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Abstract 

There exists vast expanse of data in literature which can be harnessed for accelerated design 

and discovery of advanced materials for various applications of importance – for example, 

desalination of sea water. Here, we develop a machine learning (ML) model, training it with ~260 

molecular dynamics (MD) computation results to predict the desalination performance of 2D 

membranes that exist in literature. The desalination performance variables of water flux and salt 

rejection rates are correlated to 44 material features related to the chemistry of the pores and the 

membranes along with applied pressure, salt concentration, partial charges on the atoms, geometry 

of the pore and the mechanical properties of the membranes. We used the ML model to screen 

3814 structurally optimized 2D materials for maximum water flux and salt rejection rates from the 

literature. We found some candidates that perform 3 times better than the more popularly known 

2D materials of graphene and MoS2. This result is verified using data obtained from MD 

simulations performed on several 2D membranes. Such validated statistical frameworks using 

literature data can be very useful in guiding experiments in the field of functional materials for 

varied applications.   

 

 

 

 

 

 

 



1. Introduction 
With the increasing global crisis for potable water in different regions of the world, newer 

water desalination techniques are the need of the hour.1–3 The various oceans and seas contain 

about 97% of the world’s water which is undrinkable, and only a few percent of the rest are 

drinkable. Seawater contains 40-60 g/l of salt while potable water should have less than 1 g/l, the 

requirement being more stringent sometimes4. A possible solution to this crisis is efficient 

desalination of seawater. However, the prevalent desalination techniques suffer from important 

drawbacks such as large energy footprints, high material and capital costs, and poor 

performance3,4. Reverse osmosis (RO) is an energy-efficient desalination technique with an  

energy intake of 1.8 kWh/m3 of water compared with an average ∼5 kWh/m3 in the 1990s.1,3,5 It 

is also the most prevalent technique only behind distillation which is a high energy consuming 

process and not practical for countries with low fuel reserves. Approximately half of the current 

desalination plants use RO technologies6 where a pressure gradient drives the seawater through a 

semi-permeable membrane. This makes water to preferentially move across from higher salt 

concentration to lower salt concentration with a specified flux and a certain salt rejection 

efficiency.  

Although the energy efficiency of industrial RO processes is increasing, it is still much smaller 

than the thermodynamic minimum of ~0.5-1kWh/m3 (25-45 g/l of NaCl)3,7 for 50% water 

recovery. Along with the challenges relating to energy, RO also faces challenges relating to 

membrane material8,9. The membrane materials used for RO have evolved over time from 

cellulose-based to zeolites to polymer-based thin films which are commonly used today. While the 

polymer-based semi-permeable membranes provide higher fluxes with salt rejection efficiency 

comparable to zeolites, they still lag behind the optimum performance goal of having fluxes as 

high as CNT-based filters and salt rejection rates as good as zeolites6. In addition, the commonly 

used polymer, polysulfone, suffers from surface degradation due to the formation of polyamide. 

This can be prevented by applying a cross-linking polymer at the surface, but the resulting 

polyamide is also not resistant to Cl and other oxidizing environments7, which easily attack its 

amine group. Alternative techniques like deposition of nano-structured zeolites on the surface had 

limitations to the maximum salinity that it could treat6. Older RO technologies of polymer-based 

filtration to purify seawater are giving way to the newer techniques using advanced materials. 

Seawater desalination using smart materials like nano-porous two-dimensional (2D) materials 



such as graphene, graphene oxide and MoS2 have  been reported in literature as a viable solution10–

12. However, the water fluxes obtained at desired high salt rejection rates using these materials are 

too low to make the technology adaptable for industrial scale as shown in Figure 1(a).  Therefore, 

material and design optimization of these membranes is required to reach the optimum desalination 

performance goal of high salt rejection rates and water fluxes.  

