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I. INTRODUCTION

Tremendous advances in first-principles program packages,
spectacular speed-ups in computer hardware coupled with sig-
nificant algorithmic developments in crystal structure predic-
tion, high-throughput screenings, data-mining, machine learn-
ing, and artificial intelligence, have made the dream of com-
putational materials discovery a reality'. Recent success sto-
ries of materials that were first predicted and later verified
experimentally include high-temperature superconductors>™,
high-entropy high-hardness materials®, Heusler intermetallics
for thermoelectrics and spintronics®, organic light-emitting
diodes’, Li battery cathode materials®, porous materials for
gas storage’, and carbon-boron clathrates'”.

The broad range of materials-by-design success stories with
applications including energy, quantum, structural, 2D mate-
rials, molecular crystals, molecular organic frameworks and
more, have inspired us to devote this issue of JCP towards re-
cent advances in this field. In addition to describing specific
predictions, the articles in this issue also describe novel meth-
ods for computational and data-driven materials discovery. In
what follows we summarize the manuscripts submitted to this
special issue, organizing them around key topical areas. We
first describe manuscripts that focus on the development of
new methods and program packages, followed by application-
centered manuscripts.

In addition to spanning a wide range of materials for diverse
applications, the contributions to this special issue highlight
the broad spectrum of computational methodologies that can
be used for materials prediction, including first-principles
methods (often based upon density functional theory,
DFT), those employing atomistic potentials and molecu-
lar dynamics (MD), and mesoscale modeling. Moreover,
they illustrate the wide range of available tools including crys-
tal structure prediction (CSP) methods'"'?, high-throughput
calculations'*!'*, machine learning (ML)!3"!8, and the role
that databases such as AFLOW'?, MaterialsProject®®, the
Open Quantum Materials Database?!, the Computational Ma-
terials Repository??, the International Crystallographic Struc-
ture Database??, among many others, play in materials discov-
ery.
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II. SUMMARY OF THE COLLECTION
A. Methods and Programs

A number of contributions to this special issue propose
new computational methods, techniques or algorithms to ac-
celerate materials design, or even program packages tailored
for the discovery of a specific set of materials. We start by
noting that a common bottleneck in computational materials
research is the time required for structural relaxation. This
prompted Yang, Jiménez-Negrén, and Kitchin to develop a
neural network to accelerate this process**. Their procedure
speeds-up optimizations by relaxing several configurations si-
multaneously, occasionally obtaining DFT energies, and en-
abling information about the relaxation of one configuration
to guide another. Significant improvements in relaxation time
for a number of metallic surfaces, slabs, and nanoparticles are
shown. ML-based interatomic potentials used with MD sim-
ulations tend to run more quickly than DFT calculations,
however ML models tend to work best for the systems they
are trained on. Their application to other systems intro-
duces uncertainty, which must be propagated in calculat-
ing observables such as thermodynamic properties. In re-
gions of configurational space that have not yet been explored
these simulations lose accuracy. Imbalzamo and co-workers
show that using a robust potential in extrapolative regimes
makes the MD more reliable, and methods are developed to
estimate uncertainty in thermodynamic quantities®. Appli-
cations to fluid systems ranging from water to liquid metals
are presented. Alternatively, Tran et al. suggest that instead
of predicting the “best” material for a particular application,
it may be more useful to classify materials into those that are,
and those that aren’t worthy of experimental investigation®.
Towards this end they develop a method that takes into ac-
count adsorption at multiple length scales and automates the
selection of DFT calculations to be performed, applying it to
potential catalysts. We note that a recurring theme within this
collection will be the use of ML to screen chemical structures
for certain features.

