong Park, and Tae Sung Oh. 2014. "Variation of Elastic Stiffness of
8 Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging
9 Applications." *Journal of the Microelectronics and Packaging Society* 21 (4): 125–31.
10 <https://doi.org/10.6117/kmeps.2014.21.4.125>.

11 Colombo, A., H. Zahedmanesh, D. M. Toner, P. A. Cahill, and C. Lally. 2010. "A Method to
12 Develop Mock Arteries Suitable for Cell Seeding and In-Vitro Cell Culture Experiments."
13 *Journal of the Mechanical Behavior of Biomedical Materials* 3 (6): 470–77.
14 <https://doi.org/10.1016/j.jmbbm.2010.04.003>.

15 Corti, Andrea, Tariq Shameen, Shivang Sharma, Annalisa De Paolis, and Luis Cardoso. 2022.
16 "Biaxial Testing System for Characterization of Mechanical and Rupture Properties of
17 Small Samples." *HardwareX* 12: e00333. <https://doi.org/10.1016/j.ohx.2022.e00333>.

18 Doyle, Barry J., Aidan J. Cloonan, Michael T. Walsh, David A. Vorp, and Timothy M.
19 McGloughlin. 2010. "Identification of Rupture Locations in Patient-Specific Abdominal
20 Aortic Aneurysms Using Experimental and Computational Techniques." *Journal of
21 Biomechanics* 43 (7): 1408–16. <https://doi.org/10.1016/j.jbiomech.2009.09.057>.

22 Doyle, Barry J., Timothy J. Corbett, Aidan J. Cloonan, Michael R. O'Donnell, Michael T.
23 Walsh, David A. Vorp, and Timothy M. McGloughlin. 2009. "Experimental Modelling of
24 Aortic Aneurysms: Novel Applications of Silicone Rubbers." *Medical Engineering and
25 Physics* 31 (8): 1002–12. <https://doi.org/10.1016/j.medengphy.2009.06.002>.

26 Drucker, D.C. 1959. "A Definition of Stable Inelastic Material." *J. Appl. Mech.*

27 Fischer, Sarah C.L., Klaus Krutwig, Vera Bandmann, René Hensel, and Eduard Arzt. 2017.
28 "Adhesion and Cellular Compatibility of Silicone-Based Skin Adhesives." *Macromolecular
29 Materials and Engineering* 302 (5): 1–11. <https://doi.org/10.1002/mame.201600526>.

30 Fratzl, Peter. 2008. *Collagen: Structure and Mechanics*. Edited by Peter Fratzl. Springer,
31 Boston, MA. [https://doi.org/https://doi.org/10.1007/978-0-387-73906-9_1](https://doi.org/10.1007/978-0-387-73906-9_1).

32 Hecker, Louise, Keith Baar, Robert G. Dennis, and Khalil N. Bitar. 2005. "Development of a
33 Three-Dimensional Physiological Model of the Internal Anal Sphincter Bioengineered in
34 Vitro from Isolated Smooth Muscle Cells." *American Journal of Physiology -
35 Gastrointestinal and Liver Physiology* 289 (2 52-2): 188–96.
36 <https://doi.org/10.1152/ajpgi.00335.2004>.

37 Holzapfel, Gerhard A, Gerhard Sommer, Christian T Gasser, Peter Regitnig, A Gerhard, Gerhard
38 Sommer, Christian T Gasser, and Peter Regitnig. 2005. "Determination of Layer-Specific
39 Mechanical Properties of Human Coronary Arteries with Nonatherosclerotic Intimal

1 Thickening and Related Constitutive Modeling.” *Am J Physiol Heart Circ Physiol* 289:
2 2048–58. <https://doi.org/10.1152/ajpheart.00934.2004>.

3 Holzapfel, Gerhard A, Gerhard Sommer, and Peter Reginig. 2004. “Anisotropic Mechanical
4 Properties of Tissue Components in Human Atherosclerotic Plaques.” *Journal of*
5 *Biomechanical Engineering* 126 (5): 657–65. <https://doi.org/10.1115/1.1800557>.

6 Jankowska, Małgorzata A., Magdalena Bartkowiak-Jowsa, and Romuald Bedzinski. 2015.
7 “Experimental and Constitutive Modeling Approaches for a Study of Biomechanical
8 Properties of Human Coronary Arteries.” *Journal of the Mechanical Behavior of*
9 *Biomedical Materials* 50: 1–12. <https://doi.org/10.1016/j.jmbbm.2015.05.021>.

