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ABSTRACT

In recent years, wearable and mobile health sensing technolo-
gies have been developed to track drug usage and monitor
different addiction-related states, including craving and eu-
phoria. These states are interdependent and correlated, which
is well documented in the literature. However, the state of the
art digital biomarker technologies model these states indepen-
dent of each other and thus fail to use the inherent relationship
while making predictions. In our current work, we demon-
strate how structured prediction energy networks (SPENs) can
be used to capture the correlation and dependencies between
self-reported craving, euphoria, and the underlying physiolog-
ical biomarkers. More specifically, we use SPENS to jointly
predict self-reported visual analog scale (VAS) ratings of co-
caine craving and euphoria from cardiac signals captured from
a wearable chest band. The proposed SPEN-based model can
improve the performance of both VAS craving and VAS eu-
phoria prediction by a Normalized Root Mean Square Error
of respectively 4.6% and 5.4%.
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1 INTRODUCTION

Drug addiction is a brain-based chronic disorder that affects
a person’s behavior and leads to an inability to control drug
usage. To treat drug addiction, it is essential to understand
the real-world antecedents of recurrent drug usage. For a per-
son addicted to the drug, the cycle of addiction happens as
shown in figure 1. Addiction starts due to various reasons,
including exposure to any drug-related cues or stressors or a
priming dose of the drug, which then transforms into a crav-
ing. Eventually, after a loss of control, the individual seeks
the drug and finally administers it. After administrating the
drug, the individual then enters a state of euphoria, which
we commonly call “HIGH”. With each euphoric event, the
individual develops a new tolerance to the drug, referred to as
neuroadaptation. Sometimes the person may administer the
drug without any drug-related cues. Recent advancements in
ubiquitous and mobile health technologies were able to use
various on-body or contactless sensors to predict different
variables of the addiction loop for different drugs. However,
currently, no system explicitly considers these interactions
between the predicted classes while making predictions. In
our current work, we present a Structured energy prediction
network (SPEN) [3] which jointly predicts craving and eu-
phoria scores of cocaine using cardiac signals obtained from
a wearable chest band along with capturing the dependencies
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Figure 1: The addiction loop [10].

Loss of control

between the labels.

Previous work by [11, 20] built individual systems for detect-
ing drug administration, predicting craving and euphoria lev-
els of cocaine. These systems do not leverage the information
that drug craving, drug administration, and drug euphoria are
inter-related to each other (figure 1), but rather make their pre-
dictions independent of each other. Essentially, in the cocaine
dataset collected by [11], we observed that the ground truth
craving and euphoria scores are positively correlated ((rs(121)
=0.64, p < .001)). This means that if the person is not feeling
any craving for the drug, then the person is not experiencing
any euphoric feeling, and if the person is feeling euphoric due
to the drug, then the person would like to continue taking the
drug by showing a craving to keep experiencing the ongoing
effect of the drug. We leverage this information in our SPEN
architecture to jointly predict craving and euphoria scores of
cocaine. In summary, our contributions are-

e Using SPEN architecture on the previously collected
dataset by [11], we show that we can improve the per-
formance of VAS craving prediction from 18.6% Nor-
malized Root Mean Square Error (NRMSE )to 14.2%
NRMSE and VAS euphoria prediction from 19.9%
NRMSE to 14.5% NRMSE.

e We show that for the participants who do not show
any correlation between ground truth VAS craving and
euphoria scores, the SPEN architecture performed the
same or worse compared to the [11] architecture. In
other words, all the participants who showed a corre-
lation between the labels had an improvement in the
performance with our architecture.

