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ABSTRACT

Resilient cyber-physical systems (CPS) must ensure safety and per-
form required tasks in the presence of malicious cyber attacks.
Recently, restart-based defenses have been proposed in which a
CPS mitigates attacks by reverting to an initial safe state. In this
paper, we consider a class of reactive restart approaches for CPS un-
der malicious attacks with verifiable safety guarantees. We consider
a setting where the controllers are engineered to crash and reboot
following faults or attacks. We present a hybrid system model that
captures the trade-off between security, availability, and safety of
the CPS due to the reactive restart. We develop sufficient conditions
under which an affine controller provides verifiable safety guar-
antees for the physical plant using a barrier certificate approach.
We synthesize safety-critical controllers using control barrier func-
tions to guarantee system safety under given timing parameters.
We present two case studies on the proposed approach using a
warehouse temperature control system and a two-dimensional non-
linear system. Our proposed approach guarantees the safety for
both cases.
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1 INTRODUCTION

The tight coupling between cyber and physical components of CPS
exposes them to new threats. Malicious cyber attacks have been
reported in multiple CPS domains, including power systems [39],
automobiles [18, 24], and surgical robots [3]. Cyber attacks may
lead to safety violations that damage physical infrastructures or
harm human operators [22]. To this end, the concept of resilient
CPS has attracted increasing research attention. A resilient CPS
should be able to withstand known attacks and effectively recover
from failures and unknown attacks while performing desired tasks
and maintaining safety [9, 15].

Defenses against cyber attacks on CPS have been extensively
studied using control- and game-theoretic approaches [17, 20, 27,
30, 37, 44]. These approaches focus on preventing, detecting, and
mitigating attacks by constraining the lower level controller be-
havior so that the system continues to perform its task in spite of
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the attack. As CPS become increasingly complex, adversaries can
disrupt the system by exploiting software vulnerabilities [2]. Such
exploits enable an adversary to compromise the low-level control
inputs and all sensor data of the CPS, and thus overwhelm and
neutralize game- and control-theoretic mitigation mechanisms.

To this end, restart- [1, 2, 7, 8] and software rejuvenation-based
mechanisms [6, 35, 36] have been proposed to recover the cyber
component of the CPS to a ‘clean’ state [1] where the impacts from
the adversary are limited, at the expense of temporarily losing con-
trol over the CPS. These methods leverage the fact that the physical
component of CPS can tolerate loss of controller availability for a
small number of functioning cycles due to inertia [29]. Once the
cyber component is recovered in time, the safety of physical com-
ponent can still be guaranteed. Nevertheless, the controller being
offline during system restart reduces the availability.

Restart-based mechanisms can be broadly classified into two
categories. Proactive restart approaches periodically restart the
system in order to prevent adversaries from gaining a foothold
[1, 6-8, 35, 36]. Since the proactive restarts occur at the time of the
operator’s choosing, online reachability methodologies have been
proposed to ensure that the system only restarts if safety can be
guaranteed during the time when the controller is inactive [1].

Reactive restart methodologies reboot when certain conditions
are met, e.g., when the system crashes due to an erroneous input
[2]. Reactive restart approaches are compatible with software di-
versity and randomization techniques, which cause the system to
crash and restart following an adversarial input instead of allowing
the adversary to remain undetected [29]. Since the system only
restarts following intrusions and software faults, reactive restarts
will occur less frequently compared to proactive approaches, but
are unpredictable. This unpredictability requires a fundamentally
different approach to ensuring and verifying safety that is currently
not available in the existing literature.

In this paper, we present a reactive restart-based approach for
CPS under cyber attacks in which we can guarantee system safety
via barrier certificates. We consider two problems, namely, verifying
system safety under a given affine controller, and synthesizing
safety-critical controllers under given timing constraints. We make
the following specific contributions:

e We formulate a hybrid system model of CPS under cyber
attack and reactive restart. Our hybrid model divides the

978-1-6654-0967-4/22/$31.00 ©2022 IEEE 104
DOI 10.1109/ICCPS54341.2022.00016

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.



Time

Crash & Restart System Crash &
Restart Completed Compromised Restart
no i T ¢
Initialization } Exploit Window Vulnerability Window
Window

Figure 1: The system timing parameters under malicious attack. The horizon between two consecutive restarts consists of
three phases: the initialization window, the exploit window, and the vulnerability window.

system operation into exploit, initialization, and vulnerabil-
ity phases which are expressed in terms of time windows
between restarts (Fig. 1).

We propose (control) barrier certificate approach to safety
verification safety-critical control synthesis of CPS, respec-
tively. The barrier certificate can be computed efficiently
using sum-of-squares optimization, avoids time-consuming
online reachable set calculation, and is applicable to sys-
tems with nonlinearities and uncertainties. We show that
the proposed approach can be extended to systems with state
estimation by developing a data reload strategy.

We validate the proposed approach using two case studies,
with one on warehouse temperature control system and one
on a two-dimensional non-linear system. We demonstrate
that the proposed approach guarantees the system to stay
within the safety set.

The remainder of this paper is organized as follows. Section 2
presents the related work. Section 3 presents the problem formula-
tion. Our proposed solution approaches for safety verification and
safety-critical control synthesis are presented in Section 4 and 5,
respectively. Section 6 studies a data reload strategy for CPS whose
state is not directly observed. Section 7 presents our case studies.
We conclude the paper in Section 8. Preliminary background and
the technical proofs are presented in the Appendix.

2 RELATED WORK

Safety verification [31, 33] and control synthesis under safety con-
straints [5, 12, 14, 34] for CPS in the absence of adversaries or faults
have been studied. When faults occur in CPS, fault tolerant control
has been extensively studied. See [19] for a detailed survey for fault
detection, isolation, and reconfiguration. The faults considered are
caused by random failures, which are different with those caused
by malicious adversaries. This is because the adversaries are intelli-
gent and can strategically adjust their actions to behave differently
compared with random failures.

Cyber attacks can cause safety violations of the CPS, which can
damage the physical plant and threaten human operators [3, 18, 25].
There are two main approaches to address malicious attacks in
CPS. The first body of literature studies defending and protecting
CPS against different types of malicious attacks such as false data
injection [17, 32] and denial-of-service [10]. These works aim at
preventing the attacks by minimizing the detrimental impact from
the adversary. Another category of research focuses on designing
fault and intrusion tolerant systems [11, 29, 41] instead of attack
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prevention. Some components are allowed to fail in intrusion toler-
ant systems, and will be recovered later. The present paper belongs
to the latter category. We propose an attack resilient approach for
safety-critical CPS in the presence of a malicious adversary that
can exploit the software vulnerabilities.

