Author preprint: to appear at Probability Methods Applied to Power Systems (PMAPS), Manchester UK, June 2022

Assessing Transmission Resilience during Extreme
Weather with Outage and Restore Processes

Svetlana Ekisheva
North American Electric Reliability
Corporation (NERC)
Atlanta, GA USA

Svetlana.Ekisheva@nerc.net

Ian Dobson
Electrical and Computer Engineering
lowa State University
Ames, IA USA
dobson@jastate.edu

Rachel Rieder
CampusLogic
Mesa, AZ USA
Rachel.jane.rieder@gmail.com

Jack Norris
North American Electric Reliability
Corporation (NERC)
Atlanta, GA USA
Jack.Norris@nerc.net

Abstract—We automatically extract resilience events and
novel outage and restore processes from standard transmission
utility detailed outage data. This new processing is applied to
the outage data collected in NERC’s Transmission Availability
Data System to introduce and analyze statistics that quantify
resilience of the transmission system against extreme weather
events. These metrics (such as outage rate and duration, number
of elements outaged, rated capacity outaged, restore duration,
maximum simultaneous outages, and element-days lost) are
calculated for all large weather-related events on the North
American transmission system from 2015 to 2020 and then by
extreme weather type that caused them such as hurricanes,
tornadoes, and winter storms. Finally, we study how
performance of the system changed with respect to the resilience
metrics by season and year.
reliability, restoration,
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I. INTRODUCTION

Extreme weather is a major challenge to transmission
system resilience [1, 2], accounting for most of the largest
transmission system events in the North American bulk-power
system [3-5]. Therefore, extracting these events from recorded
automatic outages, computing resilience metrics for each
event, and examining the statistics of these metrics is of great
interest [5-7], especially since climate change is slowly
increasing the severity and frequency of extremes of weather.
Our focus is the largest resilience events with 20 or more
outages, since these large events, although less frequent than
smaller events, have the highest impact on the transmission
system, typically causing widespread interruptions of
electrical supply in the USA and Canada.

There are many variations of frameworks and definitions
of resilience in the literature, all of which include some
description of the response of the system to disruptions and
unusually stressed conditions [1, 2, 8-11]. For example,
according to [11], "Power system resilience is the ability to
limit the extent, severity and duration of system degradation
following an extreme event." For the practical purpose of
assessing transmission system resilience to weather from
observed utility data, we focus on the outages and restores of
transmission elements during extreme weather events. We
need to define these weather-related resilience events so that
they can be automatically extracted from the data, and then

process the outages and restores during each resilience event
so that standard metrics for each event can be calculated.

In particular, we process the automatic outages that are
collected in NERC's Transmission Availability Data System
(TADS) from 2015 to 2020 in a new way to extract the
resilience events with 20 or more outages that are caused by
extreme weather. This systematic novel processing uses,
instead of stages of resilience, processes of resilience that can
overlap in time. Different aspects of each resilience event are
studied by its outage process, its restore process, and its
performance process, as previously described for distribution
systems in [12]. These processes are easily defined: As the
event proceeds, the outage process tracks the cumulative
number of outages, the restore process tracks the cumulative
number of restores of outages, and the performance process
tracks the cumulative number of unrestored outages. Each of
these processes has useful metrics summarizing aspects of the
transmission system response to the extreme weather. By
analyzing these metrics, we can describe the typical values
and statistical forms of these metrics and their correlations.
We also analyze the dependence of the metrics on season,
year, and type of weather. Overall, our new processing of 6
years of detailed outage data quantifies aspects of how the
transmission system has responded in the larger events caused
by extreme weather.

II. OUTAGE DATA AND RESILIENCE EVENTS

A. TADS Outage Data

NERC has been collecting North American automatic
(momentary and sustained) outage data for transmission
system elements operating at 200 kV and above since January
1, 2008. Transmission elements reportable in TADS are: 1)
AC circuit (overhead and underground); 2) transformer
(excluding generator step-up units); 3) DC circuit (one pole of
an overhead or underground DC line that is bound by AC/DC
terminal on each end); and 4) AC/DC back-to-back converter
[13]. In 2015, two additional voltage classes were added —
sustained automatic outages of TADS elements operating at
less than 100 kV and sustained automatic outages of TADS
elements operating at 100 to 199 kV. All automatic outages
for all TADS elements reported in TADS from 2015 to 2020
(~62k outages overall) are used in outputs for an outage-
grouping algorithm developed to identify resilience events as
described next.



