
Computational Materials Discovery

Josiah Roberts and Eva Zureka)

Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000,

USA

(Dated: 13 May 2022)

I. INTRODUCTION

Tremendous advances in first-principles program packages,

spectacular speed-ups in computer hardware coupled with sig-

nificant algorithmic developments in crystal structure predic-

tion, high-throughput screenings, data-mining, machine learn-

ing, and artificial intelligence, have made the dream of com-

putational materials discovery a reality1. Recent success sto-

ries of materials that were first predicted and later verified

experimentally include high-temperature superconductors2–4,

high-entropy high-hardness materials5, Heusler intermetallics

for thermoelectrics and spintronics6, organic light-emitting

diodes7, Li battery cathode materials8, porous materials for

gas storage9, and carbon-boron clathrates10.

The broad range of materials-by-design success stories with

applications including energy, quantum, structural, 2D mate-

rials, molecular crystals, molecular organic frameworks and

more, have inspired us to devote this issue of JCP towards re-

cent advances in this field. In addition to describing specific

predictions, the articles in this issue also describe novel meth-

ods for computational and data-driven materials discovery. In

what follows we summarize the manuscripts submitted to this

special issue, organizing them around key topical areas. We

first describe manuscripts that focus on the development of

new methods and program packages, followed by application-

centered manuscripts.

In addition to spanning a wide range of materials for diverse

applications, the contributions to this special issue highlight

the broad spectrum of computational methodologies that can

be used for materials prediction, including first-principles

methods (often based upon density functional theory,

DFT), those employing atomistic potentials and molecu-

lar dynamics (MD), and mesoscale modeling. Moreover,

they illustrate the wide range of available tools including crys-

tal structure prediction (CSP) methods11,12, high-throughput

calculations13,14, machine learning (ML)15–18, and the role

that databases such as AFLOW19, MaterialsProject20, the

Open Quantum Materials Database21, the Computational Ma-

terials Repository22, the International Crystallographic Struc-

ture Database23, among many others, play in materials discov-

ery.

a)Electronic mail: ezurek@buffalo.edu

II. SUMMARY OF THE COLLECTION

A. Methods and Programs

A number of contributions to this special issue propose

new computational methods, techniques or algorithms to ac-

celerate materials design, or even program packages tailored

for the discovery of a specific set of materials. We start by

noting that a common bottleneck in computational materials

research is the time required for structural relaxation. This

prompted Yang, Jiménez-Negrón, and Kitchin to develop a

neural network to accelerate this process24. Their procedure

speeds-up optimizations by relaxing several configurations si-

multaneously, occasionally obtaining DFT energies, and en-

abling information about the relaxation of one configuration

to guide another. Significant improvements in relaxation time

for a number of metallic surfaces, slabs, and nanoparticles are

shown. ML-based interatomic potentials used with MD sim-

ulations tend to run more quickly than DFT calculations,

however ML models tend to work best for the systems they

are trained on. Their application to other systems intro-

duces uncertainty, which must be propagated in calculat-

ing observables such as thermodynamic properties. In re-

gions of configurational space that have not yet been explored

these simulations lose accuracy. Imbalzamo and co-workers

show that using a robust potential in extrapolative regimes

makes the MD more reliable, and methods are developed to

estimate uncertainty in thermodynamic quantities25. Appli-

cations to fluid systems ranging from water to liquid metals

are presented. Alternatively, Tran et al. suggest that instead

of predicting the “best” material for a particular application,

it may be more useful to classify materials into those that are,

and those that aren’t worthy of experimental investigation26.

Towards this end they develop a method that takes into ac-

count adsorption at multiple length scales and automates the

selection of DFT calculations to be performed, applying it to

potential catalysts. We note that a recurring theme within this

collection will be the use of ML to screen chemical structures

for certain features.

