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Abstract—We automatically extract resilience events and 
novel outage and restore processes from standard transmission 
utility detailed outage data.  This new processing is applied to 
the outage data collected in NERC’s Transmission Availability 
Data System to introduce and analyze statistics that quantify 
resilience of the transmission system against extreme weather 
events. These metrics (such as outage rate and duration, number 
of elements outaged, rated capacity outaged, restore duration, 
maximum simultaneous outages, and element-days lost) are 
calculated for all large weather-related events on the North 
American transmission system from 2015 to 2020 and then by 
extreme weather type that caused them such as hurricanes, 
tornadoes, and winter storms. Finally, we study how 
performance of the system changed with respect to the resilience 
metrics by season and year.  

Keywords—Resilience, statistics, reliability, restoration, 
metrics 

I. INTRODUCTION 
Extreme weather is a major challenge to transmission 

system resilience [1, 2], accounting for most of the largest 
transmission system events in the North American bulk-power 
system [3-5]. Therefore, extracting these events from recorded 
automatic outages, computing resilience metrics for each 
event, and examining the statistics of these metrics is of great 
interest [5-7], especially since climate change is slowly 
increasing the severity and frequency of extremes of weather. 
Our focus is the largest resilience events with 20 or more 
outages, since these large events, although less frequent than 
smaller events, have the highest impact on the transmission 
system, typically causing widespread interruptions of 
electrical supply in the USA and Canada.  

There are many variations of frameworks and definitions 
of resilience in the literature, all of which include some 
description of the response of the system to disruptions and 
unusually stressed conditions [1, 2, 8-11]. For example, 
according to [11], "Power system resilience is the ability to 
limit the extent, severity and duration of system degradation 
following an extreme event." For the practical purpose of 
assessing transmission system resilience to weather from 
observed utility data, we focus on the outages and restores of 
transmission elements during extreme weather events. We 
need to define these weather-related resilience events so that 
they can be automatically extracted from the data, and then 

process the outages and restores during each resilience event 
so that standard metrics for each event can be calculated. 

In particular, we process the automatic outages that are 
collected in NERC's Transmission Availability Data System 
(TADS) from 2015 to 2020 in a new way to extract the 
resilience events with 20 or more outages that are caused by 
extreme weather. This systematic novel processing uses, 
instead of stages of resilience, processes of resilience that can 
overlap in time. Different aspects of each resilience event are 
studied by its outage process, its restore process, and its 
performance process, as previously described for distribution 
systems in [12]. These processes are easily defined: As the 
event proceeds, the outage process tracks the cumulative 
number of outages, the restore process tracks the cumulative 
number of restores of outages, and the performance process 
tracks the cumulative number of unrestored outages. Each of 
these processes has useful metrics summarizing aspects of the 
transmission system response to the extreme weather. By 
analyzing these metrics, we can describe the typical values 
and statistical forms of these metrics and their correlations. 
We also analyze the dependence of the metrics on season, 
year, and type of weather. Overall, our new processing of 6 
years of detailed outage data quantifies aspects of how the 
transmission system has responded in the larger events caused 
by extreme weather. 

II. OUTAGE DATA AND RESILIENCE EVENTS 

A. TADS Outage Data 
NERC has been collecting North American automatic 

(momentary and sustained) outage data for transmission 
system elements operating at 200 kV and above since January 
1, 2008. Transmission elements reportable in TADS are: 1) 
AC circuit (overhead and underground); 2) transformer 
(excluding generator step-up units); 3) DC circuit (one pole of 
an overhead or underground DC line that is bound by AC/DC 
terminal on each end); and 4) AC/DC back-to-back converter 
[13]. In 2015, two additional voltage classes were added –
sustained automatic outages of TADS elements operating at 
less than 100 kV and sustained automatic outages of TADS 
elements operating at 100 to 199 kV. All automatic outages 
for all TADS elements reported in TADS from 2015 to 2020 
(~62k outages overall) are used in outputs for an outage-
grouping algorithm developed to identify resilience events as 
described next. 