Our proposed approach mitigates the malicious attack using
a reactive restart approach to revert the system to its initial safe
state. Restart-based approaches have been proposed in existing
literature [1, 2, 6-8, 35, 36]. Proactive restart-based approaches
are proposed in [1, 6-8, 35, 36], whereas we consider a reactive
restart-based approach in this paper where restarts are triggered by
controller crashes. In practice, reactive restart occurs less frequently
compared with proactive restart, and thus provides higher system
availability. Moreover, we provide a verifiable safety guarantee for
CPS under malicious attacks using a barrier certificate approach.
Compared with the formal guarantees obtained using reachable
set computation in [1, 6, 35, 36], our approach provides guarantees
through offline construction of barrier certificates and is applicable
to nonlinear systems.

In [2], a fault-tolerant reactive restart-based approach is pro-
posed, assuming that the set of verified software components never
malfunction. Our paper considers the presence of a malicious ad-
versary who can intelligently corrupt the system including the
trustworthy and verified components to alter their outputs.

In Section 6, we will use a buffer to store system state estimate
to fasten initialization after each reboot, which can be viewed as a
variant of the checkpointing methods introduced in [23, 43].

3 PROBLEM FORMULATION

3.1 System and Adversary Models
We consider a CPS whose physical plant follows dynamics

X = f(x) + g(x)u, 1)

where x is the derivative of state variable x € R" with respect to
time ¢, x € X C R" is the system state, and u € U C R is the
control input. We assume that the vector fields f and g are Lipschitz
continuous, and U is a bounded admissible input set. We denote
the solution to system (1) as x : Rsg — R™. Let C = {x : h(x) >
0} € X, where h : X — R is a continuously differentiable function.
We say set C is forward invariant if x(t) € C for all t > 0. Given a
state x, a feedback controller is defined as y : X — U, which maps
from the state to the set of admissible inputs. Using the system state
x, the controller calculates the input u at each time to actuate the
physical plant. We denote the solution to Eqn. (1) under controller
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1 as x#(t). We say controller y satisfies the safety constraint if

xH(t) e C, Vi > 0. (2)

For example, the safety set C for an autonomous vehicle is the set of
vehicle locations where the distance h(x) with the obstacle exceeds
a certain threshold. In this paper, we assume that h(x) is a control
barrier function (CBF) for the safety set C = {x : h(x) > 0}. We
provide the definition of CBF in Appendix A.1. For scenarios where
h(x) is not a CBF, our proposed algorithms in Section 4 will report
a failure, indicating no feasible solution has been found. When a
failure is reported, we can first synthesize a CBF h(x) for a subset
C C C of the safety set, and then apply our proposed approach.
The synthesis of CBF, which is not the focus of this work, has been
investigated in [13, 42].

We consider the presence of a malicious adversary in the CPS.
The objective of the adversary is to destabilize the physical plant
so that the system violates the safety constraint. The malicious
adversary exploits the vulnerabilities of the cyber component in the
CPS to intrude into the system. Once the adversary completes the
intrusion, it gains root access and can manipulate the code and/or
data in the CPS, e.g., via memory corruption attacks. In addition, we
assume that the adversary does not have physical access to the plant
and it takes 7 > 0 time for the adversary to exploit the vulnerability
and gain root access in the system. In practice, parameter r varies
depending on multiple factors including the vulnerabilities of the
system and the capability of the adversary.

Once the adversary gains root access in the CPS, it can manip-
ulate the control input u to be any @ € U. As a consequence, the
adversary manipulates the behavior of the system and cause the
physical plant to deviate from the safety set C, leading to safety
violation.

3.2 System Timing Parameters

In this subsection, we identify the relevant system timing parame-
ters that impact the system behavior and introduce how the CPS
evolves based on these timing parameters, as shown in Fig. 1. The
system observes the state x(¢) at each time ¢ and computes the feed-
back control input u based on x(t). Using the controller crash as
an indicator signal, a complete restoration of the CPS is triggered.
The restoration is achieved by restarting the whole system and
reloading a trusted and uncompromised image of the controller
to the system. After the restart, the CPS takes n amount of time
to complete the initialization, which consists of loading the oper-
ating system and controller, initializing the data structures, and
re-learning the system state. Parameter 7 varies for different sys-
tems, depending on multiple factors such as the operating system
and controller/processor frequency. In practice, the scale of 7 varies
from microseconds to seconds. For instance, restarting the rusEFI
engine control unit takes about 20ms [8]. Note that re-learning the
system state occurs after the operating system is reloaded and the
data structure initialization is completed. Thus there is no control
input applied to the physical plant during the initialization window.

After the initialization window, the adversary can exploit the
vulnerabilities in the system and attempt to gain root access in the
system during the exploit window. We denote the time required for
the adversary to complete exploitation and corresponding attacks
as 7. The existence of exploit window 7 has been demonstrated
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in real-world attacks that follow cyber kill chain [28]. The exploit
window can also be created by disabling the vulnerable external
interface utilized by the adversary [1, 35, 36]. In practice, the value
of  varies depending on multiple factors such as the diversification
[16, 29] adopted by the system and the computation power of the
adversary. The software running by the CPS can be regarded as
safe and uncorrupted during the exploit window, even if the system
vulnerabilities are still present.

We note that the controllers are engineered to crash when they
receive erroneous inputs from the adversary [29]. If the adversary
gains root access to the system at time ¢, then the controller is
corrupted for a limited time. We let t” denote the time at which the
controller crashes and define the time interval [¢, ], during which
the adversary can introduce arbitrary control inputs into the system,
as the vulnerability window (Fig. 1). The length ¢ of the vulnera-
bility window is determined by the sensitivity of the controller to
faults introduced by the adversary, and can be reduced by software
diversification, memory randomization, and other methods that
cause the system to crash following erroneous inputs. If the con-
troller compromises immediately after the adversary compromises
the system, then ¢ becomes zero.

3.3 Problem Statement

This subsection presents the problem statements. We investigate
the following two problems in this paper.

PROBLEM 3.1 (SAFETY VERIFICATION). Given a feedback controller
in the form of u = Kx + b, compute (¢,7,7) € R0 X Rx9 X R0 so
that system (1) is safe with respect to C.

Problem 3.1 is a verification problem which studies the worst-
case behavior of the system so that we can verify the safety of
an affine controller [38]. Here we use ¢ and 7 to represent the
upper bounds of ¢ and 7, and use 7 to denote the lower bound
of 7. We assume that u = Kx + b € U for all x € X. We aim
at solving Problem 3.1 in an offline manner in order to minimize
online computations by resource-constrained CPS. We present the
solution to Problem 3.1 in Section 4.

PROBLEM 3.2 (SAFETY-CRITICAL CONTROL SYNTHESIS). Given
(¢, 7, 7), synthesize a feedback controller during the exploit window
so that system (1) is safe with respect to C.

Problem 3.2 investigates the safety-critical control synthesis
problem when the system timing parameters are known. Problem
3.2 needs to be solved in an online fashion to calculate the feedback
controller. We formulate a quadratic program using control barrier
functions to solve Problem 3.2 in Section 5.

