
Verifying Safety for Resilient Cyber-Physical Systems via
Reactive Software Restart

Luyao Niu
lniu@wpi.edu

Worcester Polytechnic Institute

Worcester, MA, USA

Dinuka Sahabandu
sdinuka@uw.edu

University of Washington

Seattle, WA, USA

Andrew Clark
aclark@wpi.edu

Worcester Polytechnic Institute

Worcester, MA, USA

Radha Poovendran
rp3@wpi.edu

University of Washington

Seattle, WA, USA

ABSTRACT

Resilient cyber-physical systems (CPS) must ensure safety and per-

form required tasks in the presence of malicious cyber attacks.

Recently, restart-based defenses have been proposed in which a

CPS mitigates attacks by reverting to an initial safe state. In this

paper, we consider a class of reactive restart approaches for CPS un-

der malicious attacks with verifiable safety guarantees. We consider

a setting where the controllers are engineered to crash and reboot

following faults or attacks. We present a hybrid system model that

captures the trade-off between security, availability, and safety of

the CPS due to the reactive restart. We develop sufficient conditions

under which an affine controller provides verifiable safety guar-

antees for the physical plant using a barrier certificate approach.

We synthesize safety-critical controllers using control barrier func-

tions to guarantee system safety under given timing parameters.

We present two case studies on the proposed approach using a

warehouse temperature control system and a two-dimensional non-

linear system. Our proposed approach guarantees the safety for

both cases.

KEYWORDS

Cyber-physical system, cyber attack, safety verification, restoration,

safety-critical synthesis

1 INTRODUCTION

The tight coupling between cyber and physical components of CPS

exposes them to new threats. Malicious cyber attacks have been

reported in multiple CPS domains, including power systems [39],

automobiles [18, 24], and surgical robots [3]. Cyber attacks may

lead to safety violations that damage physical infrastructures or

harm human operators [22]. To this end, the concept of resilient

CPS has attracted increasing research attention. A resilient CPS

should be able to withstand known attacks and effectively recover

from failures and unknown attacks while performing desired tasks

and maintaining safety [9, 15].

Defenses against cyber attacks on CPS have been extensively

studied using control- and game-theoretic approaches [17, 20, 27,

30, 37, 44]. These approaches focus on preventing, detecting, and

mitigating attacks by constraining the lower level controller be-

havior so that the system continues to perform its task in spite of

This work was supported by the National Science Foundation via grant CNS-1941670
and the Office of Naval Research via grant N00014-20-1-2636.

the attack. As CPS become increasingly complex, adversaries can

disrupt the system by exploiting software vulnerabilities [2]. Such

exploits enable an adversary to compromise the low-level control

inputs and all sensor data of the CPS, and thus overwhelm and

neutralize game- and control-theoretic mitigation mechanisms.

To this end, restart- [1, 2, 7, 8] and software rejuvenation-based

mechanisms [6, 35, 36] have been proposed to recover the cyber

component of the CPS to a ‘clean’ state [1] where the impacts from

the adversary are limited, at the expense of temporarily losing con-

trol over the CPS. These methods leverage the fact that the physical

component of CPS can tolerate loss of controller availability for a

small number of functioning cycles due to inertia [29]. Once the

cyber component is recovered in time, the safety of physical com-

ponent can still be guaranteed. Nevertheless, the controller being

offline during system restart reduces the availability.

Restart-based mechanisms can be broadly classified into two

categories. Proactive restart approaches periodically restart the

system in order to prevent adversaries from gaining a foothold

[1, 6–8, 35, 36]. Since the proactive restarts occur at the time of the

operator’s choosing, online reachability methodologies have been

proposed to ensure that the system only restarts if safety can be

guaranteed during the time when the controller is inactive [1].

Reactive restart methodologies reboot when certain conditions

are met, e.g., when the system crashes due to an erroneous input

[2]. Reactive restart approaches are compatible with software di-

versity and randomization techniques, which cause the system to

crash and restart following an adversarial input instead of allowing

the adversary to remain undetected [29]. Since the system only

restarts following intrusions and software faults, reactive restarts

will occur less frequently compared to proactive approaches, but

are unpredictable. This unpredictability requires a fundamentally

different approach to ensuring and verifying safety that is currently

not available in the existing literature.

In this paper, we present a reactive restart-based approach for

CPS under cyber attacks in which we can guarantee system safety

via barrier certificates.We consider two problems, namely, verifying

system safety under a given affine controller, and synthesizing

safety-critical controllers under given timing constraints. We make

the following specific contributions:

• We formulate a hybrid system model of CPS under cyber

attack and reactive restart. Our hybrid model divides the

104

2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)

978-1-6654-0967-4/22/$31.00 ©2022 IEEE
DOI 10.1109/ICCPS54341.2022.00016

20
22

 A
CM

/I
EE

E
13

th
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
yb

er
-P

hy
sic

al
 S

ys
te

m
s (

IC
CP

S)
 |

 9
78

-1
-6

65
4-

09
67

-4
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CP
S5

43
41

.2
02

2.
00

01
6

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The system timing parameters under malicious attack. The horizon between two consecutive restarts consists of

three phases: the initialization window, the exploit window, and the vulnerability window.

system operation into exploit, initialization, and vulnerabil-

ity phases which are expressed in terms of time windows

between restarts (Fig. 1).

• We propose (control) barrier certificate approach to safety

verification safety-critical control synthesis of CPS, respec-

tively. The barrier certificate can be computed efficiently

using sum-of-squares optimization, avoids time-consuming

online reachable set calculation, and is applicable to sys-

tems with nonlinearities and uncertainties. We show that

the proposed approach can be extended to systems with state

estimation by developing a data reload strategy.

• We validate the proposed approach using two case studies,

with one on warehouse temperature control system and one

on a two-dimensional non-linear system. We demonstrate

that the proposed approach guarantees the system to stay

within the safety set.

The remainder of this paper is organized as follows. Section 2

presents the related work. Section 3 presents the problem formula-

tion. Our proposed solution approaches for safety verification and

safety-critical control synthesis are presented in Section 4 and 5,

respectively. Section 6 studies a data reload strategy for CPS whose

state is not directly observed. Section 7 presents our case studies.

We conclude the paper in Section 8. Preliminary background and

the technical proofs are presented in the Appendix.

2 RELATEDWORK

Safety verification [31, 33] and control synthesis under safety con-

straints [5, 12, 14, 34] for CPS in the absence of adversaries or faults

have been studied. When faults occur in CPS, fault tolerant control

has been extensively studied. See [19] for a detailed survey for fault

detection, isolation, and reconfiguration. The faults considered are

caused by random failures, which are different with those caused

by malicious adversaries. This is because the adversaries are intelli-

gent and can strategically adjust their actions to behave differently

compared with random failures.

Cyber attacks can cause safety violations of the CPS, which can

damage the physical plant and threaten human operators [3, 18, 25].

There are two main approaches to address malicious attacks in

CPS. The first body of literature studies defending and protecting

CPS against different types of malicious attacks such as false data

injection [17, 32] and denial-of-service [10]. These works aim at

preventing the attacks by minimizing the detrimental impact from

the adversary. Another category of research focuses on designing

fault and intrusion tolerant systems [11, 29, 41] instead of attack

prevention. Some components are allowed to fail in intrusion toler-

ant systems, and will be recovered later. The present paper belongs

to the latter category. We propose an attack resilient approach for

safety-critical CPS in the presence of a malicious adversary that

can exploit the software vulnerabilities.

Our proposed approach mitigates the malicious attack using

a reactive restart approach to revert the system to its initial safe

state. Restart-based approaches have been proposed in existing

literature [1, 2, 6–8, 35, 36]. Proactive restart-based approaches

are proposed in [1, 6–8, 35, 36], whereas we consider a reactive

restart-based approach in this paper where restarts are triggered by

controller crashes. In practice, reactive restart occurs less frequently

compared with proactive restart, and thus provides higher system

availability. Moreover, we provide a verifiable safety guarantee for

CPS under malicious attacks using a barrier certificate approach.

Compared with the formal guarantees obtained using reachable

set computation in [1, 6, 35, 36], our approach provides guarantees

through offline construction of barrier certificates and is applicable

to nonlinear systems.

In [2], a fault-tolerant reactive restart-based approach is pro-

posed, assuming that the set of verified software components never

malfunction. Our paper considers the presence of a malicious ad-

versary who can intelligently corrupt the system including the

trustworthy and verified components to alter their outputs.

In Section 6, we will use a buffer to store system state estimate

to fasten initialization after each reboot, which can be viewed as a

variant of the checkpointing methods introduced in [23, 43].

