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ARTICLE INFO ABSTRACT

Editor: Menghua Wang Sediment-laden sea ice is a ubiquitous phenomenon in the Arctic Ocean and its marginal seas. This study presents

a satellite-based approach at quantifying the distribution of sediment-laden ice that allows for more extensive

Keywords: observations in both time and space to monitor spatiotemporal variations in sediment-laden ice. A structural-
Arctic optical model coupled with a four-stream multilayer discrete ordinates method radiative transfer model was
Sea ice

used to examine surface spectral albedo for four surface types: clean ice, sediment-laden ice with 15 different
sediment loadings from 25 to 1000 g m >, ponded ice, and ice-free open water. Based on the fact that the spectral
characteristics of sediment-laden ice differ from those other surface types, fractions of sediment-laden ice were
estimated from the remotely-sensed surface reflectance by a spectral unmixing algorithm using a least square
method. Sensitivity analyses demonstrated that a combination of sediment loads of 50 and 500 g m~* effectively
represents the areal fraction of sediment-laden ice with a wide range of sediment loads. The estimated fractions
of each surface type and corresponding remotely-sensed surface reflectances were used to train an artificial
neural network to speed up processing relative to the least squares method. Comparing the fractions of sediment-
laden ice derived from these two approaches yielded good agreements for areal fractions of sediment-laden ice,
highlighting the superior performance of the neural network for processing large datasets. Although our
approach contains potential uncertainties associated with methodological limitations, spatiotemporal variations
in sediment-laden ice exhibited reasonable agreement with spatial patterns and seasonal variations reported in
the literature on in situ observations of sediment-laden ice. Systematic satellite-based monitoring of sediment-
laden ice distribution can provide extensive, sustained, and cost-effective observations to foster our under-
standing of the role of sediment-laden ice in a wide variety of research fields including sediment transport and
biogeochemical cycling.

Machine learning
Remote sensing

1. Introduction

Sediment-laden sea ice (Fig. 1), also referred to as “dirty” sea ice, is a
ubiquitous feature in the Arctic Ocean and its marginal seas (Barber
et al.,, 2021; Darby et al., 2011; Eicken et al., 2000, 2005). Indeed,
sediment-laden ice covers a substantial fraction of the total ice coverage,
with a maximum of 40-60% in the Chukchi Sea (Tucker et al., 1999).
Sediment entrainment into sea ice is likely caused by a direct interaction
between frazil ice and resuspended sediments (Ito et al., 2015, 2019).
Sea-ice transport of sediments plays an important role in redistribution
and dispersal of suspended pollutants (Pfirman et al., 1995). Sediments
incorporated into sea ice are an important source of iron and nutrients

released during ice melt and support phytoplankton growth (Kanna
et al., 2014; Nomura et al., 2010). At the same time, sediment entrain-
ment into sea ice is a major constraint on in-ice and under-ice primary
production (Gradinger et al., 2009). Considering these key roles and
recent shifts in the Arctic ice regimes (reduced summer minimum ice
extent, ice thinning, reduction in multi-year ice extent, altered drift
paths and mid-winter landfast ice break-out events) that have likely
increased the amount of sediment-laden ice in the Arctic (Eicken et al.,
2005), it is important to establish a method for monitoring large-scale
variations in sediment-laden ice.

Satellite remote sensing is an effective technique for large-scale ob-
servations of Arctic sea ice because sea-ice condition vary substantially

* Corresponding author at: International Arctic Research Center, University of Alaska Fairbanks, 2160 Koyukuk Drive, Fairbanks, AK 99775, USA
E-mail addresses: hwaga@alaska.edu (H. Waga), heicken@alaska.edu (H. Eicken), bonlight@uw.edu (B. Light), yasuf@arc.hokudai.ac.jp (Y. Fukamachi).

https://doi.org/10.1016/j.rse.2021.112861

Received 26 May 2021; Received in revised form 11 December 2021; Accepted 20 December 2021

Available online 28 December 2021
0034-4257/© 2021 The Authors.

