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Abstract

High-fidelity results from atomistic simulations can only be obtained by using accurate force field (FF)
parameters. Although empirical FFs are commonly used in the modeling of atomistic systems due to their
simplicity, they have many limitations inherent in the crude approximations associated with their analytical
form. Recent advances in neural network-based FFs have led to more accurate FFs by using symmetrical
functions or full many-body expansions. However, this approach leads to several issues including the
arbitrariness of the symmetry functions, and the intangible and uninterpretable interactions which are only
known once the positions of all atoms are set. More importantly, training is another bottleneck, as high-
quality force and energy information is required, which is usually not accessible from experimental data.
To solve these issues within the context of structure-based coarse-graining methods, we switch in this work
to a local search method to target the reference structure instead of using conventional backpropagation
algorithms used to target the forces and energies of the reference structure. Our FF is decomposed into two-
, three-, and higher-order terms, where each term is modeled with a separate neural network. To show the
versatility of our method, we study four different systems, namely, Stillinger-Weber particles as an
atomistic case and three water models, namely SPC/E, MB-pol, and ab initio, as coarse-graining cases. We
show the successful application of our approach, by reproducing structural properties of different water
models, followed by providing insight into the role of two-and three-body interactions. The results of all
models indicate that the double-well isotropic pair potential, signature of waterlike behavior in an isotropic
system, vanishes upon inclusion of three-body interaction, showing dominance of three-body interaction

over two-body interaction in water-like behavior with single-well isotropic pair potential.



1. Introduction

Classical molecular dynamics (MD) simulation is a powerful computational tool to study various
physical, chemical, and biological systems' by allowing researchers to obtain structural and dynamical
properties of these systems with a computational cost far less than the ab initio molecular dynamics
simulations and resolution far better than the continuum models. The accuracy of the force fields (FFs) used
in MD simulations is pivotal to obtain accurate and meaningful results. To date, the most common choice
for FFs in MD simulations belongs to some predefined analytical forms, known as empirical FFs, which
are sometimes limited in truthful representation of real interactions.”* The problem is particularly more
pronounced in coarse-grained FF developments, where due to the many lost degrees of freedom, coarse-

grained (CG) FF often exhibit features that are not necessarily present in the reference system.

Various strategies have been developed to improve the accuracy of empirical FFs, such as the inclusion
of higher-body interactions, e.g., three-body interactions. For example, a single bead water model with the
Stillinger-Weber potential’, known as the mW model®, predicts various properties, such as the melting
temperature, as accurately as more complex all-atom models. However, such FFs are usually designed with
various approximations (e.g., analytical form limitation) motivated by physical intuition, making their
application to other systems difficult, if not impossible. In general, the selection of an analytical form and
its parameterization requires considerable expertise as well as computer and human time.” Motivated by

4 researchers in FF

recent progress in the application of machine learning in atomistic simulations®”
development have embarked on employing various machine learning methods, such as kernel- and neural

network-based force fields (NNFFs)'>™". Particularly, NNFFs solve the problem of functional form

limitation using the universal approximation theorem.

Despite recent success in NNFFs, there are still several issues challenging the widespread usage of
NNFFs, such as the arbitrariness of symmetry functions and state dependency of the NNFFs, as well as
interoperability. Due to the implementation of NNFFs, they are also less interpretable compared to the

empirical FF, as forces and energies are only known once the positions of the whole system are set. Most
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of the available NNFFs also require accurate force and energy data, which are not always available or
measurable. Recent studies have attempted to solve this problem using more interpretable FFs and active