There exist numerous experimental13 and computational12,14 studies of 2D materials used for 

water desalination. Some experiments using multiple layers of 2D materials have been performed 

in the past, for 2D materials like graphene, graphene derivatives and MoS215–18. Computational 

studies on single layer 2D membranes, on the other hand are abundant and have been done for the 

commonly known materials. Classical molecular dynamics (MD) simulations have often been used 

in the past to report the systematic effects of pore size, pore chemistry, and applied hydrostatic 

pressure on desalination performance. We, therefore, collected 257 such computational data points 

of water flux and salt rejection rate at the corresponding pressures, salt concentrations, atomic 

partial charges, pore and membrane sizes, for common 2D materials like graphene, graphene 

oxide, molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), hexagonal boron nitride 

and carbon nitride (C2N). The complete dataset from literature with references is provided in the 

supplementary dataset. With the recent advent of Materials Genome Initiative, we also have access 

to vast expanse of data on 2D materials in open databases. These sources of data along with those 

reported in journals can be used for developing statistical methods to optimize the chemistry of 

these 2D materials for optimum performance.  

The pore structure and the charge of pore atoms are very important in determining the 

selectivity of ions passing through the pore12,19. For example, as reported with MoS212, water flux 

through the pore is higher when Mo atoms form the pore edge than the S atoms. Therefore, in this 

study, we use the structure, chemistry and atomic partial charges of the pores and the membranes 

provided in the literature to build a set of feature list and correlate them to the water flux and salt 

rejection efficiency, through a well-tested and validated machine learning (ML) model. The 

method adopted in this work is discussed in detail in Section I of Supplementary Information. A 

complete list of features used for machine learning is provided in Section II of the Supplementary 

Information. The model once built is then used to screen the best candidates for desalination with 

a higher water flux along with a high salt rejection rate. High-throughput computational studies 



from the past for discovering new 2D materials candidates using structural optimization, are then 

used to screen for optimum desalination performance and understand the underlying design 

guidelines. These materials with their crystal structures, calculated electrical and mechanical 

properties, thermodynamic and dynamic stability can be found in the related open database20. The 

flow of data for exploring the chemical space for 2D materials is shown in Figure 1(b) and is also 

described in detail in the Methods section. The problem is complex as it involves screening 2D 

chemistries of type ∏𝐴𝐴𝑖𝑖
𝑗𝑗𝐵𝐵𝑘𝑘𝑙𝑙 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒:  𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 = 0,1, … .∞ (i and k being the stoichiometric constants 

for the given element and j and l being the element number) with A being metallic and B, a non-

metallic element, candidates for which from the periodic table are shown in Figure 1(c). We have 

also studied the effect of functionalization with the constituent atoms or elements extrinsic to the 

2D material system. In addition, the predictions from the ML model are verified using the data 

obtained from MD simulations for some of the 2D materials.  

2. Methods 
2.1. Machine Learning 

Computationally determined water flux and salt rejection rates per unit pore area for a specific 

applied pressure were manually extracted using WebPlotDigitizer21, from 16 different journal 

publications. These were for 2D materials like graphene, graphene oxide, MoS2, hexagonal BN 

and C2N with atomic configurations (functionalization) at the pore edge. The water flux and salt 

rejection rates were correlated to 44 different features which are chemical, electrical and structural 

features of the membrane and the pore. While some of the features, such as, salt concentration, 

pore area, membrane area, applied pressure and atomic partial charges were taken from the 

published work on desalination using 2D materials, other features like band gap, bond angles, bond 

lengths, membrane thickness, atomic density of the membrane and pore were searched for in the 

open databases, for optimized DFT structures of the 2D materials.  

With these data in hand, we evaluated the accuracy of several ML methods using 80% and 

10% of the data as the training and testing set, respectively, and the remaining 10% for cross-

validation. The total number of computational samples used for ML model was 257. For all the 

models we also used grid search with 5 k-fold cross validation to optimize the hyperparameters. 

