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Abstract 

High-fidelity results from atomistic simulations can only be obtained by using accurate force field (FF) 

parameters. Although empirical FFs are commonly used in the modeling of atomistic systems due to their 

simplicity, they have many limitations inherent in the crude approximations associated with their analytical 

form. Recent advances in neural network-based FFs have led to more accurate FFs by using symmetrical 

functions or full many-body expansions. However, this approach leads to several issues including the 

arbitrariness of the symmetry functions, and the intangible and uninterpretable interactions which are only 

known once the positions of all atoms are set. More importantly, training is another bottleneck, as high-

quality force and energy information is required, which is usually not accessible from experimental data. 

To solve these issues within the context of structure-based coarse-graining methods, we switch in this work 

to a local search method to target the reference structure instead of using conventional backpropagation 

algorithms used to target the forces and energies of the reference structure. Our FF is decomposed into two-

, three-, and higher-order terms, where each term is modeled with a separate neural network. To show the 

versatility of our method, we study four different systems, namely, Stillinger-Weber particles as an 

atomistic case and three water models, namely SPC/E, MB-pol, and ab initio, as coarse-graining cases. We 

show the successful application of our approach, by reproducing structural properties of different water 

models, followed by providing insight into the role of two-and three-body interactions. The results of all 

models indicate that the double-well isotropic pair potential, signature of waterlike behavior in an isotropic 

system, vanishes upon inclusion of three-body interaction, showing dominance of three-body interaction 

over two-body interaction in water-like behavior with single-well isotropic pair potential. 
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I. Introduction 

Classical molecular dynamics (MD) simulation is a powerful computational tool to study various 

physical, chemical, and biological systems1 by allowing researchers to obtain structural and dynamical 

properties of these systems with a computational cost far less than the ab initio molecular dynamics 

simulations and resolution far better than the continuum models. The accuracy of the force fields (FFs) used 

in MD simulations is pivotal to obtain accurate and meaningful results. To date, the most common choice 

for FFs in MD simulations belongs to some predefined analytical forms, known as empirical FFs, which 

are sometimes limited in truthful representation of real interactions.2–4 The problem is particularly more 

pronounced in coarse-grained FF developments, where due to the many lost degrees of freedom, coarse-

grained (CG) FF often exhibit features that are not necessarily present in the reference system. 

Various strategies have been developed to improve the accuracy of empirical FFs, such as the inclusion 

of higher-body interactions, e.g., three-body interactions. For example, a single bead water model with the 

Stillinger-Weber potential5, known as the mW model6, predicts various properties, such as the melting 

temperature, as accurately as more complex all-atom models. However, such FFs are usually designed with 

various approximations (e.g., analytical form limitation) motivated by physical intuition, making their 

application to other systems difficult, if not impossible. In general, the selection of an analytical form and 

its parameterization requires considerable expertise as well as computer and human time.7 Motivated by 

recent progress in the application of machine learning in atomistic simulations8–14, researchers in FF 

development have embarked on employing various machine learning methods, such as kernel- and neural 

network-based force fields (NNFFs)15–19. Particularly, NNFFs solve the problem of functional form 

limitation using the universal approximation theorem. 

Despite recent success in NNFFs, there are still several issues challenging the widespread usage of 

NNFFs, such as the arbitrariness of symmetry functions and state dependency of the NNFFs, as well as 

interoperability. Due to the implementation of NNFFs, they are also less interpretable compared to the 

empirical FF, as forces and energies are only known once the positions of the whole system are set. Most 
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of the available NNFFs also require accurate force and energy data, which are not always available or 

measurable. Recent studies have attempted to solve this problem using more interpretable FFs and active 

learning schemes, but there is still a need for accurate forces and energies.4 

Recently, coarse-grained force field development has been tackled using machine learning-based force 

fields such as NNFFs and kernel-based methods20–23. However, in many cases, the FF is not interpretable. 

Motivated by the need to overcome challenges with the interpretability of NNFFs and targeting structural 

properties in absence of accurate energies and forces, we propose a new strategy for developing NNFFs. In 

this study, instead of building a single NNFF, we build our NNFFs by the expansion of interactions as 

separate two-, three-, and n-body interactions. We limit our NNFF to a three-body expansion with the 

possibility of considering higher expansions in a similar manner. Our method, unlike other NNFFs17,18,23,24, 

does not necessarily require forces or energies on the particles to train the FF and can be trained solely 

based on the structural properties of the reference system. This is achieved by replacing backpropagation 

for NNFF training with a local-search algorithm25. We start with atomistic-scale force field development 

using the forces and positions of the mW model, i.e., force-matching of mW model without any coarse-

graining. After demonstrating the success of the method within the force-matching framework, we develop 

a single bead coarse-grained water model targeting the structural properties of three water models, namely 

SPC/E, MB-pol,26 and ab initio models. The choice of water model is motivated by its essential role in 

understanding anomalous behavior of water.27–31 Furthermore, our study assesses the role of two- and three-

body interactions in water-like model, providing significant evidence for possibly universal single-well 

isotropic interaction for water-like behavior in the inclusion of three-body interactions.32 To show this point, 

we coarse-grain different reference water models, and compared our results with mW and extended dipole 

water models to provide further evidence for our findings. In the case of mW model, our finding justifies 

why mW model has been successful with only having a single well pairwise interaction as our NNFF also 

indicates a single well pairwise interaction. In the case of extended dipole water model, comparison with 

the model developed by Motevaselian et al.33 shows that the presence of dipole-dipole interaction does not 
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lead to a single-well pairwise potential, therefore, indicating significant role of three-body interactions for 

water-like behavior. 