3 PROBLEM FORMULATION

3.1 System and Adversary Models

We consider a CPS whose physical plant follows dynamics

�x = f (x) + д(x)u, (1)

where �x is the derivative of state variable x ∈ Rn with respect to

time t , x ∈ X ⊆ Rn is the system state, and u ∈ U ⊆ Rm is the

control input. We assume that the vector fields f and д are Lipschitz
continuous, andU is a bounded admissible input set. We denote

the solution to system (1) as x : R≥0 → Rn . Let C = {x : h(x) ≥
0} ⊆ X, where h : X → R is a continuously differentiable function.

We say set C is forward invariant if x(t) ∈ C for all t ≥ 0. Given a

state x , a feedback controller is defined as μ : X → U, which maps

from the state to the set of admissible inputs. Using the system state

x , the controller calculates the input u at each time to actuate the

physical plant. We denote the solution to Eqn. (1) under controller

105

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

μ as x μ (t). We say controller μ satisfies the safety constraint if

x μ (t) ∈ C, ∀t ≥ 0. (2)

For example, the safety set C for an autonomous vehicle is the set of

vehicle locations where the distance h(x) with the obstacle exceeds

a certain threshold. In this paper, we assume that h(x) is a control
barrier function (CBF) for the safety set C = {x : h(x) ≥ 0}. We

provide the definition of CBF in Appendix A.1. For scenarios where

h(x) is not a CBF, our proposed algorithms in Section 4 will report

a failure, indicating no feasible solution has been found. When a

failure is reported, we can first synthesize a CBF h̃(x) for a subset

C̃ ⊆ C of the safety set, and then apply our proposed approach.

The synthesis of CBF, which is not the focus of this work, has been

investigated in [13, 42].

We consider the presence of a malicious adversary in the CPS.

The objective of the adversary is to destabilize the physical plant

so that the system violates the safety constraint. The malicious

adversary exploits the vulnerabilities of the cyber component in the

CPS to intrude into the system. Once the adversary completes the

intrusion, it gains root access and can manipulate the code and/or

data in the CPS, e.g., via memory corruption attacks. In addition, we

assume that the adversary does not have physical access to the plant

and it takes τ > 0 time for the adversary to exploit the vulnerability

and gain root access in the system. In practice, parameter τ varies

depending on multiple factors including the vulnerabilities of the

system and the capability of the adversary.

Once the adversary gains root access in the CPS, it can manip-

ulate the control input u to be any ũ ∈ U. As a consequence, the

adversary manipulates the behavior of the system and cause the

physical plant to deviate from the safety set C, leading to safety

violation.

3.2 System Timing Parameters

In this subsection, we identify the relevant system timing parame-

ters that impact the system behavior and introduce how the CPS

evolves based on these timing parameters, as shown in Fig. 1. The

system observes the state x(t) at each time t and computes the feed-

back control input u based on x(t). Using the controller crash as

an indicator signal, a complete restoration of the CPS is triggered.

The restoration is achieved by restarting the whole system and

reloading a trusted and uncompromised image of the controller

to the system. After the restart, the CPS takes η amount of time

to complete the initialization, which consists of loading the oper-

ating system and controller, initializing the data structures, and

re-learning the system state. Parameter η varies for different sys-

tems, depending on multiple factors such as the operating system

and controller/processor frequency. In practice, the scale of η varies

from microseconds to seconds. For instance, restarting the rusEFI

engine control unit takes about 20ms [8]. Note that re-learning the

system state occurs after the operating system is reloaded and the

data structure initialization is completed. Thus there is no control

input applied to the physical plant during the initialization window.

After the initialization window, the adversary can exploit the

vulnerabilities in the system and attempt to gain root access in the

system during the exploit window. We denote the time required for

the adversary to complete exploitation and corresponding attacks

as τ . The existence of exploit window τ has been demonstrated

in real-world attacks that follow cyber kill chain [28]. The exploit

window can also be created by disabling the vulnerable external

interface utilized by the adversary [1, 35, 36]. In practice, the value

of τ varies depending on multiple factors such as the diversification

[16, 29] adopted by the system and the computation power of the

adversary. The software running by the CPS can be regarded as

safe and uncorrupted during the exploit window, even if the system

vulnerabilities are still present.

We note that the controllers are engineered to crash when they

receive erroneous inputs from the adversary [29]. If the adversary

gains root access to the system at time t , then the controller is

corrupted for a limited time. We let t ′ denote the time at which the

controller crashes and define the time interval [t, t ′], during which

the adversary can introduce arbitrary control inputs into the system,

as the vulnerability window (Fig. 1). The length ϕ of the vulnera-

bility window is determined by the sensitivity of the controller to

faults introduced by the adversary, and can be reduced by software

diversification, memory randomization, and other methods that

cause the system to crash following erroneous inputs. If the con-

troller compromises immediately after the adversary compromises

the system, then ϕ becomes zero.

3.3 Problem Statement

This subsection presents the problem statements. We investigate

the following two problems in this paper.

Problem 3.1 (Safety Verification). Given a feedback controller

in the form of u = Kx + b, compute (ϕ,η, τ) ∈ R≥0 × R≥0 × R≥0 so
that system (1) is safe with respect to C.

Problem 3.1 is a verification problem which studies the worst-

case behavior of the system so that we can verify the safety of

an affine controller [38]. Here we use ϕ and η to represent the

upper bounds of ϕ and η, and use τ to denote the lower bound

of τ . We assume that u = Kx + b ∈ U for all x ∈ X. We aim

at solving Problem 3.1 in an offline manner in order to minimize

online computations by resource-constrained CPS. We present the

solution to Problem 3.1 in Section 4.

Problem 3.2 (Safety-Critical Control Synthesis). Given

(ϕ,η, τ), synthesize a feedback controller during the exploit window
so that system (1) is safe with respect to C.

Problem 3.2 investigates the safety-critical control synthesis

problem when the system timing parameters are known. Problem

3.2 needs to be solved in an online fashion to calculate the feedback

controller. We formulate a quadratic program using control barrier

functions to solve Problem 3.2 in Section 5.

4 BARRIER CERTIFICATE-BASED SAFETY
VERIFICATION

This section presents the solution approach to Problem 3.1. We

first formulate the system operated under the timing parameters in

Section 3.2 as a hybrid system (See Appendix A.1 for background on

hybrid systems). We then develop sufficient conditions for system

safety using a barrier certificate approach. The developed sufficient

conditions are later verified using sum-of-squares (SOS) programs.

Preliminary background on hybrid systems and barrier certificates

can be found in Appendix A.1.

106

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

Figure 2: An illustration of the hybrid system H . The set of

discrete locations are depicted using circles, and the discrete

location transitions are described by arrows. The trigger for

each discrete location transition is labeled with each arrow.

Based on the system timing parameters introduced in Section

3.2, system (1) can be in one of the following three modes:

• Safe mode: The system is in the safe mode during the exploit

window. When the system is in the safe mode, the adversary

has not completed its attack, and thus the correct control

input u = Kx + b is applied to the system.

• Initialization mode: The system is in the initialization mode

during the initialization window. In this mode, no control

input is applied to the system.

• Unsafe mode: The system is in the unsafe mode during the

vulnerability window since the adversary gains the root

access in the system and thus can arbitrarily manipulate the

system behavior.

The transitions among these three modes introduce discrete be-

havior to the system model. Thus we construct a hybrid system

H = (X,L,S,S0, Inv, F , Σ) to to jointly model the continuous sys-

tem dynamics, the discrete transitions among different modes, and

the system timing parameters. Each element of the hybrid system

is given as follows.

• X is the set of continuous system states.

• L = {sa f e,unsaf e, init} is the set of discrete locations mod-

eling the modes of the system, where sa f e , unsaf e , and init
correspond to safe, unsafe, and initialization modes of the

system, respectively.

• S = X × L is the state space of the hybrid system.

• S0 ⊆ S is the set of initial states of the hybrid system.

• Inv : L → 2X is the invariant.

• F = { f
saf e

cl
, f init
cl
, f

unsaf e

cl
} is the set of continuous system

dynamics for each discrete location, where f
saf e

cl
(x ;K,b) =

f (x) + д(x)(Kx + b), f init
cl

(x) = f (x), and f
unsaf e

cl
(x,u) =

f (x) + д(x)u.
• Σ = {((x, sa f e), (x,unsaf e)), ((x,unsaf e), (x, init)),
((x, init), (x, sa f e))} is the set of discrete transitions among

the locations.

We show the constructed hybrid system in Fig. 2, where the discrete

locations L and the set of transitions in Σ are depicted using circles

and arrows, respectively. Note that the discrete location transitions

are defined by modes of the system, and no other discrete location

transitions are allowed except those modeled by Σ. Autonomous

transitions and time-dependent transition coexist in hybrid system

H . The transition from l = sa f e to l = unsaf e occurs when the

exploit window expires. The other transitions from l = unsaf e to
init and from l = init to sa f e are triggered by the restart command

and the completion of initialization, and are independent of the

control input u. According to the system timing parameters, the

time that the system spends in each discrete location is bounded

between two restarts. When the system is in location l = sa f e ,
the closed-loop dynamics are parameterized by K and b. When the

system is location l = init , no control input is applied to the system
and the closed loop dynamics are given as f init

cl
= f (x). When

the system is in location l = unsaf e , the control input u ∈ U is

maliciously chosen by the adversary, and thus needs to be treated

as a disturbance. The closed-loop dynamics in this case are given

as f
unsaf e

cl
= f (x) + д(x)u. Note that the continuous system state

does not incur any jump during any discrete location transition.

