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Abstract: Predicting the structural properties of water and simple fluids confined in nanometer 
scale pores and channels is essential in, for example, energy storage and biomolecular systems. 
Classical continuum theories fail to accurately capture the interfacial structure of fluids. In this 
work, we develop a deep learning-based quasi-continuum theory (DL-QT) to predict the 
concentration and potential profiles of a Lennard-Jones (LJ) fluid and water confined in a nano 
channel. The deep learning model is built based on a convolutional encoder-decoder network 
(CED) and is applied for high dimensional surrogate modeling to relate the fluid properties to the 
fluid-fluid potential. The CED model is then combined with the interatomic potential-based 
continuum theory to determine the concentration profiles of a confined LJ fluid and confined water. 
We show that the DL-QT model exhibits a robust predictive performance for a confined LJ fluid 
under various thermodynamic states and water confined in a nanochannel of different widths. The 
DL-QT model seamlessly connects the molecular physics at nanoscale with the continuum theory 
by using the deep learning model. 
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1. Introduction 

Estimating the properties of confined water and Lennard-Jones (LJ) fluids in nanoscale 
channels and pores is fundamental to a wide range of engineering applications including, e.g., 
nanofiltration,1-3 natural gas extraction from shale reservoirs,4, 5 and charging/discharging of Li-
air batteries.6 Classical continuum theories fail to account for the atomic details at the solid-fluid 
interface. Hence, they are not accurate in predicting fluid properties in nanoscale confinement 
where the interfacial behavior can deviate significantly from bulk behavior. To overcome this 
difficulty, many theoretical and computational approaches have been developed.7, 8 For example, 
atomistic molecular dynamics (MD) simulations have been extensively used to investigate the 
structure, thermodynamic and dynamic properties of fluids confined at the nanoscale.9 The 
computational efficiency of MD simulations, however, depends on the critical length and time 
scales of the problem, i.e., MD simulations can be very expensive for many applications of 
practical interest, even with advanced computing resources. Therefore, it is of fundamental interest 
to develop multiscale models incorporating atomic physics into continuum theories.   

Over the years, several multiscale models have been proposed to understand the fluid properties 
under confinement.10-14 For example, the classical density function theory (cDFT)15 has been used 
to study fluid properties under confinement by minimizing the grand potential. The cDFT suffers 
from the drawback that the precise relation between the Helmholtz free energy and the molecular 
density for many systems of practical interest is unclear.11 An alternative multiscale approach to 
study fluids under confinement is the empirical potential based quasi-continuum theory (EQT) to 
predict the fluid density and potential in confinement.10, 12, 16 EQT was developed by incorporating 
the interatomic potential (or the coarse-grained potential) used in molecular dynamics into the 
continuum theory given by the Nernst-Planck equation. EQT has been used to predict the 
properties and potential of Lennard Jones (LJ) fluids, carbon dioxide and water in a nanochannel.10, 

12, 17-19 EQT framework has also been extended to predict the structure of the electrical double-
layer including charge inversion phenomena.16, 20 Though EQT has shown promise in estimating 
fluid density in confinement, it requires a precise mathematical expression for the wall-fluid and 
fluid-fluid potentials which can be complicated even for a simple LJ fluid.12 In general, the exact 
formula of the fluid-fluid potential is unknown due to the complicated molecular interactions. 
Consequently, there is a need to develop new models and theories that not only can accurately 
approximate the fluid-fluid potential without knowing its exact potential formula but also can serve 
as a “bridge” that integrates the atomic details into the continuum theory. 

Recently, deep learning-based methods have received enormous attention in scientific 
disciplines and have shown promise to be a powerful tool in a variety of fields.21-32 For instance, 
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deep learning methods have been used to build novel models for designing small-molecular 
organic structures26 and for discovering new materials.22, 27-29 The deep learning-based models can 
reduce the time to deployment of new materials and lower the cost associated with the initial 
material discovery.27, 29 The deep learning assisted framework has also shown promise in solving 
the inverse problem of the liquid-state theory (DeepILST) to parameterize the standard 12-6 LJ 
potential.25 In addition, deep learning-based surrogate models have been used to predict the flow 
transport and quantify the uncertainty of flow in stochastic media.21, 23, 24 However, direct 
combination of a deep learning-based surrogate model into the continuum theory faces many 
challenges. For example, the deep learning model combined with the Navier-Stokes (NS) 
equations can lead to a complex landscape of the loss function and make the training process more 
difficult.33, 34 In addition, new computational algorithms may be needed to bridge the different 
scales between deep learning model and continuum system.35, 36 

In this work, we build a deep learning-based quasi-continuum theory (DL-QT) to predict the 
concentration and potential profiles of a Lennard-Jones (LJ) fluid and water confined in a nano 
slit. Our first goal is to develop a deep learning-based surrogate model to extract important atomic 
features from MD data. Specifically, the surrogate model is trained to relate the fluid properties 
with the fluid-fluid potential. Because of the inhomogeneity imposed by the nanochannel, the input 
data (fluid properties) and output data (fluid potential) can be high dimensional. Hence, the deep 
learning model is built based on end-to-end regression by using the convolutional encoder-decoder 
network. The second goal is to integrate the atomic details extracted from the deep learning model 
into the continuum theory to compute accurate fluid properties in a nanochannel. The deep 
learning-based surrogate model serves as the connection between the molecular scale and 
continuum scale. We also show that the DL-QT model can predict the properties of fluids with 
more complex molecular structures like water.  