We show that our model can reproduce structural properties such as the radial distribution function and 

angular distribution of water. The interpretability of the NNFF in our study allows us to provide insights 

into the role of two- and three-body interactions in water-like behavior, especially as most of the past studies 

have focused on the two-body interaction15,30,33,34. Our study shows that coarse-graining of different water 

models with inclusion of three-body interactions leads to the suppression of double-well isotropic pair 

potential independent of the water model. This finding indicates superior role of anisotropic interaction in 

reproducing anomalous water-like behavior as well as success of Stillinger-Weber potential in modeling 

CG water. Compared with other machine learning-based FFs targeting similar problems, e.g., kernel-based 

methods, our method can handle complex radial and angular dependencies in the interactions between 

particles. For example, a spline three-body interaction or kernel-based three-body interaction15 capturing 

the complexity of our model (with fewer than 1000 free parameters) requires at least 106 free parameters 

(100 for each of the two radial components and one angular component), which is not possible to train and 

implement due to the computational and memory costs. 

II. Methods 

1. Simulations 

The MD simulation of the mW model6 is based on the Stillinger-Weber potential.5 It is described by 

two- and three-body interactions over pairs and triplets, respectively, as follows: 

𝑢𝑢𝑠𝑠𝑠𝑠2 (𝑟𝑟) = 𝐴𝐴𝐴𝐴 �𝐵𝐵 �
𝜎𝜎
𝑟𝑟
�
𝑝𝑝
− �

𝜎𝜎
𝑟𝑟
�
𝑞𝑞
� exp �

𝜎𝜎
𝑟𝑟 − 𝑎𝑎𝑎𝑎

� (1) 

𝑢𝑢𝑠𝑠𝑠𝑠3 (𝑟𝑟1, 𝑟𝑟2,𝜃𝜃) = 𝜆𝜆𝜆𝜆(cos 𝜃𝜃 − cos𝜃𝜃0)2 exp�
𝛾𝛾𝛾𝛾
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where 𝑟𝑟 indicates the radial distance between a pair, 𝑟𝑟𝑖𝑖𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖, and 𝜃𝜃 are the radial distances and the angle 

between the central atom and two other atoms, respectively (see Figure 1c). 𝜎𝜎(=  2.3925 A°) and 𝜖𝜖(=

 6.189 kcal/mol ) are the length and energy scales of the two-body potential, respectively. 𝜆𝜆 (= 23.15) is 

the scaling parameter indicating the strength of tetrahedral interactions. 𝐴𝐴 = 7.049556277, 𝐵𝐵 =

0.6022245584, 𝑝𝑝 = 4, and 𝑞𝑞 = 0 are parameters giving rise to the form and scale of the potential, and the 

reduced cutoff 𝑎𝑎 = 1.8 enforces that both forces and potentials vanish at distances larger than 𝑎𝑎𝑎𝑎. The 

angular term enforces a tetrahedral angle around 𝜃𝜃0 = 109.47°. MD simulations of CG and SPC/E models 

are performed using LAMMPS35 with a timestep of 2 fs in the NVT ensemble. The temperature is controlled 

using the Nosé-Hoover thermostat with a time constant of 0.2 ps. MD simulations of MB-pol are performed 

using OpenMM36 with MB-pol plugin. The temperature is controlled by the Anderson thermostat37 with the 

collision frequency of 1.0 ps  and equations of motion are solved using the velocity Verlet algorithm with 

a time step of 0.2 fs. The radial and angular distribution functions of ab initio water are obtained using ab 

initio molecular dynamics simulations with optimized norm-conserving Gaussian pseudopotentials 

generated by PBE were used with a double-zeta polarized basis38,39. Similar to Refs40,41, the AIMD 

simulations were performed using an isothermal-isochoric (NVT) ensemble where the constant temperature 

was controlled using the Nosé-Hoover thermostat42. The initial configuration of AIMD is obtained from 

MD simulation production run, i.e., the last frame of SPC/E MD simulation. We consider cubic simulation 

boxes with an edge length of 20.02 Å. Following a 2 ps equilibration, a production run of 22 ps trajectories 

is carried out using a 0.5 fs timestep. The radial and angular distribution functions are averaged over the 

total simulation time with a frequency of 50 fs. 

2. Deep Learning 

The NNFF developed in this study is composed of two- and three-body interactions, each described by 

a neural network43,44. Note that while we keep the FF limited to two- and three-body interactions, there is 

no limitation in using higher-order many-body interactions. The two-body term takes the radial distance of 

a pair as input, and the three-body term takes the radial distances and angle between a central atom and two 
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other atoms in a triplet. Mathematically, the two- and three-body forces of our NNFF can be written as 

follows: 

where 𝑟𝑟𝑐𝑐𝑐𝑐,2 and 𝑟𝑟𝑐𝑐𝑐𝑐,3  are the cutoff distances of two-body and three-body interactions, respectively. 𝒆𝒆𝒓𝒓 is 

the unit vector along the radial vector between two atoms (𝒆𝒆𝑟𝑟 = 𝒓𝒓
|𝒓𝒓|

).  𝜙𝜙2  is the output of the two-body 

neural network with  𝜙𝜙2 ∈ ℝ1 (see Figure 1b), and 𝝓𝝓3  is the output of the three-body neural network with 

