
1.  Introduction
There have been well-documented changes in the composition of the Arctic ice pack over the last few decades. 
Summertime changes are dramatic, with declines of 12.9% per decade (Kwok,  2018; Perovich et  al.,  2019; 
Stroeve & Notz, 2018). Delays in autumn freezing produce an ice pack that is dominated by thinner and more 
fragile first-year ice (Richter-Menge & Druckenmiller, 2020), which has also been documented to accumulate 
less snow, although this is variable across Arctic regions (Johnson & Eicken, 2016; Webster et al., 2018). The 
combination of thinner, less deformed first-year ice and a reduction in snow cover leads to earlier and increased 
surface ponding (Perovich & Polashenski, 2012; Polashenski et al., 2012). In addition, a trend toward earlier 
first spring rainfall observed since the 1990s also hastens the onset of snow melt and surface ponding (Dou 
et al., 2019). This overall trend of thinner ice and less snow combined with earlier snow and surface melting has a 
considerable impact on the timing and magnitude of the springtime increase in light transmission to the bottom of 
the ice and the underlying water column (Arndt & Nicolaus, 2014; Light et al., 2008, 2015; Nicolaus et al., 2012). 
Changes in light availability are projected to impact phenology and gross primary production (GPP) of ice algae 
and water column phytoplankton. Significant gains in ice algae GPP have been predicted north of 77°N driven 
by the replacement of the thicker multiyear ice with thinner seasonal ice, the impact south of 77°N is more 
uncertain as earlier light availability is counterbalanced by faster ice melt and a shortened window of production 
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(Lannuzel et al., 2020; Tedesco et al., 2019). Observations in the past decade have seen evidence of changes in 
pelagic phytoplankton phenology with large under-ice blooms observed in the spring before widescale ice retreat 
(Ardyna et al., 2020; Arrigo et al., 2012; Assmy et al., 2017; Hill et al., 2018; Horvat et al., 2017).

While ice algae are light-limited early in the spring when light transmission through snow and ice is low, they can 
still initiate colonization at intensities as low as 0.17 μmol m −2 s −1 due to their low light adaptive strategies (Hancke 
et al., 2018). Growth and accumulation of biomass leading to bloom conditions require irradiances over ∼5 μmol 
m −2 s −1, with carbon assimilation rates observed to increase as snow thins (Cota,  1985; Gosselin et  al.,  1986; 
Hancke et al., 2018; Mock & Gradinger, 1999, 2000). As ice melt progresses and melt ponds form, light increases 
to saturating intensities as high as 385 μmol m −2 s −1 (Gradinger, 2009; McMinn & Hegseth, 2004), and ice algae 
growth can become nutrient-limited (Lavoie et al., 2005; Lund-Hansen et al., 2020). Leu et al. (2015) examined 
existing datasets of ice algae blooms across the Arctic, growth initialized between 11 March and 10 April, and lasted 
approximately 60 days, placing bloom termination between 10 May and 9 June. Total biomass was variable, with 
the highest recorded values of ∼300 mg Chl a m −2 observed within landfast ice in Resolute Bay (Leu et al., 2015). 
Total ice algae Chl a (Chlorophyll plus phaeopigments) in drifting ice on the Chukchi shelf in May and June of 
2002 varied widely (0.2–304 mg m −2; mean 38 mg m −2), but ice floes were not revisited to track bloom develop-
ment (Gradinger, 2009). Large-scale mapping of ice algae via ROVs and modeling has linked spatial heterogeneity 
in biomass and bloom timing primarily to snow and ice thickness (Castellani et al., 2020; Meiners et al., 2017; 
Melbourne-Thomas et al., 2015). However, while ice-algae blooms are initiated by light availability, their persis-
tence is a function of nutrient supply and the timing of ice melt (Arrigo & Sullivan, 1994; Jin et al., 2006; Mortenson 
et al., 2017). Algae are a nutrient sink, and replenishment is necessary to support high standing stock and persistent 
blooms lasting one or more months (Cota et al., 1987; Thomas et al., 2010 and references therein). Nutrient replen-
ishment generally comes from in situ regeneration, brine convection, and vertical resupply from upward fluxes, 
tidal action, and waves within the water column (Cota et al., 1987; Thomas et al., 2010 and references therein; 
Vancoppenolle et al., 2010). Future nutrient concentrations and dynamics both within the ice as well as open water 
remains a large uncertainty in modeling climate change impacts on Arctic marine GPP (Lannuzel et al., 2020).

While numerous different species of algae are found in Arctic sea ice, the dominant species is generally the 
chain-forming pennate diatom Nitzschia frigida Grunow, which can form a thick layer present in both the inter-
stitial and sub-ice assemblage, protruding into the water column (Lund-Hansen et al., 2020; Michel et al., 1996; 
Mundy et al., 2014; Poulin et al., 2011; Syvertsen, 1991). These dense communities of ice algae absorb nearly 
all the radiant energy that reaches them, as they often induce active melting of the skeletal layer and sloughing of 
the algae, which then accelerates the demise of the bloom (Lavoie et al., 2005; Welch & Bergmann, 1989; Zeebe 
et al., 1996). Most importantly, dense algae blooms can inhibit water column primary production by drastically 
reducing light transmission through the sea ice (Mundy et al., 2007, 2014). Attenuation of photosynthetically 
active radiation (KdPAR) observed in ice with large ice algae blooms has been recorded at 4 to 90 m −1, over a 
range of Chl a from ∼0.8 to 135 mg m −2

, which corresponds to less than 5% of incident light transmitted through 
to the water column (Ehn & Mundy, 2013; Welch & Bergmann, 1989). Ice algae also contribute to carbon export 
from the upper ocean to the seafloor and are linked to persistent hotspots of high macrofaunal biomass on the 
Chukchi shelf (Boetius et al., 2013; Feng et al., 2021; Koch et al., 2020).

Due to logistical issues involved in long-term observations on drifting sea ice, much of our understanding of ice 
algae bloom dynamics and its coupling with pelagic primary production comes from data collected from landfast 
ice. Observational technologies such as ice-tethered profilers (Laney et al., 2017) and Argo floats (Randelhoff 
et al., 2020), while helpful in investigating pelagic processes, are not capable of capturing ice algae development 
as they do not include in-ice measurements and are limited in how close to the underside of the ice they can 
approach. Recent under-ice mapping using ROVs (Castellani et al., 2020; Meiners et al., 2017) has provided 
large-scale measurements of ice algae biomass and distribution, linking these with the physical characteristics 
of the sea ice. However, these observations have not captured the temporal development of an ice algae bloom. 
Thus, there is a gap in our understanding of how ice algae blooms develop under mobile sea ice cover and how 
changes in sea ice thickness and light transmission impact seasonal primary production at the ice/water interface. 
This study presents novel observations of the seasonal development of an ice algal bloom via changes in light 
attenuation observed in drifting sea ice in the Chukchi Sea from two autonomous ice-tethered buoys. Observa-
tions from May through July 2018 included light intensity, temperature, and salinity in the ice and water column. 
A light-based productivity model was used to investigate the environmental drivers that governed the onset of ice 
algae growth, maximum biomass attained, and bloom duration.