Out of the next few ML-focused papers, the first figures on

future filtering by feature-finding. Atomic environment fin-

gerprints describe and classify crystal structures, and they can

be used to analyze large materials science datasets or as in-

put for CSP. Parsaeifard et al. present a method to calculate

fingerprint vectors from fingerprint distances, which measure

the similarity of two structures27. This method is shown to

automatically detect grain boundaries, and the edges of car-

bon flakes without human input. Taking a more dynamic

approach, Weinreich, Browning, and Lilienfeld use ML and

short MD simulations to predict solvation properties. Accu-
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rate calculation of solvation free energies are essential for

the computational study of chemical reaction mechanisms,

and in materials design. The authors’ technique queries the

FreeSolv database and, given a short MD simulation, con-

structs a Boltzmann averaged representation of a chemical

compound. This is used as input for an ML algorithm to pre-

dict solvation properties across a large database of small or-

ganic molecules28. Finally, the identification of features gets

abstracted into quantum chemical parameters. Zubatiuk et al.

develop a neural network, trained on DFT densities and or-

bital energies, to dynamically find the optimal values of the

physically motivated parameters used in extended Hückel, or

tight-binding Hamiltonians29. This method may lead towards

the development of ML parametrized, accurate physics mod-

els of molecules and solids.

Turning to tailored packages, Lou et al. present the Prop-

erty Analysis and Simulation Package (PASP), developed to

facilitate modelling of complex condensed matter systems30.

PASP contains basin-hopping and evolutionary based CSP al-

gorithms, a symmetry analysis program, as well as various

effective Hamiltonians and Monte Carlo methods. The pack-

age could be used to propose a general form of a Hamilto-

nian for a system based on its symmetry analysis, create con-

figurations and submit them for DFT calculations whose re-

sults are used to construct effective Hamiltonians with pa-

rameters determined by ML, as well as evaluate the ground

electronic state and thermodynamic properties. And in the

vein of pedagogy, Turcani et al. introduce the latest version

of their supramolecular toolkit, stk31. This Python library is

designed to generate supramolecular structures as input for

quantum mechanical software, and is a powerful visualiza-

tion tool. New features include support for metal-containing

systems and rotaxanes, a plethora of topological-molecular-

building blocks, tools for database construction, and even a

genetic algorithm for traversing chemical space.

B. Organics, Organometallics and Metal-Organics

Materials whose building blocks are derived from organic

molecules can be used in a range of applications including

pharmaceuticals, polymers, and energy materials. The perfor-

mance of organic semiconductors rely on crystal structures

derived from molecular packing patterns. Predicting these

patterns is the focus of Ai, Risko, and co-workers, who present

a framework for their in silico efforts. The resulting open-

access infrastructure is OCELOT (Organic Crystals in Elec-

tronic and Light-Oriented Technologies), which contains over

56,000 crystal structures, 15,000 of which are supplemented

with DFT data32. Each structure is paired with descriptors for

convenient searching: crystallographic, mechanical, and elec-

tronic properties all verified from experiment or calculation.

OCELOT comes with a web-based interface and a python-

based API for researchers engaging in machine learning and

materials discovery.

Calculating phase boundaries for organic molecular crys-

tals as a function of temperature and pressure is difficult be-

cause of the sensitivity of the results to model errors, and

the computational cost required for an accurate calculation.

Cook, McKinley, and Beran propose a method to calculate

the Gibbs free energies by combining DFT with dispersion-

corrected density functional tight binding (DFTB) within the

quasi-harmonic approximation33. The predicted phase bound-

aries between α and β-resorcinol are in excellent agreement

with experiment, and the unit cell volumes are predicted to

within 1-2% at low pressures.

We move from elements of thermodynamics to electron-

ics through magnification of molecular materials and exam-

ination of electronic structure. Ramprasad and colleagues

carry out high-throughput DFT calculations on a suite of ex-

isting polymers to obtain a dataset of band gaps and charge

injection barriers used to develop an ML model34. The re-

sulting ML model was employed to predict these properties

for a set of 13,000 known polymers, and to find the most

promising materials to be used in high-voltage power lines. In

another contribution, Valdiviezo, Zhang, and Beretan inves-

tigate how charge might be pushed along a polymer, such as

DNA, via a racheting motion35. Calculations at the microscale

and nanoscale illustrate how a rotating electric field causes an

electronic hole to rachet along the DNA.