 𝝓𝝓3 ∈ ℝ4 (see Figure 1c). 𝑾𝑾 and 𝒃𝒃 are the weights and biases of the neural networks, respectively, and 

their indices indicate the number of expansions, namely, two- and three-body interactions. We use different 

neural network depths and widths to model different interactions; however, we use similar nonlinearities, 

swish nonlinearity (swish(𝑥𝑥) = 𝑥𝑥
1+exp(−𝑥𝑥)) between the hidden layers and tanh nonlinearity for the output 

layer. ℰ(𝒆𝒆1, 𝒆𝒆2) is a mapping from ℝ4 to Cartesian coordinates, written as follows: 

where the first two columns of ℰ(𝒆𝒆1, 𝒆𝒆2) and the first two elements of 𝝓𝝓3 determine the contribution of 

force on the central atom from the left particle of a triplet (left, central, right). Similarly, the last two 

columns of ℰ(𝒆𝒆1,𝒆𝒆2) and the last two elements of 𝝓𝝓3  show contributions from the right atom in a triplet 

(left, central, right). Note that for the applications of 𝑛𝑛-body interaction within our framework, the following 

steps can be taken: Given the position of the central atom, the n-body interaction depends on the position 

of 𝑛𝑛 − 1 particles, described by 𝑛𝑛(𝑛𝑛 − 1)/2 relative distances or angles, and it produces a force vector with 

a dimension of ℝ(𝑛𝑛−1)2 , which gets mapped to the Cartesian coordinates through the mapping matrix, 

ℰ(𝒆𝒆1, 𝒆𝒆2, … , 𝒆𝒆𝑛𝑛−1). The reaction forces are mapped to the contributing noncentral atom using specific 

columns of ℰ(𝒆𝒆1,𝒆𝒆2, … , 𝒆𝒆𝑛𝑛−1). 

𝑓𝑓𝑛𝑛𝑛𝑛2 (𝒓𝒓) = 𝜙𝜙2�(𝑟𝑟𝑐𝑐𝑐𝑐,2 − 𝑟𝑟)/𝑟𝑟𝑐𝑐𝑐𝑐,2;𝐖𝐖2,𝒃𝒃2�. 𝒆𝒆𝑟𝑟 (3) 

𝑓𝑓𝑛𝑛𝑛𝑛3 (𝒓𝒓1, 𝒓𝒓2,𝜃𝜃) = ℰ�𝒆𝒆𝒓𝒓1 ,𝒆𝒆𝒓𝒓2� 𝝓𝝓3�(𝑟𝑟𝑐𝑐𝑐𝑐,3 − 𝑟𝑟1)/𝑟𝑟𝑐𝑐𝑐𝑐,3, (𝑟𝑟𝑐𝑐𝑐𝑐,3 − 𝑟𝑟2)/𝑟𝑟𝑐𝑐𝑐𝑐,3, cos𝜃𝜃 ;𝑾𝑾3,  𝒃𝒃3� (4) 

ℰ(𝒆𝒆1, 𝒆𝒆2) = �
𝑒𝑒1,𝑥𝑥 𝑒𝑒2,𝑥𝑥
𝑒𝑒1,𝑦𝑦
𝑒𝑒1,𝑧𝑧

𝑒𝑒2,𝑦𝑦
𝑒𝑒2,𝑧𝑧

 

   𝑒𝑒1,𝑥𝑥 𝑒𝑒2,𝑥𝑥

   
𝑒𝑒1,𝑦𝑦
𝑒𝑒1,𝑧𝑧

𝑒𝑒2,𝑦𝑦
𝑒𝑒2,𝑧𝑧

 � 
(5) 
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Having the appropriate force calculation method for a particular pair or triplet, we use two different 

schemes to train our NNFF, namely, force-matching and structure-matching methods. The force-matching 

method is a simple method without requiring any CGMD simulations. However, it fails to reproduce the 

structure of the coarse-grained model, as the effective forces are not equal to instantaneous forces on the 

CG beads. Additionally, how we map forces on the CG beads changes the FF obtained from the force-

matching method45. During force matching, one attempts to minimize the mean-squared error between the 

reference and model forces, which implies minimization of the following loss function using the 

backpropagation algorithm: 

𝜖𝜖ℒ
𝑓𝑓(𝜽𝜽,𝐷𝐷) =

1
2|𝐷𝐷|�� 𝒇𝒇𝐺𝐺𝐺𝐺(𝑖𝑖) − � 𝒇𝒇𝑛𝑛𝑛𝑛2 (𝑗𝑗)

∀𝑗𝑗 ∈𝑃𝑃𝑖𝑖

− � 𝒇𝒇𝑛𝑛𝑛𝑛3 (𝑗𝑗)
∀𝑗𝑗 ∈ 𝑇𝑇𝑗𝑗

�

2

 
𝑖𝑖∈𝐷𝐷

 (6) 

where 𝜽𝜽 indicates the free parameter of NNFF, both weights and biases of two- and three-body 

interactions. 𝐷𝐷 is the training data set. 𝒇𝒇𝐺𝐺𝐺𝐺(𝑖𝑖) is the ground-truth force on particle 𝑖𝑖. 𝑃𝑃𝑖𝑖 and 𝑇𝑇𝑖𝑖 represent all 

the unique pairs and triplets of particle 𝑖𝑖, respectively. Summation over pairs and triplets proceeds over 

those containing atom 𝑖𝑖 without duplicate terms. Note that atom 𝑖𝑖 can be the left, right, or central atom in a 

triplet, which leads to using the first two, last two, or all the columns of ℰ(𝒆𝒆1,𝒆𝒆2), respectively. Note that 

the above procedure for triplet force calculation enforces Newton’s third law of action and reaction. During 

the training of the network, input data, i.e., various pairs and triplets, along with the corresponding ground 

truth forces are fed into the neural networks, which are then used to train through backpropagation. Based 

on our studies, it is easier to use convolutional neural networks to calculate forces for the above force-

matching method and model each of the two- and three-body interactions as separate filters over pairs and 