The rest of the paper is structured as follows: In section 2, we describe the details of data 
generation using MD simulations, the convolutional encoder-decoder network and the 
computational framework and method for solving the DL-QT model. In section 3, the performance 
of the proposed computational framework is examined and discussed. We first quantify the 
performance of the convolutional encoder-decoder network model. Then, we investigate the 
performance of DL-QT model in predicting the concentration and potential profiles of a LJ fluid 
and water confined in nano channels. In section 4, we summarize the key findings of this study. 

2. Computational Framework 

In this section, we discuss the deep learning-based computational framework for predicting the 
fluid concentration and potential profiles in nano confinement. In the first part, we detail the data 
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generation method for the deep learning model by using the molecular dynamics simulation. In 
the second part, the architecture and parameterization of the convolutional encoder-decoder model 
is presented. Finally, the computational framework and algorithm of the deep learning-based 
quasi-continuum theory (DL-QT) are summarized.  

2.1  Generation of dataset 
The dataset required for training, validation, and testing are generated via MD simulation. The 

MD systems are built with fluid sandwiched between two graphene layers. We study two types of 
fluids, namely, LJ fluid and water. For the graphene – LJ fluid system, we built 15012 distinct MD 
simulations with graphene channel widths of 𝐿𝐿 = 8 nm, 10 nm, 12 nm, … , 28 nm, 30 nm. Each 
channel width contains 3 different temperatures, T = 303 K, 323 K, 353 K, and each temperature 
contains 416 different MD simulations with thermodynamic states sampled uniformly for bulk 
density ranging from 1.0 − 29.0 nm−3 . The lateral dimensions of the graphene layer are 
8.0 × 8.0 nm2 . For the graphene–water system, we built 240 distinct MD simulations with 
graphene channel widths of L = 2.0, 2.025, 2.05, … , 7.95, 7.975 nm. The lateral dimensions of 
the graphene layer are 4.5 × 4.5 nm2. To ensure that the confined water in all channel widths 
corresponds to the standard thermodynamic state, i.e., T = 300 K and bulk density is ρbulk =
1.0 g

cm3, we performed equilibrium simulations with the graphene channel system attached to the 
bulk water reservoir at 1 bar pressure and 300 K temperature.    

In the MD simulation, the intermolecular interactions between an atom “i” and atom “j” are 
modeled using the Lennard-Jones (LJ) potential,  

𝜑𝜑𝑖𝑖𝑖𝑖 = 4𝜀𝜀𝑖𝑖𝑖𝑖 ��
𝜎𝜎𝑖𝑖𝑖𝑖
𝑟𝑟𝑖𝑖𝑖𝑖
�
12
− �𝜎𝜎𝑖𝑖𝑖𝑖

𝑟𝑟𝑖𝑖𝑖𝑖
�
6
�      (1) 

where, 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝜎𝜎𝑖𝑖𝑖𝑖 are the LJ parameters for the pair (i, j) and 𝑟𝑟𝑖𝑖𝑖𝑖 is the distance between the two 
atoms. Water is simulated using the extended simple point charge (SPC/E)37 model. The LJ 
parameters for graphene – LJ fluid and graphene – water systems are summarized in Table 1. The 
short range interactions are calculated using a spherical cutoff of 1.4 nm, and water–water 
electrostatic interactions are calculated using the particle mesh Ewald (PME) method with a 
desired relative error of 1 × 10−5 in forces.38   

All the MD simulations are performed using the LAMMPS code39 with a time step size of 1 fs. 
Periodic boundary conditions are applied in the x and y-directions. In the z-direction, slab 
correction is adopted for the PME method40, where an extra vacuum space of three times the actual 
z dimension is inserted to effectively turn off the slab−slab interactions. During the simulation, the 
graphite wall is frozen; that is, their positions were fixed. The simulations are performed in the 
NVT (canonical) ensemble, and the temperature of the confined fluid is maintained using the Nosé-
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Hoover thermostat41. Each MD simulation is performed for 2 ns and the fluid concentration and 
potential are calculated on the fly.  

The generated MD dataset with the same channel and temperature are indexed based on their 
bulk density (index increases as bulk density increases). We then randomly divide these indexes 
into three groups: index for training data (80%), index for validation data (10%), and index for 
testing data (10%). We note that the testing data sets include various combinations of density, 
temperature and channel widths that are not seen during the training phase, but it does not include 
specific temperatures or channel width that are not part of the training sets. The channel width, 
confined fluid concentration, together with its corresponding thermodynamic state and fluid LJ 
parameters, are stored as a feature vector which serves as the input information to the machine 
learning model. The fluid-fluid potential of the confined fluid constitutes the output of the machine 
learning model.  