4 BARRIER CERTIFICATE-BASED SAFETY
VERIFICATION

This section presents the solution approach to Problem 3.1. We
first formulate the system operated under the timing parameters in
Section 3.2 as a hybrid system (See Appendix A.1 for background on
hybrid systems). We then develop sufficient conditions for system
safety using a barrier certificate approach. The developed sufficient
conditions are later verified using sum-of-squares (SOS) programs.
Preliminary background on hybrid systems and barrier certificates
can be found in Appendix A.1.
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Figure 2: An illustration of the hybrid system H. The set of
discrete locations are depicted using circles, and the discrete
location transitions are described by arrows. The trigger for
each discrete location transition is labeled with each arrow.

Based on the system timing parameters introduced in Section
3.2, system (1) can be in one of the following three modes:

o Safe mode: The system is in the safe mode during the exploit
window. When the system is in the safe mode, the adversary
has not completed its attack, and thus the correct control
input u = Kx + b is applied to the system.

Initialization mode: The system is in the initialization mode
during the initialization window. In this mode, no control
input is applied to the system.

Unsafe mode: The system is in the unsafe mode during the
vulnerability window since the adversary gains the root
access in the system and thus can arbitrarily manipulate the
system behavior.

The transitions among these three modes introduce discrete be-
havior to the system model. Thus we construct a hybrid system
H=(X,L,S,S,Inv, ¥, %) to to jointly model the continuous sys-
tem dynamics, the discrete transitions among different modes, and
the system timing parameters. Each element of the hybrid system
is given as follows.

o X is the set of continuous system states.

o L = {safe,unsafe, init} is the set of discrete locations mod-
eling the modes of the system, where safe, unsafe, and init
correspond to safe, unsafe, and initialization modes of the
system, respectively.

o § = X X L is the state space of the hybrid system.

e Sy C S is the set of initial states of the hybrid system.

e Inv: £ — 2% is the invariant.

o« F = {fsafe’ init cunsafe

ol IS } is the set of continuous system
dynamics for each discrete location, where f

cslafe(x§ K,b) =
)+ gOo(Kx +b), £t (x) = f(x), and £ (x,u) =
) + glou.
o X = {((x,safe), (x,unsafe)), ((x, unsafe), (x, init)),
((x, init), (x, safe))} is the set of discrete transitions among
the locations.
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We show the constructed hybrid system in Fig. 2, where the discrete
locations £ and the set of transitions in ¥ are depicted using circles
and arrows, respectively. Note that the discrete location transitions
are defined by modes of the system, and no other discrete location
transitions are allowed except those modeled by X. Autonomous
transitions and time-dependent transition coexist in hybrid system
H. The transition from | = safe to | = unsafe occurs when the
exploit window expires. The other transitions from [ = unsafe to
init and from I = init to safe are triggered by the restart command
and the completion of initialization, and are independent of the
control input u. According to the system timing parameters, the
time that the system spends in each discrete location is bounded
between two restarts. When the system is in location [ = safe,
the closed-loop dynamics are parameterized by K and b. When the
system is location [ = init, no control input is applied to the system
and the closed loop dynamics are given as fcil"” = f(x). When
the system is in location | = unsafe, the control input u € U is
maliciously chosen by the adversary, and thus needs to be treated

as a disturbance. The closed-loop dynamics in this case are given

as C“l”saf € _ f(x) + g(x)u. Note that the continuous system state

does not incur any jump during any discrete location transition.

Given the hybrid system H, we develop sufficient conditions
under which controller u = Kx + b guarantees that system (1) is
safe with respect to C. Our idea is that if the system starts from
a ‘sufficiently safe’ state, then the system trajectory will not leave
the safety set C if we can limit the amount of time that the system
is compromised by the adversary. Since the system is correctly
controlled only when in location I = safe, we thus need to guar-
antee that the system will reach the ‘sufficiently safe’ state before
transitioning to location [ = unsafe. Based on the closed-loop sys-
tem dynamics in ¥, we then need to guarantee that (i) the system
trajectory remains in C when [ = init and | = unsafe by bounding
the lengths of the vulnerability window and initialization window,
and (ii) the system trajectory reaches the ‘sufficiently safe’ state
when [ = safe. The sufficient condition to guarantee the safety of
system (1) under attack is given in the following theorem, whose
proof is presented in Appendix A.2.

THEOREM 4.1. Consider the system in Eqn. (1) under attack and a
safety set C. Let hi(x) = h(x) — c¢1 and ha(x) = hi(x) — c2. We define
C1 = {x: hi(x) 2 0} and Cy = {x : ha(x) = 0}. Suppose x(0) € Cs.
If there exist constants c1,cz > 0 and a class K function a(-) such
that

%(x)fcszafe(x; K.b) > :CZ', VxeC\C, (32)
2 (05T (K. ) 2 ~alha(), ¥ € Gy (3b)
Oh | init _a

= @)fmi (x) > . VxeC (3¢)
oh unsafe ¢

—(x)fl (r,u) > —=, Y(x,u) e Cy xU (3d)
0x ¢ ¢

then system (1) is safe with respect to C.

Theorem 4.1 indicates that if we can find parameters ci, c2, ¢, 1,
and 7, then the system is safe using controller u = Kx +b. However,
verifying the conditions in Eqn. (3) is not straightforward for arbi-
trary systems. When the the following semi-algebraic conditions
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are satisfied, we show that we can verify Eqn. (3) via a sum-of-
squares (SOS) program. We make the following assumption.

ASSUMPTION 4.1. We assume that vector field f,;(x) and function
h(x) are polynomial in x. In addition, we let U = {u : v(u) > 0},
where v(u) is polynomial in u.

When Assumption 4.1 holds, we can verify the conditions in Eqn.
(3) using the following SOS program.

PROPOSITION 4.2. If there exist parameters c1, c2, 21, Z2, and z3
and a class K function a(-) so that the following expressions are SOS:

%(x) £5 € (x: K, b) — 23+ 1(x)h(x)ha(x) (4a)
O ([T K )+ alha() ~ (o) (4b)
L)+ 21 plIACD) ()
L ) ¢ 2 - g (o) (4d)

where I(x), r(x), p(x), q(x, u) are SOS and z1, z2,z3 > 0, then cq, c2,
¢, 1, and t satisfying

e
¢

meet the conditions in Eqn. (3).

c1t+c2

C1
— =2z, =2z, =2z (5)

The proof of Proposition 4.2 can be found in Appendix A.2. Propo-
sition 4.2 implies that we can verify the safety of system (1) by the
existence of SOS polynomials I(x), p(x), r(x), and g(x, u) along with
non-negative scalars c1, ¢z, z1, z2 and z3 such that Eqn. (4) and (5)
are satisfied. However, directly verifying the existence of all the
aforementioned variables in Eqn. (4) is challenging since it requires
us to solve for C;, C; and parameters ¢, 1, and 7 simultaneously,
leading to bilinearities in Eqn. (4). In the remainder of this section,
we address this challenge by developing approximate solution algo-
rithms to verify the existence of these variables in Eqn. (4). The idea
is to constrain Eqn. (3) for all x € C to convert the bilinear terms
in Eqn. (4) to linear terms. We consider a relaxation that replaces
h1(x) and ha(x) in the last terms of Eqn. (4a) to Eqn. (4d) with h(x).
This relaxation eliminates variables c; and c; at the expense of
conservatively constraining the system behavior over C.