B. Algorithm that Defines Resilience Events 
For each interconnection, the 2015-2020 automatic 

outages in TADS are grouped together into resilience events 
based on the bunching and overlaps of their starting times and 
durations. The algorithm for defining and automatically 
extracting events, introduced in [7], is as follows: Every 
outage in an event has to either start within five minutes of a 
previous outage in the event or overlap in duration with at least 
one previous outage in the event that has a difference in 
starting time not exceeding one hour. In applying this 
algorithm, repeated momentary outages of the same element 
are neglected if they occur within 5 minutes of each other. If 
an outage cannot be grouped together with any other outage, 
it is placed in an event of size one by itself. However, in this 
paper we only analyze the large weather-related events with 
20 or more outages. We define a weather-related event as any 
event that contains an automatic outage with a TADS 
initiating or sustained cause code of Fire, Weather excluding 
lightning, Lightning or Environmental [13]. 

C. Overview of 2015-2020 Large Weather-Related Events 
The TADS data analyzed has 69 weather-related events 

involving 20 or more outages of TADS elements. The event 
size ranges from 20-352 outages and from 4,223-120,064 
MVA in the total rated transmission capacity of all the 
elements outaged. The events last from 3 hours up to 246 days. 
Events were categorized by the primary driving weather: 
Thunderstorm, wind (29), Winter Weather, snow (18), 
Hurricane (12), Tornado (8), and Fire (2). TABLE I.  shows a 
summary of the 10 largest events analyzed. 

TABLE I.  2015-2020 TEN LARGEST WEATHER EVENTS  

 

III. OUTAGE, RESTORE, AND PERFORMANCE 
PROCESSES 

The progress of a TADS event can be tracked by the outage, 
restore and performance processes shown in Fig. 1. The 
vertical axis either counts the elements outaged or indicates 
the MVA transmission capacity outaged, which is the total 
MVA rating of the elements outaged.  

First, we consider the processes tracked by the number of 
elements outaged. Then the outage process is the cumulative 
number of elements that have been outaged by a given time in 
the event. Similarly, the restore process is the cumulative 
number of elements that have been restored by a given time in 
the event. Both the outage and restore processes start at zero 
at the start of the event and increase to the total number of 
elements outaged in the event. The performance process is the 
cumulative number of elements that remain outaged at a given 
time in the event, with the sign flipped so that more outages 
cause the performance curve to decrease. That is, the 
performance process is the negative of the cumulative number 
of outages that have not been restored. This form of 
performance process is standard in resilience studies [2, 
8,12,13]. It turns out that the performance process is equal to 

the restore process minus the outage process [8]. It is also 
straightforward to start with the performance process for an 
event and separate it into the outage and restore processes [8].  

The corresponding definitions of the processes when the 
event is tracked by MVA capacity outaged are obtained 
simply by replacing “number of elements outaged” in the 
preceding paragraph with “MVA capacity outaged”. (If 
quantities other than number of outages or MVA capacity 
outaged are available, then similar processes for these other 
quantities are easily defined.) 

 
Fig. 1. Outage, restore, and performance processes 

For large weather-related transmission system events, the 
outage process typically increases rapidly at the beginning of 
the event and maintains a plateau as the weather system 
passes. The typical restore process generally begins increasing 
rapidly shortly after the event starts, and then increases more 
slowly as the number of elements out decreases. After around 
95% of the restores are completed, the restore curve often has 
a long tail where the last few elements require a very long time 
to restore. The automated extraction of events and finding the 
outage, restore and performance processes for each event are 
key to enabling the definition of resilience metrics in the next 
section. 

IV. RESILIENCE METRICS STATISTICS 

TABLE II.  RESILIENCE METRICS FOR LARGE WEATHER EVENTS 

 

Next, we calculate and analyze statistics for the 3 
processes defined in Section III, with the main results 

Start Date Intercon
nection Event Name/Exteme Weather Type

Event Size 
(Number of  
Outages)

Event 
Duration 
Days

Transmission 
Capacity 
(MVA)

9/10/17 Eastern Hurricane Irma/Hurricane 352 19.3 120064
10/8/16 Eastern Hurricane Matthew/Hurricane 197 58.8 72866
10/28/20 Eastern Hurricane Zeta/Hurricane 148 40.7 55323
11/17/15 Western Strong wind storms/Thunderstorm, wind 143 5.9 45578
4/12/20 Eastern Easter Tornado/Tornado 111 16.0 39373
8/4/20 Eastern Hurricane Isaias/Hurricane 107 9.4 43191
4/30/17 Eastern Heavy thunderstorms/Thunderstorm, wind 102 246.0 39040
10/10/18 Eastern Hurricane Michael/Hurricane 72 28.2 22024
12/16/15 Eastern Wide-spread snowstorms/Winter weather, snow 62 1.5 23905
8/10/20 Eastern Windstorms/Thunderstorm, wind 58 13.0 19308