2.2  Deep convolutional encoder-decoder network  

Mathematically, the relation between fluid-fluid interactions and the confined fluid 
concentration can be expressed as: 

𝑈𝑈𝑓𝑓𝑓𝑓(𝒛𝒛) = ℊ�𝜌𝜌(𝒛𝒛),𝑇𝑇,𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝜀𝜀𝑓𝑓𝑓𝑓 ,𝜎𝜎𝑓𝑓𝑓𝑓, 𝐿𝐿�       (2) 

where 𝑈𝑈𝑓𝑓𝑓𝑓(𝒛𝒛) is the fluid-fluid potential, 𝜌𝜌(𝒛𝒛) is the fluid concentration, 𝜀𝜀𝑓𝑓𝑓𝑓 and 𝜎𝜎𝑓𝑓𝑓𝑓 are the 
LJ parameters for the fluid-fluid interaction, L is the channel width, T and 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 represent the 
temperature and bulk density, respectively, and ℊ  is the mathematical mapping. Due to the 
inhomogeneity imposed by the nanochannel and the many-body nature of fluid-fluid interactions, 
it is generally difficult and computationally expensive to develop an analytical mapping. To tackle 
this limitation, we adopt a deep learning model to approximate the above mapping, i.e.,  

𝑈𝑈�𝑓𝑓𝑓𝑓(𝒛𝒛) = ℋ�𝜌𝜌(𝒛𝒛),𝑇𝑇,𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝜀𝜀𝑓𝑓𝑓𝑓 ,𝜎𝜎𝑓𝑓𝑓𝑓 , 𝐿𝐿|𝜃𝜃�    (3) 

where 𝜃𝜃 represents the learning parameters of the model. The model ℋ is trained via N sets of 
data 𝔇𝔇 = �𝑈𝑈𝑓𝑓𝑓𝑓,𝑖𝑖(𝒛𝒛), �𝜌𝜌𝑖𝑖(𝒛𝒛),𝑇𝑇𝑖𝑖 ,𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 , 𝜀𝜀𝑓𝑓𝑓𝑓 ,𝜎𝜎𝑓𝑓𝑓𝑓��𝑖𝑖=1

𝑁𝑁
through minimization of the loss function, 

ℋ = arg min𝜃𝜃(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(ℋ�𝜌𝜌(𝒛𝒛),𝑇𝑇,𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝜀𝜀𝑓𝑓𝑓𝑓 ,𝜎𝜎𝑓𝑓𝑓𝑓 , 𝐿𝐿|𝜃𝜃�,𝑈𝑈𝑓𝑓𝑓𝑓(𝒛𝒛)))    (4) 

In this work, we adopt the deep convolutional encoder-decoder network (CED) model to relate 
the concentration of the confined fluid with the fluid-fluid potential. The CED model has shown 
promise in dealing with the high dimensional to high dimensional regression problem.24, 42 In this 
work, because of the inhomogeneity imposed by the nanochannel, the input (fluid properties) and 
the output (fluid potential) of the deep learning model are both high dimensional data with size of 
1 × 1005 and 1 × 1000, respectively. 
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The CED model is constructed with three main parts, namely, an encoder network, a latent 
space, and a decoder network. Here the encoder part is constructed using a deep convolutional 
neural network (CNN). It takes the concentration 𝜌𝜌(𝒛𝒛) from MD data, the channel width L, and 
the LJ parameters (𝜀𝜀𝑓𝑓𝑓𝑓 ,𝜎𝜎𝑓𝑓𝑓𝑓) of the confined fluid, and its corresponding thermodynamic state 
(𝑇𝑇,𝜌𝜌𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢) as input and extract the important correlations and features from the input. The extracted 
feature maps are stored in the latent space. The decoder part, constructed with transposed CNN 
layers, takes the information from the latent space and up-samples these feature maps to high-
dimensional space to predict the fluid-fluid potential profile.  

 Before we discuss the CED model, we first briefly review the basic knowledge of CNN. Here 
we only outline the key ideas of these networks; a detailed introduction of the CNN model and the 
data workflow can be found in Ref43. CNN model is designed based on shared-weight architecture. 
The output feature maps are calculated based on convolutional filters sliding along the input 
features. For example, the convolutional filters at the 𝑘𝑘𝑡𝑡ℎ layer are applied to compute the output 
(feature maps 𝐹𝐹 ∙ 𝑚𝑚𝑚𝑚𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 ) at this layer via convolution operation with the input 𝑥𝑥𝑖𝑖 at the 𝑘𝑘𝑡𝑡ℎ 
layer, i.e.,  

𝐹𝐹 ∙ 𝑚𝑚𝑚𝑚𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘 = 𝒜𝒜(𝑤𝑤𝑘𝑘⨁𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑘𝑘 ∙ 𝐽𝐽)      (5) 

where 𝒜𝒜  is the nonlinear activation function, 𝐽𝐽  is a tensor with all elements equal to 1.    
𝑤𝑤𝑘𝑘 and 𝑏𝑏𝑘𝑘  are the weights and bias of the filter at the 𝑘𝑘𝑡𝑡ℎ  layer. 𝑤𝑤𝑘𝑘⨁𝑥𝑥𝑖𝑖  is the convolution 
between the filters’ weight and the input. The exact formula relies on the padding (p) and strides 
(st) and can be found in Ref44. 