LEMMA 4.3. If there exist parameters c1, c2, 21, z2, and z3 so that
the following expressions are SOS:

O (5 (s K, ) 2~ I((0) (6a)
%(x) FIE(x) + 21 = p(x)h(x) (6b)
ah unsaje

£ ) + 22 - glx (o) (60)

where I(x), p(x), q(x, u) are SOS polynomials and z1, z2, z3 > 0, then
c1, ¢2, , n, and t satisfying

¢

¢

c1t+c2

C1
— =1z, z2, =z3 (7)
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Algorithm 1 Solution algorithm for computing 5, 7, and 7 for
worst-case ¢; and ca.

1: Input: Parameters €; and €. The maximum value ¢; and ¢z
for ¢; and cy, respectively

2: Output: Parameters g_b, 7,7, c1,and ¢y

3: Initialization: Initialize cyyg,1 < €1, cLB,1 < 0, cUB,2 < C2,
cLB,2 <0

4: while |cyp,1 —cLB,1] 2 €1 01 [cyB,2 — cLB,2| = €2 do
5. ¢ < (cuB,1 +cLB,1)/2, c2 < (cuB,2 + cLB,2)/2
6: if Eqn. (4) is feasible then
7: if z; = 0 then
8: I] «— 0
9: else
10: n e ci/z
11: end if
12: if zp = 0 then
13: gf) «— 00
14: else
15: ¢ — c2/z2
16: end if
17: if z3 = 0 then
18 T (e +c2)/(infrec £ ¢ (i K. b))
19: else
20: T (c1 +¢2)/z3
21: end if
22: (¢’ ﬁ? Z) — (¢’ 1, T)
23: CUB,1 < €1, CUB,2 < C2
24: else
25: CLB,1 < C1,CLB,2 < C2
26: end if
27: end while
28: return cypg 1, CUB,2, 5 n,and 7
meet the following conditions
%(x)ffff (6K, b) > @ VxeC (8a)
%(x)fcil"it(x) > —%1, Vx € C (8b)
%(x)funsafe(x u) > _a Y(x,u) e CxU (8¢c)
0x cl T ’

The proof of Lemma 4.3 can be found in Appendix A.2. Lemma
4.3 indicates that the timing parameters ¢, 5, and 7 can be solved
using an SOS program whose constraint set is given as Eqn. (6).
Note that hy(x) > 0 = hy(x) = 0 = h(x) > 0. We can thus
characterize the relaxation used in Lemma 4.3 as follows.

COROLLARY 4.4. Any feasible solution z1, z2, z3 to Eqn. (4) is also
feasible to Eqn. (6).

In some scenarios, the relaxation in Lemma 4.3 may be overly
conservative, rendering Eqn. (6) to be infeasible. To this end, we
present two approximate solution algorithms to compute ¢, 5, and
7, along with sets C; and Cy. Our idea is that the bilinear terms in
Eqn. (4) become linear once one of the variables is given. Thus we
can fix one parameter and search for the other that yields Eqn. (4)
to be feasible.
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We first discuss how to compute the timing parameters ¢, 7,
and 7 if we are given sets C; and Cy. Assume that we know the
maximum and minimum values of ¢; and ¢y. The maximum and
minimum values of ¢; and ¢z can be chosen as ¢; € (0, sup,.¢c h(x))
and ¢; = sup, cc h(x) — ¢1. We then aim at computing the timing
parameters for the worst-case choices of C; and Cz. The worst-case
choices of C; and C; are defined as C; = {x : h(x) — ¢, > 0} and
C2 = {x : hi(x) — ¢, > 0}, respectively, where ¢, and c, are the
lower bounds of parameters ¢; and ¢ that renders the SOS program
in Eqn. (4) to be feasible. We note that as ¢; and ¢z decrease, the
volumes of C; and C; increase, which tolerates less delay for the
controller crash when [ = unsafe and less time consumption for
initialization in the worst-case.

We propose Algorithm 1 to compute the parameters. Algorithm
1 first initializes the upper and lower bounds for the search range
of ¢1 and ¢y, respectively. We use subscript UW to represent upper
bound and subscript LB to represent lower bound. Algorithm 1
then verifies if the expressions in Eqn. (4) are SOS for given c;
and ¢y computed at line 5. When the values of ¢; and ¢y are given,
verifying the feasibility of Eqn. (4) can be done via an SOS program.
If there exist SOS polynomials I(x), p(x), r(x), and g(x, u) such that
Eqn. (4) is feasible, then Algorithm 1 updates the upper bounds
of search ranges to decrease the values of ¢; and ¢ as shown in
line 23. Otherwise the lower bounds are updated (line 25). This
process is repeated until the upper and lower bounds of both ¢;
and c; become close.

Algorithm 2 Solution algorithm for computing ¢; and c; for worst-
case @, 1, and .

1: Input: Parameters €1, €2 and e3. The maximum value ¢y p,
nu B, and 7y and minimum values ¢1 g, 1B, and 7 g for ¢, n
and 7, respectively

2: Output: Parameters ¢, 1, 7, ¢1, and ¢z

3. Initialization: Initialize ¢y g, ¢1B, nUB, NLB, TUB, and 71

: while |[pyp—¢LB| > €1 or [nup—nLB| > €2 01 [typ—TLB| > €3

do

55 ¢ — (¢uB +dLB)/2.n — (qus +nLB)/2, T « (tup +
71.B)/2

6 C] < max {—ryinfxec {%(x)fcil"”(x)},o}

7: co «— max {—pinfycc ey {%(x)fculnsafe(x, u)} , 0}
8: z1 «—c1/n,z2 «—c2/@,z3 — (c1 +c2)/T

9: if Eqn. (4) is feasible then

10: (c1,¢2) < (c1,¢2)

11: OLB — G, NLB < N, TUB < T

12: else

13: duB — $, MUB < N, TLB < T

14: end if

15: end while
16: return ci, c2, ¢y, NUuB, and Ty

We next investigate how to compute c¢; and ¢z given the worst-
case timing parameters ¢, 7, and . We assume that the upper and
lower bounds of the timing parameters are given. Here we say a
choice of ¢ is worse than ¢’ if ¢ < ¢’ since a narrower vulnerability
window indicates that the crash signal needs to be issued in a more
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timely manner and thus requires a more delicate design. Similar
arguments can be made for 7 and .