10 Johnston, I D, D K McCluskey, C K L Tan, and M C Tracey. 2014. “Mechanical
11 Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering.” *J.*
12 *Micromech. Microeng.* 24 (3). <https://doi.org/10.1088/0960-1317/24/3/035017>.

13 Jones, Elizabeth M C, Mark A Iadicola, Rory Bigger, Benoît Blaysat, Christofer Boo, Manuel
14 Grewer, Jun Hu, et al. 2018. “A Good Practices Guide for Digital Image Correlation.”
15 *International Digital Image Correlation Society*, 94.

16 Karimi, Alireza, Mahdi Navidbakhsh, and Reza Razaghi. 2014. “A Finite Element Study of
17 Balloon Expandable Stent for Plaque and Arterial Wall Vulnerability Assessment.” *Journal*
18 *of Applied Physics* 116 (4). <https://doi.org/10.1063/1.4891019>.

19 Kim, Tae Kyung, Jeong Koo Kim, and Ok Chan Jeong. 2011. “Measurement of Nonlinear
20 Mechanical Properties of PDMS Elastomer.” *Microelectronic Engineering* 88 (8): 1982–85.
21 <https://doi.org/10.1016/j.mee.2010.12.108>.

22 Kural, Mehmet H., Mingchao Cai, Dalin Tang, Tracy Gwyther, Jie Zheng, and Kristen L. Billiar.
23 2012. “Planar Biaxial Characterization of Diseased Human Coronary and Carotid Arteries
24 for Computational Modeling.” *Journal of Biomechanics* 45 (5): 790–98.
25 <https://doi.org/10.1016/j.jbiomech.2011.11.019>.

26 Kyriacos, Deny. 2017. “High-Temperature Engineering Thermoplastics.” *Brydson’s Plastics*
27 *Materials: Eighth Edition*, 545–615. <https://doi.org/10.1016/B978-0-323-35824-8.00021-9>.

28 Lally, C., A. J. Reid, and Patrick J. Prendergast. 2004. “Elastic Behavior of Porcine Coronary
29 Artery Tissue under Uniaxial and Equibiaxial Tension.” *Annals of Biomedical Engineering*
30 32 (10): 1355–64. <https://doi.org/10.1114/B:ABME.0000042224.23927.ce>.

31 Lawlor, Michael G., Michael R. O’Donnell, Barry M. O’Connell, and Michael T. Walsh. 2011.
32 “Experimental Determination of Circumferential Properties of Fresh Carotid Artery
33 Plaques.” *Journal of Biomechanics* 44 (9): 1709–15.
34 <https://doi.org/10.1016/j.jbiomech.2011.03.033>.

35 Liu, Miao. 2007. “Characterization Study of Bonded and Unbonded Polydimethylsiloxane
36 Aimed for Bio-Micro-Electromechanical Systems-Related Applications.” *Journal of*
37 *Micro/Nanolithography, MEMS, and MOEMS* 6 (2): 023008.
38 <https://doi.org/10.1117/1.2731381>.

39 Liu, Miao, Jianren Sun, and Quanfang Chen. 2009. “Influences of Heating Temperature on
40 Mechanical Properties of Polydimethylsiloxane.” *Sensors and Actuators, A: Physical* 151

1 (1): 42–45. <https://doi.org/10.1016/j.sna.2009.02.016>.

2 Liu, Miao, Jianren Sun, Ying Sun, Christopher Bock, and Quanfang Chen. 2009. “Thickness-
3 Dependent Mechanical Properties of Polydimethylsiloxane Membranes.” *Journal of
4 Micromechanics and Microengineering* 19 (3). <https://doi.org/10.1088/0960-1317/19/3/035028>.

6 Macrae, R. A., K. Miller, and B. J. Doyle. 2016. “Methods in Mechanical Testing of Arterial
7 Tissue: A Review.” *Strain* 52 (5): 380–99. <https://doi.org/10.1111/str.12183>.

8 Maher, Eoghan, Arthur Creane, Sherif Sultan, Niamh Hynes, Caitríona Lally, and Daniel J.
9 Kelly. 2009. “Tensile and Compressive Properties of Fresh Human Carotid Atherosclerotic
10 Plaques.” *Journal of Biomechanics* 42 (16): 2760–67.
11 <https://doi.org/10.1016/j.jbiomech.2009.07.032>.

12 Martin, David. 2013. “Finite Element Analysis of Balloon-Expandable Coronary Stent
13 Deployment : Influence of Angioplasty Balloon Configuration,” 1161–75.
14 <https://doi.org/10.1002/cnm.2557>.