This procedure has a single parameter called k that refers to the number of groups that a given data 

sample is to be split into. This is done so that every split dataset serves as a test set for that iteration 



(carries for k iterations). ML package, Scikit-learn22 was used for the purpose. For the linear 

regression models, we evaluated various regularization methods such as LASSO23 (least absolute 

shrinkage and selection operator), ridge regression24 and elastic net25, but regularization worsened 

the predictive performance. However, k-nearest neighbor26 regression with 5 nearest neighbors, 

delivered improvement over these methods. Moreover, we found that the random forest27 (RF) 

algorithm with XG-Boosting28 provided even better predictive performance. Random forest 

algorithms operate by randomly selecting a subset of features and constructing decision trees based 

on the limited data, which are then averaged out for the final prediction. XG-Boosting uses a 

sequence of RF models learning sequentially from the previous model. By combining several of 

these decision tree models on the data subsets, an accurate prediction of the desalination 

performance could be made without overfitting. A comparison of these methods is provided in 

Supplementary Section III. The testing-set root mean absolute error (MAE) using the XG-Boost 

model is 4.2 % with a coefficient of determination value (R2) of 0.81, and the MAE value is 2.4 % 

with R2 of 0.97 for the cross validation-set for salt rejection (%).  For log2(water flux (l/cm2/day)), 

MAE is 0.2 for both the testing and cross-validation sets, with a coefficient of determination R2 

value of 0.99 and 0.98 for the testing and cross validation sets, respectively. The coefficient of 

determination and the mean absolute error is given by, 𝑅𝑅2 = ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤� )2𝑁𝑁
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑁𝑁
𝑖𝑖=1

 and 𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝑁𝑁
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |𝑁𝑁
𝑖𝑖=1  where 𝑦𝑦𝑖𝑖 is the ground truth,  𝑦𝑦𝚤𝚤�  is the predicted value and 𝑦𝑦� is the average of the 

sample. The ML model is then used to predict the output water fluxes and salt rejections for 3814 

2D materials from the Computational 2D Materials Database, https://cmrdb.fysik.dtu.dk/c2db/ 20. 

Since the partial atomic charges on the atoms of these membranes were unknown, we optimized a 

different ML model to predict the charges on the atoms based on features discussed in detail in 

Supplementary Section IV. The effect of pore functionalization with a metallic or non-metallic 

element was also studied. The 2D materials were next screened for thermodynamic stability 

provided by Haastrup et al.20 in the literature. The predictions made by the model are also verified 

using MD simulations as described in the next section. 

2.2. MD Simulations  

Pressure-driven transport calculations of saltwater through nanoporous 2D materials were 

performed with MD simulations using LAMMPS package29. As shown in Figure S5.1, Section V 

https://cmrdb.fysik.dtu.dk/c2db/


of the Supplementary Information, the simulation domain consists of a saltwater (feed) reservoir 

and a pure water (permeate) reservoir, separated by a nanoporous membrane in the middle. Some 

of the 2D membranes simulated include C2, C2H2, Mo2O4, Ti2O4, CrO2, FeO2, V2O4, CoO2, 

Au2Cl2N2, F2N2Ti3, ZnH2O2, CuH2O2, and Cl4O4Ti4. The 2D membrane areas are approximately 

16 nm2. Due to the differences in crystal structure of the materials, the exact area of each membrane 

is slightly different from 16 nm2. Similarly, the pore area of each membrane is approximately 50 

Å2. A pore in a membrane was created by removing some of the membrane atoms. The pore area 

is defined as the total empty space surrounded by the atoms on the pore edge. A pressure-driven 

flow was created by applying different constant forces on the two rigid pistons on either side of 

the membrane. At a specified pressure difference, the left piston moves in the z-direction pushing 

the water molecules and ions along with it, whereas the right piston moves downstream. This 

method of creating pressure-driven flows through nanoporous membranes is well established in 

the literature12,14. In this study, a pressure difference of 100 MPa was created by applying a 

pressure of 100 MPa plus 1 atm on the left piston and a pressure of 1 atm on the right one. Initially, 

there are 2511 water molecules and 1680 water molecules in the feed and the permeate reservoirs, 

respectively. The initial distances from the left and the right pistons to the middle of the membrane 

are 45 Å and 35 Å, respectively. For the chosen salinity of 50 g/l, the feed reservoir was initially 

assigned 33 Na+ and 33 Cl- ions.  