learning schemes, but there is still a need for accurate forces and energies.*

Recently, coarse-grained force field development has been tackled using machine learning-based force
fields such as NNFFs and kernel-based methods®***. However, in many cases, the FF is not interpretable.
Motivated by the need to overcome challenges with the interpretability of NNFFs and targeting structural
properties in absence of accurate energies and forces, we propose a new strategy for developing NNFFs. In
this study, instead of building a single NNFF, we build our NNFFs by the expansion of interactions as
separate two-, three-, and n-body interactions. We limit our NNFF to a three-body expansion with the
possibility of considering higher expansions in a similar manner. Our method, unlike other NNFFs'7-!823:24,
does not necessarily require forces or energies on the particles to train the FF and can be trained solely
based on the structural properties of the reference system. This is achieved by replacing backpropagation
for NNFF training with a local-search algorithm?®. We start with atomistic-scale force field development
using the forces and positions of the mW model, i.e., force-matching of mW model without any coarse-
graining. After demonstrating the success of the method within the force-matching framework, we develop
a single bead coarse-grained water model targeting the structural properties of three water models, namely
SPC/E, MB-pol,*® and ab initio models. The choice of water model is motivated by its essential role in
understanding anomalous behavior of water.?’>! Furthermore, our study assesses the role of two- and three-
body interactions in water-like model, providing significant evidence for possibly universal single-well
isotropic interaction for water-like behavior in the inclusion of three-body interactions.*? To show this point,
we coarse-grain different reference water models, and compared our results with mW and extended dipole
water models to provide further evidence for our findings. In the case of mW model, our finding justifies
why mW model has been successful with only having a single well pairwise interaction as our NNFF also
indicates a single well pairwise interaction. In the case of extended dipole water model, comparison with

the model developed by Motevaselian et al.** shows that the presence of dipole-dipole interaction does not



lead to a single-well pairwise potential, therefore, indicating significant role of three-body interactions for

water-like behavior.

We show that our model can reproduce structural properties such as the radial distribution function and
angular distribution of water. The interpretability of the NNFF in our study allows us to provide insights
into the role of two- and three-body interactions in water-like behavior, especially as most of the past studies
have focused on the two-body interaction'*>***4 Our study shows that coarse-graining of different water
models with inclusion of three-body interactions leads to the suppression of double-well isotropic pair
potential independent of the water model. This finding indicates superior role of anisotropic interaction in
reproducing anomalous water-like behavior as well as success of Stillinger-Weber potential in modeling
CG water. Compared with other machine learning-based FFs targeting similar problems, e.g., kernel-based
methods, our method can handle complex radial and angular dependencies in the interactions between
particles. For example, a spline three-body interaction or kernel-based three-body interaction' capturing
the complexity of our model (with fewer than 1000 free parameters) requires at least 10° free parameters
(100 for each of the two radial components and one angular component), which is not possible to train and

implement due to the computational and memory costs.

11. Methods

1. Simulations

The MD simulation of the mW model® is based on the Stillinger-Weber potential.’ It is described by

two- and three-body interactions over pairs and triplets, respectively, as follows:

u?, (r) = Ae [B (g)p — (g)q] exp( g ) €))
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where r indicates the radial distance between a pair, 73, 7jx, and 6 are the radial distances and the angle
between the central atom and two other atoms, respectively (see Figure 1c). (= 2.3925 A°) and e(=
6.189 kcal/mol ) are the length and energy scales of the two-body potential, respectively. 4 (= 23.15) is
the scaling parameter indicating the strength of tetrahedral interactions. A = 7.049556277,B =
0.6022245584, p = 4, and q = 0 are parameters giving rise to the form and scale of the potential, and the
reduced cutoff a = 1.8 enforces that both forces and potentials vanish at distances larger than ao. The
angular term enforces a tetrahedral angle around 8, = 109.47°. MD simulations of CG and SPC/E models
are performed using LAMMPS?® with a timestep of 2 fs in the NVT ensemble. The temperature is controlled
using the Nosé-Hoover thermostat with a time constant of 0.2 ps. MD simulations of MB-pol are performed
using OpenMM?* with MB-pol plugin. The temperature is controlled by the Anderson thermostat®’ with the
collision frequency of 1.0 ps and equations of motion are solved using the velocity Verlet algorithm with
a time step of 0.2 fs. The radial and angular distribution functions of ab initio water are obtained using ab
initio molecular dynamics simulations with optimized norm-conserving Gaussian pseudopotentials
generated by PBE were used with a double-zeta polarized basis®®**?. Similar to Refs***!, the AIMD
simulations were performed using an isothermal-isochoric (NVT) ensemble where the constant temperature
was controlled using the Nosé-Hoover thermostat*?. The initial configuration of AIMD is obtained from
MD simulation production run, i.e., the last frame of SPC/E MD simulation. We consider cubic simulation
boxes with an edge length of 20.02 A. Following a 2 ps equilibration, a production run of 22 ps trajectories
is carried out using a 0.5 fs timestep. The radial and angular distribution functions are averaged over the

