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ABSTRACT 

It has been established that Newton’s law of viscosity fails for fluids under strong confinement as 

the strain-rate varies significantly over molecular length-scales. We thereby investigate if a 

nonlocal shear stress accounting for the strain-rate of an adjoining region by a convolution relation 

with a nonlocal viscosity kernel can be employed to predict the gravity-driven isothermal flow of 

a Weeks-Chandler-Andersen (WCA) fluid in a nanochannel. We estimate, using the local average 

density model (LADM), the fluid’s viscosity kernel from isotropic bulk systems of corresponding 

state points by the Sinusoidal Transverse Force (STF) method. A continuum model is proposed to 

solve the nonlocal hydrodynamics, whose solutions capture the key features and agree qualitatively 

with the results of non-equilibrium molecular dynamics (NEMD) simulations, with deviations 

observed mostly near the fluid-channel interface. 

I. INTRODUCTION 

Sufficiently large strain-rate variations over length-scales of the order of molecular dimensions in 

nanochannel flows makes the use of local Newtonian shear stress relation questionable.1-7 Due to 

high density gradients, such fluids experience large viscosity variations. Here, using the Newtonian 

relation with a local position-dependent viscosity poses difficulties due to the presence of 

singularities2,3 where the strain-rate is zero, but the shear stress is not. Evans and Morriss1 

introduced the nonlocal shear stress as a convolution function of strain-rates over the fluid region 

with a generalized nonlocal viscosity kernel accounting for both spatial and temporal nonlocality, 

 ( ) ( ) ( )
0

, ', ' ', ' ' '
t

r t r r t t r t dr dtτ µ ε
∞

−∞

= − −∫ ∫   (1) 

 

*Corresponding Author: Arghyadeep Paul, E-mail: paul26@illinois.edu 

mailto:paul26@illinois.edu


2 
 

where ( ),r tτ and ( ),r tε  are the stress and strain-rate at position r and time t and µ  is the nonlocal 

viscosity kernel. Interestingly, eq. (1) can mathematically explain the aforementioned singularities. 

Assuming a steady-state, eq. (1) reduces to: 

 ( ) ( ) ( )' ' 'r r r r drτ µ ε
∞

−∞

= −∫  , (2) 

where the strain-rate at a point r’ affects the shear stress at another point r ≠ r’, due to interparticle 

correlations. However, eq. (2) is valid only for homogeneous fluids with a uniform density and 

must be modified (see Sec. II) to model the flow of inhomogeneous dense fluids in nanochannels. 

Previous studies8-11 have explored the effects of density variations due to external forces modulated 

sinusoidally in both the transverse and longitudinal directions (STF-SLF methods) on unconfined 

fluid-flow. But such artificially induced inhomogeneities differ from those generated by fluid-wall 

interactions in nanochannels, where further analysis of the microscopic hydrodynamics equations 

and boundary conditions at the interface is needed.12-14 We, however, aim for simpler techniques 

to estimate the nanochannel flow solving eq. (2), which for an inhomogeneous fluid requires the 

viscosity kernel of the fluid to be position dependent. Past attempts to extract such a kernel of 

bounded systems have been inaccurate due to abundant challenges,3,8,915,16 while deriving the 

nonlocal viscosity kernel of homogeneous fluids, via the STF method17-20 or Green-Kubo 

Formula,21 has been demonstrated to great effects.10-12 Applying LADM,22-24 a set of such isotropic 

kernels over a range of thermodynamic variables can be used as an approximate substitute to the 

viscosity kernel of an inhomogeneous system of the fluid displaying the same range of local 

thermodynamic variables in space. Using such parametrized inputs to solve nonlocal viscous 

hydrodynamics in a continuum model has remained unexplored for non-homogeneous systems at 

nanoscale. 

Our objective in this study is to investigate whether the nonlocal constitutive shear stress 

relation can predict the nanochannel flow of a simple fluid whose particles interact by the Weeks-

Chandler-Andersen (WCA) potential1325 and its nonlocal viscosity kernel is derived using the STF 

procedure. 1420 A model of nonlocal transport equations is set up to describe the gravity-driven 

flow in a nanochannel with a width of the order of intermolecular correlations. With this transport 

model, we develop a simple method in the continuum regime that can predict fluid-flows in the 

nanoscale domain. The rest of the article is organized as follows: In Sec. II, we elaborate the 
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equations of nonlocal hydrodynamics for the fluid-nanochannel system under study. In Sec. III, 

we present a continuum model and discuss the parametrized inputs for it. In Sec. IV, we present 

the results and discuss them in detail. Sec. V presents concluding remarks. 