triplets, respectively. To eliminate the effects due to the particles outside of the cutoff distance, we multiply 

the output of the convolutional neural network with a rectified linear unit with linearly transformed radial 

distance as input (max(0, (𝑟𝑟𝑐𝑐𝑐𝑐 − 𝑟𝑟)/𝑟𝑟𝑐𝑐𝑓𝑓)). The Adam optimizer46 is used to optimize the weights and biases, 

during force-matching with L2 regularization to avoid overfitting. 
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Furthermore, we develop a new route to train our NNFF without requiring direct access to forces. We 

apply our method to reproduce the structural properties of reference systems (note that the method is general 

and can be applied to various properties). Our method solves the problem with force matching in the 

reproduction of structural properties and the fact that reference forces are not always the target of force 

field development or available during FF development. To do so, the backpropagation algorithm, which is 

used in the force-matching method, is replaced with the local search algorithm. This is similar to using 

evolutionary or reinforcement learning methods to train NNFF. In other words, MD acts as an environment 

where the policy predicts forces and forces are used for MD simulation47,48. The cost determined at the end 

of the MD simulation is the structural agreement between the CG and reference models49,50. Within the 

local-search algorithm, the training for such policy is done through two steps. First, a small fraction of the 

free parameters of NNFF is selected randomly, followed by a perturbation of selected parameters. The 

perturbation is accepted if it improves the loss function. Within our structure-based coarse-graining method, 

the loss function is defined as: 

𝜖𝜖ℒ𝑠𝑠(𝜃𝜃) =
∑ |𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟𝑛𝑛) − 𝑔𝑔𝑐𝑐𝑐𝑐(𝑟𝑟𝑛𝑛)|𝑁𝑁
𝑛𝑛=1

∑ |𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟(𝑟𝑟𝑛𝑛)|𝑁𝑁
𝑛𝑛=1

+ 𝛼𝛼�
∑ |𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟

(𝑙𝑙) (𝜃𝜃𝑚𝑚) − 𝑎𝑎𝑐𝑐𝑐𝑐
(𝑙𝑙)(𝜃𝜃𝑚𝑚)|𝑀𝑀

𝑚𝑚=1

𝐿𝐿

𝐿𝐿

𝑙𝑙=1

 
                             

(7)  

where 𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑔𝑔𝑐𝑐𝑐𝑐 represent RDFs of the reference and CG models. 𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑎𝑎𝑐𝑐𝑐𝑐 show ADFs of the 

reference and CG models. 𝛼𝛼 indicates the importance of ADF in the structural similarity of the reference 

and CG models (with only 2-body interaction 𝛼𝛼 is set to 0). The RDF is discretized into 360 segments from 

0 to the cutoff distance of two-body interactions. Similarly, the ADF is discretized into 240 segments from 

0 to 180 degrees. Furthermore, ADF is calculated for 7 different cutoff distances ranging from 0.3 nm to 

0.45 nm. Additionally, note that for each iteration of local search training, a short MD simulation is 

performed to obtain the RDF and ADF of CG models and therefore the loss function (see reference25 for 

details on the local search algorithm). 
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III. Results and Discussion 

1. Force Matching 

The objective of the force-matching method is to reproduce the ground truth forces. In this study, we 

use force matching to show that our scheme of training NNFF leads to retrieving the ground-truth force 

field of the mW model in the form of NNFF. To do so, we train our NNFF based on forces obtained at 

multiple temperatures. We perform an NPT simulation at 300 K and 1 bar to obtain the correct density, 

followed by a simulation in the NVT ensemble at T = 270, 300, 330 K to obtain the positions and forces of 

the mW model particles. 

Once the data were obtained, we trained our NNFF with a cutoff distance of 0.4310 nm, equal to the 

mW model cutoff distance. The two- and three-body interactions in NNFF form are modeled with 3 and 4 

hidden layers, respectively. All the hidden layers except the output layer have swish nonlinearity, and the 

output layer has tanh nonlinearity. We trained the network for approximately 2x106 iterations with a batch 

size of 64. In Figure 2a, we compare the RDF between the mW and NNFF models, followed by a 

comparison of the two-body forces of the ground truth mW and NNFF models at different radial distances, 

as shown in Figure 2b. Similarly, we compare the ADF of the mW and NNFF models with various cutoff 

distances in Figure 3a-b. We also compare the norm of the three-body forces from the mW and NNFF 

models at different angles for the equidistant configurations of neighboring atoms in Figure 3c. The method 

shows good agreement in terms of RDF and ADF reproducibility, as well as recovering the ground truth 

forces. 

2. Structure-based Coarse-Graining 

The force-matching scheme is not able to reproduce the structural properties of the reference system. 

To solve this problem, we employ the local-search method over NNFFs pretrained by force-matching or 

iterative Boltzmann inversion methods. The local-search algorithm starts by randomly grouping small 

fractions of NNFF parameters together, followed by adding a random perturbation, usually a uniform 
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perturbation, to the selected parameters. The new candidate NNFF is then used for running CGMD 

simulation. If the results are improved, then the new candidate becomes the best candidate, and additional 

perturbations are applied to it; otherwise, another fraction of NNFF parameters is selected. After all groups 

of NNFF parameters are explored a new grouping of NNFF parameters occurs. The procedure continues 

until the desired accuracy is obtained or iterations budget is exhausted.25 The size of fractions and 

perturbation size are hyper-parameters of local search method.  