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license


mailto:hwaga@alaska.edu
mailto:heicken@alaska.edu
mailto:bonlight@uw.edu
mailto:yasuf@arc.hokudai.ac.jp
www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2021.112861
https://doi.org/10.1016/j.rse.2021.112861
https://doi.org/10.1016/j.rse.2021.112861
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2021.112861&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

H. Waga et al.

within a short time span due to changes in ice variables such as snowfall,
snow/ice melting, ponding, and meltwater drainage (Eicken et al., 2002;
Perovich et al., 2007, 2017). Spaceborne optical sensors such as the
Advanced Visible High Resolution Radiometer (AVHRR) and the Mod-
erate Resolution Imaging Spectroradiometer (MODIS), as well as
spaceborne passive microwave sensors such as the Advanced Microwave
Scanning Radiometer — Earth Observing System (AMSR-E) and the
Special Sensor Microwave/Imager (SSM/I), have provided essential data
for different variables such as sea-ice extent, concentration, and surface
reflectance over the decades. Huck et al. (2007) developed an approach
to map the distribution of sediment-laden ice in the Arctic based on sea-
ice albedo at two bands (visible and near-infrared) observed by AVHRR.
Eicken et al. (2000) combined in situ sampling with remotely-sensed
data from the Satellite Pour 1'Observation de la Terre (SPOT) and
AVHRR to determine sediment loads in sea ice in the Siberian Arctic.
Furthermore, Zhang et al. (2015) developed an inversion algorithm
based on the Classification and Regression Tree (CART) to detect sea ice
in sediment-laden water using MODIS imagery in the Bohai Bay. In
recent years, Barber et al. (2021) detected distribution of five surface
types including sediment-laden ice using a supervised classification
method based on surface reflectance of surface types at three MODIS
bands. Overall, satellite-based methods for detecting sediment-laden ice
have often been developed in the various regions. However, sea ice is a
complex mosaic of a broader range of surface types, such as bare ice,
snow, melt ponds, leads and open ocean (Perovich et al., 2002; Perovich
and Polashenski, 2012), and the resulting existence of mixed surface
types within a grid cell has been the main obstacle for satellite image
interpretation and quantification (Zhang et al., 2011).

Meanwhile, Tschudi et al. (2008) proposed a spectral unmixing al-
gorithm for monitoring the spatial distribution of ponded ice using
MODIS surface reflectance data. Spectral unmixing is the process by
which the measured spectrum of a pixel is decomposed into a collection
of constituent spectra, or endmembers, and a set of corresponding
fractions, or abundances, indicating the proportion of each endmember
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present in the pixel (Shah and Varshney, 2004). This approach utilized
differences in the spectral signatures of surface types, including ponded
ice, white ice, snow-covered ice, and open water, and successfully esti-
mated fractional coverages of ponded ice from space. As the spectral
signatures of sediment-laden ice differ substantially from other surface
types, the distribution of sediment-laden ice can be extracted from
remotely-sensed sea-ice reflectance data as well. The key feature of this
approach is the exploitation of the frequent temporal coverage and
comprehensive spectral information available from satellites to provide
ice-surface type information at sampling frequencies and over areas
sufficiently large to be useful for climate studies and model evaluation
(Tschudi et al., 2008).

Here, we present a method for detecting the distribution of sediment-
laden ice using satellite-derived surface reflectance, based on an artifi-
cial neural network (ANN). ANNs are adaptive systems that consist of
several neurons organized in hierarchical layers in which each neuron of
a layer is fully interconnected to all neurons in the adjacent two layers
through weighted paths. One of the main advantages of ANNs is their
ability to learn relationships in data from training data without pre-
defined or explicated equations (Marzban, 2009). Furthermore, once
trained, ANNs are powerful tools for fast and efficient processing of large
datasets such as satellite data (Paul and Huntemann, 2021). ANNs have
been widely used for biogeochemical (Fourrier et al., 2020; Li et al.,
2020a; Sauzede et al., 2016), geophysical (Boulze et al., 2020; Chen
et al., 2018; Paul and Huntemann, 2021), and ecological applications
(Hu et al., 2018; Syariz et al., 2020). In fact, Rosel et al. (2012) suc-
cessfully developed an ANN-based method to derive melt pond fractions
for Arctic sea-ice surfaces.

Given the potential importance of satellite-based mapping of
sediment-laden ice, this study proposes a new approach to monitor
sediment-laden ice from space, and explore spatiotemporal variations in
sediment-laden ice at the pan-Arctic scale for the first time. The paper is
organized as follows. First, spectral signatures of sediment-laden ice and
other surface types are simulated using a radiative transfer model; next,

Fig. 1. Photographs of sediment-laden ice taken near Point Barrow on July 30, 2006 (see Fig. 2).
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based on the spectral signature of each surface type, fractions of each
surface type are determined from satellite surface reflectance products;
next, an ANN for determining fractions of each surface type from
satellite-derived surface reflectance is trained using a training and test
dataset; then, the resulting maps of sediment-laden ice fraction are
compared with satellite true-color images; finally, we present a first
large-scale, pan-Arctic assessment of sediment-laden ice based on sat-
ellite data.

