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Abstract

There exists vast expanse of data in literature which can be harnessed for accelerated design
and discovery of advanced materials for various applications of importance — for example,
desalination of sea water. Here, we develop a machine learning (ML) model, training it with ~260
molecular dynamics (MD) computation results to predict the desalination performance of 2D
membranes that exist in literature. The desalination performance variables of water flux and salt
rejection rates are correlated to 44 material features related to the chemistry of the pores and the
membranes along with applied pressure, salt concentration, partial charges on the atoms, geometry
of the pore and the mechanical properties of the membranes. We used the ML model to screen
3814 structurally optimized 2D materials for maximum water flux and salt rejection rates from the
literature. We found some candidates that perform 3 times better than the more popularly known
2D materials of graphene and MoS:. This result is verified using data obtained from MD
simulations performed on several 2D membranes. Such validated statistical frameworks using
literature data can be very useful in guiding experiments in the field of functional materials for

varied applications.



1. Introduction
With the increasing global crisis for potable water in different regions of the world, newer

water desalination techniques are the need of the hour.! The various oceans and seas contain
about 97% of the world’s water which is undrinkable, and only a few percent of the rest are
drinkable. Seawater contains 40-60 g/l of salt while potable water should have less than 1 g/, the
requirement being more stringent sometimes*. A possible solution to this crisis is efficient
desalination of seawater. However, the prevalent desalination techniques suffer from important
drawbacks such as large energy footprints, high material and capital costs, and poor
performance®*. Reverse osmosis (RO) is an energy-efficient desalination technique with an
energy intake of 1.8 kWh/m? of water compared with an average ~5 kWh/m? in the 1990s.!35 It
is also the most prevalent technique only behind distillation which is a high energy consuming
process and not practical for countries with low fuel reserves. Approximately half of the current
desalination plants use RO technologies® where a pressure gradient drives the seawater through a
semi-permeable membrane. This makes water to preferentially move across from higher salt
concentration to lower salt concentration with a specified flux and a certain salt rejection

efficiency.

Although the energy efficiency of industrial RO processes is increasing, it is still much smaller
than the thermodynamic minimum of ~0.5-1kWh/m* (25-45 g/l of NaCl)*’ for 50% water
recovery. Along with the challenges relating to energy, RO also faces challenges relating to
membrane material®®. The membrane materials used for RO have evolved over time from
cellulose-based to zeolites to polymer-based thin films which are commonly used today. While the
polymer-based semi-permeable membranes provide higher fluxes with salt rejection efficiency
comparable to zeolites, they still lag behind the optimum performance goal of having fluxes as
high as CNT-based filters and salt rejection rates as good as zeolites®. In addition, the commonly
used polymer, polysulfone, suffers from surface degradation due to the formation of polyamide.
This can be prevented by applying a cross-linking polymer at the surface, but the resulting
polyamide is also not resistant to Cl and other oxidizing environments’, which easily attack its
amine group. Alternative techniques like deposition of nano-structured zeolites on the surface had
limitations to the maximum salinity that it could treat®. Older RO technologies of polymer-based
filtration to purify seawater are giving way to the newer techniques using advanced materials.

Seawater desalination using smart materials like nano-porous two-dimensional (2D) materials



such as graphene, graphene oxide and MoS:2 have been reported in literature as a viable solution'®-
12 However, the water fluxes obtained at desired high salt rejection rates using these materials are
too low to make the technology adaptable for industrial scale as shown in Figure 1(a). Therefore,
material and design optimization of these membranes is required to reach the optimum desalination

performance goal of high salt rejection rates and water fluxes.

There exist numerous experimental'® and computational'>!* studies of 2D materials used for
water desalination. Some experiments using multiple layers of 2D materials have been performed
in the past, for 2D materials like graphene, graphene derivatives and MoS2!>'®. Computational
studies on single layer 2D membranes, on the other hand are abundant and have been done for the
commonly known materials. Classical molecular dynamics (MD) simulations have often been used
in the past to report the systematic effects of pore size, pore chemistry, and applied hydrostatic
pressure on desalination performance. We, therefore, collected 257 such computational data points
of water flux and salt rejection rate at the corresponding pressures, salt concentrations, atomic
partial charges, pore and membrane sizes, for common 2D materials like graphene, graphene
oxide, molybdenum disulfide (MoS2), molybdenum diselenide (MoSez), hexagonal boron nitride
and carbon nitride (C2N). The complete dataset from literature with references is provided in the
supplementary dataset. With the recent advent of Materials Genome Initiative, we also have access
to vast expanse of data on 2D materials in open databases. These sources of data along with those
reported in journals can be used for developing statistical methods to optimize the chemistry of

these 2D materials for optimum performance.