Performance process 

Outage process

Restore process

(cumulative unrestored elements out over time)

(cumulative restores over time)

(cumulative outages over time)

Process Event Statistics Mean Std Dev Minimum Maximum Median 95th Pctl
Fitted 

distribution
Event size (# outages) 44.9 50.0 20 352 27 143 No good fit
Miles affected 1175 1173 233 6461 850 3638 Lognormal 
MVA affected 17165 18514 4223 120064 10769 55323 Lognormal 
TADS elem affected 38.6 42.5 11 295 25 117 No good fit
Outage process 
duration Hrs 6.3 5.3 0.9 35.2 4.7 15.0 No good fit
Outage rate (elem/Hr) 7.46 3.76 3.4 26.7 6.4 14.5 Lognormal 
Outage rate (MVA/Hr) 3008 2765 997 22260 2220 6343 Lognormal
Restore Process 
Duration Days 14.5 33.1 0.11 246.0 4.6 58.8 Lognormal 
Time to First Restore 
Minutes 46 51 0 208 31 169 Exponential
Time to restore 95% 
outages Days 3.9 5.4 0.05 38.2 2.3 12.4 Lognormal 
Time to restore 95% 
MVA Days 4.2 6.3 0.05 39.8 2.2 17.1  Lognormal
% Event Duration to 
Restore 95%outages 58% 31% 3% 100% 63% 100% No good fit
% Event Duration to 
Restore 95% MVA 58% 33% 1% 100% 61% 100% No good fit
EventDuration Days 14.6 33.1 0.13 246 4.6 58.8  Lognormal
Max Elemements Out 26.72 28.19 7 181 17 69  Lognormal
Max MVA Out 9724 10721 1870 60133 6283 32406  Lognormal
Element-Days Lost 59 104 0.34 558 18.7 336.9  Lognormal
MVA-Days Lost 21394 39499 73 241730 5535 105772  LognormalPe
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summarized in Table II. These resilience metrics are discussed 
in detail below.  

Table III provides averages by extreme weather type for 
selected statistics listed in Table II.   

TABLE III.  AVERAGE METRICS BY WEATHER TYPE 

 
A. Outage Process 
The metrics for the outage process quantify the impact of 

extreme weather on the transmission system elements. 

The event size is defined as the number of outages in the 
event. The event size ranges from 20 to 352, with the largest 
events caused by hurricanes (Tables I, III). The survival 
function of the distribution of the event size is shown in Fig 2. 
The straight-line form of the log-log plot in Fig. 2 indicates a 
heavy-tailed, power law distribution, implying that although 
the larger events are rarer, they can be expected to occur 
occasionally; the largest events are not outliers or “perfect 
storms”. Because of multiple outages of the same element that 
may occur during an event, the number of distinct TADS 
elements affected by the event is often smaller than the event 
size. 

There are 3095 outages grouped into the 69 large weather 
events with 20 or more outages. It is noteworthy that these 
3095 outages, that cause the largest disruptions in the 
transmission system, comprise less than 5% of all 2015-2020 
automatic outages. Outages of all types of TADS elements are 
included in the large events, with the vast majority being 
outages of ac circuits.  

 
Fig. 2. Distribution of number of outages in laarge weather events shown 

as a survival function. Note the log-log axes scales. 

Some of the metrics may describe similar aspects of 
events, and this can be quantified by examining the 
correlations between metrics. The event size is highly 
positively correlated with the number of elements, MVA 
capacity, and Miles of transmission line outaged (p-
values<0.0001, Pearson’s correlation coefficients>0.91). The 
correlation is particularly strong between the event size and 
the number of TADS elements, with the linear relationship 
expressed by (1):  

 TADS Elements=0.84*Number of Outages+0.76+e, (1) 

where the random error ε accounts for less than 2% in 
variability of the number of TADS elements. This means that 
the event size can effectively predict the number of TADS 
elements, and (less precisely) both the Miles and MVA 
capacity outaged.  

Further, the event size and the outage process duration are 
also strongly correlated, with the number of outages roughly 
proportional to the outage process duration. In addition, the 
element- and MVA capacity-based outage processes for the 
large events confirm that during events, outages occur at a 
nearly constant outage rate (elements per hour and MVA per 
hour, which are strongly correlated). There is no significant 
correlation between event size and the outage rates. For 
example, the greatest outage rate of 26.7 Elem/h reported for 
a relatively small Thunderstorm/wind event can be explained 
by the fast-moving weather when the 24 outages occurred in 
quick succession over 54 minutes. In addition, the MVA 
capacity-based outage rate depends on the voltage mix of the 
area hit by the extreme weather. 