Journal of Geophysical Research: Oceans

HILL ET AL.

10.1029/2021JC017848

3 of 21

2.  Materials and Methods
2.1.  Buoy Configuration

The WArming and iRradiance Measurements (WARM) Buoy (WB) system was engineered by Pacific Gyre Inc. 
(Oceanside, CA, USA), consisting of a surface float supporting a suite of thermistors, conductivity sensors, irra-
diance sensors, and fluorometers mounted on a 20 m or 50 m long conductive cable (Table 1, Hill et al., 2018). 
Full configuration and data from these two systems are available at the NSF Arctic Data Center (Hill et al., 2020), 
and technical specifications are discussed at length in Hill et al. (2018). Here, we describe the configuration for 
WB7 and WB8, deployed in 2018.

Downwelling PAR (EdPAR) incident on the sea ice (AIRPAR) was recorded by a LiCor LI-192 planar irradiance 
sensor protruding from the top of the surface float (Figure 1). At the time of deployment, the float was lying 
horizontally, so the sensor only achieved a full-sky view after the float was pulled into the vertical position during 
ice melt. Sensors on the instrument cable were placed at varying depths (Table 1). EdPAR within the ice and the 
water column was measured by six (WB7) or eight (WB8) LiCor LI-192 sensors (Table 1), and one multispec-
tral 9-channel radiometer from In-situ Marine Optics (MS9, channels 410, 440, 490, 510, 550, 636, 660, 685, 
710 nm). A Sea-Bird/Wet Labs ECO triplet fluorometer was configured to measure Chl a (excitation 470 nm, 
emission 695 nm), dissolved organic material (DOM; excitation 370 nm, emission 460 nm), and backscattering at 
532 nm. The manufacturer-provided calibrations performed on 23 and 27 February (WB8 and WB7, respectively) 
were used to interpret the data. Sea-Bird SBE 37-IM MicroCATs provided temperature, salinity, and pressure; 
additional temperature pods were placed between the MicroCATs. An upward-looking OEM digital RGB camera 
was mounted at ∼20 m depth to record images of the underside of the ice, the water column, and the buoy cable 
each day near solar noon. Image resolution was 120 x 160 pixels, with a full-angle field of view of 53°, imaging 
a ∼13 × 17 m area of the underside of the ice at initial deployment, thus providing a resolution of ∼0.1 m on the 
ice bottom. Data from all sensors were collected at hourly intervals and sent to Pacific Gyre servers via Iridium 
satellite.

Sensor (units) WB7 initial depth (m) WB8 initial depth (m)

LiCor LI-192 PAR (μmol m −2 s −1) AIRPAR 0 0

ICEPAR1 0.44 0.40

ICEPAR2 0.93 0.90

WATERPAR1 4.93 4.90

WATERPAR2 9.93 9.90

WATERPAR3 14.93 14.90

WATERPAR4 19.33 19.90

WATERPAR5 N/A 29.90

WATERPAR6 N/A 48.80

In-situ Marine Optics MS9 (μW cm −2 nm −1) 4.93 4.90

Sea-Bird/Wet Labs ECO triplet fluorometer; CDOM (ppb), Backscatter 532 nm (m −1 sr −1), 
Chl a a (mg/m 3)

5.53 5.60

Sea-Bird SBE 37-IM MicroCAT Conductivity (S/m), Salinity (PSU), Temperature (°C) 2.43, 10.53 2.41, 10.64

Sea-Bird SBE 37-IM MicroCAT Conductivity (S/m), Salinity (PSU), Temperature (°C), 
Pressure (decimeters)

20.42 20.90, 49.40

Temperature pods (°C) 5.13, 7.43, 12.43, 15.33 5.10, 7.40, 12.40, 15.30, 24.90, 30.25, 39.90

Camera 19.5 19.6

Note. LiCoR sensors indicate nomenclature used in the main text. "ICE" refers to a sensor frozen into the ice after deployment; "WATER" refers to a sensor in the ocean 
at deployment.

Table 1 
Sensors and Depths (Meters) Relative to Sea Surface at Deployment for Each Buoy
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A separate surface unit (named "Sidekick", hereafter designated SK) provided downwelling surface irradi-
ance (LiCor-192), air temperature, GPS position, and a daily photograph of surface conditions around the buoy 
(Figure 1). The SK sensors were integrated into a watertight Pelican box and mounted on a 1 m tall metal stand 
placed on an "ablation shield," that is, a piece of white plywood to reflect sunlight and retard snowmelt. The SKs 
were positively buoyant and able to send data even after the ice melted. Data and position from the SK were sent 
to the Pacific Gyre servers at hourly intervals using the Iridium network.

2.2.  Buoy Deployment

First-year ice was chosen for the deployment site to provide observations of the entire evolution of the summer 
melt process. Additionally, we expect less deformed ice to show a more consistent relationship between ice and 
snow thickness and the under-ice light field. First-year ice is more easily accessible, comprises a large portion of 
the ice pack, and is likely to be the dominant ice type in the future, particularly on the Chukchi shelf, where there 
is significant water column productivity. An aircraft (Single Otter) from Prudhoe Bay, Alaska, was used to reach 
the installation sites. On 29 March 2018, WB7 was deployed at 72.3931 N and 149.60 W. The following day WB8 
was deployed at 71.8391 N and 144.3120 W. The distance between buoys at deployment was 191 km (Figure 2). 
Large first-year ice floes were selected for the sites. Once on-site, a flat homogenous region of the floe away from 
existing ridges was chosen for the deployment location to reduce the possibility of additional ridging events that 
could damage the buoy. A 0.25 m diameter hole was drilled, ice thickness and freeboard were recorded, and aver-
age snow thickness was measured within a 5 m radius. The conductive cable with attached sensors was deployed 
through the hole in the ice and positioned so that the uppermost LiCOR sensor was 0.5 m below the ice surface 
(see Table 1 for depths adjusted to sea level). Each buoy was deployed with a 3 m offset between the surface float 
and the deployment hole to avoid shading the upward looking optical sensors (Figure 1) and was held in place by 
a rope line and ice anchors. To hasten freezing, snow and ice chips from the drilling process were pushed into the 
ice hole after deployment. Wooden snow stakes (0.15 m wide, 1 m in height) with red and white painted intervals 
(0.1 m) were placed around each buoy (Figure 1).