The pore structure and the charge of pore atoms are very important in determining the
selectivity of ions passing through the pore!>!?. For example, as reported with MoSz'?, water flux
through the pore is higher when Mo atoms form the pore edge than the S atoms. Therefore, in this
study, we use the structure, chemistry and atomic partial charges of the pores and the membranes
provided in the literature to build a set of feature list and correlate them to the water flux and salt
rejection efficiency, through a well-tested and validated machine learning (ML) model. The
method adopted in this work is discussed in detail in Section I of Supplementary Information. A
complete list of features used for machine learning is provided in Section II of the Supplementary
Information. The model once built is then used to screen the best candidates for desalination with

a higher water flux along with a high salt rejection rate. High-throughput computational studies



from the past for discovering new 2D materials candidates using structural optimization, are then
used to screen for optimum desalination performance and understand the underlying design
guidelines. These materials with their crystal structures, calculated electrical and mechanical
properties, thermodynamic and dynamic stability can be found in the related open database?. The
flow of data for exploring the chemical space for 2D materials is shown in Figure 1(b) and is also
described in detail in the Methods section. The problem is complex as it involves screening 2D
chemistries of type I—[A{ B,lc where: i,j,k,l =0,1,....c (i and k being the stoichiometric constants
for the given element and j and / being the element number) with A being metallic and B, a non-
metallic element, candidates for which from the periodic table are shown in Figure 1(c). We have
also studied the effect of functionalization with the constituent atoms or elements extrinsic to the
2D material system. In addition, the predictions from the ML model are verified using the data

obtained from MD simulations for some of the 2D materials.

2. Methods
2.1. Machine Learning

Computationally determined water flux and salt rejection rates per unit pore area for a specific
applied pressure were manually extracted using WebPlotDigitizer?!, from 16 different journal
publications. These were for 2D materials like graphene, graphene oxide, MoS2, hexagonal BN
and C2N with atomic configurations (functionalization) at the pore edge. The water flux and salt
rejection rates were correlated to 44 different features which are chemical, electrical and structural
features of the membrane and the pore. While some of the features, such as, salt concentration,
pore area, membrane area, applied pressure and atomic partial charges were taken from the
published work on desalination using 2D materials, other features like band gap, bond angles, bond
lengths, membrane thickness, atomic density of the membrane and pore were searched for in the

open databases, for optimized DFT structures of the 2D materials.

With these data in hand, we evaluated the accuracy of several ML methods using 80% and
10% of the data as the training and testing set, respectively, and the remaining 10% for cross-
validation. The total number of computational samples used for ML model was 257. For all the
models we also used grid search with 5 k-fold cross validation to optimize the hyperparameters.
This procedure has a single parameter called k that refers to the number of groups that a given data

sample is to be split into. This is done so that every split dataset serves as a test set for that iteration
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(carries for k iterations). ML package, Scikit-learn?” was used for the purpose. For the linear

regression models, we evaluated various regularization methods such as LASSO? (least absolute

shrinkage and selection operator), ridge regression’* and elastic net?

, but regularization worsened
the predictive performance. However, k-nearest neighbor?® regression with 5 nearest neighbors,
delivered improvement over these methods. Moreover, we found that the random forest?’ (RF)
algorithm with XG-Boosting?® provided even better predictive performance. Random forest
algorithms operate by randomly selecting a subset of features and constructing decision trees based
on the limited data, which are then averaged out for the final prediction. XG-Boosting uses a
sequence of RF models learning sequentially from the previous model. By combining several of
these decision tree models on the data subsets, an accurate prediction of the desalination
performance could be made without overfitting. A comparison of these methods is provided in
Supplementary Section III. The testing-set root mean absolute error (MAE) using the XG-Boost
model is 4.2 % with a coefficient of determination value (R?) of 0.81, and the MAE value is 2.4 %
with R’ of 0.97 for the cross validation-set for salt rejection (%). For logz(water flux (I/cm?/day)),

MAE is 0.2 for both the testing and cross-validation sets, with a coefficient of determination R?

value of 0.99 and 0.98 for the testing and cross validation sets, respectively. The coefficient of

N y.—532
determination and the mean absolute error is given by, R? = Z‘;ﬂ# and MAE =
Zi:l(yi_y)z

%Z{-\’:ll yv; — ¥,| where y; is the ground truth, ¥, is the predicted value and ¥ is the average of the

sample. The ML model is then used to predict the output water fluxes and salt rejections for 3814

2D materials from the Computational 2D Materials Database, https://cmrdb.fysik.dtu.dk/c2db/ 2°.