total simulation time with a frequency of 50 fs.
2. Deep Learning

The NNFF developed in this study is composed of two- and three-body interactions, each described by
a neural network®™**. Note that while we keep the FF limited to two- and three-body interactions, there is
no limitation in using higher-order many-body interactions. The two-body term takes the radial distance of

a pair as input, and the three-body term takes the radial distances and angle between a central atom and two
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other atoms in a triplet. Mathematically, the two- and three-body forces of our NNFF can be written as

follows:
fin(r) = ({bz((rcf,z =71)/[Ter2; Wo, bz)- €r (3)
fn3n(r1;r2' 0) = S(erl, erz) 4’3((ch,3 - rl)/rcf,3' (rcf,3 - Tz)/rcf,s' cos6; W, b3) “)

where 7., and 7.f 3 are the cutoff distances of two-body and three-body interactions, respectively. e,. is

the unit vector along the radial vector between two atoms (e, = ﬁ). ¢, is the output of the two-body

neural network with ¢, € R? (see Figure 1b), and ¢p3 is the output of the three-body neural network with
¢3 € R* (see Figure 1c). W and b are the weights and biases of the neural networks, respectively, and
their indices indicate the number of expansions, namely, two- and three-body interactions. We use different
neural network depths and widths to model different interactions; however, we use similar nonlinearities,

swish nonlinearity (swish(x) = )) between the hidden layers and tanh nonlinearity for the output

1+exp(—x

layer. £(ey, €,) is a mapping from R* to Cartesian coordinates, written as follows:

€1x €2x €e1x €2y ()
E(ey,ey) =61y €2y €1y ezy
€1z €2z e, €y,

where the first two columns of £(eq, e,) and the first two elements of ¢h5 determine the contribution of
force on the central atom from the left particle of a triplet (left, central, right). Similarly, the last two
columns of £(e4, e,) and the last two elements of ¢p; show contributions from the right atom in a triplet
(left, central, right). Note that for the applications of n-body interaction within our framework, the following
steps can be taken: Given the position of the central atom, the n-body interaction depends on the position
of n — 1 particles, described by n(n — 1) /2 relative distances or angles, and it produces a force vector with
a dimension of ]R(”_l)z, which gets mapped to the Cartesian coordinates through the mapping matrix,
E(eq, ey, ...,€,_1). The reaction forces are mapped to the contributing noncentral atom using specific

columns of £(eq, €5, ..., €,_1).



Having the appropriate force calculation method for a particular pair or triplet, we use two different
schemes to train our NNFF, namely, force-matching and structure-matching methods. The force-matching
method is a simple method without requiring any CGMD simulations. However, it fails to reproduce the
structure of the coarse-grained model, as the effective forces are not equal to instantaneous forces on the
CG beads. Additionally, how we map forces on the CG beads changes the FF obtained from the force-
matching method®. During force matching, one attempts to minimize the mean-squared error between the
reference and model forces, which implies minimization of the following loss function using the

backpropagation algorithm:

f _ 1 N N .
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vjEepP; VjET;
where 0 indicates the free parameter of NNFF, both weights and biases of two- and three-body
interactions. D is the training data set. f;r (i) is the ground-truth force on particle i. P; and T; represent all
the unique pairs and triplets of particle i, respectively. Summation over pairs and triplets proceeds over
those containing atom i without duplicate terms. Note that atom i can be the left, right, or central atom in a
triplet, which leads to using the first two, last two, or all the columns of £(e4, e,), respectively. Note that
the above procedure for triplet force calculation enforces Newton’s third law of action and reaction. During
the training of the network, input data, i.e., various pairs and triplets, along with the corresponding ground
truth forces are fed into the neural networks, which are then used to train through backpropagation. Based
on our studies, it is easier to use convolutional neural networks to calculate forces for the above force-
matching method and model each of the two- and three-body interactions as separate filters over pairs and
triplets, respectively. To eliminate the effects due to the particles outside of the cutoff distance, we multiply
the output of the convolutional neural network with a rectified linear unit with linearly transformed radial
distance as input (max (0, (rcf — 1) /7¢5)). The Adam optimizer*® is used to optimize the weights and biases,

during force-matching with L2 regularization to avoid overfitting.