The architecture of our CED model is shown in Fig. 1a. The encoder network (blue color) is 
constructed with six encoder blocks. Each encoder block consists of four parts as presented in Fig. 
1b: (1) a 1 × 3 convolutional layer with same padding and st = 1; (2) the convolutional layer is 
followed by a tanh nonlinear activation function; (3) the output is then down-sampled via a 1 × 2 
maxpooling layer with st = 2; (4) finally a dropout layer is applied before feeding the data to the 
next encoder block. The decoder network (green color) consists of six decoder blocks, with each 
block structured in five parts (Fig. 1c): (1) a 1 × 3 transposed convolution layer with the same 
padding and st = 2; (2) followed by a tanh activation function; (3) and a dropout layer; (4) the 
output from the dropout layer is fed to a regular convolutional layer; and (5) followed by another 
tanh activation function. The encoder and decoder parts are connected using a latent space z, 
consisting of one convolutional layer. The output of the decoder network will be fed to a fully 
connected neural network layer to generate the final prediction (fluid-fluid potential). 

The CED model is trained using the training dataset generated in section 2.1 by minimizing the 
loss function: 



 7 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1
𝑁𝑁
∑ �𝑈𝑈𝑓𝑓𝑓𝑓,𝑖𝑖 − 𝑈𝑈�𝑓𝑓𝑓𝑓,𝑖𝑖�𝑁𝑁
𝑖𝑖=1      (6) 

where N is the number of training data, and 𝑈𝑈𝑓𝑓𝑓𝑓,𝑖𝑖 is the ground-truth fluid-fluid potential of sample 
i, computed from the MD simulation. 𝑈𝑈�𝑓𝑓𝑓𝑓,𝑖𝑖 is the prediction by the CED model. The CED model 
is implemented using Tensorflow45 and is trained on an NVIDIA V100 (“Volta”) GPU with 32 
GB memory. We initialize the weights of all the convolutional filters with a truncated normal 
distribution with a standard deviation of 0.1. The initial value of all biases is set to 0.1. We adopt 
Adam Optimizer46 with a decay learning rate (start with 8 × 10−4 and decrease by 20% every 
600 epochs) to minimize the corresponding loss function in Eq. (6). The model is trained using a 
batch size of 32 and the training process stops at 15000 steps when the validation error is 
minimized. Once the model is well trained, the optimized learning parameters at the final step are 
saved and will then be restored for evaluating the testing dataset without retraining the model.  

2.3  Deep learning-based quasi-continuum theory (DL – QT)  

The equilibrium concentration profile 𝜌𝜌(𝑧𝑧), of a confined fluid in a nanochannel with channel 
width L, can be determined by solving the 1-D steady state Nernst-Planck equation, 

𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑑𝑑𝑑𝑑(𝑧𝑧)

𝑑𝑑𝑑𝑑
+ 𝜌𝜌(𝑧𝑧)

𝑅𝑅𝑅𝑅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 � = 0      (7) 

with boundary conditions:  

𝜌𝜌(𝑧𝑧 = 0) = 0       (8a) 

𝜌𝜌(𝑧𝑧 = 𝐿𝐿) = 0       (8b) 
1
𝐿𝐿 ∫ 𝜌𝜌(𝑧𝑧)𝐿𝐿

0 𝑑𝑑𝑑𝑑 = 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎       (8c) 

where T is the fluid temperature, R is the ideal gas constant, U is the total potential of mean force 
(PMF), and 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 is the average concentration of fluid inside the channel. If we know the total 
PMF, 𝑈𝑈(𝑧𝑧), the fluid concentration can be solved with Eq. (7) together with boundary conditions 
in Eq. (8a), (8b) and (8c). 

A. Model for total PMF 𝑼𝑼(𝒛𝒛) 

For a simple fluid in nanoconfinement, the total potential is due to the wall-fluid and fluid-fluid 
interactions. Thus, 𝑈𝑈(𝑧𝑧) can be calculated by the summation of the wall-fluid and fluid-fluid 
potential, i.e., 

𝑈𝑈(𝑧𝑧) = 𝑈𝑈𝑤𝑤𝑤𝑤(𝑧𝑧) + 𝑈𝑈𝑓𝑓𝑓𝑓(𝑧𝑧)      (9) 

The wall-fluid potential. Using a continuum approximation, the wall-fluid potential can be 
computed by integrating the contribution of wall atoms with a continuous distribution47 

𝑈𝑈𝑤𝑤𝑤𝑤(𝑧𝑧) = ∫𝜑𝜑𝑤𝑤𝑤𝑤(𝑧𝑧 − 𝑟𝑟)𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑑𝑑𝑑𝑑     (10) 
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where 𝜑𝜑𝑤𝑤𝑤𝑤  is the wall-fluid pair interaction, 𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  is the wall atom density in a continuum 
approximation. For a graphene layer, 𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 38.287 nm−2 and the wall-fluid potential can be 
calculated analytically12 