B. Algorithm that Defines Resilience Events

For each interconnection, the 2015-2020 automatic
outages in TADS are grouped together into resilience events
based on the bunching and overlaps of their starting times and
durations. The algorithm for defining and automatically
extracting events, introduced in [7], is as follows: Every
outage in an event has to either start within five minutes of a
previous outage in the event or overlap in duration with at least
one previous outage in the event that has a difference in
starting time not exceeding one hour. In applying this
algorithm, repeated momentary outages of the same element
are neglected if they occur within 5 minutes of each other. If
an outage cannot be grouped together with any other outage,
it is placed in an event of size one by itself. However, in this
paper we only analyze the large weather-related events with
20 or more outages. We define a weather-related event as any
event that contains an automatic outage with a TADS
initiating or sustained cause code of Fire, Weather excluding
lightning, Lightning or Environmental [13].

C. Overview of 2015-2020 Large Weather-Related Events

The TADS data analyzed has 69 weather-related events
involving 20 or more outages of TADS elements. The event
size ranges from 20-352 outages and from 4,223-120,064
MVA in the total rated transmission capacity of all the
elements outaged. The events last from 3 hours up to 246 days.
Events were categorized by the primary driving weather:
Thunderstorm, wind (29), Winter Weather, snow (18),
Hurricane (12), Tornado (8), and Fire (2). TABLE I. shows a
summary of the 10 largest events analyzed.

TABLE 1. 2015-2020 TEN LARGEST WEATHER EVENTS

Intercon Event Size Event | Transmission

Start Date nection Event Name/Exteme Weather Type (Number of | Duration [  Capacity

Outages) Days (MVA)
9/10/17|Eastern |Hurricane Irma/Hurricane 352] 19.3 120064
10/8/16|Eastern |Hurricane Matthew/Hurricane 197 58.8 72866
10/28/20|Eastern |Hurricane Zeta/Hurricane 148 40.7/ 55323
11/17/15|WesternStrong wind storms/Thunderstorm, wind 143 5.9 45578
4/12/20|Eastern |Easter Tornado/Tornado 111] 16.0} 39373
8/4/20|Eastern |Hurricane Isaias/Hurricane 107 9.4 43191
4/30/17|Eastern [Heavy thunderstorms/Thunderstorm, wind 102 246.0 39040
10/10/18|Eastern |Hurricane Michael/Hurricane 72 28.2 22024
12/16/15|Eastern |Wide-spread snowstorms/Winter weather, snow 62 1.5 23905
8/10/20|Eastern |Windstorms/Thunderstorm, wind 58| 13.0} 19308

III. OUTAGE, RESTORE, AND PERFORMANCE
PROCESSES

The progress of a TADS event can be tracked by the outage,
restore and performance processes shown in Fig. 1. The
vertical axis either counts the elements outaged or indicates
the MVA transmission capacity outaged, which is the total
MVA rating of the elements outaged.

First, we consider the processes tracked by the number of
elements outaged. Then the outage process is the cumulative
number of elements that have been outaged by a given time in
the event. Similarly, the restore process is the cumulative
number of elements that have been restored by a given time in
the event. Both the outage and restore processes start at zero
at the start of the event and increase to the total number of
elements outaged in the event. The performance process is the
cumulative number of elements that remain outaged at a given
time in the event, with the sign flipped so that more outages
cause the performance curve to decrease. That is, the
performance process is the negative of the cumulative number
of outages that have not been restored. This form of
performance process is standard in resilience studies [2,
8,12,13]. It turns out that the performance process is equal to

the restore process minus the outage process [8]. It is also
straightforward to start with the performance process for an
event and separate it into the outage and restore processes [8].

The corresponding definitions of the processes when the
event is tracked by MVA capacity outaged are obtained
simply by replacing “number of elements outaged” in the
preceding paragraph with “MVA capacity outaged”. (If
quantities other than number of outages or MVA capacity
outaged are available, then similar processes for these other
quantities are easily defined.)

Outage process (cumulative outages over time)

10+ Restore process
(cumulative restores over time)
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Fig. 1. Outage, restore, and performance processes

For large weather-related transmission system events, the
outage process typically increases rapidly at the beginning of
the event and maintains a plateau as the weather system
passes. The typical restore process generally begins increasing
rapidly shortly after the event starts, and then increases more
slowly as the number of elements out decreases. After around
95% of the restores are completed, the restore curve often has
a long tail where the last few elements require a very long time
to restore. The automated extraction of events and finding the
outage, restore and performance processes for each event are
key to enabling the definition of resilience metrics in the next
section.