Out of the next few ML-focused papers, the first figures on
future filtering by feature-finding. Atomic environment fin-
gerprints describe and classify crystal structures, and they can
be used to analyze large materials science datasets or as in-
put for CSP. Parsaeifard et al. present a method to calculate
fingerprint vectors from fingerprint distances, which measure
the similarity of two structures?’. This method is shown to
automatically detect grain boundaries, and the edges of car-
bon flakes without human input. Taking a more dynamic
approach, Weinreich, Browning, and Lilienfeld use ML and
short MD simulations to predict solvation properties. Accu-



rate calculation of solvation free energies are essential for
the computational study of chemical reaction mechanisms,
and in materials design. The authors’ technique queries the
FreeSolv database and, given a short MD simulation, con-
structs a Boltzmann averaged representation of a chemical
compound. This is used as input for an ML algorithm to pre-
dict solvation properties across a large database of small or-
ganic molecules?®. Finally, the identification of features gets
abstracted into quantum chemical parameters. Zubatiuk et al.
develop a neural network, trained on DFT densities and or-
bital energies, to dynamically find the optimal values of the
physically motivated parameters used in extended Hiickel, or
tight-binding Hamiltonians*®. This method may lead towards
the development of ML parametrized, accurate physics mod-
els of molecules and solids.

Turning to tailored packages, Lou et al. present the Prop-
erty Analysis and Simulation Package (PASP), developed to
facilitate modelling of complex condensed matter systems>’.
PASP contains basin-hopping and evolutionary based CSP al-
gorithms, a symmetry analysis program, as well as various
effective Hamiltonians and Monte Carlo methods. The pack-
age could be used to propose a general form of a Hamilto-
nian for a system based on its symmetry analysis, create con-
figurations and submit them for DFT calculations whose re-
sults are used to construct effective Hamiltonians with pa-
rameters determined by ML, as well as evaluate the ground
electronic state and thermodynamic properties. And in the
vein of pedagogy, Turcani et al. introduce the latest version
of their supramolecular toolkit, szk*'. This Python library is
designed to generate supramolecular structures as input for
quantum mechanical software, and is a powerful visualiza-
tion tool. New features include support for metal-containing
systems and rotaxanes, a plethora of topological-molecular-
building blocks, tools for database construction, and even a
genetic algorithm for traversing chemical space.

B. Organics, Organometallics and Metal-Organics

Materials whose building blocks are derived from organic
molecules can be used in a range of applications including
pharmaceuticals, polymers, and energy materials. The perfor-
mance of organic semiconductors rely on crystal structures
derived from molecular packing patterns. Predicting these
patterns is the focus of Ai, Risko, and co-workers, who present
a framework for their in silico efforts. The resulting open-
access infrastructure is OCELOT (Organic Crystals in Elec-
tronic and Light-Oriented Technologies), which contains over
56,000 crystal structures, 15,000 of which are supplemented
with DFT data®?. Each structure is paired with descriptors for
convenient searching: crystallographic, mechanical, and elec-
tronic properties all verified from experiment or calculation.
OCELOT comes with a web-based interface and a python-
based API for researchers engaging in machine learning and
materials discovery.

Calculating phase boundaries for organic molecular crys-
tals as a function of temperature and pressure is difficult be-
cause of the sensitivity of the results to model errors, and

the computational cost required for an accurate calculation.
Cook, McKinley, and Beran propose a method to calculate
the Gibbs free energies by combining DFT with dispersion-
corrected density functional tight binding (DFTB) within the
quasi-harmonic approximation®3. The predicted phase bound-
aries between « and [-resorcinol are in excellent agreement
with experiment, and the unit cell volumes are predicted to
within 1-2% at low pressures.

We move from elements of thermodynamics to electron-
ics through magnification of molecular materials and exam-
ination of electronic structure. Ramprasad and colleagues
carry out high-throughput DFT calculations on a suite of ex-
isting polymers to obtain a dataset of band gaps and charge
injection barriers used to develop an ML model**. The re-
sulting ML model was employed to predict these properties
for a set of 13,000 known polymers, and to find the most
promising materials to be used in high-voltage power lines. In
another contribution, Valdiviezo, Zhang, and Beretan inves-
tigate how charge might be pushed along a polymer, such as
DNA, via a racheting motion®. Calculations at the microscale
and nanoscale illustrate how a rotating electric field causes an
electronic hole to rachet along the DNA.