We use Algorithm 2 to compute ¢ and ¢y, along with the worst-
case timing parameters. Algorithm 2 first initializes the search range
for ¢, 7, and 7. Similar to Algorithm 1, we use subscripts UB and
LB to represent upper and lower bounds, respectively. Then at each
iteration from line 4 to 15, Algorithm 2 computes c; and ¢ using
the given values of ¢, 7, and 1 as shown in lines 6 and 7. Note that
lines 6 and 7 bound the values of ¢; and ¢ from above since we
search over all x € C. Particularly, if ¢; or ¢z is zero, it indicates that
the closed-loop dynamics are monotonically non-decreasing, which
yields largest C; or Cy. Given a pair of (cq, c2) that is non-zero, we
verify if Eqn. (4) is feasible under this choice of (c1, ¢2). If Eqn. (4) is
feasible, we then update the lower bounds of ¢ and 7 and the upper
bound of 7 (line 11). Otherwise we update the upper bounds of ¢
and 7 and the lower bound of 7 (line 13).

5 CONTROL BARRIER FUNCTION-BASED
SAFETY-CRITICAL CONTROL SYNTHESIS

In this section, we propose a control barrier function-based ap-
proach to synthesize a controller with safety guarantee to solve
Problem 3.2. Given ¢, n, and 7, we can approximately calculate c;
and ¢y as
inf {20y p00) 0 (92)
c; =max{—n inf { —(x)f(x);,0¢, a
! 7 xeC | Ox
inf
xeC,uel

¢ = max {—¢ {%(x)f(»o + S, o} ~ ob)
Note that the synthesized controller needs to guarantee that the
system remains in C before the discrete transition from location
| = safe to unsafe occurs. Moreover, it needs to ensure that the
system trajectory reaches Cy during the exploit window. Using
parameters ¢, 1, 7, c¢1, and cz, we can compute a feedback controller
satisfying these two properties as follows.

ProPoSITION 5.1. During the exploit window, if the control input
at each time t is computed as

;rél(lr} u'Qu (10a)
oh oh
s.t. a(x)f(x) + a(x)g(x)u + a(h(x)) > 0, (10b)

Ohy
0x

() f(x) + %(x)g(X)u + ysgn(ha(x))ha(x)|” 2 0
(10c)

where Q is a positive definite matrix, and parameters p € [0,1) and

y > 0 are chosen so that T > y(ll—p) le1 + co|'P, then system (1)
remains safe and reaches Co within finite time z.

Proor. The proposition holds by the properties of ZCBF and
FCBF presented in Lemma A.3 and Lemma A 4, respectively. O

In Proposition 5.1, we can first pick some p € [0, 1). Then we
can choose parameter y = T(l;_p) le1 + ¢2|17P for any given t, ¢j,
and cy. Proposition 5.1 indicates that we can synthesize a controller
when the closed-loop system is at location I = safe by solving a

sequence of quadratic programs (QP) when U is a convex set.
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6 SAFETY VERIFICATION FOR CPS WITH
STATE ESTIMATION

In Section 4 and 5, we assume that the system state x is observable.
However, this may not always hold for all CPS. In practice, we rely
on sensor measurements to estimate the system state. We denote
the state estimate of system state x as x. In this case, the control
input is calculated as u = Kx + b using the estimate. Incorporating
state estimation imposes the following challenges: (i) the estimate
can be compromised by the adversary if the system is compromised,
and (ii) the system needs additional re-learning time during the ini-
tialization window to re-estimate the system state after the reboot.
This section presents a data reload-based approach to guarantee the
safety of the system when the system state is not directly observed.

FIFO Buffer
2(t—M) £(t)

Time

2(t—¢)

Figure 3: A FIFO buffer of size M is used to checkpoint the
historical state estimate. The red region represents the esti-
mates that may be compromised, and the green region rep-
resents the estimates that are safe.

We introduce an additional FIFO buffer of size M > ¢ to store
the previous state estimate for later reload use, as shown in Fig. 3,
where ¢ can be chosen as the maximum value determined by the
CPS design. The storage should allow read and write instructions.
Moreover, the data in storage should not be wiped after the system
reboot. Finally, we assume that the adversary can manipulate the
data to be pushed into the buffer x(t), while it cannot compromise
the data that has already been stored in the buffer %(¢") for all
t’ < t. In addition, we assume that the time consumption required
for reloading data from storage is negligible compared with re-
learning, and thus data reload is instantaneous.

In the following, we study if we can shorten the re-learning
process by leveraging data reload from the buffer. Suppose the
system reboots at time t. Then after the initialization, the system
reloads %(t) as the state estimate, where t’ = t—¢ is the most recent
time instant when the system is guaranteed not to be compromised
by the adversary. By reloading %(¢”), the system saves the estimation
time. We let the state estimate evolves as the following dynamics:

b= f(#) + g(#)(K% + b) + L(w(x, K% + b) — w(x, K% + b)),

where w(x, u) is the observation function. The last term L(w(x, KX+
b) — w(x, Kx + b)) allows the system estimate X to converge to x
when % # x, and to correctly track x when x = x.

We define y = [x, £]T. Then following a similar analysis as given
in Section 4, we can construct a hybrid system H = (Y, £, S, Sy,
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Inv, 7, %), where = {5 (g K. b). £iri (y), £ (y,u)) with

£ (K, b) = f(x) + g(e) (K + b)

PGB = £(R) + gR)EKS + b) + Lwlx, K + b)
- w(x, Kx + b))

£ (K. b)

safe b
f (y;K,b) = [fsafe( ,K,b)

fm”(y) [f”’”(x)] , funsafe( u) [funsafe( u)}

We define d(y) = ¢3 — ||x — x|| for some c3 > 0 to model the set of
states y where the distance between the state estimate X and state
x upper bounded by c3. We then develop the sufficient conditions
under which the system is guaranteed to be safe.

PROPOSITION 6.1. Consider the hybrid system H = (Y, L, S, S,
Inv, F,%) and a safety set C. Let d(y) = c3 — ||x — x||. If there exist
constants c1,¢z > 0, c3 > 0 and class K functions a1(-), aa(-) such
that

( V5 (YK, b) 2 ~ai(d(y)). Vx € C.% € B(x) (11a)
%( K b) 2 222 VxeC\Cok e Bx)  (11b)
%( ) f”f “(y: K, b) > —az(ha(x)), Vx € Cp, % € B(x)  (11c)

( YNt y) > —%1, Vx € C.% € B(x) (11d)

( PFA e g u) > —%, V(x,%,u) € CI X B) XU (1le)

where B(x) = {X : c3 — ||x — X|| > 0}, then the system is safe with
respect to C.