Furthermore, we develop a new route to train our NNFF without requiring direct access to forces. We
apply our method to reproduce the structural properties of reference systems (note that the method is general
and can be applied to various properties). Our method solves the problem with force matching in the
reproduction of structural properties and the fact that reference forces are not always the target of force
field development or available during FF development. To do so, the backpropagation algorithm, which is
used in the force-matching method, is replaced with the local search algorithm. This is similar to using
evolutionary or reinforcement learning methods to train NNFF. In other words, MD acts as an environment
where the policy predicts forces and forces are used for MD simulation*’*®. The cost determined at the end
of the MD simulation is the structural agreement between the CG and reference models***". Within the
local-search algorithm, the training for such policy is done through two steps. First, a small fraction of the
free parameters of NNFF is selected randomly, followed by a perturbation of selected parameters. The
perturbation is accepted if it improves the loss function. Within our structure-based coarse-graining method,

the loss function is defined as:

L l l
e N 1 Grer () — 9eg () M 1050, (6 — aly (6]
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where gr.r and g4 represent RDFs of the reference and CG models. a,.r and a.4 show ADFs of the
reference and CG models. o indicates the importance of ADF in the structural similarity of the reference
and CG models (with only 2-body interaction « is set to 0). The RDF is discretized into 360 segments from
0 to the cutoff distance of two-body interactions. Similarly, the ADF is discretized into 240 segments from
0 to 180 degrees. Furthermore, ADF is calculated for 7 different cutoff distances ranging from 0.3 nm to
0.45 nm. Additionally, note that for each iteration of local search training, a short MD simulation is
performed to obtain the RDF and ADF of CG models and therefore the loss function (see reference® for

details on the local search algorithm).



I11. Results and Discussion

1. Force Matching

The objective of the force-matching method is to reproduce the ground truth forces. In this study, we
use force matching to show that our scheme of training NNFF leads to retrieving the ground-truth force
field of the mW model in the form of NNFF. To do so, we train our NNFF based on forces obtained at
multiple temperatures. We perform an NPT simulation at 300 K and 1 bar to obtain the correct density,
followed by a simulation in the NVT ensemble at T = 270, 300, 330 K to obtain the positions and forces of

the mW model particles.

Once the data were obtained, we trained our NNFF with a cutoff distance of 0.4310 nm, equal to the
mW model cutoff distance. The two- and three-body interactions in NNFF form are modeled with 3 and 4
hidden layers, respectively. All the hidden layers except the output layer have swish nonlinearity, and the
output layer has tanh nonlinearity. We trained the network for approximately 2x10° iterations with a batch
size of 64. In Figure 2a, we compare the RDF between the mW and NNFF models, followed by a
comparison of the two-body forces of the ground truth mW and NNFF models at different radial distances,
as shown in Figure 2b. Similarly, we compare the ADF of the mW and NNFF models with various cutoff
distances in Figure 3a-b. We also compare the norm of the three-body forces from the mW and NNFF
models at different angles for the equidistant configurations of neighboring atoms in Figure 3c. The method
shows good agreement in terms of RDF and ADF reproducibility, as well as recovering the ground truth

forces.
2. Structure-based Coarse-Graining

The force-matching scheme is not able to reproduce the structural properties of the reference system.
To solve this problem, we employ the local-search method over NNFFs pretrained by force-matching or
iterative Boltzmann inversion methods. The local-search algorithm starts by randomly grouping small

fractions of NNFF parameters together, followed by adding a random perturbation, usually a uniform
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perturbation, to the selected parameters. The new candidate NNFF is then used for running CGMD
simulation. If the results are improved, then the new candidate becomes the best candidate, and additional
perturbations are applied to it; otherwise, another fraction of NNFF parameters is selected. After all groups
of NNFF parameters are explored a new grouping of NNFF parameters occurs. The procedure continues
until the desired accuracy is obtained or iterations budget is exhausted.”> The size of fractions and

perturbation size are hyper-parameters of local search method.