Phonon characterization is the task of Kayastha and Ra-
makrishnan, who examine a 1D array of organic rings and
metal atoms for periodic instabilities*®. These are then classi-
fied based on their periodicity, from low-to-high: Peierls dis-
tortions, charge-density waves, and long-wave effects. This
high-throughput scheme can create distorted structures that
are more stable than the parents.

Finally, Ai, Schrier, and colleagues present a study
on amine-templated metal oxides whose compositions and
structures were extracted from the Cambridge Structural
Database®’. They asked if a ML model can be trained to pre-
dict products from a set of reactants, with a particular focus
on determining the dimensionality of the inorganic compo-
nent. An artificial neural network is trained towards this end,
and a number of metal oxide compounds are synthesized and
characterized.

C. Inorganic Materials

A wide variety of inorganic materials are studied and pre-
dicted in this special issue, each with a unique computational
technique. The inherent local disorder in high entropy alloys
(HEA), attractive for their structural and functional properties,
make them challenging to study due via DFT. This prompted
Feugmo and co-workers to develop a computationally effi-
cient method that combines artificial neural networks and evo-
lutionary algorithms to generate HEAs with large configura-
tional entropy>®. DeCost and colleagues illustrate that ML
models trained in accordance with current best practices can
choose a randomly generated feature, as opposed to one that
has a physical meaning, as key for classifying a material®.
Applications to HEAs show that by re-tooling their ML to
search for a Pareto front, it is possible to build a predictive,
explainable model across a set of parameters.

The presence of ML methods persist beyond HEAs into the



pursuit of exotic compounds. Giri and co-workers use open-
source quantum mechanical software, information from the
Materials Project, and an ML classifier coupled with a Hirsh-
feld surface analysis to identify materials that are metallic, co-
valent or metavalent*’. Metavalent solids are a unique class of
compounds possessing properties characteristic of both metal-
lic and covalently bonded materials, though they are very dif-
ferent from both. In another study, Koyama et al. developed
a ML model that recommended synthesizable compositions,
which were experimentally explored using the single-particle
diagnosis method*'. The authors draw data from the Inor-
ganic Crystal Structure Database to find novel La-Si ternary
and quaternary nitrides, synthesizing several of them and con-
firming their structure with DFT.

An increasingly important way to predict novel inorganic
materials is via CSP methods interfaced with DFT calcu-
lations. In one contribution Lu and co-workers show that
biasing the ab initio random structure searching (AIRSS)
method*? with chemically reasonable constraints, such as
minimum interatomic separations, volumes and space group
symmetries allows them to identify a novel family of
transition-metal oxalates whose properties are consistent with
promising cathode materials**. In a DFT+U study Sharan and
Lany locate thermodynamically stable and metastable ternary
oxynitrides by combining random sampling and basin hop-
ping within the kinetically limited minimization algorithm for
small unit cells, whereas larger cells are constructed via sam-
pling atomic configurations on parent lattices**.

As with organic materials, insight about macroscopic prop-
erties of inorganics can be gained from accurate electronic
structure calculations. Predicting materials for electrocatal-
ysis and photoelectrochemistry require comparison of the cal-
culated ionization potentials and electron affinities with ex-
periment. This can only be done if the calculated values are
calibrated with respect to an external potential, and many of
the current DFT based workarounds are too expensive for
high-throughput calculations. Harnett-Caulfield and Walsh
suggest using a reference potential based on the bulk elec-
trostatic potential, applying the method to 27 zinc blende
type compounds*®’. While investigating the ground state elec-
tronic structure and many-body excitonic behavior of CuCl
and CuBr, Duan and colleagues discover a cautionary tale
about selecting the right functional for the job*. As a starting
point for the GW-BSE approach, which can yield the absorp-
tion spectrum of solids, a one-electron DFT band structure
is required. Unexpectedly, use of the PBE pseudopotential
yields good exciton binding energies, while use of a new HF
pseudopotential leads to better estimates of the band gap.