In our study, we model water both using classical MD, (SPC/E and MB-pol models) and AIMD. For 

each reference system, we develop two different NNFFs, one with only two-body interactions (𝑁𝑁𝑁𝑁2𝑡𝑡, where 

t represents the reference model, i.e.  𝑡𝑡 ∈ {𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴}) and one with both two- and three-body 

interactions (𝑁𝑁𝑁𝑁3𝑡𝑡). In addition to the interpretability of both the 𝑁𝑁𝑁𝑁2𝑡𝑡and 𝑁𝑁𝑁𝑁3𝑡𝑡 models, the models allow 

us to understand the role of two- and three-body interactions in water-like behavior. Both 𝑁𝑁𝑁𝑁2𝑡𝑡 and 𝑁𝑁𝑁𝑁3𝑡𝑡 

model have two-body interactions with a cutoff distance of 0.8 nm, and 𝑁𝑁𝑁𝑁3𝑡𝑡  model has the three-body 

interaction with a cutoff of 0.45 nm. The 𝑁𝑁𝑁𝑁2𝑡𝑡 model with only two-body interaction has 3 hidden layers 

with widths of 4, 16, and 4. In the 𝑁𝑁𝑁𝑁3𝑡𝑡 model, the two-body interaction has 3 hidden layers with widths of 

6, 12, and 6, and the three-body interaction has 4 hidden layers with widths of 3, 6, 12, and 8. All the hidden 

layers except the output layer have swish nonlinearity, and the output layer has tanh nonlinearity. Note that 

both RDF and ADF are calculated between the oxygen atoms, i.e., the oxygen atom of water molecules is 

the mapped CG model. Our NNFF is implemented as a user package inside the LAMMPS package.  

We start by discussing results of SPC/E model, followed by discussions of MB-pol and AIMD water 

models and finally discussing the results of three models together. Both 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 models 

reproduce the RDF of oxygen-oxygen with high accuracy with an error of less than 0.01 (see Figure 4a). In 

Figure 4b, we compare the two-body interaction between the 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  models. As seen in 

Figure 4b, the 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  model has only a single well, while 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 model has a double-well. The double-

well interaction observed in the 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  model is consistent with previous studies that used pairwise 

isotropic interaction to represent CG model of SPC/E water model51,52. Investigation into three-body 
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correlation shows that only 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  captures the ADF of SPC/E water model as shown in Figure 5a-c. The 

difference is especially pronounced at short distance (Figure 5a), where the hydrogen-bonding and 

tetrahedral structure of water play a significant role. This observation agrees with the directionality of water 

interactions at short range, which is missing when the CG model lacks three-body interactions. In Figure 

5c, we show the norm of the three-body forces of the 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  model at different angles for the equidistant 

configurations of neighboring atoms. Figure 5c indicates that the three-body forces of 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  model have 

far more complex behavior than those of the mW model, which is limited by its analytical form. Therefore, 

we observe importance of three-body and directional interactions for accurate modeling of CG water model 

consistent with the previous studies. 53,54  

 We also investigate the transferability and representability of the 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  models. 

Coarse-graining often comes at the cost of not reproducing all the properties of the system, however, 

consistent qualitative behavior in terms of dynamics is observed between structure-based coarse-graining 

and reference models.55 To assess representability of model, we calculate the isothermal compressibility, 

thermal expansion coefficient, density, and diffusion coefficient. The isothermal compressibility (𝑘𝑘𝑇𝑇) and 

thermal expansion coefficient (𝛼𝛼𝑝𝑝) are evaluated based on the following equations, 

𝑘𝑘𝑇𝑇 = −
1

𝑉𝑉(𝑝𝑝,𝑇𝑇)
𝑉𝑉(𝑝𝑝 + 𝜖𝜖,𝑇𝑇) − 𝑉𝑉(𝑝𝑝 − 𝜖𝜖,𝑇𝑇)

2𝜖𝜖
 

                             

(8)  

𝛼𝛼𝑝𝑝 =
1

𝑉𝑉(𝑝𝑝,𝑇𝑇)
𝑉𝑉(𝑝𝑝,𝑇𝑇 + 𝜖𝜖) − 𝑉𝑉(𝑝𝑝,𝑇𝑇 − 𝜖𝜖)

2𝜖𝜖
  

                             

(9)  

where 𝑝𝑝 and 𝑉𝑉 are the pressure and volume of the system, respectively. 𝜖𝜖 is the perturbation around the 

reference system. For CG models, the reference pressure is chosen based on the NVT simulation results. 

The results of both isothermal compressibility and expansion coefficients are shown in Table I, where we 

observe a better reproduction of both properties by the 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  model compared to the 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  at T 300 

K, again indicating the role of three-body interactions in terms of reproducibility. 
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 The transferability is assessed based on the change in structure, density, and diffusion coefficients 

with temperature change. The structural change is quantified in terms of change in the RDF and ADF of 

CG models at 270 K and 330 K compared with the SPC/E model RDFs and ADFs (shown in Figure 6). 

Both models RDF and ADF errors remain in a similar order of magnitude as their error in the target 300 K 

temperature. However, structural errors of both models show more sensitivity to increase in temperature, 

mainly due to the dominant role of entropy at higher temperature.  The density is obtained from the NPT 

simulation with reference pressure obtained from the NVT simulation at 300 K. The results (shown in Table 

II) indicate that both methods reproduce density with less than 0.5 % error, but both methods fail to capture 

the anomalous behavior of density, again mostly due to the increasing role of entropy. To assess dynamical 

properties, the diffusion coefficients are compared between the CG and reference models. The diffusion 

coefficients are computed based on the Einstein relationship from the mean squared displacement 

(𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏) = 〈|𝒓𝒓(𝜏𝜏) − 𝒓𝒓(0)|2〉 = 6𝐷𝐷𝐷𝐷 , as lag time (𝜏𝜏) goes to infinity), see Table II for the values of 

diffusion coefficient. In general, we observe higher diffusion coefficients in the 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  models compared 

with the 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆model, as 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  model represents the free energy landscape of the reference system 

better, but it still overestimates the diffusion coefficient by approximately an order of magnitude.  