Since the partial atomic charges on the atoms of these membranes were unknown, we optimized a
different ML model to predict the charges on the atoms based on features discussed in detail in
Supplementary Section IV. The effect of pore functionalization with a metallic or non-metallic
element was also studied. The 2D materials were next screened for thermodynamic stability
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provided by Haastrup et al.”” in the literature. The predictions made by the model are also verified

using MD simulations as described in the next section.

2.2. MD Simulations

Pressure-driven transport calculations of saltwater through nanoporous 2D materials were

performed with MD simulations using LAMMPS package®. As shown in Figure S5.1, Section V


https://cmrdb.fysik.dtu.dk/c2db/

of the Supplementary Information, the simulation domain consists of a saltwater (feed) reservoir
and a pure water (permeate) reservoir, separated by a nanoporous membrane in the middle. Some
of the 2D membranes simulated include C2, C2H2, M0204, Ti204, CrO2, FeO2, V204, CoO2,
AwClaN2, FaN2Tiz, ZnH202, CuH202, and Cl4O4Tis. The 2D membrane areas are approximately
16 nm?. Due to the differences in crystal structure of the materials, the exact area of each membrane
is slightly different from 16 nm?. Similarly, the pore area of each membrane is approximately 50
AZ. A pore in a membrane was created by removing some of the membrane atoms. The pore area
is defined as the total empty space surrounded by the atoms on the pore edge. A pressure-driven
flow was created by applying different constant forces on the two rigid pistons on either side of
the membrane. At a specified pressure difference, the left piston moves in the z-direction pushing
the water molecules and ions along with it, whereas the right piston moves downstream. This
method of creating pressure-driven flows through nanoporous membranes is well established in
the literature'>!*, In this study, a pressure difference of 100 MPa was created by applying a
pressure of 100 MPa plus 1 atm on the left piston and a pressure of 1 atm on the right one. Initially,
there are 2511 water molecules and 1680 water molecules in the feed and the permeate reservoirs,
respectively. The initial distances from the left and the right pistons to the middle of the membrane
are 45 A and 35 A, respectively. For the chosen salinity of 50 g/1, the feed reservoir was initially
assigned 33 Na" and 33 CI ions.

Simple point charge extended (SPC/E) model was used to simulate water molecules®’. SHAKE
algorithm was used to keep the O-H bond length and H-OH angle at 1.0 A and 109.47°,
respectively *!. Truncated Lennard-Jones (LJ) 12-6 potential with a cutoff distance of 1.2 nm was
used to model the intermolecular interactions (van der Waals) of salt ions, oxygen atoms in water,
and membrane atoms. Oxygen-oxygen interaction values were taken from the SPC/E model*°. LJ
interaction parameters of sodium and chloride ions in aqueous solutions were modeled using
GROMOS force fields*’. The LJ interaction parameters and charges for the different membrane
atoms were taken from the Reaxff force fields*. The interaction parameters between the remaining
dissimilar atoms were obtained using Lorentz-Berthelot rule (Supplementary Information, Section
V). For all atomic species having charge, short-range Coulombic interactions were computed with
a cut-off distance of 1.0 nm, while long-range electrostatic interactions were computed using

particle-particle, particle-mesh (PPPM) method?*.



The energy of simulation system was initially minimized with a stopping tolerance of 10,
Next, an equilibrium simulation with a constant number of atoms, pressure, and temperature (NPT)
ensemble was performed at 1 atm and 300 K. The membrane was fixed at its original position
during the equilibration, while piston atoms could change their positions as rigid objects. The NPT
simulation preserved the thermodynamic state of water at a density of 1 g/cm® and temperature of
300 K. Next, a constant number of atoms, volume, and temperature (NVT) non-equilibrium
simulation using the Nosé-Hoover thermostat was performed for 15 ns with a pressure difference
of 100 MPa to study water transport through the membrane. In these simulations, the membrane
was still fixed at its original position, while the rigid pistons gradually adjust their positions due to
the applied pressure difference. Water flux was calculated based on the average rate of water
molecules passing through the membrane, and the selected area (membrane area or pore area). A

detailed calculation method is provided in Section V of the Supplementary Information.