Given the hybrid system H , we develop sufficient conditions

under which controller u = Kx + b guarantees that system (1) is

safe with respect to C. Our idea is that if the system starts from

a ‘sufficiently safe’ state, then the system trajectory will not leave

the safety set C if we can limit the amount of time that the system

is compromised by the adversary. Since the system is correctly

controlled only when in location l = sa f e , we thus need to guar-

antee that the system will reach the ‘sufficiently safe’ state before

transitioning to location l = unsaf e . Based on the closed-loop sys-

tem dynamics in F , we then need to guarantee that (i) the system

trajectory remains in C when l = init and l = unsaf e by bounding

the lengths of the vulnerability window and initialization window,

and (ii) the system trajectory reaches the ‘sufficiently safe’ state

when l = sa f e . The sufficient condition to guarantee the safety of

system (1) under attack is given in the following theorem, whose

proof is presented in Appendix A.2.

Theorem 4.1. Consider the system in Eqn. (1) under attack and a

safety set C. Let h1(x) = h(x) − c1 and h2(x) = h1(x) − c2. We define

C1 = {x : h1(x) ≥ 0} and C2 = {x : h2(x) ≥ 0}. Suppose x(0) ∈ C2.

If there exist constants c1, c2 ≥ 0 and a class K function α(·) such
that

∂h2
∂x

(x)f
saf e

cl
(x ;K,b) ≥

c1 + c2
τ
, ∀x ∈ C \ C2 (3a)

∂h2
∂x

(x)f
saf e

cl
(x ;K,b) ≥ −α(h2(x)), ∀x ∈ C2 (3b)

∂h

∂x
(x)f init

cl
(x) ≥ −

c1
η
, ∀x ∈ C (3c)

∂h

∂x
(x)f

unsaf e

cl
(x,u) ≥ −

c2
ϕ
, ∀(x,u) ∈ C1 ×U (3d)

then system (1) is safe with respect to C.

Theorem 4.1 indicates that if we can find parameters c1, c2, ϕ, η,
and τ , then the system is safe using controller u = Kx +b. However,
verifying the conditions in Eqn. (3) is not straightforward for arbi-

trary systems. When the the following semi-algebraic conditions

107

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

are satisfied, we show that we can verify Eqn. (3) via a sum-of-

squares (SOS) program. We make the following assumption.

Assumption 4.1. We assume that vector field fcl (x) and function
h(x) are polynomial in x . In addition, we let U = {u : v(u) ≥ 0},

where v(u) is polynomial in u.

When Assumption 4.1 holds, we can verify the conditions in Eqn.

(3) using the following SOS program.

Proposition 4.2. If there exist parameters c1, c2, z1, z2, and z3
and a classK function α(·) so that the following expressions are SOS:

∂h2
∂x

(x)f
saf e

cl
(x ;K,b) − z3 + l(x)h(x)h2(x) (4a)

∂h2
∂x

(x)f
saf e

cl
(x ;K,b) + α(h2(x)) − r (x)h2(x) (4b)

∂h

∂x
(x)f init

cl
(x) + z1 − p(x)h(x) (4c)

∂h

∂x
(x)f

unsaf e

cl
(x,u) + z2 − q(x,u)h1(x)v(u) (4d)

where l(x), r (x),p(x),q(x,u) are SOS and z1, z2, z3 ≥ 0, then c1, c2,
ϕ, η, and τ satisfying

c1
η
= z1,

c2
ϕ
= z2,

c1 + c2
τ

= z3 (5)

meet the conditions in Eqn. (3).

The proof of Proposition 4.2 can be found in Appendix A.2. Propo-

sition 4.2 implies that we can verify the safety of system (1) by the

existence of SOS polynomials l(x), p(x), r (x), and q(x,u) along with
non-negative scalars c1, c2, z1, z2 and z3 such that Eqn. (4) and (5)

are satisfied. However, directly verifying the existence of all the

aforementioned variables in Eqn. (4) is challenging since it requires

us to solve for C1, C2 and parameters ϕ, η, and τ simultaneously,

leading to bilinearities in Eqn. (4). In the remainder of this section,

we address this challenge by developing approximate solution algo-

rithms to verify the existence of these variables in Eqn. (4). The idea

is to constrain Eqn. (3) for all x ∈ C to convert the bilinear terms

in Eqn. (4) to linear terms. We consider a relaxation that replaces

h1(x) and h2(x) in the last terms of Eqn. (4a) to Eqn. (4d) with h(x).
This relaxation eliminates variables c1 and c2 at the expense of

conservatively constraining the system behavior over C.

Lemma 4.3. If there exist parameters c1, c2, z1, z2, and z3 so that
the following expressions are SOS:

∂h2
∂x

(x)f
saf e

cl
(x ;K,b) − z3 − l(x)h(x) (6a)

∂h

∂x
(x)f init

cl
(x) + z1 − p(x)h(x) (6b)

∂h

∂x
(x)f

unsaf e

cl
(x,u) + z2 − q(x,u)h(x)v(u) (6c)

where l(x),p(x),q(x,u) are SOS polynomials and z1, z2, z3 ≥ 0, then

c1, c2, ϕ, η, and τ satisfying

c1
η
= z1,

c2
ϕ
= z2,

c1 + c2
τ

= z3 (7)

Algorithm 1 Solution algorithm for computing ϕ, η, and τ for

worst-case c1 and c2.

1: Input: Parameters ϵ1 and ϵ2. The maximum value c1 and c2
for c1 and c2, respectively

2: Output: Parameters ϕ, η, τ , c1, and c2
3: Initialization: Initialize cU B,1 ← c1, cLB,1 ← 0, cU B,2 ← c2,

cLB,2 ← 0

4: while |cU B,1 − cLB,1 | ≥ ϵ1 or |cU B,2 − cLB,2 | ≥ ϵ2 do
5: c1 ← (cU B,1 + cLB,1)/2, c2 ← (cU B,2 + cLB,2)/2
6: if Eqn. (4) is feasible then

7: if z1 = 0 then

8: η ← ∞

9: else

10: η ← c1/z1
11: end if

12: if z2 = 0 then

13: ϕ ← ∞

14: else

15: ϕ ← c2/z2
16: end if

17: if z3 = 0 then

18: τ ← (c1 + c2)/(infx ∈C f
saf e

cl
(x ;K,b))

19: else

20: τ ← (c1 + c2)/z3
21: end if

22: (ϕ,η, τ) ← (ϕ,η, τ)
23: cU B,1 ← c1, cU B,2 ← c2
24: else

25: cLB,1 ← c1, cLB,2 ← c2
26: end if

27: end while

28: return cU B,1, cU B,2, ϕ, η, and τ

meet the following conditions

∂h2
∂x

(x)f
saf e

cl
(x ;K,b) ≥

c1 + c2
τ
, ∀x ∈ C (8a)

∂h

∂x
(x)f init

cl
(x) ≥ −

c1
η
, ∀x ∈ C (8b)

∂h

∂x
(x)f

unsaf e

cl
(x,u) ≥ −

c2
ϕ
, ∀(x,u) ∈ C ×U (8c)

The proof of Lemma 4.3 can be found in Appendix A.2. Lemma

4.3 indicates that the timing parameters ϕ, η, and τ can be solved

using an SOS program whose constraint set is given as Eqn. (6).

Note that h2(x) ≥ 0 =⇒ h1(x) ≥ 0 =⇒ h(x) ≥ 0. We can thus

characterize the relaxation used in Lemma 4.3 as follows.

Corollary 4.4. Any feasible solution z1, z2, z3 to Eqn. (4) is also
feasible to Eqn. (6).

In some scenarios, the relaxation in Lemma 4.3 may be overly

conservative, rendering Eqn. (6) to be infeasible. To this end, we

present two approximate solution algorithms to compute ϕ, η, and
τ , along with sets C1 and C2. Our idea is that the bilinear terms in

Eqn. (4) become linear once one of the variables is given. Thus we

can fix one parameter and search for the other that yields Eqn. (4)

to be feasible.