2.3.  Calculation of Diffuse Attenuation (KdPAR)

Diffuse attenuation (KdPAR) was calculated using the Bouger-Lambert law and observed irradiances (EdPAR) 
recorded at each LiCOR sensor (Tables 1 and 2),

𝐾𝐾𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃 =
1

𝑧𝑧2 − 𝑧𝑧1
𝑙𝑙𝑙𝑙
𝐸𝐸𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧1)

𝐸𝐸𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃(𝑧𝑧2)
� (1)

Figure 1.  Plan view (left) and side view (upper right) of buoy components in the deployment configuration. (a) Sample 
image from sidekick camera, buoy float (WB8), red and white snow stakes are visible, (b) buoy (WB7) and sidekick after 
deployment, (c) close up of sidekick (WB7) with camera visible.
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where EdPAR are the observed irradiances at geometric depths z1 and z2 (Table 1). Average daily KdPAR was 
calculated from EdPAR measured over 4 hours around solar noon (noon ± 2 hr) to avoid complications from low 
solar elevation angles (Hill et al., 2018). KdPAR was calculated between adjacent sensors (Table 2) to estimate 
attenuation throughout the ice and water column. Negative values of KdPAR were occasionally found, likely 
caused by the three dimensional light field and horizontal inhomogeneities in the ice cover. In these cases, KdPAR 
values were not representative of the true attenuation properties of the ice or water column, and so were removed 
from the analysis.

2.4.  Estimation of Chl a

2.4.1.  Within the Ice

Previous studies in landfast ice close to Resolute Bay have presented strong relationships between the fraction of 
PAR irradiance transmitted through the ice algae layer (Etrans) and ice algae Chl a (Ehn & Mundy, 2013; Welch 
& Bergmann, 1989). The configuration of PAR sensors on the buoy allowed for similar light transmission meas-
urements that bracketed the ice algae layer. Etrans was calculated between ICEPAR1 and ICEPAR2, and ICEPAR2 and 
WATERPAR1 sensors and then used in Equation 2 (taken from data presented in Ehn & Mundy, 2013; Welch & 

Bergmann, 1989) to estimate Chl a present within the ice algae layer over 
time at the buoy sites.

𝐶𝐶𝐶𝐶𝐶
(

𝑚𝑚𝑚𝑚 𝑚𝑚
−2
)

= −61.94 𝑙𝑙𝑙𝑙 (𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − 8.94� (2)

Background contribution to light absorption by non-algal particles was incor-
porated into the original measurements and was expected to be minimal at 
high ice algae concentrations.

2.4.2.  Within the Water Column

Chl a in the water column was calculated from KdPAR at successive depths, 
as listed in Table  2, using a parameterization derived from data collected 
from the Chukchi Sea in the spring of 2014 by WB1 (Hill et al., 2016, 2018). 

Figure 2.  Map of buoy drift tracks from 2018 overlaid on NOAA bathymetry. (a) WB7, black dashed line is the location of 
the SK once its track diverged, (b) WB8.

Sensors KdPAR nomenclature

ICEPAR1 to ICEPAR2 KdPARICE

ICEPAR2 to WATERPAR1 KdPARICE/WATER

WATERPAR1 to WATERPAR2 KdPARWATER1_2

WATERPAR2 to WATERPAR3 KdPARWATER2_3

WATERPAR3 to WATERPAR4 KdPARWATER3_4

Table 2 
Sensors Used to Calculate Successive KdPAR Throughout the Ice and Water 
Column
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Contributions to KdPAR from other absorbing compounds were assumed to be in proportion with previous studies 
in this area (Balch et al., 2014; Wang et al., 2005), in which non-pigmented material co-varied with Chl a.

𝐶𝐶𝐶𝐶𝐶
(

𝑚𝑚𝑚𝑚 𝑚𝑚
−3
)

= 10
3.445∗𝐾𝐾𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃−0.69

� (3)

In order to allow for comparison of ice algae Chl a and pelagic phytoplankton Chl a, volumetric Chl a (mg m −3) 
was converted to water column integrated Chl a (mg m −2) between each sensor, by multiplying Chl a (mg m −3) 
retrieved by Equation 3 by the depth interval between each sensor (Table 1).

2.5.  Ice Algae Growth Modeling

Potential ice algal growth based on observed light intensities was modeled to investigate limiting factors on ice 
algae growth.

2.5.1.  Light-Driven Photosynthesis

The model architecture was modified from that used to model water column phytoplankton production in the 
Chukchi Sea using previous WARM buoy observations (Hill et al., 2018). Biomass-specific net photosynthesis 
( 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑛𝑛𝑛𝑛𝑛𝑛
 mg C mg Chl a −1 h −1) of ice algae was estimated using the photosynthesis-irradiance model developed by 

Platt et al. (1980) and previously incorporated into ice algae production models by Arrigo and Sullivan (1994) 
and Lange et al. (2017). Observed light intensities collected at 1 hr intervals at ICEPAR2 located at the ice/water 
interface were used to calculate biomass-specific gross photosynthesis (𝐴𝐴 𝐴𝐴

𝐵𝐵
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 , Equation 4), 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝑛𝑛𝑛𝑛𝑛𝑛
 was then calcu-

lated by subtracting biomass specific respiration (RB) from 𝐴𝐴 𝐴𝐴
𝐵𝐵
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (Equation 5).

��
����� = ��

�

[

1 − ���
(−∅� × �∗

∅(�) × [�ℎ� �] × ��(�, �, �)
��
�

)]

� (4)

𝑃𝑃
𝐵𝐵

𝑛𝑛𝑛𝑛𝑛𝑛
= 𝑃𝑃

𝐵𝐵
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑅𝑅𝐵𝐵� (5)

Spectral irradiance Ed(λ, t, z) used in Equation 4 was calculated from light intensity at ICEPAR2 and the spec-
tral shape of light after transmission through the ice (Hill et al., 2018). Terms and units used in Equation 4 are 
described in Table 3. Values of 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝐸𝐸
 and initial Chl a were adjusted within published ranges (Hill et al., 2018; Platt 

et al., 1982) to achieve the best match between the model output and the ice algae Chl a estimated at each buoy 
(Table 3). 𝐴𝐴 𝐴𝐴

∗
∅
 (λ) was calculated from the average Chl a specific absorption coefficient spectra collected in the 

Chukchi Sea in the spring of 2002 (Hill, 2004; Hill et al., 2018).

2.5.2.  Ice Algae Growth (Chl a)

At the end of each time step (1 hr) Redfield ratios were used to define dissolved inorganic nitrogen and phos-
phorus required to convert carbon generated via photosynthesis into new biomass. Concentrations in the nutrient 
pool were then reduced by this amount, with NH4 + taken up preferentially over NO3 −. If concentrations of either 
nitrogen or phosphorus were insufficient to satisfy the demand based on net photosynthesis, then ice algae growth 
was restricted by the most limiting nutrient. Any fixed carbon that was not used for growth was kept as an inter-
nal reserve to support respiration whenever gross photosynthesis was less than respiration. Ice algae growth was 

Symbol Variable Values

𝐴𝐴 𝐴𝐴
𝐵𝐵

𝐸𝐸
  Biomass-specific rate of light-saturated photosynthesis (mg C mg Chl a −1 hr −1) 0.5 (WB7), 0.47 (WB8)

ϕm Quantum yield of photosynthesis for absorbed photons (mol C mol −1 photons absorbed) 0.104 (Emerson & 
Lewis, 1943; Laws, 1991)

𝐴𝐴 𝐴𝐴
∗
∅
 (λ) Chl a specific absorptance (dimensionless) Hill et al., 2018

𝐴𝐴 𝐴𝐴𝐵𝐵  Biomass specific respiration (mg C mg Chl a −1 hr −1) 5% of 𝐴𝐴 𝐴𝐴
𝐵𝐵

𝐸𝐸
 (Forest et al., 2011)

Table 3 
Terms in Biomass-Specific Net Photosynthesis Model, Equation 4
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defined in terms of Chl a increase, the new biomass that was supported by nutrient availability was converted to 
Chl a using molar ratio of 60:1 for carbon:Chl a, this value was then used in Equation 4 at the start of the next 
time step of the model.