Simple point charge extended (SPC/E) model was used to simulate water molecules30. SHAKE 

algorithm was used to keep the O-H bond length and H-OH angle at 1.0 Å and 109.47o, 

respectively 31. Truncated Lennard-Jones (LJ) 12-6 potential with a cutoff distance of 1.2 nm was 

used to model the intermolecular interactions (van der Waals) of salt ions, oxygen atoms in water, 

and membrane atoms. Oxygen-oxygen interaction values were taken from the SPC/E model30. LJ 

interaction parameters of sodium and chloride ions in aqueous solutions were modeled using 

GROMOS force fields32. The LJ interaction parameters and charges for the different membrane 

atoms were taken from the Reaxff force fields33. The interaction parameters between the remaining 

dissimilar atoms were obtained using Lorentz-Berthelot rule (Supplementary Information, Section 

V). For all atomic species having charge, short-range Coulombic interactions were computed with 

a cut-off distance of 1.0 nm, while long-range electrostatic interactions were computed using 

particle-particle, particle-mesh (PPPM) method34.  



The energy of simulation system was initially minimized with a stopping tolerance of 10-6. 

Next, an equilibrium simulation with a constant number of atoms, pressure, and temperature (NPT) 

ensemble was performed at 1 atm and 300 K. The membrane was fixed at its original position 

during the equilibration, while piston atoms could change their positions as rigid objects. The NPT 

simulation preserved the thermodynamic state of water at a density of 1 g/cm3 and temperature of 

300 K. Next, a constant number of atoms, volume, and temperature (NVT) non-equilibrium 

simulation using the Nosé-Hoover thermostat was performed for 15 ns with a pressure difference 

of 100 MPa to study water transport through the membrane. In these simulations, the membrane 

was still fixed at its original position, while the rigid pistons gradually adjust their positions due to 

the applied pressure difference. Water flux was calculated based on the average rate of water 

molecules passing through the membrane, and the selected area (membrane area or pore area). A 

detailed calculation method is provided in Section V of the Supplementary Information.  

3. Results and Discussion 
3.1. Features important for water desalination from ML model 
The screened 2D materials were of several stoichiometries and had different atomic structures 

as described in detail in the C2DB open database literature20. These include a single or multiple 

atoms of the membranes like A, AB, AB2, ABC, AB3, A2BC2 and AB2C4 where A/B/C can be 

either metallic or non-metallic elements. Here, we try to classify them based on the metallic and 

non-metallic element or elemental groups that each 2D material consists of, as we find that the 

features related to the position of the atom in the periodic table has a major effect on the 

desalination performance as also seen in Figure 2(a-c). From the feature importance bar chart in 

Figure 2(a), we find that the membrane average atomic number, partial charge on the atoms, and 

average pore atomic radius play an important role in the estimation of water flux and salt rejection 

rates (along with the operational properties involved in RO such as applied pressure, salt 

concentration, pore and membrane area not shown in the figure). Figure 2(a) also shows the effect 

of these features on water flux and salt rejection rate during desalination based on the collected 

computational data from literature. These factors are found to be important with high “feature 

importance”, which is a measure of the “out of bag” error, i.e., the error not including one of the 

features during implementation of the ML algorithm. However, there remains a lot of chemical 

space that remains unexplored with reasonable water fluxes and salt rejection rates which would 

lie at the right top corner of the contour plots shown in Figure 2(a). Based on the data from 



literature, it seems lower membrane atomic numbers and intermediate membrane charges lead to 

higher desalination performance. The direct trends of desalination performance in the contour plots 

are not very clear because of simultaneous dependence on other factors/features. We try to 

generalize these trends again using MD simulations which will be discussed in Section 3.4. 

Owing to the importance of position of the atoms in the membrane on the periodic table in 

determining desalination performance as seen in Figure 2(a), we chose lower atomic number H, 

C, N, chalcogenides and halogens to study the effect of pore functionalization. We also study 

metallic functionalization with transition element atoms.   