II. PROBLEM FORMULATION 

The nonlocal constitutive relation in eq. (2) is defined for homogeneous fluids, where the viscosity 

kernel is an even function of the distance (r – r’) between the point where the shear stress is 

measured and the point whose strain-rate is considered. Such kernels, separated into the local 

viscosity oµ  and a nonlocal weight function f, were parametrically derived and constructed by 

Travis et al.,1017 and Hansen et al.1118 and Todd et al.26, and written as a product of local viscosity 

oµ  and a nonlocal weight function f for mathematical convenience, such that 

 ( ) ( ) ( ){ } ( )' ' ' 'o or r dr r f r r dr rµ µ µ
∞ ∞

−∞ −∞

− = − =∫ ∫ ., (3) 

and the integration of f across space results in 1. If the kernel is a Dirac-delta function about r, the 

nonlocal relation becomes the local Newtonian relation. This approximation is good, for example, 

in macroscopic bulk flows where the strain-rate remains constant across the kernel width. The 

nonlocal constitutive shear stress relation can hence be interpreted as a general theory. 

 In this study, we consider a nanochannel with walls in the xy-plane separated by a width of 

L in the z-direction, taking the mid-plane between them as z = 0. The non-homogeneous WCA 

fluid is subjected to a uniform gravity go in the x-direction at temperature T = 107.52 K. Since the 

fluid in the nanochannel is inhomogeneous, the nonlocal viscosity kernel cannot be treated as an 

isotropic or homogeneous entity and must vary with position, modifying eq. (2) to 

 ( ) ( ) ( ), ' ' 'r r r r r drτ µ ε
∞

−∞

= −∫  . (4) 

For the nanochannel system considered here, eq. (4) can be simplified to 

 ( ) ( ) ( ), ' ' 'z z z z z dzτ µ ε
∞

−∞

= −∫  , (5) 

where ( ), 'z z zµ −  further separates into a local and a nonlocal part (similar to eq. (3)) as 

 ( ) ( ) ( ), ' , 'oz z z z f z z zµ µ− = − , (6) 
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As per eq. (3), integrating the nonlocal weight function f in space must result in unity. The shear 

stress in the nanochannel is derived by integrating the momentum conservation equation under a 

steady-state condition in eq. (7), where m is the mass of the fluid particles and ρ(z) is the local 

density profile obtained from the non-equilibrium molecular dynamics (NEMD) simulation of the 

nanochannel flow (described in Sec. III.B). 

 ( ) ( )
0

' '
z

oz mg z dzτ ρ= − ∫ . (7) 

Due to symmetry, the shear stress at the channel centreline z = 0 is taken to be zero. Eqs. (5), (6) 

and (7) are used in Sec. III.D to build the continuum model. Several such quasi-continuum models 

have been reported in the literature previously,15-1927-31 albeit not with nonlocal transport equations. 

III. METHODS 

A. Extraction of the Nonlocal Viscosity Kernel: 

Calculating the viscosity kernel of a bounded inhomogeneous fluid can be rife with inaccuracies. 

As an alternative, we obtain the nonlocal viscosity kernel of unconfined homogeneous fluids with 

densities taken from the local average density (LAD) profile of the WCA fluid in the nanochannel, 

obtained by the NEMD simulations in Sec. III.B. Such a kernel, derived at a specific density, is 

then used as a substitute for the viscosity kernel at a position in the channel having an equal LAD. 

This is the LAD model (LADM) where the transport coefficients in a non-homogeneous fluid at a 

position are shown to be those of a homogeneous fluid with a density equal to the average of the 

local density around that position in the inhomogeneous fluid over a molecular volume.20-2222-24 

 The STF procedure is used to obtain the isotropic viscosity kernels, where wavenumber 

dependent viscosities are computed in the Fourier (k) space for homogeneous fluids subjected to 

sinusoidal gravity-fields of varying amplitudes and wavelength. For each wavelength, the k-space 

viscosities are extrapolated to a zero strain-rate (or gravity) limit,10,1117,18 which are plotted against 

wavenumber, fit to a curve, and inverted to real-space to get the kernels. As mentioned earlier, this 

is done for various densities. Here, we subject a bulk homogeneous fluid of density ρo to a gravity 

gx in the streamwise direction, x, that is sinusoidally modulated in a direction transverse to the 

flow, z. 