Phonon characterization is the task of Kayastha and Ra-

makrishnan, who examine a 1D array of organic rings and

metal atoms for periodic instabilities36. These are then classi-

fied based on their periodicity, from low-to-high: Peierls dis-

tortions, charge-density waves, and long-wave effects. This

high-throughput scheme can create distorted structures that

are more stable than the parents.

Finally, Ai, Schrier, and colleagues present a study

on amine-templated metal oxides whose compositions and

structures were extracted from the Cambridge Structural

Database37. They asked if a ML model can be trained to pre-

dict products from a set of reactants, with a particular focus

on determining the dimensionality of the inorganic compo-

nent. An artificial neural network is trained towards this end,

and a number of metal oxide compounds are synthesized and

characterized.

C. Inorganic Materials

A wide variety of inorganic materials are studied and pre-

dicted in this special issue, each with a unique computational

technique. The inherent local disorder in high entropy alloys

(HEA), attractive for their structural and functional properties,

make them challenging to study due via DFT. This prompted

Feugmo and co-workers to develop a computationally effi-

cient method that combines artificial neural networks and evo-

lutionary algorithms to generate HEAs with large configura-

tional entropy38. DeCost and colleagues illustrate that ML

models trained in accordance with current best practices can

choose a randomly generated feature, as opposed to one that

has a physical meaning, as key for classifying a material39.

Applications to HEAs show that by re-tooling their ML to

search for a Pareto front, it is possible to build a predictive,

explainable model across a set of parameters.

The presence of ML methods persist beyond HEAs into the
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pursuit of exotic compounds. Giri and co-workers use open-

source quantum mechanical software, information from the

Materials Project, and an ML classifier coupled with a Hirsh-

feld surface analysis to identify materials that are metallic, co-

valent or metavalent40. Metavalent solids are a unique class of

compounds possessing properties characteristic of both metal-

lic and covalently bonded materials, though they are very dif-

ferent from both. In another study, Koyama et al. developed

a ML model that recommended synthesizable compositions,

which were experimentally explored using the single-particle

diagnosis method41. The authors draw data from the Inor-

ganic Crystal Structure Database to find novel La-Si ternary

and quaternary nitrides, synthesizing several of them and con-

firming their structure with DFT.

An increasingly important way to predict novel inorganic

materials is via CSP methods interfaced with DFT calcu-

lations. In one contribution Lu and co-workers show that

biasing the ab initio random structure searching (AIRSS)

method42 with chemically reasonable constraints, such as

minimum interatomic separations, volumes and space group

symmetries allows them to identify a novel family of

transition-metal oxalates whose properties are consistent with

promising cathode materials43. In a DFT+U study Sharan and

Lany locate thermodynamically stable and metastable ternary

oxynitrides by combining random sampling and basin hop-

ping within the kinetically limited minimization algorithm for

small unit cells, whereas larger cells are constructed via sam-

pling atomic configurations on parent lattices44.

As with organic materials, insight about macroscopic prop-

erties of inorganics can be gained from accurate electronic

structure calculations. Predicting materials for electrocatal-

ysis and photoelectrochemistry require comparison of the cal-

culated ionization potentials and electron affinities with ex-

periment. This can only be done if the calculated values are

calibrated with respect to an external potential, and many of

the current DFT based workarounds are too expensive for

high-throughput calculations. Harnett-Caulfield and Walsh

suggest using a reference potential based on the bulk elec-

trostatic potential, applying the method to 27 zinc blende

type compounds45. While investigating the ground state elec-

tronic structure and many-body excitonic behavior of CuCl

and CuBr, Duan and colleagues discover a cautionary tale

about selecting the right functional for the job46. As a starting

point for the GW-BSE approach, which can yield the absorp-

tion spectrum of solids, a one-electron DFT band structure

is required. Unexpectedly, use of the PBE pseudopotential

yields good exciton binding energies, while use of a new HF

pseudopotential leads to better estimates of the band gap.