RDF obtained using MB-pol water model reproduces experimental RDF of water better than SPC/E 

model. Motivated by the drastic dependency of CG models on the structural properties of the reference 

systems56 and understanding general trend in the two- and three-body interactions of CG water, we develop 

𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀and 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 models. Both models reproduce RDF of MB-pol water model with high accuracy 

and RDF error of around 0.03 as shown in Figure 7a. In Figure 7b, we compare the two-body interaction 

between the 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  models. As seen in Figure 7b, the 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  model has only a single 

well, while 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 model has a double-well, consistent with the observations in SPC/E water model. The 

ADF results of 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  and 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 models show that only 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  succeeds in reproducing ADF of 

reference MB-pol water model. Again, the difference is pronounced at short distance (Figure 8a). In Figure 

8c, we show the norm of the three-body forces of the 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  model at different angles for the equidistant 
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configurations of neighboring atoms. Figures 4a and 7a and Figures 5c and 8c indicate that both two- and 

three-body forces present in SPC/E and MB-pol waters are different from each other, but they follow a 

similar qualitative behavior in terms of having a single well two-body interaction in the presence of three-

body interactions.  

Finally, we investigate behavior of 𝑁𝑁𝑁𝑁2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴and 𝑁𝑁𝑁𝑁3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 models. In Figure 9a, we compare RDF of 

both models with the reference model and observe a good agreement between them with a small RDF error 

(~0.03). Comparison between the two-body interactions of  𝑁𝑁𝑁𝑁2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴and 𝑁𝑁𝑁𝑁3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 models shows that the 

𝑁𝑁𝑁𝑁3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 model again has a single well form. In Figure 10a-b, we compare ADF of  𝑁𝑁𝑁𝑁2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴and 𝑁𝑁𝑁𝑁3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 

models and observe better performance of 𝑁𝑁𝑁𝑁3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 model in reproducing ADF of reference AIMD water 

model, especially at short distances. In Figure 10c, we show the norm of the three-body forces of the 

𝑁𝑁𝑁𝑁3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 model at different angles for the equidistant configurations of neighboring atoms. We observe 

both two- and three-body forces are different compared to both SPC/E and MB-pol water models, especially 

as the reference AIMD water model is more structured compared to both classical models.  

We briefly recap the key characteristics of 𝑁𝑁𝑁𝑁2𝑡𝑡  and 𝑁𝑁𝑁𝑁3𝑡𝑡 models. We observe that both the 𝑁𝑁𝑁𝑁2𝑡𝑡  and 

𝑁𝑁𝑁𝑁3𝑡𝑡  models can capture the RDF of the reference water; however, only the 𝑁𝑁𝑁𝑁3𝑡𝑡 model captures the ADF 

behavior of water. We observe a double-well interaction in 𝑁𝑁𝑁𝑁2𝑡𝑡  CG models; however, 𝑁𝑁𝑁𝑁3𝑡𝑡  only has a 

single well independent of the reference model. The fact that in the presence of a three-body interaction, 

the double-well structure of the two-body interaction vanishes and ADF is better reproduced shows that 

water structural properties are best described by a higher-order expansion of interactions rather than a 

simple pairwise interaction with a double-well. This is also consistent with the directional dependency of 

hydrogen bonds57 in water, which is best described by a three-body interaction rather than a double-well 

two-body interaction. 

 

 



 

15 
 

IV. Conclusions 

In this study, we train a neural network-based force field with two- and three-body interactions, which 

makes the force field more interpretable. Within our framework, the requirement for accurate forces and 

energies is eliminated by using the local search algorithm instead of backpropagation. Therefore, our 

method is suitable for application in structure-based coarse-graining. To show the capability of our method, 

we successfully develop coarse-grained models of different water models. We also investigate the 

dependency of the coarse-grained force field of water on the number of expansions, which shows that the 

double-well interaction, known as a signature of water-like behavior among spherically symmetric pairwise 

interactions, vanishes with the inclusion of three-body interactions independent of the reference water 

model. This indicates a consistent and possibly universal dominance of three-body interaction in water-like 

behavior among different water models. We also notice that the two-body interaction fails to reproduce the 

angular distribution of water, especially over a short range. Based on our findings, we conclude that water-

like behavior is better captured using the three-body interaction, which is consistent with the directional 

dependency of interactions in water. 
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Figure 1. Neural network-based force-field training. a) Force-field development begins by selection of 𝑛𝑛-
body expansion and initialization of neural network architecture, weights, and biases. Based on the 
objective of force field development and its differentiability, either back-propagation or local-search 
methods are employed to minimize the loss function. Once the loss function is minimized, its 
generalizability is assessed. If the neural network force field did not pass the criteria for its assessment, the 
cycle repeats. The 𝑛𝑛-body term in the neural-network force-field depends on the position of 𝑛𝑛 − 1 particles, 
described by  𝑛𝑛(𝑛𝑛 + 1)/2 relative distances or angles, and it produces a force vector with a dimension 
of ℝ(𝑛𝑛−1)2 , which gets mapped to the Cartesian coordinates through the mapping matrix, 
ℰ(𝒆𝒆1, 𝒆𝒆2, … , 𝒆𝒆𝑛𝑛−1). b) The two-body term for a tagged particle (red particle) only depends on the radial 
distance (|𝒓𝒓1|) of its neighboring particle (green particle) and the mapping is the unit vector between two 
particles (𝒆𝒆1 = 𝒓𝒓1/|𝒓𝒓1|). c) The three-body term depends on the position of three-particles best described 
by two radial distances (|𝒓𝒓1| and |𝒓𝒓2|) and the angle between them (𝜃𝜃). The neural network predicts four 
values, acting on the central red particle, where the first two values, shown with the solid black lines, 
correspond to action-and-reaction from the first neighboring particle and the second two, shown with 
dashed black lines, correspond to action-and-reaction from the second neighboring particle. The mapping 
matrix for a three-body term is described in Eq. 5. 
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Figure 2. Radial distribution function and two-body force comparison between neural network force 

field and ground truth mW model. a. Comparison between RDFs of mW and NN-based models b. 