2.5.3.  Nutrient Replenishment

A two-layer approach was used for nutrient uptake and replenishment. Nutrient concentrations were initialized 
as 0.5 mmol m −3 of ammonia (NH4 +), 1 mmol m −3 of nitrate (NO3), and 0.5 mmol m −3 of phosphorous (PO4 −3) 
taken from Codispoti et al. (2013) for the Beaufort Sea basin. At the end of each time step, a vertical flux of 
nutrients (FN) into the modeled layer was calculated via a gradient transport equation,

𝐹𝐹𝑁𝑁 = 𝐾𝐾𝑍𝑍

Δ𝑁𝑁

Δ𝑍𝑍
� (6)

where KZ is the vertical eddy diffusivity and ∆N is the difference in nutrient concentration over the vertical inter-
val ∆Z = 5 m. ∆N was calculated as the difference between nutrients at the end of each time step and concentra-
tions in a theoretical pool of nutrients. Concentrations were set to the initial conditions (as above) while the buoy 
was in the Canada Basin, but increased once the buoy was on the Chukchi shelf to reflect the higher nutrient pool 
(Lowry et al., 2015, NO3 − = 8 mmol m −3, NH4 + = 2 mmol m −3, and PO4 −3 = 2 mmol m −3). Kz was initially set 
to previously measured values (0.014 m −2 s −1; Cota et al., 1987) in the Canadian Arctic Archipelago and revised 
downwards until model results were close to observations. Final values used were 1.6 × 10 −5 and 2.2 × 10 −5 m 2 
s −1 for WB7 and WB8, respectively, which are in line with previous values used by Arrigo and Sullivan (1994) 
to model nutrient replete ice algae growth in McMurdo Sound (2.3 x 10 −5 m 2 s −1), although lower than those 
measured under landfast ice in Resolute Passage (Lavoie et al., 2005).

2.5.4.  Ice Algae Loss

A bulk loss term was used to reproduce the observed stagnation in ice algae Chl a accumulation and encompassed 
both grazing and physical release of material from the ice (due to sloughing and basal melting). Biomass loss was 
initiated on 28 May and 3 June for WB7 and WB8, respectively, coinciding with the rapid slowing of observed 
ice algae Chl a accumulation (see Section 3.2.2 and 3.3.2). The loss rate was adjusted until the model reproduced 
the observations. The final value was 90% of new growth at each time step.

3.  Results
3.1.  Buoy Timelines

After deployment, both buoys drifted westward, traveling from the Canada Basin to the biologically produc-
tive Chukchi Shelf, where they drifted until loss of communication in August 2018 (Figure 2). Sensor depths 
remained constant until significant ice melt occurred. Surface melting of the ice caused the ice anchors securing 
the floats to loosen; the weight of the sensor string then pulled the cable through the ice, and the floats became 
vertically orientated. At this time, all the sensors became deeper, for example, the ICEPAR1 and ICEPAR2 sensors 
dropped beneath the ice and into the ocean. The buoy was declared to be in open water once the ice melted and 
the surface float resided at the sea surface.

3.1.1.  WARM Buoy 7—The Case of Low Snow Accumulation

At the time of deployment (29 March), ice thickness (Zi) at WB7 was 1.0 m, average snow thickness (Zs) was 
0.02 m, and ice freeboard (FB) was 0.06 m (Figure 3a). Upon deployment, the uppermost LiCOR sensor (ICEPAR1) 
was 0.44 m below the sea surface (or 0.5 m from the top of the ice), and the second sensor (ICEPAR2) was 0.93 m 
below the sea surface, which placed it at the ice bottom. Light shading from variations in snow thickness and high 
light transmission through the still unfrozen deployment hole were visible in the upward looking (UL) images 
collected from 20 m depth (Figure 3a). SK photographs from early May confirm little to no change in snow 
thickness since deployment (Figure 3b). The snow stakes visible in the SK images indicate loss of snow cover 
throughout May and into June (Figure 3c). By 12 May, the water column had a distinct green color, which we 
believe indicates the presence of ice algae in the bottom of the ice (Figure 3c). The upper water column continued 
to appear green well into June (Figure 3c), at which time pelagic phytoplankton were also likely contributing. Ice 
and snow thickness are unknown at this time. The SK fell over on 9 June, likely from an unstable surface in the 
initial stages of melt, although no melt ponds were visible in the daily image. However, salinity stratification (not 
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shown) was present starting on 16 June, likely a signature of meltwater entering the ocean. On 26 June, images 
taken by the SK indicated that it had fallen through the ice into the ocean, where it proceeded to capture images 
of large clumped algae communities through mid-July (Figure 3d). In late June, the SK drifted away from WB7, 
reaching 1 km separation by 12 July (Figure 2a, black dashed line). The ocean pressure sensor initially located at 
a depth of 20.42 m (Table 1) recorded an increase in depth of 2.53 m on 5 July, caused by the melting of the ice 
and slippage of the cable through the ice (Figure 3e). From 5 July onwards ICEPAR1 and ICEPAR2 were no longer in 

Figure 3.  Timeline of events at WB7. Images are either surface view taken by the sidekick (SK view) or upwards looking (UL view) taken by the camera at 20 m 
depth. FB is freeboard, Zs is snow thickness, Zi is ice thickness, and Zmp is melt pond depth. Sidekick is present as in Figure 1. Continuous boxes around panels a 
through d indicate that the buoy was still in the deployment orientation, dashed boxes around panel e and f indicate that the buoy and sensor cable became vertically 
aligned.
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the ice and were instead approximately 2 m or more below the underside of the ice. The persistent greenness of 
the water column continued after the change in sensor depths (Figure 3e). The ice gradually broke up between 
5 and 27 July, at which point the buoy was floating in open water at the sea surface. Strong shading observed in 
the UL view at the end of July indicates remnant ice floes at the sea surface (Figure 3f). Filamentous algae grew 
on the instrument cable above the camera at the end of July (Figure 3f). WB7 stopped transmitting on 15 August 
(when its SK was 100 km away), and the SK continued to drift and collect data until November 2018.