2. Data and methods
2.1. Modeled spectral albedo

A structural-optical model (Light et al., 1998) coupled with a four-
stream multilayer discrete ordinates method radiative transfer model
(Grenfell, 1991) was used to calculate surface spectral albedo for clean
bare ice (clean ice), sediment-laden bare ice (sediment-laden ice),
ponded ice, and ice-free open water. In this study, we consider a series of
sediment-laden ice cases with sediment loads of 25, 50, 75, 100, 125,
150, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 g m~3. The
structural-optical model incorporates information about the physical
properties of the ice (specifically, brine and gas inclusion size and
number densities typical of sea ice) and predicts inherent optical prop-
erties, whereas the radiative transfer model utilizes inherent optical
properties, together with additional information about the boundary
conditions, layer structure, and incident light field to solve the radiative-
transfer equation and predict apparent optical properties.

Spectral albedos were computed based on the following experi-
mental setups (Huck et al., 2007; Light et al., 1998). For each bare ice
case, a three-layer model was used with a 0.05 m thick uppermost highly
scattering layer. The particulates were assumed to be distributed evenly
in the uppermost 0.25 m of the sediment-laden bare ice. Specific phys-
ical and optical properties of the three layers are given in Table 1 of
Light et al. (1998). In addition, melt ponds on ice were specified to be
0.25 m deep (see Fig. 11 Perovich et al., 2003) with vertically uniform
optical properties. The open water albedo was computed with the
radiative transfer model assuming Fresnel reflection and refraction at
the air-ocean interface and negligible (but non-zero) multiple scattering
within the water column. The computed albedo is commensurate with
albedos reported by Pegau and Paulson (2001). Further details are
described in Huck et al. (2007) and Light et al. (1998).

2.2. MODIS surface reflectance

The latest collection (C61) of Terra/MODIS surface reflectance
(MODO09GA) product at 500 m spatial resolution at seven narrow

Table 1
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spectral bands 1-7 was downloaded from the NASA Level-1 and Atmo-
sphere Archive and Distribution System (LAADS) Distributed Active
Archive Center (DAAC) over the Arctic sea-ice region, defined here as
the area northward of 60°N. For comparison with the fraction maps of
sediment-laden ice, level 1A Terra/MODIS images were downloaded
from the NASA Ocean Color website (https://oceancolor.gsfc.nasa.
gov/). Processing from level 1A to level 2 of the MODIS images was
conducted using the latest version of NASA's SeaWiFS Data Analysis
System (SeaDAS 7.5.3). True-color images at 250 m spatial resolution
with the spectral band combination 1-4-3 were created using the Sea-
DAS. Prior to analysis, the MODO09 product MODIS tiles were reprojected
into a polar stereographic projection (EPSG 3413), mosaicked into daily
images, and a cloud and land mask incorporated in the MODO9GA
product was applied (Rosel et al., 2012).

2.3. MISR surface reflectance

In addition to MODIS surface reflectance, this study used a surface
reflectance dataset derived from the Multi-angle Imaging Spectroradi-
ometer (MISR) sensor onboard the Terra satellite. The MISR deploys
nine cameras with different view angles, which provide for a near-
instantaneous and high-quality sea-ice albedo data product at four
narrow spectral bands (blue, green, red, and near-infrared). Daily im-
ages of bi-hemispherical reflectance (BHR) at 1 km spatial resolution at
four narrow spectral bands (446, 558, 672, and 866 nm), observed by
the MISR sensor, were downloaded from the Quality Assurance for
Essential Climate Variables (QA4ECV) website (http://www.qa4ecv.
eu/). As MISR's cloud mask over snow or sea ice is not yet sufficiently
robust since MISR's spectral bands are confined to the visible and the
near-infrared, this MISR BHR product employs the simultaneously ac-
quired MODIS cloud mask (Kharbouche and Muller, 2019). In general,
the measured albedo of the surface, called blue-sky albedo, is a combi-
nation of BHR and directional hemispherical reflectance (DHR). In the
case of MISR, the BHR product is very close to the blue-sky albedo
because of the simultaneous retrieval of a surface bi-directional reflec-
tance factor and aerosol optical depth, and therefore the MISR BHR has
been utilized as a proxy for large-scale sea-ice albedo (Kharbouche and
Muller, 2019).