Comparison between two-body force of mW and NN-based models. Black circles show the mW model 

results and red lines show NN-based force field results. 
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Figure 3. Angular distribution functions and three-body force comparison between neural network force 

field and ground truth mW model. a. Comparison between ADF mW and NN-based models with cutoff of  

0.3 nm b. Comparison between ADF mW and NN-based models with cutoff of 0.43 nm c. Comparison 

between the norm of three-body force on the central particle of mW and NN-based models at different 

angles in the equidistant radial configuration. Black points show the mW model results and red lines show 

NN-based model results. 
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Figure 4. Radial distribution function and two-body force comparison between different neural network 
force fields and SPC/E model. Both 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆models have a two-body force field, however, 
𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆has additional NN modeling its 3-body interaction. Both models produce the RDF properties of 
SPC/E models. a. Comparison between RDFs of SPC/E model and NN-based models b. Comparison 
between two-body force of 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆; 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆shows the double-well form, while 
𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆has a single well, and its interaction range is shorter than the 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆model. Black circles show 
the SPC/E model results and blue solid and red dashed lines show the results of  𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆CG 
models, respectively. 
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Figure 5. Angular distribution functions and three-body force comparison between different neural 
network force fields and SPC/E model. 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆models with three-body interaction capture ADF 
behavior of water far better than the 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆model. a. Comparison between ADFs of SPC/E, 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 , 
and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆models within cutoff of 0.3 nm b. Comparison between ADFs of SPC/E, 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 
𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆models within cutoff of 0.35 nm c. Norm of three-body force on the central particle of 
𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆models at different angles in the equidistant radial configuration. In a and b, black dashed lines 
show the SPC/E model results and dashed blue and solid red lines show the results of 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 
𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆CG models. All lines in part c show the norm of the force of 3-body interaction. 
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Figure 6. Transferability analysis for the structural properties at 270 K and 330 K between the SPC/E and 

𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 CG models. a. RDFs of SPC/E, 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆   models at 270 K. b. RDF of  

𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  at 330 K. c. comparison between ADFs of SPC/E, 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆models 

within cutoff of 0.3 nm at 270 K. d. comparison between ADFs of SPC/E, 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆, and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆models 

within cutoff of 0.3 nm at 330 K. In a and b, black circles show the SPC/E model results and dashed blue 

and solid red lines show the results of 𝑁𝑁𝑁𝑁2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆and 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆CG models. 
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Figure 7. Radial distribution function and two-body force comparison between different neural network 
force fields and MB-pol model. Both 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀and 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀models have a two-body force field, 
however, 𝑁𝑁𝑁𝑁3𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆has an additional 3-body interaction. Both models reproduce the RDF properties of 
MB-pol models. a. Comparison between RDFs of MB-pol model and NN-based models b. Comparison 
between two-body force of 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀and 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀; 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀shows the double-well form, while 
𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀has a single well, and its interaction range is shorter than the 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀model. Black circles 
show the MB-pol model results and blue solid and red dashed lines show the results of 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀and 
𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 CG models, respectively. 
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Figure 8. Angular distribution functions and three-body force comparison between different neural 
network force fields and MB-pol model. 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  models with three-body interaction capture ADF 
behavior of water far better than the 𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  model. a. Comparison between ADFs of MB-pol, 
𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, and 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀models within cutoff of 0.3 nm b. Comparison between ADFs of MB-pol, 
𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, and 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀models within cutoff of 0.35 nm c. Norm of three-body force on the central 
particle of 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀models at different angles in the equidistant radial configuration. In a and b, black 
dashed lines show the MB-pol model results and dashed blue and solid red lines show the results of 
𝑁𝑁𝑁𝑁2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀and 𝑁𝑁𝑁𝑁3𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀CG models, respectively. All lines in part c show the norm of the force of 3-body 
interaction. 
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Figure 9. Radial distribution function and two-body force comparison between different neural network 
force fields and AIMD model. Both 𝑁𝑁𝑁𝑁2𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴and 𝑁𝑁𝑁𝑁3𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴models have a two-body force field, however, 
𝑁𝑁𝑁𝑁3AIMD has an additional 3-body interaction. Both models reproduce the RDF properties of AIMD 
models. a. Comparison between RDFs of AIMD model and NN-based models b. Comparison between 
two-body force of 𝑁𝑁𝑁𝑁2AIMD and 𝑁𝑁𝑁𝑁3AIMD ; 𝑁𝑁𝑁𝑁2AIMD shows the double-well form, while 𝑁𝑁𝑁𝑁3AIMD has a 
single well, and its interaction range is far shorter than the 𝑁𝑁𝑁𝑁2AIMD model. Black circles show the AIMD 
model results and blue solid and red dashed lines show the results of 𝑁𝑁𝑁𝑁2AIMD and 𝑁𝑁𝑁𝑁3AIMD  CG models, 
respectively. 
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Figure 10. Angular distribution functions and three-body force comparison between different neural 
network force fields and AIMD model. 𝑁𝑁𝑁𝑁3AIMD  models with three-body interaction capture ADF 
behavior of water better than the 𝑁𝑁𝑁𝑁2AIMD  model. a. Comparison between ADFs of AIMD, 𝑁𝑁𝑁𝑁2AIMD , 
and 𝑁𝑁𝑁𝑁3AIMD models within cutoff of 0.3 nm b. Comparison between ADFs of AIMD, 𝑁𝑁𝑁𝑁2AIMD , and 
𝑁𝑁𝑁𝑁3AIMD models within cutoff of 0.35 nm c. Norm of three-body force on the central particle of 
𝑁𝑁𝑁𝑁3AIMD models at different angles in the equidistant radial configuration. In a and b, black dashed lines 
show the AIMD model results and dashed blue and solid red lines show the results of 𝑁𝑁𝑁𝑁2AIMD and 
𝑁𝑁𝑁𝑁3AIMD  CG models, respectively. All lines in part c show the norm of the force of 3-body interaction. 
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Table I. Comparison between the isothermal compressibility and thermal expansion coefficient of CG and 