108

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

We first discuss how to compute the timing parameters ϕ, η,
and τ if we are given sets C1 and C2. Assume that we know the

maximum and minimum values of c1 and c2. The maximum and

minimum values of c1 and c2 can be chosen as c̄1 ∈ (0, supx ∈C h(x))
and c̄2 = supx ∈C h(x) − c̄1. We then aim at computing the timing

parameters for the worst-case choices of C1 and C2. The worst-case

choices of C1 and C2 are defined as C1 = {x : h(x) − c1 ≥ 0} and

C2 = {x : h1(x) − c2 ≥ 0}, respectively, where c1 and c2 are the
lower bounds of parameters c1 and c2 that renders the SOS program
in Eqn. (4) to be feasible. We note that as c1 and c2 decrease, the
volumes of C1 and C2 increase, which tolerates less delay for the

controller crash when l = unsaf e and less time consumption for

initialization in the worst-case.

We propose Algorithm 1 to compute the parameters. Algorithm

1 first initializes the upper and lower bounds for the search range

of c1 and c2, respectively. We use subscript UW to represent upper

bound and subscript LB to represent lower bound. Algorithm 1

then verifies if the expressions in Eqn. (4) are SOS for given c1
and c2 computed at line 5. When the values of c1 and c2 are given,
verifying the feasibility of Eqn. (4) can be done via an SOS program.

If there exist SOS polynomials l(x), p(x), r (x), and q(x,u) such that

Eqn. (4) is feasible, then Algorithm 1 updates the upper bounds

of search ranges to decrease the values of c1 and c2 as shown in

line 23. Otherwise the lower bounds are updated (line 25). This

process is repeated until the upper and lower bounds of both c1
and c2 become close.

Algorithm 2 Solution algorithm for computing c1 and c2 for worst-
case ϕ, η, and τ .

1: Input: Parameters ϵ1, ϵ2 and ϵ3. The maximum value ϕU B ,

ηU B , and τU B and minimum values ϕLB , ηLB , and τLB for ϕ, η
and τ , respectively

2: Output: Parameters ϕ, η, τ , c1, and c2
3: Initialization: Initialize ϕU B , ϕLB , ηU B , ηLB , τU B , and τLB
4: while |ϕU B−ϕLB | ≥ ϵ1 or |ηU B−ηLB | ≥ ϵ2 or |τU B−τLB | ≥ ϵ3

do

5: ϕ ← (ϕU B + ϕLB)/2, η ← (ηU B + ηLB)/2, τ ← (τU B +

τLB)/2

6: c1 ← max
{
−η infx ∈C

{
∂h
∂x (x)f

init
cl

(x)
}
, 0
}

7: c2 ← max
{
−ϕ infx ∈C,u ∈U

{
∂h
∂x (x)f

unsaf e

cl
(x,u)

}
, 0
}

8: z1 ← c1/η, z2 ← c2/ϕ, z3 ← (c1 + c2)/τ
9: if Eqn. (4) is feasible then

10: (c1, c2) ← (c1, c2)
11: ϕLB ← ϕ, ηLB ← η, τU B ← τ
12: else

13: ϕU B ← ϕ, ηU B ← η, τLB ← τ
14: end if

15: end while

16: return c1, c2, ϕU B , ηU B , and τU B

We next investigate how to compute c1 and c2 given the worst-

case timing parameters ϕ, η, and τ . We assume that the upper and

lower bounds of the timing parameters are given. Here we say a

choice of ϕ is worse than ϕ ′ if ϕ < ϕ ′ since a narrower vulnerability
window indicates that the crash signal needs to be issued in a more

timely manner and thus requires a more delicate design. Similar

arguments can be made for η and τ .
We use Algorithm 2 to compute c1 and c2, along with the worst-

case timing parameters. Algorithm 2 first initializes the search range

for ϕ, τ , and η. Similar to Algorithm 1, we use subscripts UB and

LB to represent upper and lower bounds, respectively. Then at each

iteration from line 4 to 15, Algorithm 2 computes c1 and c2 using
the given values of ϕ, τ , and η as shown in lines 6 and 7. Note that

lines 6 and 7 bound the values of c1 and c2 from above since we

search over all x ∈ C. Particularly, if c1 or c2 is zero, it indicates that
the closed-loop dynamics are monotonically non-decreasing, which

yields largest C1 or C2. Given a pair of (c1, c2) that is non-zero, we
verify if Eqn. (4) is feasible under this choice of (c1, c2). If Eqn. (4) is
feasible, we then update the lower bounds of ϕ and η and the upper

bound of τ (line 11). Otherwise we update the upper bounds of ϕ
and η and the lower bound of τ (line 13).

5 CONTROL BARRIER FUNCTION-BASED
SAFETY-CRITICAL CONTROL SYNTHESIS

In this section, we propose a control barrier function-based ap-

proach to synthesize a controller with safety guarantee to solve

Problem 3.2. Given ϕ, η, and τ , we can approximately calculate c1
and c2 as

c1 = max

{
−η inf

x ∈C

{
∂h

∂x
(x)f (x)

}
, 0

}
, (9a)

c2 = max

{
−ϕ inf

x ∈C,u ∈U

{
∂h

∂x
(x)f (x) +

∂h

∂x
(x)д(x)u

}
, 0

}
. (9b)

Note that the synthesized controller needs to guarantee that the

system remains in C2 before the discrete transition from location

l = sa f e to unsaf e occurs. Moreover, it needs to ensure that the

system trajectory reaches C2 during the exploit window. Using

parameters ϕ, η, τ , c1, and c2, we can compute a feedback controller

satisfying these two properties as follows.

Proposition 5.1. During the exploit window, if the control input

at each time t is computed as

min
u ∈U

u�Qu (10a)

s.t.
∂h

∂x
(x)f (x) +

∂h

∂x
(x)д(x)u + α(h(x)) ≥ 0, (10b)

∂h2
∂x

(x)f (x) +
∂h2
∂x

(x)д(x)u + γ sgn(h2(x))|h2(x)|
ρ ≥ 0

(10c)

where Q is a positive definite matrix, and parameters ρ ∈ [0, 1) and

γ > 0 are chosen so that τ ≥ 1
γ (1−ρ)

|c1 + c2 |
1−ρ , then system (1)

remains safe and reaches C2 within finite time τ .

Proof. The proposition holds by the properties of ZCBF and

FCBF presented in Lemma A.3 and Lemma A.4, respectively. �

In Proposition 5.1, we can first pick some ρ ∈ [0, 1). Then we

can choose parameter γ = 1
τ (1−ρ)

|c1 + c2 |
1−ρ for any given τ , c1,

and c2. Proposition 5.1 indicates that we can synthesize a controller

when the closed-loop system is at location l = sa f e by solving a

sequence of quadratic programs (QP) when U is a convex set.

109

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

6 SAFETY VERIFICATION FOR CPS WITH
STATE ESTIMATION

In Section 4 and 5, we assume that the system state x is observable.

However, this may not always hold for all CPS. In practice, we rely

on sensor measurements to estimate the system state. We denote

the state estimate of system state x as x̂ . In this case, the control

input is calculated as u = Kx̂ + b using the estimate. Incorporating

state estimation imposes the following challenges: (i) the estimate

can be compromised by the adversary if the system is compromised,

and (ii) the system needs additional re-learning time during the ini-

tialization window to re-estimate the system state after the reboot.

This section presents a data reload-based approach to guarantee the

safety of the system when the system state is not directly observed.

Figure 3: A FIFO buffer of size M is used to checkpoint the

historical state estimate. The red region represents the esti-

mates that may be compromised, and the green region rep-

resents the estimates that are safe.

We introduce an additional FIFO buffer of size M ≥ ϕ to store

the previous state estimate for later reload use, as shown in Fig. 3,

where ϕ can be chosen as the maximum value determined by the

CPS design. The storage should allow read and write instructions.

Moreover, the data in storage should not be wiped after the system

reboot. Finally, we assume that the adversary can manipulate the

data to be pushed into the buffer x̂(t), while it cannot compromise

the data that has already been stored in the buffer x̂(t ′) for all
t ′ < t . In addition, we assume that the time consumption required

for reloading data from storage is negligible compared with re-

learning, and thus data reload is instantaneous.

In the following, we study if we can shorten the re-learning

process by leveraging data reload from the buffer. Suppose the

system reboots at time t . Then after the initialization, the system

reloads x̂(t ′) as the state estimate, where t ′ = t−ϕ is the most recent

time instant when the system is guaranteed not to be compromised

by the adversary. By reloading x̂(t ′), the system saves the estimation

time. We let the state estimate evolves as the following dynamics:

�̂x = f (x̂) + д(x̂)(Kx̂ + b) + L (w(x,Kx̂ + b) −w(x̂,Kx̂ + b)) ,

wherew(x,u) is the observation function. The last term L(w(x,Kx̂+
b) −w(x̂,Kx̂ + b)) allows the system estimate x̂ to converge to x
when x̂ � x , and to correctly track x when x̂ = x .