The proof of Proposition 6.1 can be found in Appendix A.2. Using
the sufficient conditions in Eqn. (11), we can verify the safety of
CPS whose states are not directly observed.

7 SIMULATION CASE STUDIES

In this section, we present two case studies. The first study is on a
warehouse temperature control system [1, 40], and the second one
is on a non-linear dynamical system introduced in [21, 33].

7.1 Warehouse Temperature Control System

In this subsection, we consider a warehouse temperature control
system, consisting of a heater and cooler to the room and a condi-
tioner in the floor [1, 40]. Let the temperature of the floor, room, and
outside environment be x1, xz, and T, respectively. The dynamics
modeling the heat transfer between the warehouse and outside
environment are given as

x1| _ —1.8087(x1 — x2)

L’cz] - [0.4628(x2 —T) +22.2985(x — xg)]

1
6000x115° 0

0

+

I8

] . (12)

69.96x800
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Figure 4: Fig. 4a shows the evolution of room temperature x2 in system (12) over time when an affine controller u = Kx +
b is applied during the exploit window. Fig. 4b shows the room temperature evolution when the safety-critical controller
synthesized using Proposition 5.1 is applied during the exploit window, with parameters a(h(x)) = h(x), p = 0.99 and y = 20. In
Fig. 4a and 4b, the dashed lines represent the boundaries of C, C;, and C». The system trajectories are shown using solid lines.
The parts of the trajectory in green, red, and blue colors represent the parts corresponding to the exploit window, vulnerability

window, and initialization window, respectively.

Here the coeflicients are jointly determined by the mass of the floor
and the air inside the room, the heat capacities of the floor and air,
and the heat transfer coefficients. Control inputs u; and uz model
the heat transfer from the floor heater to the floor, and heat transfer
from the room heater to the room air, respectively. More detailed
explanations on the dynamics in Eqn. (12) can be found in [40].
We set the safety set for the temperature control system as
C = {x : x3 € [20°C,30°C]}, i.e., the room temperature should
be maintained within 20°C to 30°C. In this case, we define h(x) =
(30 — x2)(x2 — 20). We design an affine controller u = Kx + b where

7210 0
K‘[ 0 7210]

,0=

1100 0
0 1100|°

using which the room temperature converges to safety set C. We let
the outside temperature T = 10°C. We set the initial floor and room
temperature as x1(0) = 23°C and x2(0) = 25°C, respectively. Using
Algorithm 1, we obtain that ¢ = 40.073, 5 = 40.074, and 7 = 80.147.
In addition, we have that C; = {x2 : x2 € [20.4174, 29.5826]} and
Cy = {x3 : x2 € [20.8769,29.1231]}. We assume that the controller
is updated every 1s, and simulate the room temperature using
our proposed approach. We mark the time period for the exploit
window, vulnerability window, and initialization window using
green, red, and blue colors, respectively, as shown in Fig. 4a. We
observe that the room temperature x; is bounded within C, and
thus our proposed approach guarantees the safety property.

We investigate the controller synthesis for warehouse temper-
ature control system using the quadratic program presented in
Proposition 5.1. We let a(h(x)) = h(x), p = 0.99, and y = 20. The
timing parameters are computed by Algorithm 1. The evolution of
the room temperature over time is then presented in Fig. 4b. We
observe that the room temperature is guaranteed to stay within
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[20°C, 30°C]. Moreover, the controller implemented during the ex-
ploit window (i.e., when the hybrid system is at location I = safe)
tends to maintain the room temperature around 26.58°C (i.e., the
sharp decrease after the initialization mode) so as to tolerate the
potential increase or decrease introduced by the adversary during
the future vulnerability window.

7.2 System with Polynomial Dynamics

In this subsection, we demonstrate that our proposed approach is
applicable to non-linear systems. We consider a two-dimensional
system whose dynamics are given as

_ X2 + 0.1 "
T ex + %x% — X2 0.1
where x = [x1,x3]T € X C R2 is the system state, and u € U C R

is the control input. We let C = {x : h(x) > 0} be the safety set,
where h(x) is given as

X1
X2

(13)

h(x) = 0.1973x7 + 0.42741x3 x5 + 0.17451xx3 + 0.1079x1 x5
—8.335X1077x; +3.3808 X 10~ ®x7 +3.0606 X 10 x¥x; +1.0894x1 x5
+0.43842x; — 1.1838x7 — 1.2822x1x — 2.1238x% — 5.7966 X 10~ x1

—6.5873 X 10" x5 + 0.014414.

We represent the boundary of the safety set, i.e., {x : h(x) = 0}
using the dashed black line in Fig. 5a and 5b. The system in Eqn.
(13) can be stabilized via an affine controller u = Kx + b, where
K = [13,-14.5] and b = —15 are designed such that the state x
converges to safety set C.

We study the safety verification problem of system (13) when
an affine controller u = [13,—-14.5]x — 15 is applied. Note that
when the system is compromised by the adversary (i.e., during
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Figure 5: Fig. 5a shows the system trajectory for system (13) generated using an affine controller u = [13,-14.5]x — 15 during
the exploit window with parameters c¢; = ¢ = 5.0085, ¢ = 8, 5 = 8.4, and 7 = 16.9 calculated by Algorithm 1. Fig. 5b shows the
system trajectory for system (13) generated using the the safety-critical controller during the exploit window with parameters
a(h(x)) = 2h(x), p = 0.99 and y = 10. In both figures, the dashed lines represent the boundaries of C, Ci, and C,. The system
trajectories are represented using solid lines. The parts of the trajectories in green, red, and blue colors represent the parts
corresponding to the exploit window, vulnerability window, and initialization window, respectively.

the vulnerability window), the affine controller is manipulated to
arbitrary 4 € U such that & # Kx + b. In Fig. 5a, we present the

funsafe

vector fields of the closed-loop dynamics for fcslaf ¢ and 2l

using cyan and magenta arrows, respectively.

We set the upper and lower bounds of ¢; and ¢; in Algorithm
1 as 300 and 0, respectively. Using Algorithm 1, we obtain that
c1 = ¢z = 5.0085. In Fig. 5a and 5b, the boundaries of sets C; and
C, are plotted using the dashed lines in blue and orange colors,
respectively. In addition, we have that ¢ = 8, n = 8.4, and 7 = 16.9.
We set the controller update period as 0.05s, i.e., frequency of 20Hz,
and simulate the system trajectory with initial state x(0) = 3, 4]"
as shown in Fig. 5a. We observe that the system is always safe with
respect to C despite the system moves towards the boundary of the
safety set when the adversary compromises the system (the part of
the trajectory in red color). Moreover, the system is steered away
from the boundary of C during the exploit window (i.e., the part of
the trajectory in green color).