D. High Pressure Materials

The computational prediction of materials that become sta-
ble at high pressure is of relevance to energetic, geological,
planetary, quantum, superhard materials and more. Under
pressure, compounds may crystallize in novel structures with
unique stoichiometries, have completely unprecedented elec-
tronic, magnetic and superconducting properties, and adopt

unique bonding schemes*’. At the same time, high pressure
experiments are expensive and the observables difficult to in-
terpret. Therefore, first-principles calculations are key tools in
studying materials at extreme conditions of pressure*®. Exist-
ing materials databases do not contain information about high
pressure compounds, whose chemical space is still widely un-
explored. For this reason, DFT is often coupled with crystal
structure prediction (CSP) techniques such as random search-
ing, particle swarm optimization and evolutionary algorithms,
towards the discovery of unprecedented high pressure materi-
als.

This collection contains two theoretical contributions that
illustrate how first-principles calculations can shed light on
materials whose structures are modified under pressure. When
compressed, p-block covalently bonded materials, such as
those containing carbon or boron nitride (BN), can undergo
sp? to sp> phase transitions. Yang and co-workers employed
DFT calculations to study the structures formed by double-
walled boron nitride nanotubes (DW-BNNTSs) under hydro-
static pressures up to 60 GPa*. They investigated their struc-
tural evolution under pressure, which resulted in 12 kinds of
new monolith phases that were metastable upon quenching
to 1 atm. These materials were found to be semiconduc-
tors with broad optical absorbance in the UV and visible, and
were shown to be superhard. In the second contribution, Du-
mitrica and colleagues explored large diameter carbon nan-
otubes with shapes that can be attained by the application of
pressure or mechanical deformation®. The deformation re-
sults in the formation of a characteristic “dog-bone” cross sec-
tion, wherein the centers of large tubes squish to form of a
bilayer, and the sides curve outwards. DFT calculations sug-
gested that when stacked these nanotubes might form sheets
by allowing the looped sides to be offset into an armchair
shape, which provides the material with graphitic mechanical
properties with extra resistance to compression via the looped
sides, which are also key for the resulting flexoelectricity.

New insights in high pressure research are often obtained
through the synergy between theory and experiment. Tse
and colleagues studied the °"Fe Mossbauer isomer shift of
pure iron and iron oxides up to 102 GPa both experimentally
and theoretically’'. The best agreement between theory and
experiment was obtained with the BIWC hybrid functional.
Further calculations were carried out on FeO and Fe,;Os,
whose electronic structure was interrogated. In another work,
Cadatal-Raduban and co-workers investigated KMgF as a po-
tential scintillator material®>. Fast luminescence decay can
be achieved when a hole in the core band recombines with an
electron in the valence band. DFT and GW computations were
performed to identify the transitions that led to the experimen-
tally observed cross-luminescence spectrum. Further calcula-
tions showed that the application of pressure lowers the en-
ergy gap between the bands, thereby making it possible to tune
the luminescence by red-shifting it into the atmospherically-
transmissible UV region.

Four of the contributions to this issue employed algo-
rithms for CSP to uncover new materials that are stable when
squeezed. One of the most popular techniques for crystal
structure prediction, CALYPSO>?, which is based on swarm



intelligence, was employed by Du et al. to explore the Ir-N
phase diagram up to 100 GPa>*. Two novel nitrogen-rich
phases, IrN,4 and IrN7, based upon IrNg octahedra and pla-
nar Ny or cyclo-Nj units, were discovered. Both were ther-
modynamically stable under pressure, could be quenched to
1 atm, and their electronic structure and mechanical proper-
ties were studied computationally. Conway and co-workers
also employed the CALYPSO algorithm, this time to explore
the phase diagram of (NH3)(HF),, up to 300 GPa>. Because
of the similarity of their phases, NH4F is often considered
an analog to ice. In this contribution the authors concluded
that NH4F departs from the structural trends observed in ice
above 80 GPa, preferrentially adopting closed-packed ionic
structures. Although no stable binary K-Cu compounds are
known at 1 atm, CSP carried out with the CALYPSO pack-
age and the USPEX>® evolutionary algorithm revealed that
under moderate pressures K3Cus, KoCu, K5Cuy and K3Cu
become thermodynamically stable’’. Cao et al. studied the
bonding within these phases as well as their electronic struc-
tures. Moreover, they showed the X-ray diffraction pattern
of K3Cuy matches that of an unidentified K-Cu compound
formed more than a decade earlier. Finally, the XTALOPT®
evolutionary algorithm for a priori crystal structure prediction
was used to search for metal oxyfluorides containing a cation
from group 11 of the periodic table, focusing on the AgoOF2
stoichiometry>®. Domansi and Grochala investigated the ge-
ometric and electronic structures of the low enthalpy phases,
and proposed synthetic approaches that may be used to syn-
thesize those of interest.