15 Mata, Alvaro, Aaron J. Fleischman, and Shuvo Roy. 2005. “Characterization of
16 Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems.” *Biomedical
17 Microdevices* 7 (4): 281–93. <https://doi.org/10.1007/s10544-005-6070-2>.

18 Mulvihill, J. J., E. M. Cunnane, S. M. McHugh, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh.
19 2013. “Mechanical, Biological and Structural Characterization of in Vitro Ruptured Human
20 Carotid Plaque Tissue.” *Acta Biomaterialia* 9 (11): 9027–35.
21 <https://doi.org/10.1016/j.actbio.2013.07.012>.

22 Noble, Christopher, Nicole Smulders, Nicola H. Green, Roger Lewis, Matt J. Carré, Steve E.
23 Franklin, Sheila MacNeil, and Zeike A. Taylor. 2016. “Creating a Model of Diseased Artery
24 Damage and Failure from Healthy Porcine Aorta.” *Journal of the Mechanical Behavior of
25 Biomedical Materials* 60: 378–93. <https://doi.org/10.1016/j.jmbbm.2016.02.018>.

26 Ogden, Ray W. 1997. *Non-Linear Elastic Deformations*. Dover Publications.

27 Payan, Yohan, and Jacques Ohayon. 2017. *Biomechanics of Living Organs. Biomechanics of
28 Living Organs*. 1st ed. Elsevier. <https://doi.org/10.1016/c2015-0-00832-2>.

29 Roth, Gregory A., George A. Mensah, Catherine O. Johnson, Giovanni Addolorato, Enrico
30 Ammirati, Larry M. Baddour, Noel C. Barengo, et al. 2020. “Global Burden of
31 Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study.”
32 *Journal of the American College of Cardiology* 76 (25): 2982–3021.
33 <https://doi.org/10.1016/j.jacc.2020.11.010>.

34 Schiavone, A., L. G. Zhao, and A. A. Abdel-Wahab. 2014. “Effects of Material, Coating, Design
35 and Plaque Composition on Stent Deployment inside a Stenotic Artery - Finite Element
36 Simulation.” *Materials Science and Engineering C* 42: 479–88.
37 <https://doi.org/10.1016/j.msec.2014.05.057>.

38 Schneider, F., T. Fellner, J. Wilde, and U. Wallrabe. 2008. “Mechanical Properties of Silicones
39 for MEMS.” *Journal of Micromechanics and Microengineering* 18 (6).
40 <https://doi.org/10.1088/0960-1317/18/6/065008>.

1 Sommer, Gerhard, Peter Regitnig, Lukas Költringer, and Gerhard A. Holzapfel. 2010. "Biaxial
2 Mechanical Properties of Intact and Layer-Dissected Human Carotid Arteries at
3 Physiological and Supraphysiological Loadings." *American Journal of Physiology - Heart*
4 *and Circulatory Physiology* 298 (3): 898–912. <https://doi.org/10.1152/ajpheart.00378.2009>.

5 Teng, Zhongzhao, Dalin Tang, Jie Zheng, Pamela K. Woodard, and Allen H. Hoffman. 2009.
6 "An Experimental Study on the Ultimate Strength of the Adventitia and Media of Human
7 Atherosclerotic Carotid Arteries in Circumferential and Axial Directions." *Journal of*
8 *Biomechanics* 42 (15): 2535–39. <https://doi.org/10.1016/j.jbiomech.2009.07.009>.

9 Walsh, M. T., E. M. Cunnane, J. J. Mulvihill, A. C. Akyildiz, F. J.H. Gijsen, and G. A.
10 Holzapfel. 2014. "Uniaxial Tensile Testing Approaches for Characterisation of
11 Atherosclerotic Plaques." *Journal of Biomechanics* 47 (4): 793–804.
12 <https://doi.org/10.1016/j.jbiomech.2014.01.017>.

13 World Health Organization. 2020. "Global Health Estimates for 2020: Deaths by Cause, Age,
14 Sex, by Country and by Region, 2000-2019." *Who*, no. December: 1–59.
15 <https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death>.

17 Zahedmanesh, Houman, and Caitríona Lally. 2009. "Determination of the Influence of Stent
18 Strut Thickness Using the Finite Element Method: Implications for Vascular Injury and in-
19 Stent Restenosis." *Medical and Biological Engineering and Computing* 47 (4): 385–93.
20 <https://doi.org/10.1007/s11517-009-0432-5>.

21