We finally consider the safety-critical control synthesis prob-
lem stated in Problem 3.2. We synthesize the controller during the
exploit window using the quadratic program formulated in Propo-
sition 5.1. We choose a(-) as a(h(x)) = 2h(x). We also let p = 0.99
and y = 10. Let the timing parameters and cy, ¢z be calculated by
Algorithm 1. We present the system trajectory in Fig. 5b. We ob-
serve that the safety property with respect to C is guaranteed using
the synthesized safety-critical controller.

8 CONCLUSION

In this paper, we studied the problem of ensuring safety of CPS
under malicious cyber attacks. We proposed a reactive restart ap-
proach with verifiable safety guarantees for a class of CPS under
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malicious cyber attacks. The proposed approach restarts the sys-
tem when the controller crashes following faults or attacks. We
presented a hybrid model of the system behavior under malicious
attack and reactive restart. We developed sufficient conditions for
safety of the hybrid model using a barrier certificate approach.
We formulated a sum-of-squares program and developed two ap-
proximate solution algorithms to verify the developed sufficient
conditions and compute the timing parameters for the CPS. We
proposed a data reload strategy for safety verification of CPS whose
states need to be estimated using sensor measurements, which re-
duces the time needed for CPS to re-learn the system state after
restart. We developed a quadratic program subject control barrier
function constraints to compute the control input at each time dur-
ing the exploit window to solve the safety-critical control synthesis
problem. We proved that the synthesized controller guarantees the
safety of the system. We demonstrated the proposed approach using
two case studies on a warehouse temperature control system and a
two-dimensional non-linear system. We showed that our proposed
approach guaranteed the safety property for both case studies.
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APPENDIX

this appendix, we first introduce some preliminary background.

We then present the technical proofs that are omitted in the paper.

A.

1 Preliminaries

This subsection presents preliminary background. A continuous
function a : [-b, a) — R is an extended class K function if a(-) is
strictly increasing and «(0) = 0 for some a, b > 0. We also denote
the set of real numbers and the set of non-negative real numbers as
R and R >, respectively. A multivariate polynomial p(x) is a sum-
of-squares (SOS) polynomial if there exists a set of polynomials
k1(x), ..., Kn(x) such that p(x) = Zfil ki(x)%. If p(x) is an SOS

po

lynomial, we have that p(x) > 0.
Control barrier functions (CBFs) have been used to guarantee

forward invariance of system (1). We consider two types of CBF in
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this work, named zeroing CBF (ZCBF) and finite time convergence
CBF (FCBE).

Definition A.1 (ZCBF [5]). Consider a dynamical system (1) and
a continuously differentiable function h : X — R. If there exists an
extended class K function a(-) such that for all x € X the following
inequality holds:

sup {%(X)f(x) + %(X)g(x)u + a(h(x))} >0, (14)

ueld
then function h is a ZCBF.

Definition A.2 (FCBF [26]). Consider a dynamical system (1) and
a continuously differentiable function h : X — R. If there exist
parameter y > 0 and p € [0, 1) such that for all x € X the following
inequality holds:

oh oh
{g(xwx) + g+ y - sgn(h(x>>|h(x>|f’} >0,

(15)

sup
uel

then function h is an FCBF.

The sets of control inputs satisfying Eqn. (14) and (15) provide
the following guarantees, respectively.

LEMMA A.3 ([5]). Given a dynamical system (1) and a set C =
{x : h(x) = 0}, if h is a ZCBF defined on X, then the control signals
satisfying Eqn. (14) guarantee that C is forward invariant.

LEMMA A.4 ([26]). Consider a dynamical system (1) and a set
C = {x : h(x) = 0}. Ifh is an FCBF defined on X, then the control
signals satisfying Eqn. (15) guarantees that there exists some finite

T € |0, % such that x(T) € C forany initial state x(0) € X.

Moreover, the system trajectory x(t) € C forallt’ > T.

We next introduce background on hybrid system. A hybrid sys-
tem is defined as follows [4].

Definition A.5. A hybrid system is a tuple H = (X, L, S, Sy, Inv,
¥, %) with each element being defined as

e X C R" is the continuous system state space.

e /[ is a finite set of discrete locations.

o S = X x L is the state space of hybrid system H, and Sp € S
is the set of initial states.

e Inv : £ — 2% is the invariant that maps from the set of
locations to the power set of X. That is, Inv(l) € X specifies
the set of possible continuous states when the system is at
location .

e ¥ is the set of vector fields. For each f € F, the continuous
system state evolves as x = f(x,[), where x is the time
derivative of continuous state x.

e ¥ C S X S is the set of transitions between the states of the
hybrid system. A transition o = ((x, [), (x’,1’)) models that
the hybrid system state transitions from (x, ) to (x’,1’).

Consider a hybrid system H as defined in Definition A.5. Let
1 # I’ be two discrete locations. Then a guard set G(I,1”) is defined
as G(LI') = {x € X : ((x,]),(x",1")) € X}, which models the
set of continuous states starting from which the system can take
transition from location [ to I’. We define a set valued function
RL): x — {x’ € X : ((x,]),(x",1")) € 3}, which captures the
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set of continuous states that can be reached from G(I, I”) via discrete
transition [ to I’. We also let Init(l) = {x € X : (x,]) € Sy} and
Unsafe(l) ={x e X : (x,]) € Su.}.

The safety of hybrid system H is given as follows.

Definition A.6 (Safety of Hybrid System [33]). Consider a hybrid
system H and an unsafe set S;; C S. The safety property of H
holds if there exist no time T > 0 and a finite sequence of times
0 <t <...<tn <T such that the trajectory (x,1) : [0,T] —» S
satisfying (x(0), 1(0)) € So, x(¢) € Inv(l(t)) for all t € [0,T], and
(x(2), I(t)) € Sy.

The safety given in Definition A.6 for hybrid system H is certified
by a collection of barrier certificates {B;(x)} as follows.

LEmMA A.7 ([33]). Consider a hybrid system H as defined in Defi-
nition A.5 and an unsafe set S;, C S. Suppose there exists a collection
of continuously differentiable functions, denoted as {Bj(x) : 1 € L},
such that for alll # 1’ the following relations hold:

Bj(x) <0, Vx € Init(l), (16a)
Bj(x) > 0, Vx € Unsafe(l), (16b)
9B, (x)fi(x) < 0, Vx € Inv(l) s.t. Bj(x) = 0 (16¢)

ox
By(x') <0, Vx’' € R(L1I)(x), ¥x € G(I,I') s.t. Bj(x) <0 (16d)
then the safety of hybrid system H is satisfied.

A.2 Technical Proofs

In this subsection, we provide the proofs of Theorem 4.1, Proposi-
tion 4.2, Lemma 4.3, and Proposition 6.1.