3.2. Effect of Pore Functionalization 

The functionalization of pores is of immense importance and has been studied by researchers 

in the past. Fang et al.19 reported that increasing the charges at the pore from 0 to -3e enhances the 

water transport, while further increasing charges  to -6e, reduces the water transport in porous 

graphene oxide membranes. The ML model feature importance list also points towards the 

importance of partial charges on the atoms in general. The detailed feature list with the importance 

is provided in Tables S2.1 and S2.2 in Supplementary Information Section II. We functionalized 

the pores of the 3814 membranes provided in the C2DB database20 with 8 non-metallic (Cl, Fl, Br, 

I, O, H, C and N) and 8 metallic (Mo, Ru, V, Cr, Ti, Fe, Co and Mn) atoms. The results are shown 

in Figure 2(b) for non-metallic and 2(c) for metallic elements. Metals are known to be more 

hydrophilic than non-metals, and this numerical experiment helps us observe the difference it 

brings to the desalination performance.  

The non-metallic functionalization increased the water fluxes with the highest flux for pores 

functionalized with C and H. However, the salt rejection rates were reduced below the minimum 

value for the unfunctionalized pores indicated by the bottom line of the grey box in Figure 2(b), 

more so for some of the hydrogenated pores. Metallic functionalization, on the other hand, 

improved the salt rejection rates and decreased the minimum for water flux shown in Figure 2(c). 

Comparing the two figures (2(b) and (c)), we find some of the carbonated and hydrogenated pores 

lie in the top right corner of Figure 2(b) with higher water fluxes and salt rejection rates.  

 

 



3.3. Improved Class of 2D materials for Desalination 

 Figure 3(a) shows predicted classes of 2D materials with their desalination performance. 

Graphene, transition metal dichalcogenides and nitrides are classes that have been reported in the 

literature to perform well in  desalinating seawater12–14. The chemical space that has not yet been 

reported is the halides complexes, oxide complexes and the lithiates which we find to be an 

important class of 2D materials for good water desalination performance. Many of these new 

candidates for desalination fall in the class of MXenes which are inorganic 2D membranes, for 

example, transition metal carbides, nitrides and nitro-carbides. The halide membranes although 

thermodynamically stable may dissolve in water due to the high electronegativity difference of the 

metallic and non-metallic atoms.  The class that the ML model found promising and was also 

verified through MD simulations is the 2D metal oxides and its complexes. This class is 

increasingly being synthesized and studied  these days due to its applications in electronics and 

renewable energy 35–38. Its application in desalination has not been reported yet.  

The findings of this study have been verified using MD simulations. Figure 3(b) shows the 

comparison of ML water fluxes for several candidates with MD calculations. A reasonable match 

between the MD and ML water fluxes both with respect to membrane area and that with respect 

to pore area are shown. Our reported fluxes for some of the oxides (FeO2, CoO2, CrO2, V2O4, 

Ti2O4 and Mo2O4), oxide-complexes (CuH2O2, ZnH2O2 and Cl4O4Ti4) and halide complexes 

(Au2Cl2N2, F2N2Ti3) are up to 3 times higher than those of graphene or MoS2, which results in 

reduced work done that is required for desalination. This also implies increase in the efficiency of 

desalination which is the ratio of work done for desalination to the minimum work required. In 

addition, oxygen has turned out to be the most potent chalcogen that can be used with transition 

metal when it comes to desalination, even better than Se and S. MoS2 and MoSe2 have been studied 

for desalination12,39 but Mo2O4 is found to out-perform graphene  and perform as good as the MoS2 

as found by our MD results. Other period II elements like C and N with transition metals as 2D 

materials also perform well as seen in Figure 3(a).  

3.4. MD based analysis 

 Figure 4(a) shows the effect of the top two features predicted by the ML model on water 

flux. The region of higher water fluxes indicated by the inset is further investigated using MD 

simulations, shown in Figure 4(b). Lower atomic numbers in the range of 5-30 for the 2D 



membrane have the highest water flux when the partial charges in the atoms are in the range of 

0.3-0.6e which is within the range of the atomic charges in H and O atoms in the water molecules. 