reference models at 300 K.  

 𝑺𝑺𝑺𝑺𝑺𝑺/𝑬𝑬 𝑵𝑵𝑵𝑵𝟐𝟐
𝑺𝑺𝑺𝑺𝑺𝑺/𝑬𝑬 𝑵𝑵𝑵𝑵𝟑𝟑

𝑺𝑺𝑺𝑺𝑺𝑺/𝑬𝑬 

𝒌𝒌𝑻𝑻 × 𝟏𝟏𝟎𝟎𝟔𝟔 [𝒃𝒃𝒃𝒃𝒓𝒓−𝟏𝟏] 𝟒𝟒𝟒𝟒.𝟔𝟔𝟔𝟔 ± 𝟎𝟎.𝟔𝟔𝟔𝟔 𝟔𝟔𝟔𝟔.𝟗𝟗𝟗𝟗 ± 𝟏𝟏.𝟐𝟐𝟐𝟐 𝟐𝟐𝟐𝟐.𝟗𝟗𝟗𝟗 ± 𝟎𝟎.𝟖𝟖𝟖𝟖 

𝜶𝜶𝒑𝒑 × 𝟏𝟏𝟎𝟎𝟔𝟔 [𝑲𝑲−𝟏𝟏] 𝟒𝟒𝟒𝟒𝟒𝟒.𝟖𝟖 ± 𝟒𝟒.𝟎𝟎 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏.𝟕𝟕 ± 𝟕𝟕.𝟔𝟔 𝟒𝟒𝟒𝟒𝟒𝟒.𝟓𝟓 ± 𝟖𝟖.𝟎𝟎 
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Table II. Transferability of CG models in terms of density change and diffusion coefficient. 

𝑻𝑻 [𝑲𝑲]  𝑺𝑺𝑺𝑺𝑺𝑺/𝑬𝑬 𝑵𝑵𝑵𝑵𝟐𝟐
𝑺𝑺𝑺𝑺𝑺𝑺/𝑬𝑬 𝑵𝑵𝑵𝑵𝟑𝟑

𝑺𝑺𝑺𝑺𝑺𝑺/𝑬𝑬 

𝟐𝟐𝟐𝟐𝟐𝟐 
𝝆𝝆  [#/𝒏𝒏𝒎𝒎𝟑𝟑] 𝟑𝟑𝟑𝟑.𝟕𝟕𝟕𝟕 𝟑𝟑𝟑𝟑.𝟕𝟕𝟕𝟕 𝟑𝟑𝟑𝟑.𝟖𝟖𝟖𝟖 

𝑫𝑫 [𝟏𝟏𝟎𝟎−𝟓𝟓 𝒄𝒄𝒎𝒎𝟐𝟐/𝒔𝒔 ] 𝟏𝟏.𝟑𝟑𝟑𝟑 𝟏𝟏𝟏𝟏.𝟔𝟔𝟔𝟔 𝟗𝟗.𝟑𝟑𝟑𝟑 

𝟑𝟑𝟑𝟑𝟑𝟑 
𝝆𝝆  [#/𝒏𝒏𝒎𝒎𝟑𝟑] 𝟑𝟑𝟑𝟑.𝟑𝟑𝟑𝟑 𝟑𝟑𝟑𝟑.𝟒𝟒𝟒𝟒 𝟑𝟑𝟑𝟑.𝟒𝟒𝟒𝟒 

𝑫𝑫 [𝟏𝟏𝟎𝟎−𝟓𝟓 𝒄𝒄𝒎𝒎𝟐𝟐/𝒔𝒔 ]  𝟐𝟐.𝟔𝟔𝟔𝟔 𝟏𝟏𝟏𝟏.𝟕𝟕𝟕𝟕 𝟏𝟏𝟏𝟏.𝟎𝟎𝟎𝟎 

𝟑𝟑𝟑𝟑𝟑𝟑 
𝝆𝝆  [#/𝒏𝒏𝒎𝒎𝟑𝟑] 𝟑𝟑𝟑𝟑.𝟕𝟕𝟕𝟕 𝟑𝟑𝟑𝟑.𝟐𝟐𝟐𝟐 𝟑𝟑𝟑𝟑.𝟗𝟗𝟗𝟗 

𝑫𝑫 [𝟏𝟏𝟎𝟎−𝟓𝟓 𝒄𝒄𝒎𝒎𝟐𝟐/𝒔𝒔 ] 𝟒𝟒.𝟔𝟔𝟔𝟔  𝟏𝟏𝟏𝟏.𝟓𝟓𝟓𝟓 𝟏𝟏𝟏𝟏.𝟖𝟖𝟖𝟖 
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