IV. RESILIENCE METRICS STATISTICS

TABLE II. RESILIENCE METRICS FOR LARGE WEATHER EVENTS
- - . . Fitted
Process| Event Statistics Mean Std Dev| Minimum | Maximum | Median (95th Pctl| =~~~
distribution
- Event size (# outages) 44.9] 50.0 20| 352 27| 143[No good fit
O |Miles affected 1175 1173 233 6461 850 3638[Lognormal
8 MVA affected 17165 18514 4223 120064 10769|  55323|Lognormal
S [TADS elem affected 38.6) 42.5 11 295 25 117|No good fit
g!a Outage process
& |duration Hrs 63 >3 09 352 47 150 No good fit
8 Outage rate (elem/Hr)|  7.46| 3.76 3.4] 26.7, 6.4] 14.5|Lognormal
Outage rate (MVA/Hr)| 3008 2765 997, 22260 2220 6343|Lognormal
Restore Process
Duration Days 14.5 33.1] 0.11] 246.0 4.6 58.8|Lognormal
Time to First Restore
4 |Minutes 46 51| 0| 208 31 169|Exponentiall
g Time to restore 95%
& |outages Days 3.9 5.4] 0.05! 38.2] 2.3 12.4|Lognormal
o Time to restore 95%
S |MVA Days 4.2 6.3 0.05! 39.8] 2.2 17.1| Lognormal
ﬁ % Event Duration to
Restore 95%outages 58% 31% 3% 100% 63%|  100%|No good fit
% Event Duration to
Restore 95% MVA 58%. 33% 1% 100% 61% 100%|No good fit
g EventDuration Days 14.6 33.1] 0.13] 246 4.6 58.8| Lognormal
5 ﬁ Max Elemements Out | 26.72| 28.19 7 181 17| 69| Lognormal
§ o |Max MVA Out 9724| 10721 1870 60133 6283  32406| Lognormal
‘g s Element-Days Lost 59 104 0.34 558| 18.7 336.9| Lognormal
o MVA-Days Lost 21394 39499 73 241730 5535| 105772| Lognormal

Next, we calculate and analyze statistics for the 3
processes defined in Section III, with the main results



summarized in Table II. These resilience metrics are discussed

in detail below.

Table III provides averages by extreme weather type for

selected statistics listed in Table II.

TABLE III.

AVERAGE METRICS BY WEATHER TYPE

Average Statistics

Hurricane

Fire

Thunderstorm, wind

Tornado

Winter

b

Event Size

92.7

36.5

34.6

38.4

33.6

Outage Process Duration (Hrs)

10.7,

7.2

4.8

7.3

5.3]

MaxElemOut

57.3

23.0

21.7

25.6

15.9)

Timeto95%elemRestored (Hrs)

135.4]

472.1

68.4

153.7]

47.0

Element-Days Lost

148.4]

116.9]

45.6|

52.8

19.7]

A. Outage Process

The metrics for the outage process quantify the impact of
extreme weather on the transmission system elements.

The event size is defined as the number of outages in the
event. The event size ranges from 20 to 352, with the largest
events caused by hurricanes (Tables I, III). The survival
function of the distribution of the event size is shown in Fig 2.
The straight-line form of the log-log plot in Fig. 2 indicates a
heavy-tailed, power law distribution, implying that although
the larger events are rarer, they can be expected to occur
occasionally; the largest events are not outliers or “perfect
storms”. Because of multiple outages of the same element that
may occur during an event, the number of distinct TADS
elements affected by the event is often smaller than the event
size.

There are 3095 outages grouped into the 69 large weather
events with 20 or more outages. It is noteworthy that these
3095 outages, that cause the largest disruptions in the
transmission system, comprise less than 5% of all 2015-2020
automatic outages. Outages of all types of TADS elements are
included in the large events, with the vast majority being
outages of ac circuits.
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Fig. 2. Distribution of number of outages in laarge weather events shown
as a survival function. Note the log-log axes scales.