In our study, we model water both using classical MD, (SPC/E and MB-pol models) and AIMD. For
each reference system, we develop two different NNFFs, one with only two-body interactions (NN, where
t represents the reference model, i.e. t € {SPCE, MBPol, AIMD}) and one with both two- and three-body
interactions (NNZ). In addition to the interpretability of both the NNfand NN models, the models allow
us to understand the role of two- and three-body interactions in water-like behavior. Both NN} and NN
model have two-body interactions with a cutoff distance of 0.8 nm, and NN{ model has the three-body
interaction with a cutoff of 0.45 nm. The NN} model with only two-body interaction has 3 hidden layers
with widths of 4, 16, and 4. In the NN model, the two-body interaction has 3 hidden layers with widths of
6, 12, and 6, and the three-body interaction has 4 hidden layers with widths of 3, 6, 12, and 8. All the hidden
layers except the output layer have swish nonlinearity, and the output layer has tanh nonlinearity. Note that
both RDF and ADF are calculated between the oxygen atoms, i.e., the oxygen atom of water molecules is

the mapped CG model. Our NNFF is implemented as a user package inside the LAMMPS package.

We start by discussing results of SPC/E model, followed by discussions of MB-pol and AIMD water
models and finally discussing the results of three models together. Both NN5;F¢Eand NN3FCE models

reproduce the RDF of oxygen-oxygen with high accuracy with an error of less than 0.01 (see Figure 4a). In

Figure 4b, we compare the two-body interaction between the NN5T¢E and NN3PCE models. As seen in

Figure 4b, the NN3F¢E model has only a single well, while NN5F°E model has a double-well. The double-

well interaction observed in the NN;P¢E model is consistent with previous studies that used pairwise

isotropic interaction to represent CG model of SPC/E water model’*. Investigation into three-body
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correlation shows that only NN5FE captures the ADF of SPC/E water model as shown in Figure 5a-c. The

difference is especially pronounced at short distance (Figure 5a), where the hydrogen-bonding and
tetrahedral structure of water play a significant role. This observation agrees with the directionality of water
interactions at short range, which is missing when the CG model lacks three-body interactions. In Figure

5c, we show the norm of the three-body forces of the NN3P¢E model at different angles for the equidistant

configurations of neighboring atoms. Figure 5c indicates that the three-body forces of NN3F¢E model have
far more complex behavior than those of the mW model, which is limited by its analytical form. Therefore,
we observe importance of three-body and directional interactions for accurate modeling of CG water model

consistent with the previous studies. ***

We also investigate the transferability and representability of the NNyP¢E and NN3FCE models.

Coarse-graining often comes at the cost of not reproducing all the properties of the system, however,
consistent qualitative behavior in terms of dynamics is observed between structure-based coarse-graining
and reference models.” To assess representability of model, we calculate the isothermal compressibility,
thermal expansion coefficient, density, and diffusion coefficient. The isothermal compressibility (k) and

thermal expansion coefficient (a,) are evaluated based on the following equations,

1 Vip+eT)—V(p—-¢€T)

kr ==V 2¢ @
1 Vip, T +¢€)—V(p,T—¢€)
R ATTERD) 2¢ o

where p and V are the pressure and volume of the system, respectively. € is the perturbation around the
reference system. For CG models, the reference pressure is chosen based on the NVT simulation results.
The results of both isothermal compressibility and expansion coefficients are shown in Table I, where we
observe a better reproduction of both properties by the NN5F¢E model compared to the NN5;TE at T 300

K, again indicating the role of three-body interactions in terms of reproducibility.
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The transferability is assessed based on the change in structure, density, and diffusion coefficients
with temperature change. The structural change is quantified in terms of change in the RDF and ADF of
CG models at 270 K and 330 K compared with the SPC/E model RDFs and ADFs (shown in Figure 6).
Both models RDF and ADF errors remain in a similar order of magnitude as their error in the target 300 K
temperature. However, structural errors of both models show more sensitivity to increase in temperature,
mainly due to the dominant role of entropy at higher temperature. The density is obtained from the NPT
simulation with reference pressure obtained from the NVT simulation at 300 K. The results (shown in Table
II) indicate that both methods reproduce density with less than 0.5 % error, but both methods fail to capture
the anomalous behavior of density, again mostly due to the increasing role of entropy. To assess dynamical
properties, the diffusion coefficients are compared between the CG and reference models. The diffusion
coefficients are computed based on the Einstein relationship from the mean squared displacement
(MSD(t) = (|r(r) — r(0)|?) = 6D1 , as lag time (1) goes to infinity), see Table II for the values of
diffusion coefficient. In general, we observe higher diffusion coefficients in the NN;P¢E models compared

with the NN3P¢Emodel, as NN3PCE model represents the free energy landscape of the reference system

better, but it still overestimates the diffusion coefficient by approximately an order of magnitude.