𝑈𝑈𝑤𝑤𝑤𝑤(𝑧𝑧) = 4
5
𝜋𝜋𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝜀𝜀𝑤𝑤𝑤𝑤𝜎𝜎𝑤𝑤𝑤𝑤12 ( 1

𝑧𝑧10
+ 1

(𝐿𝐿−𝑧𝑧)10) − 2𝜋𝜋𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝜀𝜀𝑤𝑤𝑤𝑤𝜎𝜎𝑤𝑤𝑤𝑤6 ( 1
𝑧𝑧4

+ 1
(𝐿𝐿−𝑧𝑧)4)      (11) 

where 𝜀𝜀𝑤𝑤𝑤𝑤 and 𝜎𝜎𝑤𝑤𝑤𝑤 are the pair interaction parameters for wall-fluid atoms.  

The fluid-fluid potential. The exact formula for the fluid-fluid potential, however, can be 
extremely complicated. Here we adopt the convolutional encoder-decoder network to approximate 
the relation between fluid-fluid potential with the fluid concentration,  

𝑈𝑈𝑓𝑓𝑓𝑓(𝑧𝑧) ≈ 𝑈𝑈�𝑓𝑓𝑓𝑓(𝑧𝑧) = ℋ�𝜌𝜌(𝒛𝒛),𝑇𝑇,𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝜀𝜀𝑓𝑓𝑓𝑓 ,𝜎𝜎𝑓𝑓𝑓𝑓 , 𝐿𝐿|𝜃𝜃�      (12) 

where 𝑈𝑈�𝑓𝑓𝑓𝑓(𝒛𝒛) is the fluid-fluid potential predicted by the well trained deep learning model.   

In summary, we developed a deep learning-based quasi-continuum theory to determine the 
concentration of fluid confined in a nanochannel as defined in Eq. (7) with boundary conditions 
given by Eq. (8). The key idea is to obtain the total PMF which has contributions from wall-fluid 
interactions in Eq. (11) and the fluid-fluid interactions in Eq. (12). Notice that the fluid-fluid 
potential 𝑈𝑈𝑓𝑓𝑓𝑓(𝑧𝑧) in Eq. (12) is a function of concentration and Eq. (7) is nonlinear. We use an 
iterative scheme to find the self-consistent concentration and potential. 

B. Implementation 

The computational framework and implementation of the DL-QT method are summarized in figure 
2. We first compute the wall-fluid potential 𝑈𝑈𝑤𝑤𝑤𝑤(𝑧𝑧) in Eq. (11), by taking the wall-fluid LJ 
parameters, 𝜀𝜀𝑤𝑤𝑤𝑤  and 𝜎𝜎𝑤𝑤𝑤𝑤 , channel width, L, the concentration of wall atoms, 𝑐𝑐𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  as input. 
Since the wall-fluid potential does not depend on the fluid concentration, we only need to compute 
𝑈𝑈𝑤𝑤𝑤𝑤(𝑧𝑧) once. We then calculate the initial fluid concentration, 

𝜌𝜌𝑛𝑛=0(𝑧𝑧) = 𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 exp(−𝑈𝑈𝑤𝑤𝑤𝑤(𝑧𝑧) 
𝑅𝑅𝑅𝑅

)     (13) 

The fluid-fluid potential 𝑈𝑈𝑓𝑓𝑓𝑓(𝑧𝑧) in Eq. (12) is computed using the initial fluid concentration as 
input to the well trained CED model. With the wall-fluid potential and fluid-fluid potential, the 
total potential can be determined using Eq. 9. Considering the nonlinearity of Equation 7, we apply 
a relaxation factor when calculating the new concentration in the next iteration. In this paper, we 
use 𝛼𝛼 = 1.3. The iterative process is repeated until the solver converges to a self-consistent 
solution.  

3. Results and Discussion 
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In this section, we examine the performance of our deep learning-based quasi-continuum theory 
in determining the concentration and potential of a fluid confined in a nanochannel. The DL-QT 
model is applied to solve two systems, namely, LJ fluid confined in a graphene channel and water 
confined in a graphene channel. Below, we first show that our deep learning model can be applied 
as a surrogate model to relate the fluid-fluid interactions with the fluid concentration and its 
corresponding thermodynamic state without resolving the complex mathematical formula. We 
show that the deep learning-based surrogate model performs well in predicting the fluid-fluid 
potential for both confined LJ fluid and water. Next, we demonstrate that the well-trained deep 
learning model can be seamlessly combined with the quasi-continuum theory to determine the 
concentration of fluid in a nanochannel. The DL-QT model has a robust predictive performance 
for LJ fluid confined in different channel widths and under various thermodynamic states. Finally, 
we demonstrate that the DL-QT model can be extended to solve the concentration of water which 
has a more complex molecular structure.  

3.1 Performance of CED model in predicting the fluid-fluid potential 

The CED model is trained using the dataset generated in section 2.1 by following the protocol 
described in section 2.2. The evolution of the loss function in Eq. (6) over the training process is 
shown in Fig. 3. We observe that both the training loss and validation loss decrease sharply in the 
first ~1000 epochs and the training loss decreases faster than the validation loss. The training 
process stops at 15000 epochs when the training and validation loss are no longer decreasing. The 
optimized learning parameters at the final epoch are saved and will be restored for evaluating the 
testing dataset in the next step. 