Analysis of the outage metrics by extreme weather type 
finds that hurricanes caused statistically significantly larger 
events (with the average size of 93 outages) than other weather 
types, while Tornado, Fire, Thunderstorm and wind, Winter 
weather events had similar mean sizes between 34 and 37 
outages. The same holds true for the outage metrics highly 
correlated with the event size as described above in this 
section. There were no significant differences in outage 
process duration and the outage rates (in Elem/h and MVA/h) 
between the weather types. 

B. Restore Process  
The next group of the resilience metrics is derived from 

the restore process, and their parameters are listed in Table I. 
Typically, the restore process starts quickly after the outage 
process started. Therefore, the restore process duration almost 
coincides with the event duration. However, there is no strong 
correlation between restore process duration and event size. 

Usually, the first outage is restored within 30-50 minutes, 
but for several events, the time to first restore was zero. The 
longest time to the first restore (~3.5 hours) was during 
Hurricane Laura (August 2020). Time to first restore is 
uncorrelated with any other resilience metric. 

For all events, the outage process is shorter than the restore 
process. Unlike outages, restores do not occur at a constant 
rate. The restore process in Fig.1 is typical in that restores start 
at a fast rate, then slow down until finally a few (sometimes 
one) elements remain out for days until the event end. This 
shape of a restore process implies that the system can be 
“almost” restored or “effectively” restored long before the last 
outage ends. Generally these few remaining elements are 
outaged either due to inaccessibility of a portion of the line, 
damaged structure or equipment or, in some cases, a utility 
postpones a restoration of a single remaining element (or few 
elements) after all other outages in the large event are restored 
because this outaged element is considered not critical for 
reliability of the grid. To measure the critical partial 
restoration duration, we introduce Time to Restore 95% of 
elements and Time to restore 95% of MVA.  These metrics do 
not necessarily coincide but they are strongly correlated. Table 
1 informs that both Times are much shorter than the complete 
restoration (i.e. the restore process duration).  

Average Statistics Hurricane Fire Thunderstorm, wind Tornado Winter weather
Event Size 92.7 36.5 34.6 38.4 33.6
Outage Process Duration (Hrs) 10.7 7.2 4.8 7.3 5.3
MaxElemOut 57.3 23.0 21.7 25.6 15.9
Timeto95%elemRestored (Hrs) 135.4 472.1 68.4 153.7 47.0
 Element-Days Lost 148.4 116.9 45.6 52.8 19.7



This property can be further quantified by Percent of event 
duration to restore 95% outages (MVA). The last two metrics 
are negatively (but not strongly) correlated with the event size 
and the event duration: all 10 events in which it took longer 
than 95% of event duration to restore 95% of elements are less 
than 35 outages large. In contrast, the largest events caused by 
hurricanes usually have shorter partial restore duration relative 
to their total duration. 

Analysis of the restore process metrics by extreme weather 
type found no statistically significant differences between 
their means for events caused by different weather types due 
to a huge variability in restoration duration and/or small 
samples. Noteworthy is an observation that recovery does not 
as strongly depend on the event size as on the weather type. 
For example, events caused by a tornado are on average 
significantly smaller than events caused by hurricanes (37 
outages versus 93 outages) but the times to first restore and 
the times to restore 95% of elements and 95% of MVA after 
tornadoes are greater than for hurricanes (and for other 
extreme weather types). One of the reasons could be that while 
a tornado usually affects a smaller area than a hurricane, it may 
be more destructive and damaging and this slows down 
restoration.    

C. Performance Process  
The final group of resilience metrics is derived from the 

performance process, and their parameters are listed in Table 
I.  

As mentioned above, the event duration and the restore 
process duration virtually coincide (p-value=1, Pearson’s 
correlation coefficient=1.00), since they differ by the time to 
first restore which is negligibly short compared with both of 
them. The event duration is weakly correlated with the event 
size and with each of the resilience metrics that are linearly 
dependent on the event size as described in Section IVA.  
Time to Restore 95% of elements and Time to restore 95% of 
MVA are only weakly correlated with the event duration—
this should be expected because a restore process is usually 
not linear.  