3. Results and Discussion

3.1. Features important for water desalination from ML model
The screened 2D materials were of several stoichiometries and had different atomic structures

as described in detail in the C2DB open database literature?’. These include a single or multiple
atoms of the membranes like A, AB, AB2, ABC, AB3, A2BC2 and AB2C4 where A/B/C can be
either metallic or non-metallic elements. Here, we try to classify them based on the metallic and
non-metallic element or elemental groups that each 2D material consists of, as we find that the
features related to the position of the atom in the periodic table has a major effect on the
desalination performance as also seen in Figure 2(a-c). From the feature importance bar chart in
Figure 2(a), we find that the membrane average atomic number, partial charge on the atoms, and
average pore atomic radius play an important role in the estimation of water flux and salt rejection
rates (along with the operational properties involved in RO such as applied pressure, salt
concentration, pore and membrane area not shown in the figure). Figure 2(a) also shows the effect
of these features on water flux and salt rejection rate during desalination based on the collected
computational data from literature. These factors are found to be important with high “feature
importance”, which is a measure of the “out of bag” error, i.e., the error not including one of the
features during implementation of the ML algorithm. However, there remains a lot of chemical
space that remains unexplored with reasonable water fluxes and salt rejection rates which would

lie at the right top corner of the contour plots shown in Figure 2(a). Based on the data from



literature, it seems lower membrane atomic numbers and intermediate membrane charges lead to
higher desalination performance. The direct trends of desalination performance in the contour plots
are not very clear because of simultancous dependence on other factors/features. We try to

generalize these trends again using MD simulations which will be discussed in Section 3.4.

Owing to the importance of position of the atoms in the membrane on the periodic table in
determining desalination performance as seen in Figure 2(a), we chose lower atomic number H,
C, N, chalcogenides and halogens to study the effect of pore functionalization. We also study

metallic functionalization with transition element atoms.
3.2. Effect of Pore Functionalization

The functionalization of pores is of immense importance and has been studied by researchers
in the past. Fang et al.'” reported that increasing the charges at the pore from 0 to -3e enhances the
water transport, while further increasing charges to -6e, reduces the water transport in porous
graphene oxide membranes. The ML model feature importance list also points towards the
importance of partial charges on the atoms in general. The detailed feature list with the importance
is provided in Tables S2.1 and S2.2 in Supplementary Information Section II. We functionalized
the pores of the 3814 membranes provided in the C2DB database? with 8 non-metallic (Cl, F, Br,
I, O, H, C and N) and 8 metallic (Mo, Ru, V, Cr, Ti, Fe, Co and Mn) atoms. The results are shown
in Figure 2(b) for non-metallic and 2(c) for metallic elements. Metals are known to be more
hydrophilic than non-metals, and this numerical experiment helps us observe the difference it

brings to the desalination performance.

The non-metallic functionalization increased the water fluxes with the highest flux for pores
functionalized with C and H. However, the salt rejection rates were reduced below the minimum
value for the unfunctionalized pores indicated by the bottom line of the grey box in Figure 2(b),
more so for some of the hydrogenated pores. Metallic functionalization, on the other hand,
improved the salt rejection rates and decreased the minimum for water flux shown in Figure 2(c).
Comparing the two figures (2(b) and (¢)), we find some of the carbonated and hydrogenated pores

lie in the top right corner of Figure 2(b) with higher water fluxes and salt rejection rates.



3.3. Improved Class of 2D materials for Desalination

Figure 3(a) shows predicted classes of 2D materials with their desalination performance.
Graphene, transition metal dichalcogenides and nitrides are classes that have been reported in the
literature to perform well in desalinating seawater'?>"'4. The chemical space that has not yet been
reported is the halides complexes, oxide complexes and the lithiates which we find to be an
important class of 2D materials for good water desalination performance. Many of these new
candidates for desalination fall in the class of MXenes which are inorganic 2D membranes, for
example, transition metal carbides, nitrides and nitro-carbides. The halide membranes although
thermodynamically stable may dissolve in water due to the high electronegativity difference of the
metallic and non-metallic atoms. The class that the ML model found promising and was also
verified through MD simulations is the 2D metal oxides and its complexes. This class is
increasingly being synthesized and studied these days due to its applications in electronics and

renewable energy 78, Its application in desalination has not been reported yet.