We then test the well-trained CED model using the testing dataset. We note that the testing data 
sets include various combinations of density, temperature and channel widths that are not seen 
during the training phase, but it does not include specific temperatures or channel width that are 
not part of the training sets. For the LJ fluid sandwiched between two graphene walls, the MD 
system in the testing datasets have distinct thermodynamic states, i.e., the bulk density in the 
testing data is different from those in the training dataset. For the graphene-water system, the 
testing dataset and the training dataset are under the same thermodynamic state, but the test dataset 
has distinct channel widths compared to the training dataset. 

CED model for confined LJ fluid. Fig. 4a shows a one-to-one comparison of the CED 
predicted and ground-truth (MD results) fluid-fluid potential for the LJ fluid confined in channel 
widths of 𝐿𝐿 = 8 nm, 16 nm and 28 nm, and for different bulk density. We find that the fluid-
fluid interactions predicted by our CED model agree well with the true values. Because the 
concentration and potential profiles are symmetric about the channel center, we only present the 
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profiles for half the channel. Notice that 𝑈𝑈𝑓𝑓𝑓𝑓 has significant layering only near the interface and 
is close to zero far away (> 2 nm) from the wall surface, where the fluid concentration is nearly 
homogeneous. Considering the important role of interfaces, here we examine the predictive 
performance of CED model near the interface (𝑧𝑧 < 2 nm). The results in the inset of Fig. 4a 
indicate that the CED model can accurately resolve the complex fluid-fluid interactions near the 
interface by capturing the interfacial behavior accurately.  

To quantify the performance of our CED model in the interface region over the entire testing 
dataset (~1500 data samples), we define the average relative error of the ith data sample by 

averaging the error over the interfacial region (z<2nm), i.e., 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖 =  1
𝑁𝑁𝑖𝑖
∑ �𝑈𝑈𝑓𝑓𝑓𝑓,𝑖𝑖�𝑧𝑧𝑗𝑗�−𝑈𝑈�𝑓𝑓𝑓𝑓,𝑖𝑖�𝑧𝑧𝑗𝑗��

max𝑈𝑈𝑓𝑓𝑓𝑓,𝑖𝑖�𝑧𝑧𝑗𝑗�
𝑁𝑁𝑖𝑖
𝑗𝑗=1 . 

The histogram of the prediction error for the testing dataset is updated in Fig. 4b. We can see 
that >90% of the testing data have relative errors less than 1%. The distribution of the prediction 
error for different channel widths is presented in Fig. 4c, and most of these relative error points 
are grouped below 1% for all the channel widths in this work. In addition, we found that the testing 
error of the CED model does not follow a monotonic trend with respect to the channel width. This 
is because the CED model is trained via a stochastic optimization procedure and there is no 
theoretical guarantee that the well-trained deep learning model will converge to the global minima. 
Even if the CED model converges to a local minima state, the results in figure 4c indicate that it 
does offer an accurate prediction of the fluid potential. 

CED model for confined water. While the CED model shows a good performance for the 
confined LJ fluid, its ability to determine the fluid-fluid interactions for confined water is unknown. 
Water has a more complex molecular structure compared to the LJ fluid and is able to form 
directional hydrogen bonds between water molecules. Furthermore, the structural properties, such 
as the concentration, RDF, tetrahedral structure, and other properties of water near the wall can be 
different from the structural properties of water in bulk. Hence, resolving the fluid-fluid 
interactions of confined water is a formidable challenge. 

In this part, we investigate whether the CED model can tackle the above challenge. The CED 
model is trained using MD data from the graphene-water system. The performance of the CED 
model for predicting the fluid-fluid interactions of confined water is shown in Fig. 5a. We note 
that the CED model performs well for water confined in different channel widths at a standard 
thermodynamic state (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 1 𝑔𝑔/𝑐𝑐𝑚𝑚3,𝑇𝑇 = 300 𝐾𝐾). The histogram of the relative prediction 
error in Fig. 5b indicates that the overall performance of the CED model for the testing dataset is 
again very good with all the average prediction relative errors less than 0.01.  

To this end, it is worth mentioning that the CED model implicitly treats one water molecule as 
one coarse-grained bead when calculating the fluid-fluid interactions of confined water. While a 
simpler molecular structure is considered, the CED model can still accurately resolve the water 
concentration near the wall without introducing a coarse-grained potential.   