We definey = [x, x̂]�. Then following a similar analysis as given

in Section 4, we can construct a hybrid system H = (Y,L,S,S0,

Inv, F , Σ), whereF = { f
saf e

cl
(y;K,b), f init

cl
(y), f

unsaf e

cl
(y,u)}with

f
saf e

cl
(x ;K,b) = f (x) + д(x)(Kx̂ + b)

f
saf e

cl
(x̂ ;K,b) = f (x̂) + д(x̂)(Kx̂ + b) + L(w(x,Kx̂ + b)

−w(x̂,Kx̂ + b))

f
saf e

cl
(y;K,b) =

[
f
saf e

cl
(x ;K,b)

f
saf e

cl
(x̂ ;K,b)

]
,

f init
cl

(y) =

[
f init
cl

(x)

0

]
, f

unsaf e

cl
(y,u) =

[
f
unsaf e

cl
(x,u)

0

]
.

We define d(y) = c3− ‖x − x̂ ‖ for some c3 > 0 to model the set of

states y where the distance between the state estimate x̂ and state

x upper bounded by c3. We then develop the sufficient conditions

under which the system is guaranteed to be safe.

Proposition 6.1. Consider the hybrid system H = (Y,L,S,S0,

Inv, F , Σ) and a safety set C. Let d(y) = c3 − ‖x − x̂ ‖. If there exist
constants c1, c2 ≥ 0, c3 > 0 and class K functions α1(·),α2(·) such
that

∂d

∂y
(y)f

saf e

cl
(y;K,b) ≥ −α1(d(y)), ∀x ∈ C, x̂ ∈ B(x) (11a)

∂h2
∂y

(y)f
saf e

cl
(y;K,b) ≥

c1 + c2
τ
, ∀x ∈ C \ C2, x̂ ∈ B(x) (11b)

∂h2
∂y

(y)f
saf e

cl
(y;K,b) ≥ −α2(h2(x)), ∀x ∈ C2, x̂ ∈ B(x) (11c)

∂h

∂y
(y)f init

cl
(y) ≥ −

c1
η
, ∀x ∈ C, x̂ ∈ B(x) (11d)

∂h

∂y
(y)f

unsaf e

cl
(y,u) ≥ −

c2
ϕ
, ∀(x, x̂,u) ∈ C1 × B(x) × U (11e)

where B(x) = {x̂ : c3 − ‖x − x̂ ‖ ≥ 0}, then the system is safe with

respect to C.

The proof of Proposition 6.1 can be found in Appendix A.2. Using

the sufficient conditions in Eqn. (11), we can verify the safety of

CPS whose states are not directly observed.

7 SIMULATION CASE STUDIES

In this section, we present two case studies. The first study is on a

warehouse temperature control system [1, 40], and the second one

is on a non-linear dynamical system introduced in [21, 33].

7.1 Warehouse Temperature Control System

In this subsection, we consider a warehouse temperature control

system, consisting of a heater and cooler to the room and a condi-

tioner in the floor [1, 40]. Let the temperature of the floor, room, and

outside environment be x1, x2, and T , respectively. The dynamics

modeling the heat transfer between the warehouse and outside

environment are given as[
�x1
�x2

]
=

[
−1.8087(x1 − x2)

0.4628(x2 −T) + 22.2985(x1 − x2)

]

+

[
1

6000×115 , 0

0 1
69.96×800

] [
u1
u2

]
. (12)

110

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 4: Fig. 4a shows the evolution of room temperature x2 in system (12) over time when an affine controller u = Kx +
b is applied during the exploit window. Fig. 4b shows the room temperature evolution when the safety-critical controller

synthesized using Proposition 5.1 is applied during the exploit window, with parameters α(h(x)) = h(x), ρ = 0.99 and γ = 20. In

Fig. 4a and 4b, the dashed lines represent the boundaries of C, C1, and C2. The system trajectories are shown using solid lines.

The parts of the trajectory in green, red, and blue colors represent the parts corresponding to the exploit window, vulnerability

window, and initialization window, respectively.

Here the coefficients are jointly determined by the mass of the floor

and the air inside the room, the heat capacities of the floor and air,

and the heat transfer coefficients. Control inputs u1 and u2 model

the heat transfer from the floor heater to the floor, and heat transfer

from the room heater to the room air, respectively. More detailed

explanations on the dynamics in Eqn. (12) can be found in [40].

We set the safety set for the temperature control system as

C = {x : x2 ∈ [20°C, 30°C]}, i.e., the room temperature should

be maintained within 20°C to 30°C . In this case, we define h(x) =
(30− x2)(x2 − 20). We design an affine controller u = Kx +b where

K =

[
7210 0

0 7210

]
,b =

[
1100 0

0 1100

]
,

using which the room temperature converges to safety set C. We let

the outside temperatureT = 10°C . We set the initial floor and room

temperature as x1(0) = 23°C and x2(0) = 25°C , respectively. Using
Algorithm 1, we obtain that ϕ = 40.073, η = 40.074, and τ = 80.147.

In addition, we have that C1 = {x2 : x2 ∈ [20.4174, 29.5826]} and

C2 = {x2 : x2 ∈ [20.8769, 29.1231]}. We assume that the controller

is updated every 1s , and simulate the room temperature using

our proposed approach. We mark the time period for the exploit

window, vulnerability window, and initialization window using

green, red, and blue colors, respectively, as shown in Fig. 4a. We

observe that the room temperature x2 is bounded within C, and

thus our proposed approach guarantees the safety property.

We investigate the controller synthesis for warehouse temper-

ature control system using the quadratic program presented in

Proposition 5.1. We let α(h(x)) = h(x), ρ = 0.99, and γ = 20. The

timing parameters are computed by Algorithm 1. The evolution of

the room temperature over time is then presented in Fig. 4b. We

observe that the room temperature is guaranteed to stay within

[20°C, 30°C]. Moreover, the controller implemented during the ex-

ploit window (i.e., when the hybrid system is at location l = sa f e)
tends to maintain the room temperature around 26.58°C (i.e., the

sharp decrease after the initialization mode) so as to tolerate the

potential increase or decrease introduced by the adversary during

the future vulnerability window.

7.2 System with Polynomial Dynamics

In this subsection, we demonstrate that our proposed approach is

applicable to non-linear systems. We consider a two-dimensional

system whose dynamics are given as[
�x1
�x2

]
=

[
x2

−x1 +
1
3x

3
1 − x2

]
+

[
0.1

0.1

]
u (13)

where x = [x1, x2]
� ∈ X ⊆ R2 is the system state, and u ∈ U ⊆ R

is the control input. We let C = {x : h(x) ≥ 0} be the safety set,

where h(x) is given as

h(x) = 0.1973x41 + 0.42741x
3
1x2 + 0.17451x

2
1x

2
2 + 0.1079x1x

3
2

−8.335×10−7x42+3.3808×10
−6x31+3.0606×10

−6x21x2+1.0894x1x
2
2

+ 0.43842x32 − 1.1838x21 − 1.2822x1x2 − 2.1238x22 − 5.7966× 10−7x1

− 6.5873 × 10−7x2 + 0.014414.

We represent the boundary of the safety set, i.e., {x : h(x) = 0}

using the dashed black line in Fig. 5a and 5b. The system in Eqn.

(13) can be stabilized via an affine controller u = Kx + b, where
K = [13,−14.5] and b = −15 are designed such that the state x
converges to safety set C.

We study the safety verification problem of system (13) when

an affine controller u = [13,−14.5]x − 15 is applied. Note that

when the system is compromised by the adversary (i.e., during

111

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Figure 5: Fig. 5a shows the system trajectory for system (13) generated using an affine controller u = [13,−14.5]x − 15 during

the exploit window with parameters c1 = c2 = 5.0085, ϕ = 8, η = 8.4, and τ = 16.9 calculated by Algorithm 1. Fig. 5b shows the

system trajectory for system (13) generated using the the safety-critical controller during the exploit windowwith parameters

α(h(x)) = 2h(x), ρ = 0.99 and γ = 10. In both figures, the dashed lines represent the boundaries of C, C1, and C2. The system

trajectories are represented using solid lines. The parts of the trajectories in green, red, and blue colors represent the parts

corresponding to the exploit window, vulnerability window, and initialization window, respectively.

the vulnerability window), the affine controller is manipulated to

arbitrary ũ ∈ U such that ũ � Kx + b. In Fig. 5a, we present the

vector fields of the closed-loop dynamics for f
saf e

cl
and f

unsaf e

cl
using cyan and magenta arrows, respectively.

We set the upper and lower bounds of c1 and c2 in Algorithm

1 as 300 and 0, respectively. Using Algorithm 1, we obtain that

c1 = c2 = 5.0085. In Fig. 5a and 5b, the boundaries of sets C1 and

C2 are plotted using the dashed lines in blue and orange colors,

respectively. In addition, we have that ϕ = 8, η = 8.4, and τ = 16.9.