2 RELATED WORK

Various works had tried to understand and predict different
states of the addiction loop using mobile health and ubiq-
uitous technologies for a different types of drugs. Most of
these works focussed on detection of drug administration:
Cocaine [12, 19, 20], Opioid [5, 17], Alcohol [4, 22], To-
bacco [14, 23] as it is one of the initial and central question
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Figure 2: a) Zephyr chest band. b) Infusion Pump but-
ton, used to request cocaine in Self-administration pe-
riod. c¢) Brief sketch of participant during the Self-
administration period of the study.

to ask if one wants to treat drug addiction. With regards to
other drug-induced states, Gullapalli et al. [11] used cardiac
and respiratory signals from a wearable chest band to detect
craving and euphoria. Similarly, detecting cravings of alcohol
[2, 24] and smoking Chatterjee et al. [7] was done by using
mobile and physiological data collected from wearable wrist
band. All these works built systems that address a single part
of the addiction loop. On the contrary, in our current work,
we show that our system can jointly predict different states
of the addiction loop ( craving and euphoria ) while using the
correlation existing between them.

Multilabel predictions, which exploit the correlation between
labels, have been studied for a long time, especially in the
fields of computer vision [9, 15], natural language processing
[8, 26], and bioinformatics [13, 16], etc. These works can
broadly be classified into two types- 1) Assume a prior distri-
bution on the labels and use this information while making
predictions, 2) Use a machine learning-based architecture on
top of feature representations to capture the label dependen-
cies. The latter of these two types has been widely used in
recent works as large labeled datasets can be collected rel-
atively easily in the fields mentioned above. In our current
work, we use a Structured energy prediction network (SPEN)
Belanger and McCallum [3], a machine learning-based ar-
chitecture to jointly predict cocaine craving and euphoria
scores using cardiac signal while exploiting the dependen-
cies between these scores. The primary reason for choosing
SPENSs over other existing architecture is that it makes no
assumptions on the dataset and is proven to work well on
small datasets like as in our case.

3 USER STUDY

The following study was conducted at Yale University School
of Medicine under the National Institute on Drug Abuse
(NIDA) funded research. This study was IRB approved and
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shown previously to be safe, well-tolerated, valid, behav-
iorally relevant, and test-retest reliable [25], and was con-
ducted in the presence of a study physician, advanced cardiac
life support certified research nurse, and a basic life support
research assistant.

A total of 10 participants were recruited for this study, and
each participant was wearing a Zephyr Bioharness 3 chest
band [1] for the entire duration of the study. The chest band
captures cardiac and respiratory signals in a passive, continu-
ous, and relatively unobtrusive manner. We only focus on the
cardiac signal for our current work due to the poor quality of
the respiratory signal captured by the chest band. The entire
study for each participant lasted approximately 6 hours, and
throughout this study, for every five minutes, the participants
were asked to self-report cocaine craving and euphoria accord-
ing to a visual analog scale (VAS) between O ("not at all") to
10 ("most ever"). Below please find the list of questions, their
scale, and their acronym. In order to refer to the craving or
euphoria/high self-reports, we will use the terms respectively
VAS Craving and VAS Euphoria throughout the paper.

e VAS Craving (scale 0-10): how much are you craving
for cocaine now?

e VAS Euphoria (scale 0-10): how high or euphoric are
you feeling now?

The study comprised of three distinct periods, in the following
order: a) an initial drug-free baseline period, b) a subsequent
fixed-order, escalating dose, bolus cocaine administration pe-
riod, and c) a final self-regulated/administrated, ad-libitum
(i.e., "binge") cocaine administration period.

Baseline and Fixed-order periods: The study starts with a
30-minute baseline period during which the participant did
not receive any cocaine. The baseline period is followed by
the fixed dosage period, where three separate bolus intra-
venous (IV)- 8, 16, and 32 mg IV per 70kg body weight (with
a 100 kg maximum cap) are administered at a 20-minute
interval. The primary purpose of these periods is to ensure
that the participant does not show any unusual behavioral or
cardiovascular effects due to the cocaine administration.
Self-administration period: This period was designed to
simulate a period of self-regulated, “binge" cocaine consump-
tion. During this period, a participant obtained cocaine via
self-initiated presses of a corded infusion pump button (shown
in figure 2). The minimum interval between successive co-
caine administrations is kept five minutes to ensure the safety
of the participants. The self-administration period consists
of three one-hour sessions, during which subjects received
each of the three cocaine dosage types (i.e., 8mg, 16mg, or
32mg/70kg IV) under a fully randomized, double-blind sched-
ule. During a given 1 hr self-administration session, only a
single dosage type is available to the subject and would re-
ceive this amount for each bolus in that session. Figure 2
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Figure 3: Illustration of VAS craving and euphoria scores
for one of the participants. In this case, as the participant
starts feeling euphoric, the craving intensity increases.