D. High Pressure Materials

The computational prediction of materials that become sta-

ble at high pressure is of relevance to energetic, geological,

planetary, quantum, superhard materials and more. Under

pressure, compounds may crystallize in novel structures with

unique stoichiometries, have completely unprecedented elec-

tronic, magnetic and superconducting properties, and adopt

unique bonding schemes47. At the same time, high pressure

experiments are expensive and the observables difficult to in-

terpret. Therefore, first-principles calculations are key tools in

studying materials at extreme conditions of pressure48. Exist-

ing materials databases do not contain information about high

pressure compounds, whose chemical space is still widely un-

explored. For this reason, DFT is often coupled with crystal

structure prediction (CSP) techniques such as random search-

ing, particle swarm optimization and evolutionary algorithms,

towards the discovery of unprecedented high pressure materi-

als.

This collection contains two theoretical contributions that

illustrate how first-principles calculations can shed light on

materials whose structures are modified under pressure. When

compressed, p-block covalently bonded materials, such as

those containing carbon or boron nitride (BN), can undergo

sp2 to sp3 phase transitions. Yang and co-workers employed

DFT calculations to study the structures formed by double-

walled boron nitride nanotubes (DW-BNNTs) under hydro-

static pressures up to 60 GPa49. They investigated their struc-

tural evolution under pressure, which resulted in 12 kinds of

new monolith phases that were metastable upon quenching

to 1 atm. These materials were found to be semiconduc-

tors with broad optical absorbance in the UV and visible, and

were shown to be superhard. In the second contribution, Du-

mitrică and colleagues explored large diameter carbon nan-

otubes with shapes that can be attained by the application of

pressure or mechanical deformation50. The deformation re-

sults in the formation of a characteristic “dog-bone” cross sec-

tion, wherein the centers of large tubes squish to form of a

bilayer, and the sides curve outwards. DFT calculations sug-

gested that when stacked these nanotubes might form sheets

by allowing the looped sides to be offset into an armchair

shape, which provides the material with graphitic mechanical

properties with extra resistance to compression via the looped

sides, which are also key for the resulting flexoelectricity.

New insights in high pressure research are often obtained

through the synergy between theory and experiment. Tse

and colleagues studied the 57Fe Mössbauer isomer shift of

pure iron and iron oxides up to 102 GPa both experimentally

and theoretically51. The best agreement between theory and

experiment was obtained with the B1WC hybrid functional.

Further calculations were carried out on FeO and Fe2O3,

whose electronic structure was interrogated. In another work,

Cadatal-Raduban and co-workers investigated KMgF as a po-

tential scintillator material52. Fast luminescence decay can

be achieved when a hole in the core band recombines with an

electron in the valence band. DFT and GW computations were

performed to identify the transitions that led to the experimen-

tally observed cross-luminescence spectrum. Further calcula-

tions showed that the application of pressure lowers the en-

ergy gap between the bands, thereby making it possible to tune

the luminescence by red-shifting it into the atmospherically-

transmissible UV region.

Four of the contributions to this issue employed algo-

rithms for CSP to uncover new materials that are stable when

squeezed. One of the most popular techniques for crystal

structure prediction, CALYPSO53, which is based on swarm
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intelligence, was employed by Du et al. to explore the Ir-N

phase diagram up to 100 GPa54. Two novel nitrogen-rich

phases, IrN4 and IrN7, based upon IrN6 octahedra and pla-

nar N4 or cyclo-N5 units, were discovered. Both were ther-

modynamically stable under pressure, could be quenched to

1 atm, and their electronic structure and mechanical proper-

ties were studied computationally. Conway and co-workers

also employed the CALYPSO algorithm, this time to explore

the phase diagram of (NH3)(HF)n up to 300 GPa55. Because

of the similarity of their phases, NH4F is often considered

an analog to ice. In this contribution the authors concluded

that NH4F departs from the structural trends observed in ice

above 80 GPa, preferrentially adopting closed-packed ionic

structures. Although no stable binary K-Cu compounds are

known at 1 atm, CSP carried out with the CALYPSO pack-

age and the USPEX56 evolutionary algorithm revealed that

under moderate pressures K3Cu2, K2Cu, K5Cu2 and K3Cu

become thermodynamically stable57. Cao et al. studied the

bonding within these phases as well as their electronic struc-

tures. Moreover, they showed the X-ray diffraction pattern

of K3Cu2 matches that of an unidentified K-Cu compound

formed more than a decade earlier. Finally, the XTALOPT
58

evolutionary algorithm for a priori crystal structure prediction

was used to search for metal oxyfluorides containing a cation

from group 11 of the periodic table, focusing on the Ag2OF2

stoichiometry59. Domańsi and Grochala investigated the ge-

ometric and electronic structures of the low enthalpy phases,

and proposed synthetic approaches that may be used to syn-

thesize those of interest.