3.2 Performance of DL-QT model for confined LJ fluid 
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The results above show that the CED model performs well in predicting the fluid-fluid 
interactions for confined LJ fluid and confined water. Next, we assess the performance of DL-QT 
model which integrates the well trained CED model with the quasi-continuum theory. The detailed 
solution of DL-QT model is discussed in section 2.3. The concentration profiles given by the DL-
QT model are compared with those from MD simulations in Fig. 6. Here we randomly select 9 
samples from the large testing dataset. When the channel width is 𝐿𝐿 = 8 nm, we choose three 
samples with different thermodynamic states: (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏1 = 11.8 nm−3,𝑇𝑇1 = 303 K ), (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 =
24.2 nm−3,𝑇𝑇2 = 303 K), (𝜌𝜌𝑏𝑏𝑢𝑢𝑢𝑢𝑢𝑢3 = 26.1 nm−3,𝑇𝑇3 = 303 K); when 𝐿𝐿 = 16 nm, we have three 
samples with different thermodynamic states: (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏4 = 15.3 nm−3,𝑇𝑇4 = 323 K ), (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏5 =
22.5 nm−3,𝑇𝑇5 = 303 K), (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏6 = 27.3 nm−3,𝑇𝑇6 = 323 K); when 𝐿𝐿 = 28 nm, we choose three 
samples with different thermodynamic states: (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏7 = 10.7 nm−3,𝑇𝑇7 = 303 K ), (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏8 =
22.4 nm−3,𝑇𝑇8 = 323 K), (𝜌𝜌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏9 = 28.2 nm−3,𝑇𝑇9 = 353 K). We observe that the concentration 
profiles from both the DL-QT model and MD simulation have a “bulk-like” region in the channel 
center and an interfacial structure near the wall. The DL-QT concentrations are in good agreement 
with the MD results for both the “bulk-like” and interfacial regions. The accuracy of the results 
indicates that atomic physics is integrated into the continuum theory.  

To quantitatively investigate the performance of DL-QT model over the entire testing data,  

we define an average relative prediction error, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑖𝑖 =  1
𝑁𝑁𝑖𝑖
∑ �𝜌𝜌𝑀𝑀𝑀𝑀,𝑖𝑖�𝑧𝑧𝑗𝑗�−𝜌𝜌𝐷𝐷𝐷𝐷−𝑄𝑄𝑄𝑄,𝑖𝑖�𝑧𝑧𝑗𝑗��

𝜌𝜌𝑀𝑀𝐷𝐷,𝑖𝑖�𝑧𝑧𝑗𝑗�
𝑁𝑁𝑖𝑖
𝑗𝑗=1 , 

where 𝜌𝜌𝑀𝑀𝑀𝑀,𝑖𝑖�𝑧𝑧𝑗𝑗� and 𝜌𝜌𝐷𝐷𝐷𝐷−𝑄𝑄𝑄𝑄,𝑖𝑖(𝑧𝑧𝑗𝑗) represent, respectively, the MD and DL-QT density at position, 
𝑧𝑧𝑗𝑗 . Again, we focus on the relative error within the near-wall region with 𝑧𝑧 < 2 nm and the 
histogram of the average relative error for the overall testing data is presented in Fig. 7a. We 
observe that the relative prediction error is less than 10% for almost all the testing data and about 
95% of the testing data have an average relative error less than 6%. Knowing that the concentration 
depends on the temperature and the channel width, we divide the testing data into three groups 
based on the temperature in the MD simulation: T=303K, 323K, and 353K. The distribution of the 
average relative error with different temperatures is shown in Fig. 7b. We can see that the 
performance of the DL-QT model is about the same under different temperatures, with roughly 
75% of the testing data having an average relative error less than 2%. To assess the ability of the 
DL-QT model for the LJ fluid confined in different channel widths, we divide our testing data into 
12 groups, and the distribution of the average relative error is shown in Fig. 7c. Although the 
average relative error is not the same for different channel widths, we still find ~75% of the testing 
data have an average relative error less than 5% for all the channel widths considered in this work. 
This result confirms that the DL-QT model has a robust performance for the LJ fluid confined in 
different channel widths.    

In summary, the DL-QT model performs well in determining the concentration of the LJ fluid 
confined in different channel widths and under various thermodynamic states. These results 
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suggest the possibility of connecting atomic physics with continuum theories by using the deep 
learning model. In DL-QT, we adopt the well trained CED model as the “bridge” to build 
connections between the continuum theory and molecular physics at the nanoscale. The CED 
model is trained as a surrogate model to approximate the relation between the fluid-fluid potential 
and the LJ fluid concentration using a large MD dataset. The trained CED model can predict the 
fluid-fluid interactions accurately without resolving the complex molecular physics and can be 
directly combined into the quasi-continuum theory.  

3.3 Performance of DL-QT model for water in nanoconfinement 
The DL-QT model in section 3.2 shows a good performance in determining the concentration 

of the LJ fluid confined in a nanochannel. To investigate the performance of DL-QT for confined 
water, we consider confined water in different channel widths at a standard thermodynamic state, 
i.e., T = 300 K and ρbulk = 1.0 g

cm3. The one-to-one comparison between the concentration given 
by MD simulation (ground-truth) and DL-QT is presented in Fig. 8a. We can see that the water 
concentrations from DL-QT are in good agreement with the MD results. Fig. 8b shows the 
histogram of the average relative error over the whole testing data, and we observe that DL-QT 
can predict the confined water concentration accurately, with 90% of the testing data having an 
average relative error less than 6%. 