shows the Zephyr chest band sensor used, infusion pump but-
ton, and finally, a brief sketch of the participant during the
study and figure 3 shows an illustration of different periods of
the study and self-reports for craving and euphoria for one of
the participants. For detailed user study design, please refer
[11].

4 MODEL ARCHIECTURE
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Figure 4: SPEN architecture for multilabel (craving and
euphoria VAS) prediction

Throughout the study, for every 5 minutes, the participants
had to self-report their cocaine craving and euphoria scores.
Results of the Spearman correlation between these scores
collected from all participants indicated that there was a
significant positive association (rs(121) = 0.64, p < .001).
Therefore, a system designed to predict both craving and eu-
phoria scores jointly should consider this correlation along
with the input from the cardiac signal. To achieve this, we de-
cided to use SPEN [3] architecture. While many other similar
architectures consider dependencies among labels to make
predictions, SPEN requires no assumption of the labels’ dis-
tribution and works very well with small datasets. Our model



DigiBiom’21, June 25, 2021, Virtual, WI, USA

takes features extracted from every 5-minute window as an
input to predict VAS craving and euphoria scores jointly. The
input features we considered include statistical features of the
morphological descriptors of the ECG signal. The statistical
features we used are Minimum, Maximum, Median, Mean,
Standard deviation, 33 percentile, 67 percentile, Skewness,
and Kurtosis. The set of features we considered is the same
as the one used in the previous work [11].

SPEN: Let the space of input be X and output space
Y={0,1,...,10}2 as here we have two labels and VAS reported
is an integer value in 0-10 range. The core idea behind SPEN
is an energy function Eg:X X Y + R, that uses a machine
learning-based architecture parameterized by 6 to produce
a continuous energy value for every input/output pair. The
energy function E is defined by the sum of two terms local
energy- Ej,cqr and label energy- Ejqpe;. Given an input x and
an output 7 , the local energy is expressed as the sum of linear
models over the label space given by the equation:

2
Etocal (,9) = ) gib] f(x)
I=1

where 7; is output for label [ ( craving or euphoria), by is
the parameter vector corresponding to label [ and f(x) is the
representation generated for input x by our feature extraction
module. We use a simple 2-layer neural network for feature
extraction, similar to the original SPEN architecture, and
pre-train it beforehand for convenience. Next, for the label
energy, its primary purpose is to capture all label interactions
independent of x. The equation is given by:

Elabel(g) = CzTg(Clg)
The product C;i captures the features from the labels,
which in turn are used to model their dependencies, g is

a non-linear operation which in our case is ReLU[18]. Total
energy Ep therefore is given by :

Eg(x,9) = Eiocal (%, §) + Eiaber (9)
The SPEN model architecture for jointly predicting VAS Crav-
ing and VAS Euphoria scores is shown in Figure 4.
Learning SPEN: Learning the parameters of SPEN is a two-
step process. First, we want to learn the energy function Ey pa-
rameterized by 6. Second, once the energy function is learned,
we want to find the ¢, which results in minimum energy.