E. Porous Structures

Porous structures, such as metal-organic frameworks
(MQOFs) or zeolites, are actively researched due to their ap-
plications in separation science, catalysis, and biotechnology.
MOFs are often employed as fixed-absorption materials for
the separation of gas mixtures. Because identifying the best
MOF for a given mixture and set of temperature/pressure con-
ditions is a daunting task, Anderson and Gémez-Gauldrén de-
velop an ML-based computational framework to accelerate
the process®. The new technique, based upon a deep learning
model for predicting single-component adsorption properties,
coupled with ideal adsorbed solution theory was able to iden-
tify the same top-performing MOFs as traditional molecular
simulation. Moreover, a set of so-called “privileged” MOFs
that perform well on a wide range of separations and across a
broad spectrum of conditions was identified. Li et al. studied
gas adsorption in MOFs via a linear regression method and
the non-linear random forest technique®'. A histogram of in-
teraction energies obtained from grand canonical Monte Carlo
simulations was used as both the training and test data for the
adsorption energy and selectivity predictions. Though the ML
model was not always highly accurate, it excelled at ranking
materials, unveiling those worthy of further investigation.

Key to the rational design of zeolites with desired topolo-
gies is the computational modeling of their interaction with
organic structure-directing agents. Unfortunately, the large

unit cell sizes of these systems makes it prohibitively expen-
sive to study them with DFT-based high-throughput screen-
ing, necessitating the use of force fields. Interaction ener-
gies between the two can be obtained via static or dynamic
calculations. In this contribution Schwalbe-Koda and Gémez-
Bombarelli illustrate that the Dreiding force field coupled with
frozen pose calculations provides comparable energies to DFT
using the PBE functional supplemented with Grimme’s D3
dispersion correction, and yield a significant computational
speed up as compared to MD®2.

F. Nanoparticles

The emergence of macroscopic properties from atomic
properties as a function of particle size has long been a topic of
philosophical debate and determined scientific study.®> Moti-
vated by the lack of proposed synthesis pathways for predicted
materials, Fong and co-workers developed an autonomous
synthesizer for palladium nanoparticles integrated with a syn-
chrotron x-ray source and an ML controller®. The controller,
trained on an initial set of synthesized nanoparticles and, op-
timizing for size, suggested new recipes for further synthesis.
This process was repeated until nanoparticles satisfying the
desired constraints were synthesized. Stretching the philosph-
ical idea of a neural network, Wei and co-workers theorize a
miniature brain composed of gold nanoparticles wrapped by a
conductive polymer. They carry out course grained molecular
dynamics simulations on a 2D array to study the emulation
of brain-like computing.®>. As the temperature is increased,
polymers establish links with neighboring nanoparticles, but
an applied electric field produces the same effect. Properties
required for brain-like computing and storage in response to
electric fields are observed in the simulations.

III. CONCLUSIONS

This special issue showcases the development of methods
that can be employed in computational materials design, and it
presents specific predictions that are sure to stimulate further
experiments. Many authors have contributed by developing
tools and systems, some rigorously tested materials for de-
sirable properties, and others have postulated completely new
and exciting materials. Together, they showcase the strengths
of computers in materials science: the high-throughput ca-
pacity for characterization and the ability of machine learning
algorithms to aid in prediction and categorization tasks. The
breadth of applications, variety of topics, and excellent quality
of the published manuscripts clearly shows the importance of
computations in the materials discovery process. We believe
that the next decade will see the even tighter integration of
computations in the search for novel materials, and are look-
ing forward to witness future advances.
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