RDF obtained using MB-pol water model reproduces experimental RDF of water better than SPC/E
model. Motivated by the drastic dependency of CG models on the structural properties of the reference
systems>® and understanding general trend in the two- and three-body interactions of CG water, we develop
NNJBPoland NNMBPOl models. Both models reproduce RDF of MB-pol water model with high accuracy
and RDF error of around 0.03 as shown in Figure 7a. In Figure 7b, we compare the two-body interaction
between the NNMBPOL and NNMBPOl models. As seen in Figure 7b, the NNMBP°l model has only a single
well, while NN"BP°l model has a double-well, consistent with the observations in SPC/E water model. The
ADF results of NNYBPOL and NNYBPOL models show that only NN2BPOl sycceeds in reproducing ADF of
reference MB-pol water model. Again, the difference is pronounced at short distance (Figure 8a). In Figure

8c, we show the norm of the three-body forces of the NN2/BP°! model at different angles for the equidistant
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configurations of neighboring atoms. Figures 4a and 7a and Figures 5c and 8c indicate that both two- and
three-body forces present in SPC/E and MB-pol waters are different from each other, but they follow a
similar qualitative behavior in terms of having a single well two-body interaction in the presence of three-

body interactions.

Finally, we investigate behavior of NN{"™Pand NN{™P models. In Figure 9a, we compare RDF of
both models with the reference model and observe a good agreement between them with a small RDF error
(~0.03). Comparison between the two-body interactions of NN3'MPand NN{™P models shows that the
NN{™PD model again has a single well form. In Figure 10a-b, we compare ADF of NNjPand NN{™MD
models and observe better performance of NN£™P model in reproducing ADF of reference AIMD water
model, especially at short distances. In Figure 10c, we show the norm of the three-body forces of the
NN{™D model at different angles for the equidistant configurations of neighboring atoms. We observe

both two- and three-body forces are different compared to both SPC/E and MB-pol water models, especially

as the reference AIMD water model is more structured compared to both classical models.

We briefly recap the key characteristics of NN and NN models. We observe that both the NN/ and
NNZ models can capture the RDF of the reference water; however, only the NN model captures the ADF
behavior of water. We observe a double-well interaction in NN CG models; however, NN£ only has a
single well independent of the reference model. The fact that in the presence of a three-body interaction,
the double-well structure of the two-body interaction vanishes and ADF is better reproduced shows that
water structural properties are best described by a higher-order expansion of interactions rather than a
simple pairwise interaction with a double-well. This is also consistent with the directional dependency of
hydrogen bonds®” in water, which is best described by a three-body interaction rather than a double-well

two-body interaction.
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IV. Conclusions

In this study, we train a neural network-based force field with two- and three-body interactions, which
makes the force field more interpretable. Within our framework, the requirement for accurate forces and
energies is eliminated by using the local search algorithm instead of backpropagation. Therefore, our
method is suitable for application in structure-based coarse-graining. To show the capability of our method,
we successfully develop coarse-grained models of different water models. We also investigate the
dependency of the coarse-grained force field of water on the number of expansions, which shows that the
double-well interaction, known as a signature of water-like behavior among spherically symmetric pairwise
interactions, vanishes with the inclusion of three-body interactions independent of the reference water
model. This indicates a consistent and possibly universal dominance of three-body interaction in water-like
behavior among different water models. We also notice that the two-body interaction fails to reproduce the
angular distribution of water, especially over a short range. Based on our findings, we conclude that water-
like behavior is better captured using the three-body interaction, which is consistent with the directional

dependency of interactions in water.
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Neural Network-based Force Field Tralning Method Selection

Force field parameter with n-body
expansion
DNNy (11,72, .., Tl Wy, by) € ROD?