 ( ) ( )sinx o ng z g k z=  (8) 
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The wavenumber kn can be written as (2πn/Lo) where Lo is the length of the fluid domain in z 

direction and n = 1, 2, 3, …. depicting the different wavelengths (Lo/n). A fundamental way to 

obtain the nonlocal viscosity kernel is to apply the Convolution theorem to eq. (2), which gives 

 ( ) ( ) ( )n n nk k kτ µ ε=  , (9) 

where the Fourier transform of shear stress is simply a product of those of the nonlocal viscosity 

kernel and strain-rate. Taking Fourier transforms of the steady-state momentum conservation 

equation for a homogeneous fluid and of the strain-rate definition yields 

 ( ) ( )n o n nk im g k kτ ρ= − , (10) 

 ( ) ( )n n nk ik u kε = − . (11) 

As a result, the wave-vector dependent viscosity in the Fourier-space is 

 ( ) ( )
( )

( )
( ){ }2

n o n
n

n n n

k m g k
k

k k u k
τ ρ

µ
ε

= =


. (12) 

Here, the Fourier coefficient of the gravity-field (at wavenumber kn) is go by definition and the 

Fourier-coefficient of the velocity field at kn is obtained by the discrete Fourier Sine transform of 

the velocity profile obtained by NEMD simulation of an unconfined homogeneous fluid of density 

ρo (described in Sec. III.C) with N particles in the simulation box 

 ( ) [ ] ( ) ,
1

2 sin
N

n n i x i
i

u k N k z v
=

= ∑ , (13) 

where z is the particle position, vx is the streamwise velocity and i is the particle index. It must be 

noted that eq. (12) is valid only in the limit of zero strain-rate, as the Fourier transforms of shear 

stress and strain-rate contain terms with higher harmonics at large gravity-field amplitudes 

go10,11.17,18 Therefore, the k-space viscosities are extrapolated to the zero strain-rate limit for each 

wavenumber by fitting them into the Quentrec local order theory1017 

 ( ) ( ) ( )2 2
, ,0n nk k a bµ ε µ ε ε = + +  
   . (14) 

Once the zero strain-rate limiting values are computed, their dependence on the wavenumber kn is 

plotted (see Fig. 1(a)) and fit using either a Gaussian curve18 with the parameters 1σ and 2σ , 
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 ( )
2 2

2 2
1 1

exp exp
2 2 2

o n n
n

k kk µµ
σ σ

    − −
= +    

    
 (15) 

or a Lorentzian curve18 with the parameters α and β, 

 ( ) ( )1n o nk k βµ µ α= + . (16) 

 

 These expressions fit the NEMD data well and when separated into oµ  and f (as mentioned 

in Sec. II), the integration of f over space yields one with negligible errors for both the fits. 

Meanwhile the local viscosity oµ  at density ρo is calculated by applying Green-Kubo relations to 

the stress tensor data of equilibrium molecular dynamics (EMD) simulations of unconfined 

homogeneous systems (see Sec. III.C). The parameters oµ , 1σ , 2σ , α and β are all functions of ρo. 

The real-space nonlocal viscosity kernels are then extracted in Fig. 1(b) by an inverse Fourier 

transform of eqs. (15) and (16). For the Gaussian fit, this can be done analytically and results in 

Figure 1: (a) Wavevector dependence of the zero-field k-space viscosity of the unconfined 
homogeneous WCA fluid at ρo = 12.62 particles/nm3 and T = 107.52 K. The squares represent NEMD-
STF data, the blue (solid) line is the Gaussian curve fit using eq. (15), where σ1 = 5.42396 nm-1 and σ2 
= 11.7046 nm-1, and the orange (dashed) line is the Lorentzian curve fit using eq. (16), where α = 
0.0063863 and β = 2.3436955. (b) The isotropic nonlocal viscosity kernel resulting from the inverse 
Fourier transform of the Gaussian and Lorentzian fitting curves in (a) are shown by the blue (solid) and 
the orange (dashed) line respectively. 