The charges for H and O atoms used in the MD simulations were 0.4238 and -0.8476, respectively 

(SPC/E water model). This is also shown in detail in Figure 4(c) and (d). Smaller atomic numbers 

or smaller radii of the atoms mean thinner 2D membranes which enhance the water flux. This can 

be simply understood based on the Hagen-Poiseuille equation: 𝑄𝑄 = 𝜋𝜋𝑅𝑅4∆𝑝𝑝
8𝜇𝜇𝜇𝜇

, where, ∆𝑝𝑝 is the applied 

pressure difference, 𝛿𝛿 is the membrane thickness, 𝑅𝑅 is the radius, ∆𝐶𝐶 is the salt concentration 

difference, and  𝜇𝜇 is the viscosity of the liquid.  

 The water flux through the nano pore is determined by both the average density and 

velocity of water molecules in the pore. Higher is the charge in the membrane, more is the 

membrane-water interaction, leading to higher average densities. However, higher interactions 

also reduce the average velocity of the water passing through the pores. This is seen in Figure 5(e) 

and schematically represented in Figure 5(f). For a brief illustration, the average densities, and 

velocities of water for three 2D membranes, graphene (C2), V2O4 and Cl4O4Ti4 are further 

discussed. Figure 5(a)-(c) show the 2D density distribution of water inside the pores, respectively.  

The average density of water follows the trend as 0.39 g/cm3 (C2) < 0.6 g/cm3 (CuH2O2) < 0.86 

g/cm3 (V2O4). The maximum positive charge in the membranes follows the same trend as 0 e (C2) 

< 1.1 e (Cl4O4Ti4) < 1.23 e (V2O4). This reveals the important role of Coulombic interactions in 

determining the average density of water inside the pore. Similar membrane-water interactions 

affecting the water fluxes in carbon nanotubes have also been reported earlier40,41. However, the 

average velocity follows a different trend of 2.06 m/s (C2) < 2.34 m/s (V2O4) < 3.79 m/s (Cl4O4Ti4). 

V2O4 has higher charges leading to higher average water density in the pore but lower average 

velocity as compared to Cl4O4Ti4, making the water flux higher for Cl4O4Ti4. The graphene with 

no charges on the membrane has both lower average density and lower average velocity. Figure 

5(d) shows the average barrier energy experienced by a water molecule passing the three pores. It 

is seen that C2 hinders the passage of water through the pore the most while Cl4O4Ti4 does the 

least, explaining the trend in average velocity. We, therefore, need intermediate charges in the 

range of that of the atoms in the water molecules for a combination of better average density with 

average velocity. 



4. Conclusions 
A machine learning model correlating the computationally determined water flux and salt 

rejection rates to the applied pressure, salt concentrations, pore area, membrane thickness, radius 

of the pore and 39 other features related to the chemical, electrical and structural features of the 

membrane and its pore, has been developed. Among these features, pore atomic number and 

maximum positive charge in the membrane are found to have maximum effect on the desalination 

performance. The model is used to screen 3814 2D materials listed in open databases. Having 

transition metal at the pore, is found to enhance salt rejection rates while non-metals like halogens 

and chalcogens increase the water flux. 2D transition metal oxides and their complexes are 

predicted to be effective for desalination. We report candidates with 3 times better water fluxes 

than the state of art 2D membranes which has also been validated through MD simulations. Higher 

partial charges on the membrane atoms lead to higher water-membrane interactions and enhanced 

average water density but reduced average velocities.   
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(a) (b) 

 
(c) 