i.  Force-matching
ii. Structure-matching

A

if assessment | step failed

y

Force Field Assessment: Loss Minimization
i. Mean-absolute force error i. Back-propagation
ii. Radial distribution function error ii. Local-search
b. c

Figure 1. Neural network-based force-field training. a) Force-field development begins by selection of n-
body expansion and initialization of neural network architecture, weights, and biases. Based on the
objective of force field development and its differentiability, either back-propagation or local-search
methods are employed to minimize the loss function. Once the loss function is minimized, its
generalizability is assessed. If the neural network force field did not pass the criteria for its assessment, the
cycle repeats. The n-body term in the neural-network force-field depends on the position of n — 1 particles,
described by n(n + 1)/2 relative distances or angles, and it produces a force vector with a dimension

of R™=1* which gets mapped to the Cartesian coordinates through the mapping matrix,
E(eq, ey, ...,€,_1). b) The two-body term for a tagged particle (red particle) only depends on the radial
distance (|r|) of its neighboring particle (green particle) and the mapping is the unit vector between two
particles (e; = ry/|r;]). ¢) The three-body term depends on the position of three-particles best described
by two radial distances (|r;| and |r,|) and the angle between them (6). The neural network predicts four
values, acting on the central red particle, where the first two values, shown with the solid black lines,
correspond to action-and-reaction from the first neighboring particle and the second two, shown with
dashed black lines, correspond to action-and-reaction from the second neighboring particle. The mapping
matrix for a three-body term is described in Eq. 5.
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Figure 2. Radial distribution function and two-body force comparison between neural network force
field and ground truth mW model. a. Comparison between RDFs of mW and NN-based models b.
Comparison between two-body force of mW and NN-based models. Black circles show the mW model

results and red lines show NN-based force field results.

18



re = 0.3 nm
0.025 0.012

e SW
— NN 0.010

re = 0.431 nm

" SW90°
------- NN 90 °

x  SW 109.5°
=-==- NN 109.5 °

® SWI129°
—— NN 129°

0.020 4

0.008 4
0.015
= 0.006 4
0.010 4
0.004 A

0.005 4

0.002

H L}
- 5 - - )
0.00 -6 s B RS

<=

0.000 0.000
0 50 100 150 0 50 100 150 0.25 0.30 0.35 0.40

0° 0° r [nm]

Figure 3. Angular distribution functions and three-body force comparison between neural network force
field and ground truth mW model. a. Comparison between ADF mW and NN-based models with cutoff of
0.3 nm b. Comparison between ADF mW and NN-based models with cutoff of 0.43 nm c. Comparison
between the norm of three-body force on the central particle of mW and NN-based models at different
angles in the equidistant radial configuration. Black points show the mW model results and red lines show

NN-based model results.
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Figure 4. Radial distribution function and two-body force comparison between different neural network
force fields and SPC/E model. Both NNyPEand NN5P¢Emodels have a two-body force field, however,
NN35PCEhas additional NN modeling its 3-body interaction. Both models produce the RDF properties of
SPC/E models. a. Comparison between RDFs of SPC/E model and NN-based models b. Comparison
between two-body force of NNyP¢Eand NN3PCE; NNSFPCEshows the double-well form, while
NN3PCEhas a single well, and its interaction range is shorter than the NN5F¢Emodel. Black circles show
the SPC/E model results and blue solid and red dashed lines show the results of NN3P¢£and NN3PCECG

models, respectively.
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Figure 5. Angular distribution functions and three-body force comparison between different neural
network force fields and SPC/E model. NN3P¢Emodels with three-body interaction capture ADF
behavior of water far better than the NNy Emodel. a. Comparison between ADFs of SPC/E, NNy PCE
and NN3F¢Emodels within cutoff of 0.3 nm b. Comparison between ADFs of SPC/E, NN5FE, and
NN3PCEmodels within cutoff of 0.35 nm c. Norm of three-body force on the central particle of
NN3P¢Emodels at different angles in the equidistant radial configuration. In a and b, black dashed lines
show the SPC/E model results and dashed blue and solid red lines show the results of NNyF¢Eand
NN3PCECG models. All lines in part ¢ show the norm of the force of 3-body interaction.
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Figure 6. Transferability analysis for the structural properties at 270 K and 330 K between the SPC/E and
NN;PCE and NN3PCE CG models. a. RDFs of SPC/E, NN5;FCE and NNSPCE models at 270 K. b. RDF of
NN3PCE and NN5PCE at 330 K. c. comparison between ADFs of SPC/E, NN5F¢E and NN$PEmodels
within cutoff of 0.3 nm at 270 K. d. comparison between ADFs of SPC/E, NN3P¢E and NN3P¢Emodels
within cutoff of 0.3 nm at 330 K. In a and b, black circles show the SPC/E model results and dashed blue