7 
 

 ( ) ( )
( ) ( ){ }( )

( ) ( ){ }( )

2
1

1

2
2

2

'
exp

2
, '

2 2 '
exp

2

o
o

o o
o

o
o

z z

z z
z z

σ ρ
σ ρ

µ ρ
µ ρ

π σ ρ
σ ρ

  − −  
  

  − =
  − −  +     

. (17) 

When using eq. (17) for confined fluids, ρo is replaced by LAD at the shear stress evaluation point 

z, based on LADM,22-24 explaining the added dependence of µ  on z in eqs. (5) and (6). The non-

analytical inverse Fourier transform of the Lorentzian fit, however, is computed by Simpson’s rule 

and shows a greater nonlocality of the viscosity kernel compared to eq. (17). 

B. Non-equilibrium Molecular Dynamics (NEMD) Simulations of the Confined System: 

 

To test the proposed continuum model, we obtain the velocity profile in the nanochannel using 

NEMD simulations on a system of fluid particles interacting via the short-range repulsive WCA 

potential1325 between diamond latticed walls with 5 layers of Si atoms (lattice constant of 0.543 

nm), having a lateral length of 4.43 nm each in the x and y directions. Two nanochannel widths 

(along z) were chosen: L = 7.739 nm and 2.3081 nm. An overall density of 12.62 particles per nm3 

dictated the number of fluid particles in the system. A Nose-Hoover thermostat2332 was used to 

maintain the fluid at 107.52 K. The simulation box was periodic only in the x and y directions. The 

fluid-fluid WCA interaction corresponded to the Lennard-Jones (LJ) parameters of methane1527 ϵ 

Figure 2: The fluid density profiles across half-sections of (a) the wide and (b) the narrow nanochannel. 
The blue (solid) and the orange (dashed) lines depict the local density and the LAD respectively. 

Aluru, Narayana R
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= 1.2314 kJ/mol and σ = 0.381 nm. The fluid-wall interaction was modelled by the methane-silicon 

LJ potential, 1527 ϵ = 1.7377 kJ/mol and σ = 0.3597 nm. Uniform gravities go = 0.0005 nm/ps2 and 

0.04 nm/ps2 were applied on the fluid for the wide and narrow channel, respectively, while the 

wall atoms were fixed. Bernardi et al.33 note that thermostatting the fluid (with fixed wall atoms) 

can cause velocity fluctuations at the fluid-wall interface, compared to when only the wall atoms 

are thermostatted. However, we do not find such effects in our NEMD velocity profiles (shown in 

Fig 6) where the velocity varies smoothly at the interface. Initially, the simulation was run for 4 

ns to develop a steady-state fluid-flow. Then, we recorded the fluid particles’ coordinates and 

velocities for 50 ns at a frequency of 100 fs, with a time-step of 1 fs. For accuracy, the simulations 

were run for 5 different initial-state ensembles. These simulations also generate the fluid density 

profiles in the nanochannels, needed for eq. (7) and (21), shown in Fig. 2.  

C. Molecular Dynamics simulations of unconfined bulk fluids: 

 
We consider homogeneous systems of the same fluid particles in a simulation box of length Lo = 

6.7 nm with periodic boundary conditions in each direction. Different densities across the density 

range in the LAD profile of the nanochannel fluid (as obtained in Fig. 2) were selected, based on 

which the number of fluid particles varied in the simulation box. The temperature was set at 107.52 

K by a Nosè-Hoover thermostat.2332 We performed EMD simulations to equilibrate these systems 

for 5 ns and collect the stress tensors for 100 ns at every time-step. Their autocorrelation functions, 

computed in blocks of 5 ps, were averaged around a million times to find the viscosity using the 

Green-Kubo relation. Then, NEMD simulations were executed on the same systems with a gravity 

Figure 3: Density dependence of the local viscosity of the homogeneous WCA fluid at T = 107.52 K. 
The squares represent EMD data, while the orange (solid) line is the Hermite Polynomial fitting curve. 
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applied in the x-direction that is modulated sinusoidally in the z-direction with wavelengths of Lo/n 

(n = 1, 2, 3 … 15) to find the k-space viscosities and execute the STF analysis described in Sec. 

III.A. The systems developed a steady state in 4 ns, following which the coordinates and velocities 

of the particles were recorded for 50 ns at a frequency of 100 fs to be used in eq. (13). For accuracy, 

both the EMD and NEMD simulations were carried out for 5 initial-state ensembles with a time-

step of 1 fs and their post-processed results are shown in Figs. 3, 4 and 5. 