Some of the metrics may describe similar aspects of
events, and this can be quantified by examining the
correlations between metrics. The event size is highly
positively correlated with the number of elements, MVA
capacity, and Miles of transmission line outaged (p-
values<0.0001, Pearson’s correlation coefficients>0.91). The
correlation is particularly strong between the event size and
the number of TADS elements, with the linear relationship
expressed by (1):

TADS Elements=0.84*Number of Outages+0.76+¢, (1)

where the random error € accounts for less than 2% in
variability of the number of TADS elements. This means that
the event size can effectively predict the number of TADS
elements, and (less precisely) both the Miles and MVA
capacity outaged.

Further, the event size and the outage process duration are
also strongly correlated, with the number of outages roughly
proportional to the outage process duration. In addition, the
element- and MVA capacity-based outage processes for the
large events confirm that during events, outages occur at a
nearly constant outage rate (elements per hour and MVA per
hour, which are strongly correlated). There is no significant
correlation between event size and the outage rates. For
example, the greatest outage rate of 26.7 Elem/h reported for
a relatively small Thunderstorm/wind event can be explained
by the fast-moving weather when the 24 outages occurred in
quick succession over 54 minutes. In addition, the MVA
capacity-based outage rate depends on the voltage mix of the
area hit by the extreme weather.

Analysis of the outage metrics by extreme weather type
finds that hurricanes caused statistically significantly larger
events (with the average size of 93 outages) than other weather
types, while Tornado, Fire, Thunderstorm and wind, Winter
weather events had similar mean sizes between 34 and 37
outages. The same holds true for the outage metrics highly
correlated with the event size as described above in this
section. There were no significant differences in outage
process duration and the outage rates (in Elem/h and MV A/h)
between the weather types.

B. Restore Process

The next group of the resilience metrics is derived from
the restore process, and their parameters are listed in Table 1.
Typically, the restore process starts quickly after the outage
process started. Therefore, the restore process duration almost
coincides with the event duration. However, there is no strong
correlation between restore process duration and event size.

Usually, the first outage is restored within 30-50 minutes,
but for several events, the time to first restore was zero. The
longest time to the first restore (~3.5 hours) was during
Hurricane Laura (August 2020). Time to first restore is
uncorrelated with any other resilience metric.

For all events, the outage process is shorter than the restore
process. Unlike outages, restores do not occur at a constant
rate. The restore process in Fig.1 is typical in that restores start
at a fast rate, then slow down until finally a few (sometimes
one) elements remain out for days until the event end. This
shape of a restore process implies that the system can be
“almost” restored or “effectively” restored long before the last
outage ends. Generally these few remaining elements are
outaged either due to inaccessibility of a portion of the line,
damaged structure or equipment or, in some cases, a utility
postpones a restoration of a single remaining element (or few
elements) after all other outages in the large event are restored
because this outaged element is considered not critical for
reliability of the grid. To measure the critical partial
restoration duration, we introduce Time to Restore 95% of
elements and Time to restore 95% of MVA. These metrics do
not necessarily coincide but they are strongly correlated. Table
1 informs that both Times are much shorter than the complete
restoration (i.e. the restore process duration).



This property can be further quantified by Percent of event
duration to restore 95% outages (MVA). The last two metrics
are negatively (but not strongly) correlated with the event size
and the event duration: all 10 events in which it took longer
than 95% of event duration to restore 95% of elements are less
than 35 outages large. In contrast, the largest events caused by
hurricanes usually have shorter partial restore duration relative
to their total duration.

Analysis of the restore process metrics by extreme weather
type found no statistically significant differences between
their means for events caused by different weather types due
to a huge variability in restoration duration and/or small
samples. Noteworthy is an observation that recovery does not
as strongly depend on the event size as on the weather type.
For example, events caused by a tornado are on average
significantly smaller than events caused by hurricanes (37
outages versus 93 outages) but the times to first restore and
the times to restore 95% of elements and 95% of MVA after
tornadoes are greater than for hurricanes (and for other
extreme weather types). One of the reasons could be that while
a tornado usually affects a smaller area than a hurricane, it may
be more destructive and damaging and this slows down
restoration.

C. Performance Process

The final group of resilience metrics is derived from the
performance process, and their parameters are listed in Table
L

As mentioned above, the event duration and the restore
process duration virtually coincide (p-value=1, Pearson’s
correlation coefficient=1.00), since they differ by the time to
first restore which is negligibly short compared with both of
them. The event duration is weakly correlated with the event
size and with each of the resilience metrics that are linearly
dependent on the event size as described in Section IVA.
Time to Restore 95% of elements and Time to restore 95% of
MVA are only weakly correlated with the event duration—
this should be expected because a restore process is usually
not linear.