We set the controller update period as 0.05s , i.e., frequency of 20Hz,
and simulate the system trajectory with initial state x(0) = [3, 4]�

as shown in Fig. 5a. We observe that the system is always safe with

respect to C despite the system moves towards the boundary of the

safety set when the adversary compromises the system (the part of

the trajectory in red color). Moreover, the system is steered away

from the boundary of C during the exploit window (i.e., the part of

the trajectory in green color).

We finally consider the safety-critical control synthesis prob-

lem stated in Problem 3.2. We synthesize the controller during the

exploit window using the quadratic program formulated in Propo-

sition 5.1. We choose α(·) as α(h(x)) = 2h(x). We also let ρ = 0.99

and γ = 10. Let the timing parameters and c1, c2 be calculated by

Algorithm 1. We present the system trajectory in Fig. 5b. We ob-

serve that the safety property with respect to C is guaranteed using

the synthesized safety-critical controller.

8 CONCLUSION

In this paper, we studied the problem of ensuring safety of CPS

under malicious cyber attacks. We proposed a reactive restart ap-

proach with verifiable safety guarantees for a class of CPS under

malicious cyber attacks. The proposed approach restarts the sys-

tem when the controller crashes following faults or attacks. We

presented a hybrid model of the system behavior under malicious

attack and reactive restart. We developed sufficient conditions for

safety of the hybrid model using a barrier certificate approach.

We formulated a sum-of-squares program and developed two ap-

proximate solution algorithms to verify the developed sufficient

conditions and compute the timing parameters for the CPS. We

proposed a data reload strategy for safety verification of CPS whose

states need to be estimated using sensor measurements, which re-

duces the time needed for CPS to re-learn the system state after

restart. We developed a quadratic program subject control barrier

function constraints to compute the control input at each time dur-

ing the exploit window to solve the safety-critical control synthesis

problem. We proved that the synthesized controller guarantees the

safety of the system.We demonstrated the proposed approach using

two case studies on a warehouse temperature control system and a

two-dimensional non-linear system. We showed that our proposed

approach guaranteed the safety property for both case studies.

ACKNOWLEDGEMENTS

We thank Dr. J. Sukarno Mertoguno, Dr. Marco Caccamo, and the

anonymous reviewers for all the helpful discussions and comments.

REFERENCES

[1] Fardin Abdi, Chien-Ying Chen, Monowar Hasan, Songran Liu, Sibin Mohan, and
Marco Caccamo. 2018. Guaranteed physical security with restart-based design
for cyber-physical systems. In 2018 ACM/IEEE 9th International Conference on
Cyber-Physical Systems (ICCPS). ACM/IEEE, 10–21.

[2] Fardin Abdi, Rohan Tabish,Matthias Rungger, Majid Zamani, andMarco Caccamo.
2017. Application and system-level software fault tolerance through full system
restarts. In ACM/IEEE 8th International Conference on Cyber-Physical Systems
(ICCPS). ACM/IEEE, 197–206.

112

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

[3] Homa Alemzadeh, Daniel Chen, Xiao Li, Thenkurussi Kesavadas, Zbigniew T
Kalbarczyk, and Ravishankar K Iyer. 2016. Targeted attacks on teleoperated
surgical robots: Dynamic model-based detection and mitigation. In 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
IEEE, 395–406.

[4] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-H
Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. 1995.
The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 1
(1995), 3–34.

[5] Aaron D Ames, Xiangru Xu, Jessy W Grizzle, and Paulo Tabuada. 2016. Control
barrier function based quadratic programs for safety critical systems. IEEE Trans.
Automat. Control 62, 8 (2016), 3861–3876.

[6] T Arauz, JM Maestre, R Romagnoli, B Sinopoli, and EF Camacho. 2021. A linear
programming approach to computing safe sets for software rejuvenation. IEEE
Control Systems Letters 6 (2021), 1214–1219.

[7] Miguel Arroyo, Hidenori Kobayashi, Simha Sethumadhavan, and Junfeng Yang.
2017. FIRED: frequent inertial resets with diversification for emerging commodity
cyber-physical systems. arXiv preprint arXiv:1702.06595 (2017).

[8] Miguel A Arroyo, M Tarek Ibn Ziad, Hidenori Kobayashi, Junfeng Yang, and
Simha Sethumadhavan. 2019. YOLO: frequently resetting cyber-physical systems
for security. In Autonomous Systems: Sensors, Processing, and Security for Vehicles
and Infrastructure 2019, Vol. 11009. International Society for Optics and Photonics,
110090P.

[9] Fredrik Björck, Martin Henkel, Janis Stirna, and Jelena Zdravkovic. 2015. Cyber
resilience–fundamentals for a definition. In New Contributions in Information
Systems and Technologies. Springer, 311–316.

[10] Alvaro A Cárdenas, Saurabh Amin, and Shankar Sastry. 2008. Research Chal-
lenges for the Security of Control Systems.. In Proceedings of the 3rd Conference
on Hot Topics in Security, Vol. 5. USENIX Association, 15.

[11] Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and
proactive recovery. ACM Transactions on Computer Systems (TOCS) 20, 4 (2002),
398–461.

[12] Mo Chen, Qie Hu, Jaime F Fisac, Kene Akametalu, Casey Mackin, and Claire J
Tomlin. 2017. Reachability-based safety and goal satisfaction of unmanned aerial
platoons on air highways. Journal of Guidance, Control, and Dynamics 40, 6
(2017), 1360–1373.

[13] Andrew Clark. 2021. Verification and Synthesis of Control Barrier Functions.
arXiv preprint arXiv:2104.14001 (2021).

[14] Max H Cohen and Calin Belta. 2020. Approximate optimal control for safety-
critical systems with control barrier functions. In 59th IEEE Conference on Decision
and Control (CDC). IEEE, 2062–2067.

[15] Interagency Security Committee. 2015. Presidential policy directive 21 implemen-
tation: An Interagency security committee white paper. White Paper. Cybersecu-
rity & Infrastructure Security Agency. https://www.cisa.gov/sites/default/files/
publications/ISC-PPD-21-Implementation-White-Paper-2015-508.pdf

[16] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and
Fabian Monrose. 2015. Isomeron: Code randomization resilient to (Just-In-Time)
return-oriented programming. In The Network and Distributed System Security
(NDSS) Symposium. The Internet Society, 323–338.

[17] Hamza Fawzi, Paulo Tabuada, and Suhas Diggavi. 2014. Secure estimation and
control for cyber-physical systems under adversarial attacks. IEEE Transactions
on Automatic control 59, 6 (2014), 1454–1467.

[18] Andy Greenberg. 2015. Hackers remotely kill a Jeep on the highway–with me in
it. https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

[19] Inseok Hwang, Sungwan Kim, Youdan Kim, and Chze Eng Seah. 2009. A survey
of fault detection, isolation, and reconfiguration methods. IEEE Transactions on
Control Systems Technology 18, 3 (2009), 636–653.

[20] Radoslav Ivanov, Miroslav Pajic, and Insup Lee. 2016. Attack-resilient sensor
fusion for safety-critical cyber-physical systems. ACM Transactions on Embedded
Computing Systems (TECS) 15, 1 (2016), 1–24.

[21] Hassan K Khalil. 2002. Nonlinear Systems. Prentice hall.
[22] John C Knight. 2002. Safety critical systems: challenges and directions. In 24th

International Conference on Software Engineering. IEEE, 547–550.
[23] Fanxin Kong, Meng Xu, JamesWeimer, Oleg Sokolsky, and Insup Lee. 2018. Cyber-

physical system checkpointing and recovery. In 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS). ACM/IEEE, 22–31.

[24] Karl Koscher, Stefan Savage, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,
Alexei Czeskis, Damon McCoy, Brian Kantor, Danny Anderson, Hovav Shacham,
and Stefan Savage. 2010. Experimental security analysis of a modern automobile.
In IEEE Symposium on Security and Privacy. IEEE, 447–462.

[25] M. Robert Lee, J. Michael Assante, and Tim Conway. 2016. Analysis of the
cyber attack on the Ukrainian power grid. https://www.eisac.com/cartella/
Asset/00006542/TLP_WHITE_E-ISAC_SANS_Ukraine_DUC_6_Modular_ICS_
Malware%20Final.pdf?parent=64412.

[26] Anqi Li, Li Wang, Pietro Pierpaoli, and Magnus Egerstedt. 2018. Formally cor-
rect composition of coordinated behaviors using control barrier certificates. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE,
3723–3729.

[27] Mohammad Hossein Manshaei, Quanyan Zhu, Tansu Alpcan, Tamer Başar, and
Jean-Pierre Hubaux. 2013. Game theory meets network security and privacy.
ACM Computing Surveys (CSUR) 45, 3 (2013), 1–39.

[28] Lockheed Martin. [n. d.]. The Cyber Kill Chain. https://www.lockheedmartin.
com/en-us/capabilities/cyber/cyber-kill-chain.html

[29] J Sukarno Mertoguno, Ryan M Craven, Matthew S Mickelson, and David P Koller.
2019. A physics-based strategy for cyber resilience of CPS. InAutonomous Systems:
Sensors, Processing, and Security for Vehicles and Infrastructure 2019, Vol. 11009.
International Society for Optics and Photonics, 110090E.