3.1.2.  WARM Buoy 8—The Case of High Snow Accumulation

Ice thickness at the WB8 deployment site was 1.08 m thick with an initial average snow thickness of 0.07 m and 
a freeboard of 0.10 m (Figure 4a). After deployment, the uppermost LiCOR sensor (ICEPAR1) was 0.4 m from the 
sea surface, placing it 0.5 m from the ice surface, the second sensor (ICEPAR2) was 0.9 m from the sea surface, 
close to the ice/water interface (∼1 m from ice surface). Shading from differences in snow thickness was visible in 
the UL images (Figure 4a). Snow stakes visible in SK images show a ∼0.40 m increase in snow thickness around 
the buoy between 30 March and 4 April from a storm on 31 March (Figure 4b). Drifting snow also appeared to 
accumulate around the buoy. Snow thickness reduced throughout May, as seen from the snow stakes. Starting 
at the end of May and lasting through June, the water column appeared to have a predominantly green color 
(Figure 4c), indicating the initial presence of ice algae followed by phytoplankton. Bare ice was visible in the SK 
view starting on 17 June, and on 22 June (Figure 4d), the surface float appeared to move with visible slack in the 
main instrument tether. We think that the ice anchors were released from the ice due to surface melt, although no 
change in cable sensor depths was recorded. Melt ponds were first seen on 24 June, and coverage was extensive 
by 29 June (Figure 4d & 4e). As in WB7, salinity stratification (not shown) was detected at WB8 starting in 
mid-June, likely due to this surface melt.

By 29 June, the surface float moved laterally across the ice to rest vertically in a developing melt pond (Figure 4e). 
The pressure sensor located at 20.9 m recorded a 2.3 m increase in depth, moving the uppermost sensor to 2.7 m 
below the sea surface. As melt ponds continued to develop, the SK became unstable and fell over between 6:00 
and 12:00 GMT on 3 July. The last transmissions from the SK on 4 and 5 July indicate that it was floating in the 
ocean, where it captured the presence of large clumped algae (Figure 4f). From 3 to 19 July, the pressure sensor 
on the instrument tether indicated a slow increase in depth until the uppermost sensor was 3.4 m below the sea 
surface. We believe that the melt pond had slowly deepened until the float was released from the ice to float at the 
sea surface. Some strong shading captured on the UL camera could indicate nearby remnant ice (Figure 4g). The 
last transmission from WB8 was received on 15 August.

3.2.  Low Snow Case (WB7)

3.2.1.  Light Intensity

Noontime irradiance measured at both ICEPAR1 and ICEPAR2 was ∼30 μmol m −2 s −1 the day after deployment 
and increased each day to reach 60 μmol m −2 s −1 by 11 April (Figure 5a, Table 4). At this intensity, the light was 
at potentially low-light adapted photosynthetically saturating rates (>16 μmol m −2 s −1) for 10 or more hours a 
day. Irradiance transmitted to the ice bottom (ICEPAR2) represented approximately 5% of the surface irradiance 
throughout April (not shown). Light reaching the bottom of the ice started to decrease around 30 April, while that 
at ICEPAR1 (0.5 m) continued to climb. Light at 0.5 m continued to exceed 60 μmol m −2 s −1, steadily climbing to 
24 hr of photosynthetically saturating light throughout June. Peak light intensity reached 500 μmol m −2 s −1 in 
the last week of June, far exceeding light limiting rates. Meanwhile, there was a gradual decline in the maximum 
light intensity at the bottom of the ice between 30 April and 30 May. By the end of May, transmission through 
the ice was only 1% percent of surface incident irradiance (∼15 μmol m −2 s −1). Light transmission to the bottom 
of the ice remained low until the end of June when melting ice caused the sensors to increase in depth by 2.5 m 
(see shaded area on Figure 5a).

The attenuating influence of the overlying ice heavily impacted light reaching the upper water column (WATERPAR1, 
Figure 5b). Throughout April, maximum light intensities at WATERPAR1 were approximately half that reaching 
the bottom of the ice (∼24 μmol m −2 s −1). Light intensity started to decrease in the last week of April, coincident 
with a similar pattern seen at the ice bottom (Figure 5a). On 14 May, intensities at solar noon decreased to below 
∼0.5 μmol m −2 s −1, remaining so throughout May. Light intensity gradually increased throughout June, although 
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values remained less than 15 μmol m −2 s −1. A significant jump in light availability occurred as the ice melted at 
the start of July, and the buoy was released to float in open water.

The spectral shape of the light field provides information about the nature of the light-absorbing compounds 
present both in the water column and in the ice. Light in the green region of the spectrum (500–550 nm) domi-
nated the under-ice spectra starting in April and continuing through July (Figure 5c). The decrease in blue light 

Figure 4.  Timeline of events at WB8. Images are either surface view taken by the sidekick (SK view) or upwards looking (UL view) taken by the camera at 20 m. FB 
is freeboard, Zs is snow thickness, Zi is ice thickness. Sidekick is present as in Figure 1 but not shown. Continuous boxes around panels a through d indicate that the 
buoy was still in the deployment orientation, dashed boxes around panel e through g indicate that the buoy and sensor cable became vertically aligned.
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Figure 5.  Observations from WB7, note the change in scale in the y-axis between panel a and b. (a) PAR at the ICEPAR1 and ICEPAR2 sensor measured at 30 min 
intervals. Annotated lines represent Ek values (μmol m −2 s −1) for relevant sea ice algae in the literature (Cota, 1985; Gradinger, 2009; McMinn & Hegseth, 2004). (b) 
PAR measured by the WATERPAR1 sensor. (c) Example spectral profiles of light measured by the multispectral MS9 sensor (Table 1), normalized to the maximum value 
in each spectra. Shaded region starting 5 July represents the period of time the sensors became ∼3 m deeper due to ice melt.

Event WB7 – low snow WB8 - high snow

Date light at ice bottom (ICEPAR2) reached 16 μmol m −2 s −1 30 March 30 April

Date light at ice bottom (ICEPAR2) reached 60 μmol m −2 s −1 11 April 10 June

Onset of ice algae bloom. Date KdPARICE = 1.0 m −1 (equivalent Chl a 22 mg m −3) 3 May 23 May

Date and magnitude of KdPARICE reached at the end of the rapid increase phase. Equivalent Chl a in 
parentheses.

28 May, 5.5 m −1 (160 mg m −3) 3 June, 2.1 m −1 
(56 mg m −3)

Date and magnitude of maximum Chl a recorded by in-water fluorometer 3 July, 8.5 mg m −3 14 June, 3.2 mg 
m −3

Duration of bloom. Date KdPARICE = 1.0 m −1, ending when sensors dropped out of ice 63 days, 3 May – 5 July 35 days, 23 
May - 27 June

Date melt ponds observed on ice surface by SK No data 24 June

Table 4 
Summary of Differences in Timing and Magnitude of Light Intensity and Absorption Between WB7 and WB8
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(400–450 nm) in May, June and July is an indication of the increased presence of Chl a in the ice and the water 
column, which also coincided with the distinct green coloration observed by the underwater camera (Figure 3c). 
In August, an increase in the relative proportion of blue light changed the spectral shape to be more uniform 
across the blue/green region, also visually represented by the bluer color of the underwater pictures (Figure 3f), 
indicating a reduction in Chl a in the ice and the water column.