6]

To train the energy network we use a structured loss similar
to [3]:

ming > maxg, [A(yi, i) — Eo(xi, §i) + Eo (xi,y) ]+ (2)
(xi,y1)

(x;,y;) are all the ground truth input/output pairs from the

training dataset, [ f].=max(0,f). Traditionally, to minimize

this loss, we perform stochastic gradient descent with respect

§ = mingEy(x, )
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to the energy parameters 6. However in Equation 2, for every
(x4, y;) pair we would have to compute argmax g, (A(yi, gi) —
Egp(x;,4;)) to find the g; which results in the minimum loss
. This means every time we update the energy parameters
0 during the gradient descent step, for every data point, we
would have to consider all combinatorial possibilities for 7;
to calculate the loss, making this process very expensive.
Therefore, [3] perform gradient descent on g;. Initially all
the energy parameters 6 and g; are randomly initialized, and
every time we perform gradient descent to minimize the loss
we update both these parameters. During the inference time,
the parameters of the energy network are fixed while we
perform gradient descent on the outputs to iteratively optimize
the energy function and find the optimal g; for every data
point. A(y;, 7;) is the error function between ground truth and
predicted labels, while [3] used structured hinge loss as they
were doing multilabel classification we decided to use a root-
mean-squared-error as our output space is Y={0,1, ..., 10}?
and predictions are continuous values. Eg(x;, y;) — Eo(x;, U;)
term in the loss function ensures that energy value obtained
from ground truth and predicted value are as close as possible.

5 RESULTS

=

VAS score
O N W A Ul OO N 0O O O
—

—— Predicted VAS Craving
Ground truth VAS Craving
Predicted VAS Euphoria
Ground truth VAS Euphoria
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Figure 5: Plot demonstrating how the predicted scores for
craving and euphoria are updated during the inference
stage for one particular data point. The final predicted
scores for craving and euphoria are 7.03 and 9.68

In this section, we review the performance of the SPEN
model in predicting VAS craving and euphoria against dif-
ferent baselines. There are mainly two types of model archi-
tecture we considered in our experiments:- 1) Single-label,
where a separate model was used for predicting VAS craving
and euphoria. Both these models were trained independent
of the other, i.e.; there is no parameter sharing between these
models, 2) Multi-label, where both VAS craving and euphoria
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VAS Craving VAS Euphoria
Model Prediction type | p NRMSE(%) | NMAE(%) | p NRMSE | NMAE
Baseline-Linear Regression[11] | Single-label 041 | 18.6 14.6 0.72 | 199 15.8
Linear Regression Multi-label 0.37 | 22.9 18.7 0.57 | 24 19.8
Neuural Network (2 Inn) Multilabel 041 | 21.8 18.2 0.62 | 22.5 184
MTL Multi-label 042 | 18.1 14.2 0.72 | 19.4 15.7
SPEN Multi-label 0.51 | 14.2 104 0.78 | 14.5 10.8

Table 1: The performance of VAS Craving and VAS Euphoria trained with different models and architecture types using
Leave-One-Subject-Out Cross-Validation (LOSOXYV) experiments. The performance was measured in terms of average
Pearson correlation coefficient (p), Normalized Root-Mean Square Error (NRMSE), Normalized Mean Absolute Error

(NMAE) across participants.

Il Baseline
SPEN

=

1 2 3 4 6 7 8 9

5 10
Participant Id
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Il Baseline
[ SPEN
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2.0
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Figure 6: shows the performance of our SPEN model against the Baseline for (a) the VAS Craving and (b) the VAS
Euphoria across different participants with respect to the NRMSE. For participants 4 and 6, the ground craving and
euphoria scores were found not to be correlated with each other. As a result, we could see our SPEN model’s performance

is worse than the Baseline in these two participants.

are jointly learned using a single model. Table 1 contains the
results of all the experiments.

As a baseline, we used the original model proposed by [11],
where the authors used a simple linear regression model to
predict VAS craving and euphoria separately. We compared
this baseline model against models which jointly predict both
VAS craving and euphoria. For this purpose, we considered
linear regression, 2-layer neural network (Inn), Multi-task
learning network (MTL) [6], and finally, SPEN. The linear
regression and 2-Inn were implemented straightforward us-
ing scikit-learn [21]. The multi-task network for multi-label
prediction uses an architecture where each label’s prediction
is considered as a separate task, and there are a set of global
parameters shared between all the tasks and local parameters
specific to a task. The input to the model is first passed to a
network consisting of global parameters to generate a feature
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representation. This representation is then passed to models
unique to tasks. In all our experiments, we used the same set
of features as mentioned in the previous section.