[30] Yilin Mo and Bruno Sinopoli. 2010. False data injection attacks in control systems.
In Preprints of the 1st workshop on Secure Control Systems. 1–6.

[31] Miroslav Pajic, Zhihao Jiang, Insup Lee, Oleg Sokolsky, and Rahul Mangharam.
2014. Safety-critical medical device development using the UPP2SF model trans-
lation tool. ACM Transactions on Embedded Computing Systems (TECS) 13, 4s
(2014), 1–26.

[32] Miroslav Pajic, James Weimer, Nicola Bezzo, Paulo Tabuada, Oleg Sokolsky, Insup
Lee, and George J Pappas. 2014. Robustness of attack-resilient state estimators. In
ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS). ACM/IEEE,
163–174.

[33] Stephen Prajna, Ali Jadbabaie, and George J Pappas. 2007. A framework for
worst-case and stochastic safety verification using barrier certificates. IEEE Trans.
Automat. Control 52, 8 (2007), 1415–1428.

[34] Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. 2021.
Learning safe multi-agent control with decentralized neural barrier certificates.
arXiv preprint arXiv:2101.05436 (2021).

[35] Raffaele Romagnoli, Paul Griffioen, Bruce H Krogh, and Bruno Sinopoli. 2020.
Software rejuvenation under persistent attacks in constrained environments.
IFAC-PapersOnLine 53, 2 (2020), 4088–4094.

[36] Raffaele Romagnoli, Bruce H Krogh, and Bruno Sinopoli. 2019. Design of software
rejuvenation for CPS security using invariant sets. In 2019 American Control
Conference (ACC). IEEE, 3740–3745.

[37] Yasser Shoukry and Paulo Tabuada. 2015. Event-triggered state observers for
sparse sensor noise/attacks. IEEE Trans. Automat. Control 61, 8 (2015), 2079–2091.

[38] Joelle Skaf and Stephen P Boyd. 2010. Design of affine controllers via convex
optimization. IEEE Trans. Automat. Control 55, 11 (2010), 2476–2487.

[39] Julia E Sullivan and Dmitriy Kamensky. 2017. How cyber-attacks in Ukraine
show the vulnerability of the US power grid. The Electricity Journal 30, 3 (2017),
30–35.

[40] Siri Hofstad Trapnes. 2013. Optimal temperature control of rooms for minimum
energy cost. Master’s thesis. Institutt for Kjemisk Prosessteknologi.

[41] Paulo Esteves Veríssimo, Nuno Ferreira Neves, and Miguel Pupo Correia. 2003.
Intrusion-tolerant architectures: Concepts and design. In Architecting Dependable
Systems. Springer, 3–36.

[42] Qiuye Wang, Mingshuai Chen, Bai Xue, Naijun Zhan, and Joost-Pieter Katoen.
2021. Synthesizing Invariant Barrier Certificates via Difference-of-Convex Pro-
gramming. arXiv preprint arXiv:2105.14311 (2021).

[43] Lin Zhang, Pengyuan Lu, Fanxin Kong, Xin Chen, Oleg Sokolsky, and Insup
Lee. 2021. Real-time Attack-recovery for Cyber-physical Systems Using Linear-
quadratic Regulator. ACM Transactions on Embedded Computing Systems (TECS)
20, 5s (2021), 1–24.

[44] Quanyan Zhu and Tamer Başar. 2015. Game-theoretic methods for robustness, se-
curity, and resilience of cyberphysical control systems: games-in-games principle
for optimal cross-layer resilient control systems. IEEE Control Systems Magazine
35, 1 (2015), 46–65.

A APPENDIX

In this appendix, we first introduce some preliminary background.

We then present the technical proofs that are omitted in the paper.

A.1 Preliminaries

This subsection presents preliminary background. A continuous

function α : [−b,a) → R is an extended class K function if α(·) is
strictly increasing and α(0) = 0 for some a,b > 0. We also denote

the set of real numbers and the set of non-negative real numbers as

R and R≥0, respectively. A multivariate polynomial p(x) is a sum-

of-squares (SOS) polynomial if there exists a set of polynomials

k1(x), . . . ,KN (x) such that p(x) =
∑N
i=1 ki (x)

2. If p(x) is an SOS

polynomial, we have that p(x) ≥ 0.

Control barrier functions (CBFs) have been used to guarantee

forward invariance of system (1). We consider two types of CBF in

113

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

this work, named zeroing CBF (ZCBF) and finite time convergence

CBF (FCBF).

Definition A.1 (ZCBF [5]). Consider a dynamical system (1) and

a continuously differentiable function h : X → R. If there exists an

extended classK function α(·) such that for all x ∈ X the following

inequality holds:

sup
u ∈U

{
∂h

∂x
(x)f (x) +

∂h

∂x
(x)д(x)u + α(h(x))

}
≥ 0, (14)

then function h is a ZCBF.

Definition A.2 (FCBF [26]). Consider a dynamical system (1) and

a continuously differentiable function h : X → R. If there exist

parameter γ > 0 and ρ ∈ [0, 1) such that for all x ∈ X the following

inequality holds:

sup
u ∈U

{
∂h

∂x
(x)f (x) +

∂h

∂x
(x)д(x)u + γ · sgn(h(x))|h(x)|ρ

}
≥ 0,

(15)

then function h is an FCBF.

The sets of control inputs satisfying Eqn. (14) and (15) provide

the following guarantees, respectively.

Lemma A.3 ([5]). Given a dynamical system (1) and a set C =

{x : h(x) ≥ 0}, if h is a ZCBF defined on X, then the control signals

satisfying Eqn. (14) guarantee that C is forward invariant.

Lemma A.4 ([26]). Consider a dynamical system (1) and a set

C = {x : h(x) ≥ 0}. If h is an FCBF defined on X, then the control

signals satisfying Eqn. (15) guarantees that there exists some finite

T ∈
[
0,

|h(x (0)) |1−ρ

γ (1−ρ)

]
such that x(T) ∈ C for any initial state x(0) ∈ X.

Moreover, the system trajectory x(t ′) ∈ C for all t ′ ≥ T .

We next introduce background on hybrid system. A hybrid sys-

tem is defined as follows [4].

Definition A.5. A hybrid system is a tuple H = (X,L,S,S0, Inv,
F , Σ) with each element being defined as

• X ⊆ Rn is the continuous system state space.

• L is a finite set of discrete locations.

• S = X×L is the state space of hybrid systemH , andS0 ⊆ S

is the set of initial states.

• Inv : L → 2X is the invariant that maps from the set of

locations to the power set of X. That is, Inv(l) ⊆ X specifies

the set of possible continuous states when the system is at

location l .
• F is the set of vector fields. For each f ∈ F , the continuous

system state evolves as �x = f (x, l), where �x is the time

derivative of continuous state x .
• Σ ⊆ S × S is the set of transitions between the states of the

hybrid system. A transition σ = ((x, l), (x ′, l ′)) models that

the hybrid system state transitions from (x, l) to (x ′, l ′).

Consider a hybrid system H as defined in Definition A.5. Let

l � l ′ be two discrete locations. Then a guard set G(l, l ′) is defined
as G(l, l ′) = {x ∈ X : ((x, l), (x ′, l ′)) ∈ Σ}, which models the

set of continuous states starting from which the system can take

transition from location l to l ′. We define a set valued function

R(l, l ′) : x → {x ′ ∈ X : ((x, l), (x ′, l ′)) ∈ Σ}, which captures the

set of continuous states that can be reached fromG(l, l ′) via discrete
transition l to l ′. We also let Init(l) = {x ∈ X : (x, l) ∈ S0} and

Unsaf e(l) = {x ∈ X : (x, l) ∈ Su }.

The safety of hybrid system H is given as follows.

Definition A.6 (Safety of Hybrid System [33]). Consider a hybrid

system H and an unsafe set Su ⊆ S. The safety property of H
holds if there exist no time T ≥ 0 and a finite sequence of times

0 ≤ t1 ≤ . . . ≤ tN ≤ T such that the trajectory (x, l) : [0,T] → S

satisfying (x(0), l(0)) ∈ S0, x(t) ∈ Inv(l(t)) for all t ∈ [0,T], and
(x(t), l(t)) ∈ Su .

The safety given in Definition A.6 for hybrid systemH is certified

by a collection of barrier certificates {Bl (x)} as follows.