3.2.2.  Light Attenuation and Derived Chl a

The diffuse attenuation within the ice (KdPARICE) was consistently low (approximately 0.2 m −1) until mid-April, 
after which it entered a phase of rapid increase, passing 1.0 m −1 on 3 May (Table 4), and reaching 5.5 m −1 on 
28 May (Figure 6a, Table 4). High values of KdPARICE (2.2–6.1 m −1) persisted throughout June, only decreas-
ing below 1.0 m −1 when the sensors dropped out of the ice and into the upper water column on 5 July. During 
June, there were periods of high variation in KdPARICE when values dipped by ∼1–2  m −1 over several days 
before increasing again to peak values of around 6 m −1. Chl a estimated from light transmission varied between 
70 and 184 mg m −2 from mid-May through June. KdPAR between ICEPAR2 and WATERPAR1 (KdPARICE/WATER) 
captured the attenuation across the ice/water interface and any material attached to or just beneath the ice. Vari-
ation in KdPARICE/WATER followed the same pattern of increase as KdPARICE but at lower magnitudes. Maximum 

Figure 6.  WB7, note the change in Y-axis scale between the panels (a) left axis: Diffuse attenuation in the ice; right axis: Chl a estimated from KdPAR using 
Equation 2. (b) left axis: Diffuse attenuation in the water column; right axis: Chl a estimated from KdPAR using Equation 3. (c) Chl a observed with ECOtriplet. 
Shaded region starting 5 July represents the period of time the sensors became 3 m deeper due to buoy melt out. Star symbols correspond to dates of photographs taken 
from the buoy shown in Figure 3.
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KdPARICE/WATER of 0.8 m −1 was reached in mid-May, corresponding to an approximate Chl a of 10 mg m −2. 
The increase in KdPARICE and KdPARICE/WATER was concurrent with the observed green appearance of the water 
column, starting in the first week in May and continuing into July (Figure 3c), and with the attenuation of blue 
light within and below the ice (Figure 5c). Both KdPARICE and KdPARICE/WATER remained between 0.5 and 1 m −1 
after the sensors dropped below the bottom of the ice on 5 July, indicating the continued presence of absorbing 
material in the upper water column.

KdPAR within the water column (i.e., KdPARWATER1_2, KdPARWATER2_3, and KdPARWATER3_4) was relatively homog-
enous with depth throughout April, May, and June (Figure 6b). KdPAR values were <0.15 m −1 throughout April, 
increasing to around 0.2 m −1 in May and climbing to ∼0.4 m −1 by the end of June. The June peak in KdPAR repre-
sented an increase in integrated Chl a in the water column from ∼5 to 24 mg m −2 over 11 days and was confirmed 
by data from the ECOtriplet fluorometer located at 5.53 m (Figure 6c). At its peak on 1 July, water column inte-
grated Chl a in the top 20 m was ∼57 mg m −3 and accounted for 40% of the total ice algae and phytoplankton Chl 
a present. Increased water column Chl a also coincided with a reduction in blue wavelengths of light observed in 
the upper water column (Figure 5c) and intensification of the green color of the underwater images (Figure 3c). 
The time-series of Chl a from the fluorometer (Chl aFL) followed the same pattern as KdPAR in the water column, 
with low Chl a throughout April and May increasing to ∼8.5 mg m −3 by 3 July. In July, both KdPAR in the water 
and Chl aFL started to decline, linked to the sensors dropping below the ice.

3.3.  High Snow Case (WB8)

3.3.1.  Light Intensity

Light intensity at the high snow site was reduced compared to the low snow site. Noon light intensity at the 
bottom of the ice remained below 10 μmol m −2 s −1 until 25 April, roughly 6 times lower than light intensity 
recorded at the same time at the low snow site (Figure 7a, Table 4). Percent transmission of surface incident light 
to the ice bottom was <0.5% throughout April (not shown), much lower than the 5% value recorded at the low 
snow site. The date light intensity reached the low end of published Ek values (16 μmol m −2 s −1; 30 April) was 
30 days later than the same light intensity recorded at the low snow site. In the first week in May, the ice/water 
interface experienced 10 or more hours of potentially photosynthesis-saturating light (>16 μmol m −2 s −1), a lag 
of 4 weeks relative to the low snow site. Light reaching the bottom of the ice started to decline around 17 May, 
while intensity at 0.5 m in the ice remained unchanged. Reductions in snow thickness at the start of June caused 
a rapid increase in light intensity at both sensors (Figure 4). Bare ice around the buoy was observed on 17 June 
and visible melt ponds on 24 June (Figure 4), which were associated with light intensity in the ice and ice/water 
interface climbing to a peak of 500 μmol m −2 s −1, and light transmission to the ice bottom increasing to 5%. 
Melting of the ice resulted in the surface float being pulled into the vertical position, reducing light intensity on 
27 June as all the sensors increased in depth by 2.3 m (Figures 4 and 7a).

Light in the upper water column gradually increased in magnitude throughout April and May, peaking at 
∼30 μmol m −2 s −1 in mid-May (Figure 7b). From mid-May through 20 June, light intensities were reduced to 
between 1 and 10 μmol m −2 s −1, driven by lowered light transmission through the ice. Light intensities increased 
during and after ice melt, although there was high day-to-day variability. Similar to the low snow case, blue light 
was strongly attenuated by the overlaying ice, particularly in June (Figure 7c), indicating the presence of algae 
within and attached to the bottom of the ice. The removal of blue wavelengths of light, leaving green light to 
dominate caused the green appearance of the underwater pictures (Figure 4c). After the ice melted toward the 
end of July, the contribution of blue light to the underwater light field increased relative to earlier in the spring.

3.3.2.  Light Attenuation and Derived Chl a

The attenuation of light through the bottom 0.5 m of ice (KdPARICE) increased from initially low values to reach 
1.0 m −1 on 23 May, climbing rapidly to 2.1 m −1 by 2 June (Figure 8a, Table 4). This increase in light attenuation 
explains the reduction in light intensity observed at both the ice bottom and the upper water column. KdPARICE 
stayed consistently high for 24 days until 26 June, with some small variations of ∼0.3 m −1. Estimated Chl a within 
the bottom of the ice throughout June varied between 50 and 60 mg m −2. KdPARICE decreased when the buoy 
started to melt out between 24 and 27 June, dropping the sensors below this highly attenuating layer and into the 
upper water column. A similar temporal pattern was present between the bottom of the ice and the upper water 
column sensor (KdPARICE/WATER), where attenuation increased in mid-May, reaching a high of 0.75 m −1 on 8 June, 
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corresponding to Chl a of 4–8 mg m −2. Elevated values lasted approximately 4 weeks, ending with the deepening 
of all sensors starting on 27 June (Figure 7a).

KdPAR in the upper water column was homogenous throughout the deployment, with magnitudes comparable 
to those at the low snow site (Figure 8b). Estimated Chl a integrated over the upper water column was initially 
<4 mg m −2, increasing to around 7–10 mg m −2 in mid May and early June. The contribution of water column 
Chl a to total Chl a in the system (ice plus water column) while the buoy was in the ice was <10% (May and 
June). Temporal variability in water column Chl a increased once the buoy started to melt out of the ice, with 
several large peaks up to ∼24 mg m −2 observed in July. The temporal variability in water column KdPAR was 
synchronous with variability in Chl aFL at 4.9 m (Figure 8c), which observed several large and transient peaks in 
Chl a. The first spike in Chl aFL corresponded with the reduced availability of blue light (Figure 7c) and a marked 
increase in the green appearance of the water (Figure 4c).