and solid red lines show the results of NN5yF¢Eand NN3PCECG models.
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Figure 7. Radial distribution function and two-body force comparison between different neural network
force fields and MB-pol model. Both NN}*BP0land NN2BPolmodels have a two-body force field,
however, NN5P¢Ehas an additional 3-body interaction. Both models reproduce the RDF properties of
MB-pol models. a. Comparison between RDFs of MB-pol model and NN-based models b. Comparison
between two-body force of NNJ}BPoland NNMBPol. NNMBPolghows the double-well form, while
NNBPolhas a single well, and its interaction range is shorter than the NN"BP°'model. Black circles
show the MB-pol model results and blue solid and red dashed lines show the results of NNMBPoland
NNBPOL CG models, respectively.
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Figure 8. Angular distribution functions and three-body force comparison between different neural
network force fields and MB-pol model. NN"BP°! models with three-body interaction capture ADF
behavior of water far better than the NNMBP°! model. a. Comparison between ADFs of MB-pol,
NNMEBPOL “and NN2BPolmodels within cutoff of 0.3 nm b. Comparison between ADFs of MB-pol,
NNMBPOL and NNMBPolmodels within cutoff of 0.35 nm c. Norm of three-body force on the central
particle of NN2BP%!models at different angles in the equidistant radial configuration. In a and b, black
dashed lines show the MB-pol model results and dashed blue and solid red lines show the results of
NNMBPoland NNMBPOLCG models, respectively. All lines in part ¢ show the norm of the force of 3-body

interaction.
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Figure 9. Radial distribution function and two-body force comparison between different neural network
force fields and AIMD model. Both NN3'P and NN{/"Pmodels have a two-body force field, however,
NNA™MD has an additional 3-body interaction. Both models reproduce the RDF properties of AIMD
models. a. Comparison between RDFs of AIMD model and NN-based models b. Comparison between
two-body force of NN#™P and NNA™MP . NNAMD shows the double-well form, while NN2™MP has a
single well, and its interaction range is far shorter than the NN52™?P model. Black circles show the AIMD
model results and blue solid and red dashed lines show the results of NN4™P and NN£™P CG models,
respectively.
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Figure 10. Angular distribution functions and three-body force comparison between different neural
network force fields and AIMD model. NN£™P models with three-body interaction capture ADF
behavior of water better than the NN#™P model. a. Comparison between ADFs of AIMD, NN4™MD |
and NN2™D models within cutoff of 0.3 nm b. Comparison between ADFs of AIMD, NN»™P and
NNAMD models within cutoff of 0.35 nm c. Norm of three-body force on the central particle of
NNAMD models at different angles in the equidistant radial configuration. In a and b, black dashed lines
show the AIMD model results and dashed blue and solid red lines show the results of NN2™P and
NNAMD CG models, respectively. All lines in part ¢ show the norm of the force of 3-body interaction.
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Table I. Comparison between the isothermal compressibility and thermal expansion coefficient of CG and

reference models at 300 K.

SPC/E SPC/E

SPC/E NN, NN,
kr x 106 [bar™1] 45.68 + 0.69 69.97 +1.27 27.98 + 0.81
a, X 108 [K~1] 493.8+4.0 1243.7+ 7.6 420.5+8.0
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Table II. Transferability of CG models in terms of density change and diffusion coefficient.

T [K] SPC/E NN3PC/E NN3PC/E
p [#/nm3] 33.71 33.74 33.80
270
D[1075 cm?/s] 1.36 12.64 9.32
p [#/nm3] 33.38 33.40 33.40
300
D [1075 cm?/s ] 2.68 14.73 12.09
p [#/mm3] 33.76 33.20 32.98
330
D [1075 cm?/s ] 4.60 16.58 14.81
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