Lemma A.7 ([33]). Consider a hybrid system H as defined in Defi-

nition A.5 and an unsafe set Su ⊆ S. Suppose there exists a collection

of continuously differentiable functions, denoted as {Bl (x) : l ∈ L},

such that for all l � l ′ the following relations hold:

Bl (x) ≤ 0, ∀x ∈ Init(l), (16a)

Bl (x) > 0, ∀x ∈ Unsaf e(l), (16b)

∂Bl
∂x

(x)fl (x) < 0, ∀x ∈ Inv(l) s.t. Bl (x) = 0 (16c)

Bl ′ (x
′) ≤ 0, ∀x ′ ∈ R(l, l ′)(x), ∀x ∈ G(l, l ′) s.t. Bl (x) ≤ 0 (16d)

then the safety of hybrid system H is satisfied.

A.2 Technical Proofs

In this subsection, we provide the proofs of Theorem 4.1, Proposi-

tion 4.2, Lemma 4.3, and Proposition 6.1.

Proof of Theorem 4.1. We prove the theorem by first charac-

terizing the hybrid system H we constructed in Section 4. We will

show that Inv(unsaf e) = C1 and Inv(init) = Inv(sa f e) = C when

G(sa f e,unsaf e) ⊆ C2 and Eqn. (3) hold. We then prove the safety

property by showing that −h(x) is a barrier certificate satisfying
Lemma A.7 for hybrid system H , and hence safety is satisfied.

Suppose G(sa f e,unsaf e) ⊆ C2. We let x(t) ∈ C2 and the system

be in location l = unsaf e . Thus h(x(t)) ≥ c1 + c2. Suppose the next
discrete transition ((x,unsaf e), (x, init)) happens at time t ′ ≥ t . By
Eqn. (3d) and integrating �h(x) over time, we have that h(x(t ′)) ≥
c1 + c2 −

c2
ϕ
(t ′ − t). When t ′ ∈ [t, t + ϕ], we have that h(x(t ′)) ≥

c1 ≥ 0 and thus x(t ′) ∈ C1 if Eqn. (3d) holds. This also implies that

G(unsaf e, init) ⊆ C1 and Inv(unsaf e) ⊆ C1.

Consider that location transition ((x(t),unsaf e), (x(t), init)) hap-
pens at time t . Since G(unsaf e, init) ⊆ C1, we have that x(t) ∈ C1
and h(x(t)) ≥ c1. By Eqn. (3c) and integrating �h(x) over [t, t +η], we
have that h(x(t ′)) ≥ c1 −

c1
η (t ′ − t) ≥ 0 for all t ′ ∈ [t, t + η]. There-

fore, h(x(t ′)) ∈ C. This indicates that G((x, init), (x, sa f e)) ⊆ C

and Inv(init) ⊆ C.

Consider that transition ((x(t), init), (x(t), sa f e)) happens at time

t . Since G((x, init), (x, sa f e)) ⊆ C, we have that h(x(t)) ≥ 0. We

then divide our discussion into two cases. We first consider 0 ≤

h(x(t)) ≤ c1 + c2. If Eqn. (3a) holds, then integrating the left-hand

side of Eqn. (3a) over t ′ ∈ [t, t + τ ′] with τ ′ ≥ τ yields that

h(x(t ′)) ≥ 0 + c1+c2
τ (t ′ − t) ≥ c1 + c2 for all t ′ ∈ [t, t + τ ′]. Us-

ing the definition that h2(x) = {x : h(x) ≥ c1 + c2}, we have

that x(t + τ ′) ∈ C2 ⊂ C. Moreover, we have that if the length of

114

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

the exploit window is at least τ , the system trajectory will reach

C2 and remains in it before transition ((x, sa f e), (x,unsaf e)) oc-
curs using Lemma A.3. We next consider the second case where

h(x(t)) ≥ c1 + c2. If Eqn. (3b) holds, we have that h(x(t
′)) ≥ c1 + c2

by Lemma A.3 for all t ′ ∈ [t, t + τ]. Summarizing the above two

cases, we have that G(sa f e,unsaf e) ⊆ C2 holds. Moreover, we

have that Inv(sa f e) ⊆ C.

We finally show that −h(x) is a barrier certificate satisfying

Lemma A.7 for hybrid system H . Since x(0) ∈ C2 ⊂ C, we have

that −h(x(0)) ≤ 0, and thus condition (16a) is satisfied. When

x � C, we have that −h(x) > 0, implying that Eqn. (16b) is met.

By our previous analysis, we have that Inv(unsaf e) ⊆ C1 ⊂ C

and Inv(init) ⊆ C. Thus h(x) = 0 can only hold after transition

((x, init), (x, sa f e)) takes place where Inv(sa f e) ⊆ C. Using Eqn.

(3a) and the relation h2(x) = h(x) − c1 − c2, we have that

∂(−h)

∂x
(x)f

saf e

cl
(x ;K,b) =

∂(−h2)

∂x
(x)f

saf e

cl
(x ;K,b) ≤ −

c1 + c2
τ

holds for all x ∈ Inv(sa f e) such that h(x) = 0. Therefore, condition

(16c) holds. Using the definition of Σ, we have that the continuous
state x does not have any jump when location transition occurs,

implying that Eqn. (16d) holds. Therefore, −h is a barrier certificate

satisfying LemmaA.7, and thus hybrid systemH is safe with respect

C. Hence, we have that system (1) is safe with respect to C. �

Proof of Proposition 4.2. When x ∈ C \ C2, we have that

h(x) ≥ 0 and h2(x) < 0. Since l(x) is an SOS polynomial, we have

that −l(x)h(x)h2(x) ≥ 0 for all x ∈ C \ C2. If the expression in Eqn.

(4a) is an SOS, we have that

∂h2
∂x

(x)f
saf e

cl
(x ;K,b) − z3 ≥ −l(x)h(x)h2(x) ≥ 0, ∀x ∈ C \ C2.

We thus have that if the expression in Eqn. (4a) is an SOS and

z3 =
c1+c2
τ , then Eqn. (3a) holds.

When x ∈ C2, we have that h2(x) ≥ 0. Since r (x) is an SOS

polynomial, r (x)h2(x) ≥ 0 holds for all x ∈ C2. If Eqn. (4b) is an SOS,

we then have that ∂h2
∂x (x)f

saf e

cl
(x ;K,b)+α(h2(x)) − r (x)h2(x) ≥ 0,

which implies that ∂h2
∂x (x)f

saf e

cl
(x ;K,b) ≥ −α(h2(x)) for all x ∈ C2.

Therefore, Eqn. (3b) holds when Eqn. (4b) is an SOS.

When x ∈ C, h(x) ≥ 0 holds by the definition of C. Since p(x)
is an SOS polynomial, we have that p(x)h(x) ≥ 0 for all x ∈ C. If

Eqn. (4c) is an SOS, then ∂h
∂x f

init
cl

(x) ≥ −z1 =
c1
η , indicating that

Eqn. (3c) holds.

When x ∈ C1 and u ∈ U, h1(x)v(x) ≥ 0. Since q(x,u) is an
SOS polynomial, we have that q(x,u)h1(x)v(u) ≥ 0 for all (x,u) ∈

C1 ×U. If Eqn. (4d) is an SOS, then ∂h
∂x f

unsaf e

cl
(x,u) ≥ −z2 =

c2
ϕ
,

indicating that Eqn. (3d) holds.

Combining the arguments above completes the proof. �

Proof of Lemma 4.3. If the expressions in Eqn. (6) are SOS, we

then have that

∂h2
∂x

(x)f
saf e

cl
(x ;K,b) − z3 ≥ l(x)h(x), (17a)

∂h

∂x
(x)f init

cl
(x) + z1 ≥ p(x)h(x), (17b)

∂h

∂x
(x)f

unsaf e

cl
(x,u) + z2 ≥ q(x,u)h(x)v(u). (17c)

When x ∈ C and u ∈ U, we have that h(x) ≥ 0 and v(u) ≥ 0. Also

note that l(x), p(x), and q(x,u) are SOS polynomials. We thus have

that if the expressions in Eqn. (6) are SOS, then Eqn. (8) holds. �

Proof of Proposition 6.1. We first construct a hybrid system

H = (Y,L,S,S0, Inv, F , Σ), where Y is the set of continuous

statesy,L = {sa f e,unsaf e, init}, andF = { f
saf e

cl
(y;K,b), f init

cl
(y),

f
unsaf e

cl
(y,u)}. When Eqn. (11a) holds, we have that y ∈ {y :

d(y) ≥ 0} if the system is in discrete location l = sa f e . When

Eqn. (11c) to (11e) hold, we have that Inv(unsaf e) = (C1,B(C1)),

Inv(init) = (C,B(C)), and Inv(sa f e) = (C,B(C)), where B(A) is
defined as B(A) = {x̂ : c3 − ‖x − x̂ ‖ ≥ 0, ∀x ∈ A} for some A ⊆ X.

Finally, we can verify that −h(x) is a barrier certificate satisfying
Lemma A.7 using similar approach in Theorem 4.1, which implies

that the safety property with respect to C holds. �

115

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 28,2022 at 16:23:24 UTC from IEEE Xplore. Restrictions apply.