The Maximum number of elements out and the Maximum 
MVA capacity out are the negative of the nadirs (the values at 
minimum points) of the element- and capacity-based 
performance curves, respectively. They represent the worst 
degradation level attained during an event and as such 
quantify an ability of the system to withstand and absorb an 
extreme weather event. The nadirs are reached early in an 
event, while outages are occurring, and they are determined 
by an interplay between outage and restore rates. The Maxima 
are strongly correlated with the event size and weakly 
correlated with the event duration.  The correlation is 
particularly strong between the event size and Maximum 
number of elements out, with the linear relationship expressed 
by (2): 

 MaxElemOut=0.54*Number of Outages+2.5+e1, (2) 

where the random error e1 accounts for less than 8% in 
variability of the Maximum number of elements out. This 
means that the event size can satisfactorily predict the most 
degraded state of the system during the event as measured by 
the number of transmission elements out. Similarly, but less 
precisely, the MVA capacity outaged predicts the Maximum 
MVA capacity outaged.   

The Element-Days lost and the MVA Capacity-Days lost 
are another pair of metrics calculated from their respective 
performance processes as the area between the time (x) axis 
and the performance curve. Each of these metrics is correlated 
with event size and event duration. The April 2017 
Thunderstorm/wind event in the East with the greatest 
duration of 246 days also has the largest Element-Day loss 
(558) and the MVA-Day loss (241,730) over the six years, 
followed by hurricanes Matthew, Irma, and Michael.  

Analysis of the performance metrics by extreme weather 
type found no statistically significant differences between the 
event duration means, mostly due to a huge variability in event 
duration for each group. For events caused by hurricanes, the 
maximum number of elements out and the element-days lost 
were on average statistically significantly greater than for 
other groups. This is not surprising because of the strong 
correlation between each of these metrics and the event size.  

D. Fitted Distributions for Resilience Metrics 
Along with parameters of the empirical distributions of the 

metrics Table 1 lists the distributions providing a good fit to 
the empirical distributions. The exponential distribution with 
the mean and the standard deviation of 46 minutes is a good 
fit for Time to the first restore.  

The remaining metric distributions for which a good fit is 
found can be approximated by a lognormal distribution. Due 
to large standard deviations and very heavy tails of the fitted 
distributions, they are not very useful for practical purposes 
(e.g. a confidence interval for the mean or a quantile at a 
standard confidence level is too wide to use for forecasting or 
modeling [14]).  

V. RESILIENCE METRICS BY YEAR 
We calculate the resilience metrics by year and track their 

changes. An event is assigned to a year from 2015 to 2020 as 
determined by the event start date.  

 
Fig. 3. Changes by year for means of outage process metrics 

Fig. 3 shows the means of selected resilience metrics for 
the outage process. We omit the metrics strongly correlated 
with the event size as described in Section IV except for the 
Number of distinct TADS elements outaged in the event. The 
almost perfect correlation is illustrated in Fig. 3 by blue and 
orange lines. The year 2017 had the largest transmission event 
over the 6 years, Hurricane Irma, along with several disruptive 
winter storms in the East and the West, which together account 
for the spikes in the 2017 resilience metrics shown in Figs. 3-
5. The years 2018 and 2019 had relatively small weather 
events. In 2020, there occurred several highly impactful 
events (Hurricanes Zeta, Isaias, Laura, Easter Tornado, Ice 



storms in Texas and the East) that drove the 2020 averages 
higher. Note that the 2020 average outage rate was also 
unusually high due to several events with extremely fast 
outage process (e.g. the summer 2020 Thunderstorm/wind 
event in the East when all outages started within one hour).  

 
Fig. 4. Changes by year for means of restore process metrics 

Fig. 4 shows the mean resilience metrics for restore 
processes. The sets of bars illustrate differences between 
durations of the complete restoration and the 95% restoration 
for each year. In 2017, the partial critical restoration times 
were similar to those for other years even though the 2017 
total restorations were significantly longer. In 2020, the 
averages of the restoration duration were similar to 2019 
despite much larger average event size. However, we caution 
that the variability of the event duration due to its dependence 
on the timing of the last restore makes it an unreliable metric.  
 

 
Fig. 5. Changes by year for means of performance process metrics 

Next, Fig.5 shows the averages of the resilience metrics 
for the performance process, except for the event duration, 
which nearly coincides with the restore process duration 
shown in Fig.4. One can see two pairs of strongly correlated 
metrics: the maximum number of elements out and the 
maximum MVA out (the negative of the nadirs of the 
performance processes) and the element-days lost and the 
MVA-days lost. Both pairs are also correlated with the event 
size and the event duration.  