 

Figure 4: Density dependence of the parameters σ1 and σ2 in the Gaussian fitting curve, eq. (15), for the 
homogeneous WCA fluid at T = 107.52 K. The squares represent NEMD-STF data. The blue (solid) 
and the orange (dashed) lines are the Hermite Polynomial fitting curves for σ1 and σ2 respectively. 
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D. Continuum Transport Model: 

Here, we formulate an iterative algorithm to predict the velocity profile in the nanochannel using 

the nonlocal relation of shear stress τ . If τ  is fragmented into a local Newtonian element 

 ( ) ( ) ( )'
'L o

z

u z
z z

z
τ µ

∂
=

∂
, (18) 

and a deviatoric element Dτ , the later can be quantified through eq. (7) and (18) as 

 ( ) ( ) ( ) ( )
0

'
' '

'

z

D o o
z

u z
z m g z dz z

z
τ ρ µ

  ∂
= − −  ∂ 

∫ . (19) 

and also, by applying eq. (5), (6) and (18), we have 

 ( ) ( ) ( ) ( ) ( )' '
, ' '

' 'D o
z z

u z u z
z z f z z z dz

z z
τ µ

∞

−∞

  ∂ ∂ =  − −  ∂ ∂    
∫ . (20) 

The two above forms of Dτ  are used to build the iterative scheme presented below. 

Algorithm: 

(1) Inputs: The fluid density profile ρ(z) in the nanochannel, the variation of the nonlocal viscous 

kernel parameters oµ , 1σ , 2σ , α and β with density and relaxation factor αr. 

Figure 5: Density dependence of the parameters α and β in the Lorentzian fitting curve, eq. (16), for the 
homogeneous WCA fluid at T = 107.52 K. The squares represent NEMD-STF data. The blue (solid) 
and the orange (dashed) lines are the Hermite Polynomial fitting curves for α and β respectively. 
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(2) The LAD profile ( )AVE zρ  in the nanochannel is obtained by averaging the density across the 

length of a molecular diameter or the fluid-fluid WCA parameter σ , shown in Fig. 2. 

 ( ) ( )
( )

( )2

2

1 ' '
z

AVE
z

z z dz
σ

σ

ρ ρ
σ

+

−

 
=  

  
∫  (21) 

(3) Calculate the shear stress profile using eq. (7), to avoid doing so in every iteration.  

(4) Set the initial guess value of the velocity profile u(z): We substitute the shear stress profile 

(from step (3)) into the local stress relation of eq. (18) to obtain the initial guess value u(0)(z). 

To do so, we also use the boundary condition: 

 
2 slip
Lu uδ ± = 

 
 . (22) 

The slip velocity slipu  and δ are obtained by the NEMD simulations in Sec. III.B. 

(5) Set the no. of iterations completed to k = 0 and a tolerance Δ ≈ 10-3. 

(6) Iteration begins: Do …. 

i. Calculate [ Dτ (z)](k) using u(k)(z) in eq. (20). 

ii. Calculate u(k+1)(z) using eq. (19) by applying [ Dτ (z)](k) (from step (6.i)), the shear stress 

profile (from step (3)) and the boundary conditions given in eq. (22). 

In steps (6.i) and (6.ii), the local viscosity oµ , viscous parameters of f, i.e. either 1σ and 2σ if 

using the Gaussian fit, or α and β if using the Lorentzian fit, at a position z in the channel are 

functions of ( )AVE zρ , i.e., the LAD at z, based on the relations shown in Figs. 3, 4 and 5. 

iii. Calculate the Residual R =
( ) ( )

( )

2( 1) ( )

( )
1

1 k kN
i i
k

i i

u z u z
N u z

+

=

 −
  
 

∑ . 

iv. Relaxation step: u(k+1) = u(k) + αr[u(k+1) - u(k)]. We take the value of αr ≈ 0.5. 

v. k = k + 1. 

………………… while R > Δ. 

IV. RESULTS AND DISCUSSIONS 

We now examine the performance of our nonlocal transport model and the nonlocal viscosity 

kernel approximated using LADM. We investigate two different channels for the gravity-driven 
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flow, one wide enough to impede the development of local extrema in the velocity profile and the 

other narrow enough to ensure their presence. 