The findings of this study have been verified using MD simulations. Figure 3(b) shows the
comparison of ML water fluxes for several candidates with MD calculations. A reasonable match
between the MD and ML water fluxes both with respect to membrane area and that with respect
to pore area are shown. Our reported fluxes for some of the oxides (FeO2, CoOz, CrO2, V204,
Ti204 and Mo0204), oxide-complexes (CuH202, ZnH202 and Cl4O4Tis) and halide complexes
(Au2Cl2N2, FaN2Tis) are up to 3 times higher than those of graphene or MoS2, which results in
reduced work done that is required for desalination. This also implies increase in the efficiency of
desalination which is the ratio of work done for desalination to the minimum work required. In
addition, oxygen has turned out to be the most potent chalcogen that can be used with transition
metal when it comes to desalination, even better than Se and S. MoS2 and MoSe2 have been studied
for desalination'>* but Mo0204 is found to out-perform graphene and perform as good as the MoS:
as found by our MD results. Other period II elements like C and N with transition metals as 2D

materials also perform well as seen in Figure 3(a).
3.4. MD based analysis

Figure 4(a) shows the effect of the top two features predicted by the ML model on water
flux. The region of higher water fluxes indicated by the inset is further investigated using MD

simulations, shown in Figure 4(b). Lower atomic numbers in the range of 5-30 for the 2D



membrane have the highest water flux when the partial charges in the atoms are in the range of
0.3-0.6e which is within the range of the atomic charges in H and O atoms in the water molecules.
The charges for H and O atoms used in the MD simulations were 0.4238 and -0.8476, respectively
(SPC/E water model). This is also shown in detail in Figure 4(c) and (d). Smaller atomic numbers

or smaller radii of the atoms mean thinner 2D membranes which enhance the water flux. This can

mR*

Ap . .
"E where, Ap is the applied

be simply understood based on the Hagen-Poiseuille equation: Q =

pressure difference, § is the membrane thickness, R is the radius, AC is the salt concentration

difference, and u is the viscosity of the liquid.

The water flux through the nano pore is determined by both the average density and
velocity of water molecules in the pore. Higher is the charge in the membrane, more is the
membrane-water interaction, leading to higher average densities. However, higher interactions
also reduce the average velocity of the water passing through the pores. This is seen in Figure 5(¢)
and schematically represented in Figure 5(f). For a brief illustration, the average densities, and
velocities of water for three 2D membranes, graphene (C2), V204 and ClsO4Tisa are further
discussed. Figure 5(a)-(c) show the 2D density distribution of water inside the pores, respectively.
The average density of water follows the trend as 0.39 g/cm?® (C2) < 0.6 g/cm? (CuH202) < 0.86
g/cm? (V204). The maximum positive charge in the membranes follows the same trend as 0 e (C2)
< 1.1 e (Cl4O4Ti4) < 1.23 e (V204). This reveals the important role of Coulombic interactions in
determining the average density of water inside the pore. Similar membrane-water interactions
affecting the water fluxes in carbon nanotubes have also been reported earlier*®*!. However, the
average velocity follows a different trend of 2.06 m/s (C2) <2.34 m/s (V204) <3.79 m/s (ClaO4T1ia).
V204 has higher charges leading to higher average water density in the pore but lower average
velocity as compared to ClaO4Tis, making the water flux higher for Cl4aO4Tis. The graphene with
no charges on the membrane has both lower average density and lower average velocity. Figure
5(d) shows the average barrier energy experienced by a water molecule passing the three pores. It
is seen that Cz hinders the passage of water through the pore the most while ClsO4Tis does the
least, explaining the trend in average velocity. We, therefore, need intermediate charges in the
range of that of the atoms in the water molecules for a combination of better average density with

average velocity.