Figure 1: (a) The state of the art of desalination performance (Seawater, Brackish and High-flux Reverse 
Osmosis (RO), Zeolites, and some well-known 2D materials) showing the goal we want to reach with 
the complex chemistries of 2D materials. (b) The flow of data for screening 2D materials for high 
desalination performance is shown schematically. The data from desalination literature is used for 
developing a Machine Learning (ML) framework testing many algorithms for minimum Mean Absolute 
Error (MAE). This framework is used to screen 3814 2D materials provided in open Database for high 
desalination performance. The predictions from the ML framework are next screened for stability. The 
fluxes obtained are verified using Molecular Dynamics (MD) to reach new chemistries of 2D materials 
for desalination. (c) Periodic table showing the metallic A and non-metallic B sites possible for 2D 
materials screened for water desalination performance. The chemistry is of type 
∏𝐴𝐴𝑗𝑗𝑖𝑖𝐵𝐵𝑙𝑙𝑘𝑘 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒:  𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 = 0,1, … .∞ with different combinations of metallic elements 𝐴𝐴𝑖𝑖  and non-
metallic 𝐵𝐵𝑘𝑘with different stoichiometries j and l.   

�𝐴𝐴𝑗𝑗𝑖𝑖𝐵𝐵𝑙𝑙𝑘𝑘 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒:  𝑖𝑖, 𝑗𝑗,𝑘𝑘, 𝑙𝑙 = 0,1, … .∞ 

 



 
(a) 

  
(b) (c) 

Figure 2: (a) The effect of important features with their relative importance from the ML model (along 
with the operational properties involved in RO such as applied pressure, salt concentration, pore and 
membrane area not shown in the figure). Effect of membrane atomic number, membrane positive charge 
and pore atomic radius from the literature data is shown in inset contour plots; Some of the features have 
0 or low feature importance as we have plotted them for both the targets of water flux and salt rejection 
rate, for which they might be important for one but not for the other. (b) Effect of non-metallic and (c) 
metallic pore functionalization on desalination performance of water flux with respect to membrane area 
and salt rejection from the ML model; The grey box represents the range of values for 3814 non-
functionalized 2D material candidates. 
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(b) 

Figure 3: (a) The best thermodynamically stable 2D material classes predicted by the ML model 
compared to the state-of-the-art RO, Nanofiltration, Zeolites and 2D membranes of graphene and MoS2. 
2D Oxide complexes, Nitro-halides and Oxide membranes perform the best for desalination; (b) 
Comparison of MD prediction of water flux with ML model for verification of the ML model. The 
average pore area is 50 Å2 and membrane area is 16 nm2. The details of the pore and membrane size is 
provided in the Supplementary Material Section V.  

 

 



  
(a) (b) 

   
(c) (d) 

Figure 4: (a) Water Flux predicted from ML model with respect to the top two important features: 
membrane atomic number and maximum positive charge on the membrane. The dotted box shows the 
region of better desalination performance which has been probed using MD. (b) The variation of water 
flux, with respect to the top 2 features, calculated from MD. (c) Lower atomic numbers for the membrane 
unit cells showing higher fluxes. The symbol colors follow the temperature palette, red indicating higher 
fluxes and blue indicating lower fluxes (d) The effect of charges used in MD on water flux calculated 
from MD. Lower the charges on the membrane atoms better are the water fluxes indicated by the linear 
fits on the positive (red) and negative charges (blue) on the membrane. The charges on oxygen and 
hydrogen atoms in the water molecule are also indicated for reference.  
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(f) 

Figure 5: The time averaged water density profile for the pores of 2D membranes (a) C2 (b) V2O4 (c) 
Cl4O4Ti4 showing more interaction of water with the pore edges lead to more dispersed densities, higher 
at the pore edges and lower in the center indicating the tendency for more membrane-water interactions 
with increase in charges in the membrane. (d) The variation of the energy barriers for the above cases 
(calculation method is presented in Supplementary Information) and (e) average density in the pores (red) 
and the average velocity in the pores (black) calculated using MD, with maximum charge on the 
membrane atoms. A linear relationship of average water densities in the pore and inverse linear 
relationship of velocities at the pore center with maximum charge is observed. (f) The effect of higher 
water membrane interactions (due to higher charges) on the average water density in the pore (increases) 
and average water velocity during desalination (decreases) is shown. 
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