The Maximum number of elements out and the Maximum
MVA capacity out are the negative of the nadirs (the values at
minimum points) of the element- and capacity-based
performance curves, respectively. They represent the worst
degradation level attained during an event and as such
quantify an ability of the system to withstand and absorb an
extreme weather event. The nadirs are reached early in an
event, while outages are occurring, and they are determined
by an interplay between outage and restore rates. The Maxima
are strongly correlated with the event size and weakly
correlated with the event duration. The correlation is
particularly strong between the event size and Maximum
number of elements out, with the linear relationship expressed

by (2):
MaxElemOut=0.54*Number of Outages+2.5+e1, (2)

where the random error €1 accounts for less than 8% in
variability of the Maximum number of elements out. This
means that the event size can satisfactorily predict the most
degraded state of the system during the event as measured by
the number of transmission elements out. Similarly, but less
precisely, the MVA capacity outaged predicts the Maximum
MVA capacity outaged.

The Element-Days lost and the MVA Capacity-Days lost
are another pair of metrics calculated from their respective
performance processes as the area between the time (x) axis
and the performance curve. Each of these metrics is correlated
with event size and event duration. The April 2017
Thunderstorm/wind event in the East with the greatest
duration of 246 days also has the largest Element-Day loss
(558) and the MVA-Day loss (241,730) over the six years,
followed by hurricanes Matthew, Irma, and Michael.

Analysis of the performance metrics by extreme weather
type found no statistically significant differences between the
event duration means, mostly due to a huge variability in event
duration for each group. For events caused by hurricanes, the
maximum number of elements out and the element-days lost
were on average statistically significantly greater than for
other groups. This is not surprising because of the strong
correlation between each of these metrics and the event size.

D. Fitted Distributions for Resilience Metrics

Along with parameters of the empirical distributions of the
metrics Table 1 lists the distributions providing a good fit to
the empirical distributions. The exponential distribution with
the mean and the standard deviation of 46 minutes is a good
fit for Time to the first restore.

The remaining metric distributions for which a good fit is
found can be approximated by a lognormal distribution. Due
to large standard deviations and very heavy tails of the fitted
distributions, they are not very useful for practical purposes
(e.g. a confidence interval for the mean or a quantile at a
standard confidence level is too wide to use for forecasting or
modeling [14]).

V. RESILIENCE METRICS BY YEAR

We calculate the resilience metrics by year and track their
changes. An event is assigned to a year from 2015 to 2020 as
determined by the event start date.
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Fig. 3. Changes by year for means of outage process metrics

Fig. 3 shows the means of selected resilience metrics for
the outage process. We omit the metrics strongly correlated
with the event size as described in Section IV except for the
Number of distinct TADS elements outaged in the event. The
almost perfect correlation is illustrated in Fig. 3 by blue and
orange lines. The year 2017 had the largest transmission event
over the 6 years, Hurricane Irma, along with several disruptive
winter storms in the East and the West, which together account
for the spikes in the 2017 resilience metrics shown in Figs. 3-
5. The years 2018 and 2019 had relatively small weather
events. In 2020, there occurred several highly impactful
events (Hurricanes Zeta, Isaias, Laura, Easter Tornado, Ice



storms in Texas and the East) that drove the 2020 averages
higher. Note that the 2020 average outage rate was also
unusually high due to several events with extremely fast
outage process (e.g. the summer 2020 Thunderstorm/wind
event in the East when all outages started within one hour).
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Fig. 4. Changes by year for means of restore process metrics

Fig. 4 shows the mean resilience metrics for restore
processes. The sets of bars illustrate differences between
durations of the complete restoration and the 95% restoration
for each year. In 2017, the partial critical restoration times
were similar to those for other years even though the 2017
total restorations were significantly longer. In 2020, the
averages of the restoration duration were similar to 2019
despite much larger average event size. However, we caution
that the variability of the event duration due to its dependence
on the timing of the last restore makes it an unreliable metric.
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Fig. 5. Changes by year for means of performance process metrics

Next, Fig.5 shows the averages of the resilience metrics
for the performance process, except for the event duration,
which nearly coincides with the restore process duration
shown in Fig.4. One can see two pairs of strongly correlated
metrics: the maximum number of elements out and the
maximum MVA out (the negative of the nadirs of the
performance processes) and the element-days lost and the
MVA-days lost. Both pairs are also correlated with the event
size and the event duration.