4. Conclusions
A machine learning model correlating the computationally determined water flux and salt

rejection rates to the applied pressure, salt concentrations, pore area, membrane thickness, radius
of the pore and 39 other features related to the chemical, electrical and structural features of the
membrane and its pore, has been developed. Among these features, pore atomic number and
maximum positive charge in the membrane are found to have maximum effect on the desalination
performance. The model is used to screen 3814 2D materials listed in open databases. Having
transition metal at the pore, is found to enhance salt rejection rates while non-metals like halogens
and chalcogens increase the water flux. 2D transition metal oxides and their complexes are
predicted to be effective for desalination. We report candidates with 3 times better water fluxes
than the state of art 2D membranes which has also been validated through MD simulations. Higher
partial charges on the membrane atoms lead to higher water-membrane interactions and enhanced

average water density but reduced average velocities.
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Figure 1: (a) The state of the art of desalination performance (Seawater, Brackish and High-flux Reverse
Osmosis (RO), Zeolites, and some well-known 2D materials) showing the goal we want to reach with
the complex chemistries of 2D materials. (b) The flow of data for screening 2D materials for high
desalination performance is shown schematically. The data from desalination literature is used for
developing a Machine Learning (ML) framework testing many algorithms for minimum Mean Absolute
Error (MAE). This framework is used to screen 3814 2D materials provided in open Database for high
desalination performance. The predictions from the ML framework are next screened for stability. The
fluxes obtained are verified using Molecular Dynamics (MD) to reach new chemistries of 2D materials
for desalination. (c) Periodic table showing the metallic A and non-metallic B sites possible for 2D
materials screened for water desalination performance. The chemistry is of type
]_[A]‘:Blk where: i,j,k,1 = 0,1, ....c0 with different combinations of metallic elements A; and non-

metallic By with different stoichiometries j and /.
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Figure 2: (a) The effect of important features with their relative importance from the ML model (along
with the operational properties involved in RO such as applied pressure, salt concentration, pore and
membrane area not shown in the figure). Effect of membrane atomic number, membrane positive charge
and pore atomic radius from the literature data is shown in inset contour plots; Some of the features have
0 or low feature importance as we have plotted them for both the targets of water flux and salt rejection
rate, for which they might be important for one but not for the other. (b) Effect of non-metallic and (c)
metallic pore functionalization on desalination performance of water flux with respect to membrane area

and salt rejection from the ML model; The grey box represents the range of values for 3814 non-
functionalized 2D material candidates.
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Figure 3: (a) The best thermodynamically stable 2D material classes predicted by the ML model
compared to the state-of-the-art RO, Nanofiltration, Zeolites and 2D membranes of graphene and MoS..
2D Oxide complexes, Nitro-halides and Oxide membranes perform the best for desalination; (b)
Comparison of MD prediction of water flux with ML model for verification of the ML model. The
average pore area is 50 A? and membrane area is 16 nm* The details of the pore and membrane size is
provided in the Supplementary Material Section V.
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Figure 4: (a) Water Flux predicted from ML model with respect to the top two important features:
membrane atomic number and maximum positive charge on the membrane. The dotted box shows the
region of better desalination performance which has been probed using MD. (b) The variation of water
flux, with respect to the top 2 features, calculated from MD. (c) Lower atomic numbers for the membrane
unit cells showing higher fluxes. The symbol colors follow the temperature palette, red indicating higher
fluxes and blue indicating lower fluxes (d) The effect of charges used in MD on water flux calculated
from MD. Lower the charges on the membrane atoms better are the water fluxes indicated by the linear
fits on the positive (red) and negative charges (blue) on the membrane. The charges on oxygen and
hydrogen atoms in the water molecule are also indicated for reference.
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Figure 5: The time averaged water density profile for the pores of 2D membranes (a) C, (b) V204 (¢)
Cl1404Ti4 showing more interaction of water with the pore edges lead to more dispersed densities, higher
at the pore edges and lower in the center indicating the tendency for more membrane-water interactions
with increase in charges in the membrane. (d) The variation of the energy barriers for the above cases
(calculation method is presented in Supplementary Information) and (e) average density in the pores (red)
and the average velocity in the pores (black) calculated using MD, with maximum charge on the
membrane atoms. A linear relationship of average water densities in the pore and inverse linear
relationship of velocities at the pore center with maximum charge is observed. (f) The effect of higher
water membrane interactions (due to higher charges) on the average water density in the pore (increases)
and average water velocity during desalination (decreases) is shown.
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