 Fig. 6(a) demonstrates that the velocity profiles predicted by both the nonlocal and local 

(Newtonian) theory agree well with the NEMD velocity profile for the wide channel, which does 

not contain any singular point or local extrema apart from the mid-channel peak. For the narrow 

channel, however, the local model fails altogether. Not only is it unable to capture the local extrema 

in the velocity profile near the interface, but it also fails to replicate the NEMD velocities and their 

gradients near the central part of the channel, as shown in Figs. 6(b) and 7(b). The nonlocal 

framework is able to mimic the local extrema near the interface of the narrow channel and agrees 

overall with the velocity profile obtained by the NEMD simulations to a much better extent than 

the local theory as seen in Fig. 7(a), with notable exceptions only in the relatively small shaded 

regions. It further captures the gradients of the NEMD velocity profile in the central channel region 

besides replicating the sign reversals in the interfacial strain-rates, as seen in Fig. 7(b), both of 

which the local model cannot. Moreover, the nonlocal viscosity kernels formulated using both the 

Gaussian and Lorentzian expressions are observed to work equally well. As a result, our nonlocal 

continuum transport model is able to capture most of the characteristics of the gravity-driven flow 

in nanochannels. 
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 However, we still observe quantitative deviations near the interface between the nonlocal 

model and the NEMD velocity profile in the smaller channel. This can be attributed to a wide array 

of reasons. Firstly, when using the nonlocal constitutive relation at the vicinity of the interface, 

strain-rates on one side of the kernel width are absent, which induces errors in computing the shear 

stress. Secondly, the nonlocal viscosity kernel of the inhomogeneous fluid was estimated by 

LADM, and isotropic kernels were employed instead. In addition, these kernels were represented 

in Fourier space with analytical expressions as an assumption. This All these would lead to 

inaccuracies. Inhomogeneities are brought about by high gradients in density near the interface 

and as a result, maximum deviations between the results of the nonlocal model and NEMD 

Figure 6: The velocity profiles computed by the nonlocal transport model in (a) the wide and (b) the 
narrow channel, are compared against those obtained by the NEMD simulations and the local theory. 
The blue (solid), orange (dashed) and greyblack (smaller dashed) lines are the nonlocal, reference 
NEMD and local velocity profiles respectively. Their strain-rates profiles are shown in Fig. 7. 
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simulations are seen in that region implying that LADM fails the most near the interface. 

Furthermore, although the nonlocal viscosity kernels were extracted in the zero strain-rate or 

gravity-field limit, they were later used in our transport model under finite to large magnitudes of 

gravity. Consideration of these factors can improve the continuum transport framework discussed 

in this paper. 

 

V. CONCLUSION 

Figure 7: (a) % Error in the Nonlocal (Gaussian) and local velocities w.r.t. the NEMD velocity profile 
across a half-section of the narrow channel. The red (solid) and blue (dashed) lines are the local and 
nonlocal error profiles respectively. (b) The strain-rate profile across a half-section of the narrow 
channel for the velocity profiles in Fig. 6(b). The blue (solid), orange (dashed) and grey (smaller 
dashed) lines are the nonlocal, reference NEMD and local strain-rate profiles respectively. 
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We have considered a transport model to predict gravity-driven flows in nanochannels using 

nonlocal hydrodynamics. As such velocity profiles contain multiple local extrema, the local shear 

stress relation is expected to fail and the nonlocality of the system must be stressed on. Although 

these flows are usually computed using MD simulations, here we use a continuum model with a 

nonlocal constitutive shear stress relation considering the neighboring strain-rates through their 

convolution with a position-dependent nonlocal viscosity kernel to do so. We estimate such kernels 

of the inhomogeneous fluid as isotropic kernels of homogeneous systems by the LADM approach, 

in conjunction with the STF technique for different kernel expressions, derived by inverting the 

Gaussian and Lorentzian curve fits of the k-space viscous data to real-space. The proposed 

nonlocal model captures the key features of the results from NEMD simulations, predicting the 

characteristic oscillations of the velocities near the fluid-wall interface which form the local 

extrema in the velocity profile and sign reversals in the strain-rate profile. The nonlocal model 

shows a much-improved agreement with the observations from MD, when compared to the local 

Newtonian constitutive theory. Further advances in the development of nonlocal viscosity kernel 

of non-homogeneous fluids and rectification of the drawbacks of the model presented in this work 

will provide more efficient continuum methods to model fluid flows in nanoscale confinements. 
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