4. Conclusions 

In summary, we developed a deep learning-based quasi-continuum theory to solve the 
concentration and fluid-fluid potential profiles of confined LJ fluid and confined water in a nano 
channel. The deep learning model is built based on convolutional encoder-decoder network, and 
we train the model using the dataset generated by MD simulations. In the first part, we examine 
the performance of the CED model. We show that the CED model can predict the fluid-fluid 
interactions accurately without resolving its complex mathematical formula. The model performs 
well with a prediction error < 0.05 for LJ fluid confined in a nanochannel with different widths 
and various thermodynamic states. We demonstrate that the CED model can also be used to predict 
the complex fluid-fluid interactions for confined water accurately by implicitly treating one water 
molecule as one coarse-grained bead without introducing a coarse-grained potential.   

In the second part, we developed the DL-QT model that integrates the well trained CED model 
into the quasi-continuum theory. The DL-QT model has a robust predictive performance for fluid 
confined in a nanochannel with different widths and under various thermodynamic states. We find 
that about 95% of the overall testing data for the LJ fluid and 90% of the testing data for confined 
water have a relative prediction error less than 6%. The good performance of DL-QT suggests the 
possibility of connecting molecular physics at the nanoscale with the continuum theories by using 
the deep learning model. In DL-QT, the CED model serves as the “bridge” to connect the 
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molecular physics at the nanoscale to the continuum theory. The molecular physics in the CED 
model is learnt by training the model using a large MD dataset. Conceivably, models built here 
can be extended to determine the properties of more complex structures, e.g., ionic liquids, organic 
solvents, and so on. 

The DL-QT methodology is not limited to any channel width for the prediction of structure of 
a confined fluid. While the method is rigorous, deviations from MD simulations can be attributed 
to inadequate training of the model. The current DL-QT focuses only on the structure of the fluid, 
but the deep learning-based continuum model can be combined with the Navier-Stokes theory to 
understand confined fluid transport.33, 34 
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Fig. 1. (a) The convolutional encoder-decoder (CED) model for predicting the fluid-fluid interactions. Blue trapezoid 
box represents the encoder network, and the green trapezoid box is the decoder network. The encoder and decoder 
networks are connected via latent space z (orange box). Both encoder and decoder parts contain six repeated blocks. 
The number of output features is marked in each block. (b)The detailed architecture of a single encoder block. (c) The 
detailed architecture of a single decoder block.  
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Fig. 2. The schematic of the computational framework of the deep learning-based quasi-continuum theory (DL-QT) 
model for determining fluid structure in a nanochannel. The model integrates a well-trained CED network with a 
quasi-continuum theory.  
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Fig. 3. The evolution of the training loss (Eq. 6) and validation loss by the CED model in the training process.  
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Fig. 4. The predictive performance of the CED model for a confined LJ fluid. (a) One-to-one comparison of the CED 
predicted and ground-truth (MD results) fluid-fluid interactions for a LJ fluid confined in a channel of width, 𝐿𝐿 =
8 nm, 16 nm and 28 nm , and under different thermodynamic states. (b) The histogram of the average relative 
prediction error between the CED predicted and the ground-truth fluid-fluid potential in the near wall region (𝑧𝑧 <
2 nm) over all the LJ fluid testing dataset. (c) The distribution of the average prediction error for the LJ fluid confined 
in a nanochannel of different widths. 
  



 18 

 
Fig. 5. The predictive performance of the CED model for confined water. (a) One-to-one comparison of the CED 
predicted and ground-truth (MD results) fluid-fluid interactions for water confined in a nanochannel of different widths. 
(b) The histogram of the average relative prediction error between CED predicted and ground-truth fluid-fluid 
potential in the near wall region (𝑧𝑧 < 2 nm) over the entire testing dataset for a confined water system. 
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Fig. 6. Comparison of the concentration profiles predicted by the DL-QT model and MD simulations with different 
channel widths, 𝐿𝐿 = 8 nm, 16 nm, and 28 nm and for different thermodynamic states. 
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Fig. 7. The predictive performance of the DL-QT model in predicting the concentration of confined LJ fluid. (a) The 

histogram of the average relative error between the DL-QT solution and the ground-truth in the near wall region (𝑧𝑧 <

2 nm) over the entire testing dataset for a confined LJ fluid. (b) The distribution of the average relative error for a 

confined LJ fluid for different temperatures. (c) The distribution of the relative error for a LJ fluid confined in a 

nanochannel of different channel widths. 
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Fig. 8. The predictive performance of the DL-QT model for confined water. (a) Comparison between the solution of 

the DL-QT model and the ground-truth (MD results) for water confined in a nanochannel of different widths. (b) The 

histogram of the average relative error between the DL-QT predicted and ground-truth fluid concentration in the near 

wall region (𝑧𝑧 < 2 nm) over the entire testing dataset. 
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Table 1. Lennard-Jones parameters for interactions between atoms. 

 Parameters 

atom  𝜎𝜎 (nm) 𝜀𝜀 (Kcal) Charge (e) 

Ar 

C (graphene) 

O 

H 

0.3405 

0.3566 

0.3166 

0.0 

0.2379 

0.0698 

0.1553 

0.0 

  0.0 

0.0 

-0.8476 

0.4238 
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