Figure 7.  Observations from WB8, note the change in scale in the y-axis between panels a and b. (a) PAR at the ICEPAR1 and ICEPAR2 sensors measured at 30 min 
intervals. Annotated lines represent Ek values (μmol m −2 s −1) for relevant sea ice algae in the literature (Cota, 1985; Gradinger, 2009; McMinn & Hegseth, 2004). (b) 
PAR measured by the WATERPAR1 sensor. (c) Example spectral profiles of light measured by the MS9 sensor, normalized to the maximum value in each spectrum. 
Shaded regions cover the time during which the buoy gradually melted out, with the buoy dropping 1.3 m starting 27 June (first shaded area) and then another 2.5 m 
starting 19 July.
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3.4.  Primary Productivity Modeling

A primary productivity model was used to help determine whether observed light intensities were sufficient to 
produce estimated algal densities at the bottom of the ice and to what extent other factors impacted the growth 
and duration of the bloom.

3.4.1.  Low Snow Case (WB7)

Modeled growth rates were sensitive to changes in the biomass-specific rate of light-saturated photosynthesis 
(𝐴𝐴 𝐴𝐴

𝐵𝐵

𝐸𝐸
 ). A 20% decrease in 𝐴𝐴 𝐴𝐴

𝐵𝐵

𝐸𝐸
 reduced the algal growth rate so that the maximum modeled Chl a reached only 75% 

of estimated values. The same percentage increase in 𝐴𝐴 𝐴𝐴
𝐵𝐵

𝐸𝐸
 accelerated the accumulation of biomass, so that Chl a 

was 25% higher by the end of May compared to the buoy estimations (Figure 9a).

Nutrient availability for ice algae growth, as represented in the model by vertical eddy diffusivity (Kz) and concen-
trations in the pool supplying the upward flux of nutrient replenishment, had significant impacts on growth rates 
and maximum Chl a reached. The larger the Kz, the more rapid the growth and the higher the predicted algal Chl 
a (Figure 9b). Differences in the impact of Kz on modeled Chl a are visible once growth accelerates and initial 
nutrients are depleted around the first week in May. A 33% increase in Kz from 1.6 × 10 −5 to 2.2 × 10 −5 m 2 sec −1 

Figure 8.  WB8. (a) left axis: Diffuse attenuation in the ice; right axis: Chl a estimated from KdPAR using Equation 2. (b) left axis: Diffuse attenuation in the water 
column; right axis: estimated Chl a using Equation 3. (c) Chl a observed with ECOtriplet. Shaded regions cover the time during which the buoy gradually melted out, 
with the buoy dropping 1.3 m starting 27 June (first shaded area) and then another 2.5 m starting 19 July. Star symbols correspond to dates of photographs taken from 
the buoy shown in Figure 4.
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resulted in a 16% increase in Chl a at the end of May from 166 to 192 mg m −3
. The predicted algae growth devi-

ated from the initial model initialization (blue line) on 16 May, when growth was in an accelerated phase, and 
nutrient requirements would have been high. A decrease of 33% in Kz from 1.6 × 10 −5 to 1.1 × 10 −5 m 2 sec −1 led 
to a reduction in maximum Chl a and reduced growth from mid-May through June.

Increases in nutrient concentration in the resupply pool (i.e., in the lower layer) lead to greater upward nutrient 
flux, allowing for faster growth and higher Chl a accumulation (Figure 9c). The model sensitivity to this pool of 
nutrients is comparable to changes in Kz. The influence of the resupply pool concentrations did not start until the 
buoy drifted onto the Chukchi shelf (15 April), moving from the oligotrophic basin to the nutrient-replete shelf. 
A decrease in the pool of nutrients by 50% slowed growth and ultimately reduced the maximum predicted algal 
Chl a at the end of May by 19%–106 mg m −2. However, if diffusion was turned off, the initial nutrient concen-
tration controlled the timing of nutrient-limited growth (Figure 9d). Initial nutrient concentrations at expected 
basin levels caused nutrient limitation to occur on 17 April, while this limitation was delayed to 28 April (initial 
NO3 − = 5 mmol m −3) and 4 May (initial NO3 − = 10 mmol m −3) when concentrations were increased (Figure 9d).

3.4.2.  High Snow Case (WB8)

Compared to the low snow case, changes in 𝐴𝐴 𝐴𝐴
𝐵𝐵

𝐸𝐸
 had a larger impact on modeled growth at this site (Figure 10a). 

An increase or a decrease in 𝐴𝐴 𝐴𝐴
𝐵𝐵

𝐸𝐸
 impacted the Chl a reached by June by ±50%. Controls on nutrient availability 

in the model parameterized through either Kz or the resupply pool did not influence ice algae growth until June 
(Figure 10a & 10c). After 2 June, reductions in Kz and lower layer nutrients caused the model to predict lower 
Chl a, but there was no additional growth when increasing Kz. Differences in nutrients were most influential 
when diffusion was zero, in which case the initial nutrients controlled the dates of nutrient limitation and zero or 
negative net growth (Figure 10d).

4.  Discussion
4.1.  An Extensive, Long-Duration Ice Algae Bloom

The presence of ice algae at both buoy sites was indicated by the high light attenuation values through the ice, 
and the associated reduction of blue light in the under-ice light field caused by the presence of Chl a containing 
material. The SKs provided corroborating evidence via images of clumped algae at the sea surface. The gradual 
increase in KdPARICE over time reveals the seasonal evolution of ice algae growth both within and attached to 
the bottom of the ice, a type of observation that has never been made before using autonomous sensor platforms.

Figure 9.  Sensitivity of ice algae productivity model to input variables under WB7 light conditions. Modeled Chl a is overlaid on estimated concentrations (green) 
from Figure 6 (a) biomass-specific photosynthesis rate (mg C mg Chl a −1 hr −1), (b) Kz vertical eddy diffusivity (m 2 sec −1), (c) nutrient pool concentration (mmol m −3), 
(d) vertical diffusion off with variable initial nutrient concentration. Blue lines represent the best fit of the model output to the observations, red lines represent the 
impact of changing the model parameters.
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The main difference between the buoy sites was the influx of snow the week after deployment at the high snow 
site, leading to delayed ice algae growth. At the low snow site, ice algae growth started in April, Chl a reached 
∼10 mg m −2 by 26 April and 150 mg m −2 by the end of May. In contrast, reduced light transmission to the bottom 
of the ice at the high snow site delayed ice algae growth by approximately 3 weeks, and Chl a did not reach 10 mg 
m −2 until mid-May and ∼50 mg m −2 at the end of May. As a historical comparison, ice algae Chl a measured in 
situ in the spring of 2002 by Gradinger (2009) in the same area of the Chukchi Sea was ∼10 mg m −2 on 30 May. 
While we cannot determine the onset of algae growth with any certainly in 2002, it is apparent that the bloom 
phase of ice algal growth was reached far earlier at the low snow site in 2018. Ice algae was present for 63 days at 
the low snow site and only half of that (35 days) at the high snow site. Ice algae bloom duration is highly variable 
temporally and spatially across the Arctic. Blooms extending over 30–50 days have been observed primarily from 
landfast ice (Leu et al., 2015; Oziel et al., 2019). Unfortunately, there are no previous observations following the 
full growth and decline of sea ice algae in drifting pack ice, so the true length of ice algae blooms in seasonal 
ice is an unknown. However, modeling indicates that ice algae should respond to the changes in light availability 
by shifting phenology, increasing GPP and expanding their habitat to include the larger extent of seasonal ice 
(Horvat et al., 2017; Lannuzel et al., 2020; Tedesco et al., 2019). The early and persistent bloom observed at the 
low snow site suggests that this is already happening on the Chukchi shelf, with the caveat that snow thickness 
seems to be the driving factor here, and so these impacts are expected to be quite spatially heterogenous. We 
hypothesize that our observations at the low snow site may represent future conditions in the pack ice on the 
northern Chukchi Sea.