VI. SEASONAL ANALYSIS OF METRICS

The set of 2015-2020 large weather events is divided in
four subsets based on their start date: Winter events
(December-February), Spring events (March-May), Summer
events (June-September), and Fall events (October-
November), and distributions of resilience metrics by season

is analyzed and compared. Because of large variability of the
resilience metrics, no statistically significant differences
among means and medians are detected; the means for
selected metrics are shown in Table IV.

TABLE IV. RESILIENCE METRICS BY SEASON
Average by Season
Number Restoration | Time to 95% | Time to 95%
Season Event Element-| MVA-
of Events| . Process elements MVA
Size Duration Hrs | Restored Hrs | Restored Hrs Days Lost | Days Lost
Winter 11 31 120 85 73 28 9977
Spring 25 36 486 80 125 48| 19799
Summer 17 55 335 134] 103 73[ 21768
Fall 16, 58 307, 81 81 84 31337

Only 11 events occurred in winter; typically, they have
smaller size, duration, faster total and partial restorations as
shown in Table IV. Summer and fall events are larger, with
the greater losses measured in both Element-days and MVA-
days lost. Interestingly, summer events are shorter than spring
events, but critical partial restoration (95% of elements and
95% of MVA) in summer on average takes longer than in
spring.

VII. CONCLUSION

A. Extracting Events, Processes, and Metrics from Utility
Data

In this paper, we study resilience of transmission systems
in a new way by analyzing outage, restore, and performance
processes defined for large outage events caused by extreme
weather. Section II-B gives a new definition of transmission
system resilience events based on outage bunching and
overlaps that is used to automatically extract the events from
North American TADS data. The extraction is generally
applicable since the TADS data are essentially the same as the
standard detailed outage data that are routinely logged by
utilities worldwide. Note that the automatically extracted
events are generally useful for further detailed engineering
analysis.

We find that transmission line outages and restores overlap
in transmission data, particularly at the beginning of the
events. Therefore, instead of idealizing outage and restoring
as separate phases of resilience [2, 8-9], the outage and restore
processes are easily disentangled and separately analyzed.
With the exception of the application of this method in the
NERC state of reliability report [5], this paper is the first
description of these processing methods to transmission
systems. These new processing methods easily yield resilience
metrics. Indeed, given the automatically extracted resilience
events and processes we are able to systematically calculate
metrics for weather events with more than 20 outages in North
America. This capability to process standard utility outage
data to extract resilience events and metrics complements
other studies of resilience that rely on models and simulated
data [1, 2, 8-10].

It is useful to have distinct metrics for the outage and
restore processes, since the outage process metrics summarize
the outcome of weather severity and component strengths,
while the restore process metrics summarize restoration
efforts.

B. Statistics of Large Weather-Related Events

We find that the outage process is relatively short and, on
average, takes only 8% of the event duration. A restore



process starts soon after an event start and, therefore, its
duration almost coincides with the event duration. Typically,
a restore rate decreases over the restore duration in contrast
with an outage rate that stays almost constant through the
shorter outage process. We found that critical partial
restoration measured by 95% restoration is relatively short as
compared with the event duration. Among the five extreme
weather types identified as primary causes of the large events,
hurricanes caused larger events with the outage rate similar to
and the restore rate greater than for other events.

We find strong correlations between some of the metrics,
which can usefully identify a subset of metrics that quantify
independent aspects of resilience.

We analyzed changes of the resilience metrics by year.
Without linkage of the TADS outage data and the detailed and
localized weather data, it is hard to rigorously evaluate
transmission system resilience against extreme weather
events. However, changes in the resilience metrics paired with
information about the extreme weather events that caused
large transmission outage events can shed some light on the
resilience relative to the weather severity. For example, the
National Oceanic and Atmospheric Administration reported in
[15] that 2020 was a record year with respect to the number
and magnitude of the billion-dollar natural disasters in U.S.
Comparison of the resilience metrics by year for the restore
process (Fig. 4) shows an improvement in the ability of the
transmission system to recover after extreme weather. Future
work can better link detailed weather data with outage data, so
that the resilience metrics we have extracted will better track
how well the transmission system prepares for and withstands
extreme weather.
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