ProoF oF THEOREM 4.1. We prove the theorem by first charac-
terizing the hybrid system H we constructed in Section 4. We will
show that Inv(unsafe) = C; and Inv(init) = Inv(safe) = C when
G(safe,unsafe) C Cz and Eqn. (3) hold. We then prove the safety
property by showing that —h(x) is a barrier certificate satisfying
Lemma A.7 for hybrid system H, and hence safety is satisfied.

Suppose G(safe, unsafe) C Cy. Welet x(t) € Cp and the system
be in location [ = unsafe. Thus h(x(t)) > c1 + c2. Suppose the next
discrete transition ((x, unsafe), (x, init)) happens at time ¢’ > ¢. By
Eqn. (3d) and integrating h(x) over time, we have that h(x(t')) >
c1+cy— %(t’ —t). When t’ € [t,t + ¢], we have that h(x(t")) >
¢1 > 0 and thus x(¢') € C; if Eqn. (3d) holds. This also implies that
G(unsafe,init) C C1 and Inv(unsafe) C Cy.

Consider that location transition ((x(t), unsafe), (x(t), init)) hap-
pens at time ¢. Since G(unsafe, init) C Ci, we have that x(t) € C;
and h(x(t)) = c1. By Eqn. (3¢) and integrating h(x) over [t, t +7], we
have that h(x(t")) > ¢1 — %(t’ —t) > 0forallt’ € [t, ¢+ n]. There-
fore, h(x(t')) € C. This indicates that G((x, init), (x, safe)) € C
and Inv(init) C C.

Consider that transition ((x(t), init), (x(t), safe)) happens at time
t. Since G((x, init), (x,safe)) C C, we have that h(x(t)) > 0. We
then divide our discussion into two cases. We first consider 0 <
h(x(t)) < c1 + c2. If Eqn. (3a) holds, then integrating the left-hand
side of Eqn. (3a) over ¢’ € [t,t + 7] with ¢/ > r yields that
h(x(t")) = 0 + Cl;r—cz(t' —t) 2 ¢y +cpforallt’ € [t t+ 1] Us-
ing the definition that hy(x) = {x : h(x) > c¢1 + cz}, we have
that x(¢ + ) € C; C C. Moreover, we have that if the length of
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the exploit window is at least 7, the system trajectory will reach
C; and remains in it before transition ((x, saf'e), (x, unsafe)) oc-
curs using Lemma A.3. We next consider the second case where
h(x(t)) > ¢1 + c2. If Eqn. (3b) holds, we have that h(x(t")) > ¢1 + c2
by Lemma A.3 for all ¢’ € [t,t + r]. Summarizing the above two
cases, we have that G(safe,unsafe) C C, holds. Moreover, we
have that Inu(safe) C C.

We finally show that —h(x) is a barrier certificate satisfying
Lemma A.7 for hybrid system H. Since x(0) € C2 € C, we have
that —h(x(0)) < 0, and thus condition (16a) is satisfied. When
x ¢ C, we have that —h(x) > 0, implying that Eqn. (16b) is met.
By our previous analysis, we have that Inv(unsafe) € C; ¢ C
and Inu(init) € C. Thus h(x) = 0 can only hold after transition
((x, init), (x, saf'e)) takes place where Inu(safe) C C. Using Eqn.
(3a) and the relation hy(x) = h(x) — ¢ — c2, we have that

6( h) ( hz) c1te

S8 (K. b) = @5 (K. b) <

holds for all x € Inv(safe) such that h(x) = 0. Therefore, condition
(16c) holds. Using the definition of X, we have that the continuous
state x does not have any jump when location transition occurs,
implying that Eqn. (16d) holds. Therefore, —h is a barrier certificate
satisfying Lemma A.7, and thus hybrid system H is safe with respect
C. Hence, we have that system (1) is safe with respect to C. O

PROOF OF PROPOSITION 4.2. When x € C \ Cy, we have that
h(x) > 0 and hy(x) < 0. Since I(x) is an SOS polynomial, we have
that —I(x)h(x)ha(x) > 0 for all x € C \ Cy. If the expression in Eqn.
(4a) is an SOS, we have that

%( ) f”f (x;K,b) — z3 > —1(x)h(x)ha(x) > 0, Vx € C \ C.
We thus have that if the expression in Eqn. (4a) is an SOS and
z3 = Cl;rcz , then Eqn. (3a) holds.

When x € Cy, we have that ha(x) > 0. Since r(x) is an SOS
polynomial, r(x)ha(x) > 0 holds for all x € Cy. If Eqn. (4b) is an SOS,
we then have that 6h2 (x)fsafe(X;K, b) + a(hz(x)) — r(x)ha(x) = 0,

which implies that f"’” 9 (x), f“‘f °(x;K,b) > —a(hy(x)) forall x € Cy.
Therefore, Eqn. (3b) holds when Eqn. (4b) is an SOS.

When x € C, h(x) > 0 holds by the definition of C. Since p(x)
is an SOS polynomial, we have that p(x)h(x) > 0 for all x € C. If
Eqn. (4c) is an SOS, then %fcll””(x) > -z = C—nl,
Eqn. (3¢c) holds.

When x € C; and u € U, hi(x)v(x) = 0. Since g(x,u) is an
SOS polynomial, we have that g(x, u)h1(x)v(u) > 0 for all (x,u) €
C1 X U. If Eqn. (4d) is an SOS, then ghfunsafe
indicating that Eqn. (3d) holds.

Combining the arguments above completes the proof. O

indicating that

>z, =&
(x,u) > -2z iz

ProOOF oF LEMMA 4.3. If the expressions in Eqn. (6) are SOS, we
then have that

O (13T K, b) 25 2 (o), (172)
—(x)f T (x) + 21 > p(x)h(x), (17b)
—( ) f“"”f “(x, 1) + 22 = q(x, wh(x)v(u). (17¢)

When x € C and u € U, we have that h(x) > 0 and v(u) > 0. Also
note that I(x), p(x), and g(x, u) are SOS polynomials. We thus have
that if the expressions in Eqn. (6) are SOS, then Eqn. (8) holds. O

PROOF OF PROPOSITION 6.1. We first construct a hybrid system
= (M, L,S,80,Inv, F,3), where Y is the set of continuous

= {safe,unsafe,init},and ¥ = {fsafe(y,K b), f””t(y),

funsafe( u)}. When Eqn. (11a) holds, we have that y € {y :
d(y) 0} if the system is in discrete location [ = safe. When
Eqn. (11c) to (11e) hold, we have that Inv(unsafe) = (Cy, B(Cy)),
Inv(init) = (C B(C)), and Inv(safe) = (C, B(C)), where B(A) is
defined as B(A) = {X : c3 — ||[x — X]| = 0, Vx € A} for some A C X.
Finally, we can verify that —h(x) is a barrier certificate satisfying
Lemma A.7 using similar approach in Theorem 4.1, which implies
that the safety property with respect to C holds. O

states y,
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