Since our observations are a time series taken at a single under-ice point and self-shading is likely (based on 
the density of algae present), these estimates represent a lower limit on total areal Chl a. Given that both buoys 
observed vigorous ice algae growth, we hypothesize that this situation existed over a large area of the northern 
Chukchi shelf. Our observations of the in-ice bloom ended prematurely when melting of the ice caused the 
uppermost sensors to drop out of the bottom of the ice and thus out of the bloom. Ice algae could have persisted 
for longer than observed from the buoy; however, the ice was breaking up at this time, naturally leading to the 
end of the bloom.

By reducing transmission to the upper ocean to ∼1% of incident light, it is possible that ice algae at both sites 
may have had an inhibitory effect on water column photosynthesis. Although light transmission through the 
ice increased as the surface melted, the energy was absorbed by the ice algae and not available to fuel pelagic 
phytoplankton growth. Ice algae accounted for >90% of total Chl a (ice plus upper water column) through May, 
June and July, with continued low water column Chl a once the marginal ice zone moved northward. In past 
years, pelagic blooms have been observed in the Northern Chukchi Sea, reaching 30 mg m −3 in the upper water 
column (Arrigo et al., 2014; Hill et al., 2018) but our buoys detected none in 2018. Due to the relative motion 

Figure 10.  Sensitivity of ice algae productivity model to WB8 input variables. Model Chl a is overlaid on Chl a (green) from Figure 8. (a) biomass-specific 
photosynthesis rate (mg C mg Chl a −1 hr −1), (b) Kz vertical eddy diffusivity (m 2 sec −1), (c) nutrient pool concentration (mmol m −3), (d) vertical diffusion off with 
variable initial nutrient concentration.
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between ice and underlying water, the water column that the buoys observed was not tightly coupled to the light 
field's temporal history measured through the ice around the buoy site. Therefore, our buoy observations, while 
suggestive, cannot be used to definitively state that robust ice algae blooms were the primary cause of low water 
column productivity. However, satellite estimates of open water Chl a on the northern Chukchi shelf in June 2018 
after ice retreat found lower values than the long-term average (Frey, 2018). Thus, we propose that GPP on the 
Northern Chukchi shelf in the spring and early summer of 2018 was dominated by ice algae, which potentially 
impacted water column primary production.

4.2.  Light Versus Nutrient Limitation

Model results indicate that algal growth at the low snow site was light limited until approximately 30 April, after 
which nutrients became the limiting resource. Nutrient replenishment into the ice algae layer was represented by a 
vertical diffusivity term Kz equal to 1.6 × 10 −5 (WB7) and 2.2 × 10 −5 m 2 s −1 (WB8). These values are higher than 
previously used by Arrigo & Sullivan, 1994) to model nutrient-replete ice algae growth in McMurdo Sound, but 
lower than that observed under landfast ice in the Canadian Archipelago (Cota et al., 1987; Lavoie et al., 2005). 
At the height of the modeled ice algae growth at the low snow site, the nutrient demand was 3 mmol m −2 d −1 
which is also greater than fluxes measured in situ under landfast ice in the Barrow Strait (Cota et al., 1987) and 
the Barents Sea (Bourgault et al., 2011, 2 mmol m −2 day −1). We hypothesize that the ice algae bloom at the low 
snow site was supplied with nutrients through a combination of turbulence generated by ice-ocean stress and/or 
brine convection eroding the subsurface nutricline and mixing nutrients up to the base of the ice (Skyllingstad 
& Denbo, 2001) plus movement of the buoy into nutrient-rich water masses. At the time of the ice algae bloom 
(May–June), most of the northern Chukchi shelf was still ice-covered, and there was no indication of a water 
column bloom. Therefore, nutrients were likely to be replete, providing a constant new source of nutrients along 
the drift path of the buoys. With light limitation removed, initial nutrient concentrations in the ice and underlying 
water column, plus replenishment fluxes during the ice algae bloom became the limiting factor in ice algae GPP 
at the low snow site.

5.  Conclusions
These data represent unique observations of the seasonal development of ice algae on first-year drifting sea 
ice. The presence of a dense bloom initialized earlier than has previously been observed for the Chukchi shelf 
provides evidence that predicted shifts in ice algae phenology have been initiated. Ice algae could be increasing, 
owing to an extensive seasonal ice area with thin snow cover that provides habitat and a longer window of growth. 
However, as the Arctic warms, the window for this growth could shorten as earlier light availability is counterbal-
anced by earlier ice melt. Nutrient flux into an ice algae layer in mobile seasonal ice is currently an unknown, and 
contributes a large uncertainty in our ability to predict future ice algae GPP. As climate modeling indicates that 
ice algae GPP will be proportional to nutrient availability (Tedesco et al., 2019), determining present and future 
nutrient dynamics via both upper ocean stratification and biogeochemical processes in brine channels is critical 
to projecting the full impact of Arctic change on ice algae (Lannuzel et al., 2020).

6.  Considerations for Future Work
With thinner ice and thinner snow cover predicted to become the new normal for much of the Arctic ice pack, 
nutrient availability will be the dominant factor in limiting ice algae GPP. Incorporating nutrient measurements 
into the WARM buoys could help identify the mechanisms responsible for nutrient replenishment into the ice 
algae layer, critical for future predictions of both ice algae and pelagic phytoplankton production. The design of 
cheaper sensors and the inclusion of WARM buoy deployments in larger projects could reduce the cost for any 
single investigator, and increase annual deployment which to date has been limited by cost. Future deployments 
should coordinate WARM buoys with instrument clusters such as ice mass-balance buoys that provide comple-
mentary data on snow and ice accumulation and ablation. Combining WARM buoy data with water column 
observations from moorings, Argo floats, and ROVs (Randelhoff et  al.,  2020) and the inclusion of targeted 
high-resolution satellite remote sensing (sub 30 m; Wright & Polashenski, 2018) can provide a broader spatial 
scale for ice-tethered measurements.
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