E. Porous Structures

Porous structures, such as metal-organic frameworks

(MOFs) or zeolites, are actively researched due to their ap-

plications in separation science, catalysis, and biotechnology.

MOFs are often employed as fixed-absorption materials for

the separation of gas mixtures. Because identifying the best

MOF for a given mixture and set of temperature/pressure con-

ditions is a daunting task, Anderson and Gómez-Gauldrón de-

velop an ML-based computational framework to accelerate

the process60. The new technique, based upon a deep learning

model for predicting single-component adsorption properties,

coupled with ideal adsorbed solution theory was able to iden-

tify the same top-performing MOFs as traditional molecular

simulation. Moreover, a set of so-called “privileged” MOFs

that perform well on a wide range of separations and across a

broad spectrum of conditions was identified. Li et al. studied

gas adsorption in MOFs via a linear regression method and

the non-linear random forest technique61. A histogram of in-

teraction energies obtained from grand canonical Monte Carlo

simulations was used as both the training and test data for the

adsorption energy and selectivity predictions. Though the ML

model was not always highly accurate, it excelled at ranking

materials, unveiling those worthy of further investigation.

Key to the rational design of zeolites with desired topolo-

gies is the computational modeling of their interaction with

organic structure-directing agents. Unfortunately, the large

unit cell sizes of these systems makes it prohibitively expen-

sive to study them with DFT-based high-throughput screen-

ing, necessitating the use of force fields. Interaction ener-

gies between the two can be obtained via static or dynamic

calculations. In this contribution Schwalbe-Koda and Gómez-

Bombarelli illustrate that the Dreiding force field coupled with

frozen pose calculations provides comparable energies to DFT

using the PBE functional supplemented with Grimme’s D3

dispersion correction, and yield a significant computational

speed up as compared to MD62.

F. Nanoparticles

The emergence of macroscopic properties from atomic

properties as a function of particle size has long been a topic of

philosophical debate and determined scientific study.63 Moti-

vated by the lack of proposed synthesis pathways for predicted

materials, Fong and co-workers developed an autonomous

synthesizer for palladium nanoparticles integrated with a syn-

chrotron x-ray source and an ML controller64. The controller,

trained on an initial set of synthesized nanoparticles and, op-

timizing for size, suggested new recipes for further synthesis.

This process was repeated until nanoparticles satisfying the

desired constraints were synthesized. Stretching the philosph-

ical idea of a neural network, Wei and co-workers theorize a

miniature brain composed of gold nanoparticles wrapped by a

conductive polymer. They carry out course grained molecular

dynamics simulations on a 2D array to study the emulation

of brain-like computing.65. As the temperature is increased,

polymers establish links with neighboring nanoparticles, but

an applied electric field produces the same effect. Properties

required for brain-like computing and storage in response to

electric fields are observed in the simulations.

III. CONCLUSIONS

This special issue showcases the development of methods

that can be employed in computational materials design, and it

presents specific predictions that are sure to stimulate further

experiments. Many authors have contributed by developing

tools and systems, some rigorously tested materials for de-

sirable properties, and others have postulated completely new

and exciting materials. Together, they showcase the strengths

of computers in materials science: the high-throughput ca-

pacity for characterization and the ability of machine learning

algorithms to aid in prediction and categorization tasks. The

breadth of applications, variety of topics, and excellent quality

of the published manuscripts clearly shows the importance of

computations in the materials discovery process. We believe

that the next decade will see the even tighter integration of

computations in the search for novel materials, and are look-

ing forward to witness future advances.
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