From table 1 we can see that both linear regression and 2-Inn
architectures based on multi-label prediction performed worse
than the baseline model. The performance of the Multi-task
learning-based model was slightly better than the baseline
model with just an improvement of ~ 0.05% in the normalized
root-mean-square error (NRMSE). Finally, SPEN architec-
ture that jointly predicts craving and euphoria scores while
considering the dependencies between these two variables
outperforms baseline and the remaining models. For crav-
ing, SPEN architecture results in a NRMSE of 14.2, ~ 4.5%
overall improvement compared to the baseline model of [11]
and a Pearson correlation coefficient (p) of 0.51, 10% im-
provement over the baseline model. Similarly, for euphoria,
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SPEN architecture achieves NRMSE of 14.5, ~ 5.5% overall
improvement compared to the baseline model and a (p) of
0.78, 6% improvement over the baseline model.

As mentioned in the previous section, unlike the traditional
machine learning architectures, the output labels are learned
during the testing phase in SPENs. To demonstrate how the
output labels are updated during inference, in figure 5 we plot
predicted craving and euphoria score over the epochs during
the inference stage for one data point. For this particular case,
the ground truth VAS craving score is 6, and the VAS eu-
phoria score is 10 (highlighted by the horizontal dash lines).
The SPEN initially starts with random values for craving and
euphoria scores (i), and then performs gradient descent to
update these scores for minimizing the energy. In this case,
the final predicted craving and euphoria scores for this data
point are 7.03 and 9.68, respectively.

In the next step, we analyzed the performance of the SPEN
architecture against the baseline model for all the partici-
pants. Figure 6 shows a barplot comparing the performance
between these model architectures for VAS craving and eu-
phoria prediction. The participants in which ground-truth
VAS craving and euphoria are correlated were highlighted (
all participants except for 4 and 6 ) in red color. From this
figure, we can conclude that SPEN architecture outperformed
the baseline model in all the participants where the labels
are correlated. It performed almost the same or worse than
baseline in participants with no label correlation. This shows
that SPEN architecture, along with associating an input with
the appropriate output variable, could leverage the correla-
tion information present between variables in the dataset to
improve both craving and euphoria performance.

6 CONCLUSION AND FUTURE WORK

While the previous work by [11] had shown that cardiac sig-
nals could indeed predict cocaine craving and euphoria, we
show that we can improve upon this performance if we use a
system that considers the relationship between output labels
while also considering the cardiac signal. To achieve this,
we used SPENSs, a deep architecture that defines an energy
function on the input and the candidate labels, and the pre-
dictions are then obtained by approximately minimizing the
energy via gradient descent. Multilabel prediction with label
Correlations has been well studied in computer vision and
neural language procession, but to the best of our knowledge,
its applicability in ubiquitous technologies is limited even
though we encounter it in many problem scenarios. Some
examples include:- activity recognition and duration of the
activity, type and amount of drug administration recognition,
human context recognition which includes location, emotion,
activity, etc. As a next step, we want to extend SPEN archi-
tecture to these cases.
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In the previous section, we had seen how SPEN performed
poorly on participants whose labels are not correlated. This
is a significant limitation of our work, as essentially SPEN
fails on participants whose labels do not follow the trend of a
general population. One way to overcome this is by grouping
subjects based on their label dependencies and building sys-
tems unique to each subpopulation. Unfortunately, we could
not try this because our current dataset is collected only from
a small set of participants, and creating subpopulations means
even lesser data is available for the model to learn. Another
limitation of our work is that SPEN requires learning of the
labels by performing gradient descent even at the inference
stage. As a result, its practical applicability is limited. We
plan to explore other directions that can overcome these while
still making predictions by considering label correlations.
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