VI. SEASONAL ANALYSIS OF METRICS 
The set of 2015-2020 large weather events is divided in 

four subsets based on their start date: Winter events 
(December-February), Spring events (March-May), Summer 
events (June-September), and Fall events (October-
November), and distributions of resilience metrics by season 

is analyzed and compared. Because of large variability of the 
resilience metrics, no statistically significant differences 
among means and medians are detected; the means for 
selected metrics are shown in Table IV.   

TABLE IV.  RESILIENCE METRICS BY SEASON 

 

Only 11 events occurred in winter; typically, they have 
smaller size, duration, faster total and partial restorations as 
shown in Table IV. Summer and fall events are larger, with 
the greater losses measured in both Element-days and MVA-
days lost. Interestingly, summer events are shorter than spring 
events, but critical partial restoration (95% of elements and 
95% of MVA) in summer on average takes longer than in 
spring.  

VII. CONCLUSION 

A. Extracting Events, Processes, and Metrics from Utility 
Data 
In this paper, we study resilience of transmission systems 

in a new way by analyzing outage, restore, and performance 
processes defined for large outage events caused by extreme 
weather. Section II-B gives a new definition of transmission 
system resilience events based on outage bunching and 
overlaps that is used to automatically extract the events from 
North American TADS data. The extraction is generally 
applicable since the TADS data are essentially the same as the 
standard detailed outage data that are routinely logged by 
utilities worldwide. Note that the automatically extracted 
events are generally useful for further detailed engineering 
analysis.  

We find that transmission line outages and restores overlap 
in transmission data, particularly at the beginning of the 
events. Therefore, instead of idealizing outage and restoring 
as separate phases of resilience [2, 8-9], the outage and restore 
processes are easily disentangled and separately analyzed. 
With the exception of the application of this method in the 
NERC state of reliability report [5], this paper is the first 
description of these processing methods to transmission 
systems. These new processing methods easily yield resilience 
metrics. Indeed, given the automatically extracted resilience 
events and processes we are able to systematically calculate 
metrics for weather events with more than 20 outages in North 
America. This capability to process standard utility outage 
data to extract resilience events and metrics complements 
other studies of resilience that rely on models and simulated 
data [1, 2, 8-10]. 

It is useful to have distinct metrics for the outage and 
restore processes, since the outage process metrics summarize 
the outcome of weather severity and component strengths, 
while the restore process metrics summarize restoration 
efforts.  

B. Statistics of Large Weather-Related Events 
We find that the outage process is relatively short and, on 

average, takes only 8% of the event duration. A restore 

Event 
Size

Restoration 
Process 

Duration Hrs

Time to 95% 
elements 

Restored Hrs

Time to 95% 
MVA 

Restored Hrs

Element-
Days Lost

MVA-
Days Lost

Winter 11 31 120 85 73 28 9977
Spring 25 36 486 80 125 48 19799
Summer 17 55 335 134 103 73 21768
Fall 16 58 307 81 81 84 31337

Season
Number 
of Events

Average by Season



process starts soon after an event start and, therefore, its 
duration almost coincides with the event duration. Typically, 
a restore rate decreases over the restore duration in contrast 
with an outage rate that stays almost constant through the 
shorter outage process. We found that critical partial 
restoration measured by 95% restoration is relatively short as 
compared with the event duration. Among the five extreme 
weather types identified as primary causes of the large events, 
hurricanes caused larger events with the outage rate similar to 
and the restore rate greater than for other events.  

We find strong correlations between some of the metrics, 
which can usefully identify a subset of metrics that quantify 
independent aspects of resilience. 

We analyzed changes of the resilience metrics by year. 
Without linkage of the TADS outage data and the detailed and 
localized weather data, it is hard to rigorously evaluate 
transmission system resilience against extreme weather 
events. However, changes in the resilience metrics paired with 
information about the extreme weather events that caused 
large transmission outage events can shed some light on the 
resilience relative to the weather severity. For example, the 
National Oceanic and Atmospheric Administration reported in 
[15] that 2020 was a record year with respect to the number 
and magnitude of the billion-dollar natural disasters in U.S. 
Comparison of the resilience metrics by year for the restore 
process (Fig. 4) shows an improvement in the ability of the 
transmission system to recover after extreme weather. Future 
work can better link detailed weather data with outage data, so 
that the resilience metrics we have extracted will better track 
how well the transmission system prepares for and withstands 
extreme weather. 
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