2.4. Surface type distinction
A spectral unmixing algorithm (Rosel et al., 2012; Tschudi et al.,

2008) was used to compute fractions of each surface type. The spectral
unmixing algorithm is defined by the following set of linear equations:

Summary statistics for the best five combinations of two sediment loads for MODIS relative to hypothetical sediment-laden ice surface covering the entire area of a
pixel. Rt, MPD, RMSE, and N represent median ratio, median absolute percent difference, root mean square error, and number of selected sediment loads, respectively.

Sediment N Mean Median
12?‘31)5 ® 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rt 50 500 098 098 099 099 099 099 099 099 099 099 099 1.00 1.00 1.00 1.00 099  0.99
50 600 098 098 099 099 099 099 099 099 099 099 099 099 099 099 099 099 099
75 700 098 099 099 099 099 099 099 099 099 099 099 099 099 099 099 099 099
25 400 097 098 098 099 099 099 099 099 099 099 099 099 1.00 1.00 1.00 099  0.99
25 500 097 098 098 099 099 099 099 099 099 099 099 099 099 099 099 099 099

MPD (%) 50 500 219 172 120 112 1.00 094 075 066 057 057 051 044 035 032 028 085 066
50 600 242 167 134 114 099 091 080 072 067 061 061 057 053 050 051 093 072
75 700 182 130 1.06 097 093 0.86 085 080 077 077 078 072 075 0.69 0.66 091  0.80
25 400 294 240 178 134 139 1.00 096 084 071 068 062 054 047 044 033 110 084
25 500 340 217 165 137 127 1.06 097 091 082 080 080 079 076 075 075 122 091

RMSE (x 1003 50 500 572 4.04 287 209 175 149 130 1.20 1.09 1.0l 094 093 088 0.86 083 1.80 1.20
50 600 439 284 225 177 173 159 155 152 146 145 140 139 139 138 134 1.83  1.52
75 700 352 259 220 209 203 200 191 1.91 1.89 1.89 1.86 1.83 1.86 1.84 182 208 1.91
25 400 314 269 252 247 237 236 224 230 226 226 222 224 222 219 220 238 227
25 500 822 573 420 352 301 218 195 1.68 1.36 129 1.18 1.05 094 085 075 253 1.68
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where F; represents the fractional area coverage of ith surface type per
grid cell and R; represents the satellite-derived surface reflectance of jth
spectral band, with r;,; representing the model-simulated albedo of ith
surface type at jth spectral band. Here, we assumed that the albedo is
consistent with the surface reflectance at a single angular position. As
MODIS and MISR provide surface reflectance at seven and four spectral
bands, the number of spectral bands, k, corresponds to seven and four for
MODIS and MISR, respectively. In this study, we estimated F; for four
major surface types: clean ice (F¢), sediment-laden ice (Fp), ponded ice
(Fnm), and open water (Fy). For sediment-laden ice, a greater number of
sediment load categories would provide more accurate estimates for
fractions of sediment-laden ice based on the spectral unmixing algo-
rithm. In general, underdetermined systems, where the number of
equations is less than the number of unknowns, have an infinite number
of solutions. For this reason, we set two different sediment load cate-
gories for both MODIS and MISR so that the number of equations is the
same or smaller than the number of unknowns. Although snow is also
one of the major surface types in the Arctic, we did not incorporate snow
into the spectral unmixing algorithms because sediment-laden ice is a
typical summer-specific feature observed after snow removal through
melt. Furthermore, the thin residual snow cover is mostly metamorphic
coarse-grained snow exhibiting spectral albedos similar to the bare ice
(Lei et al., 2012), suggesting that eliminating snow from our satellite-
based approaches would have a negligible impact on their perfor-
mance in estimating sediment-laden ice fractions. This set of equations
was solved by a least square method using the MATLAB Isqlin function
(R2020b, Optimization Toolbox), with lower and upper bounds of zero
and one on F; (initialized at 0.20 for each F;) and Eq. (2) as a further
constraint. Note that we confirmed that the selection of the initial value
for each F; makes no difference in the resulting fractions.

2.5. Sensitivity analyses

To evaluate the performance of our approach with two specific
sediment loads for sediment-laden ice representing a wide range of sea-
ice sediment loads, we conducted a sensitivity analysis using modeled
spectral albedo. For the sensitivity analysis, variable combinations of
sediment loads (25, 50, 75, 100, 125, 150, 200, 300, 400, 500, 600, 700,
800, 900, and 1000 g m>) and their fractions were randomly assigned
to produce hypothetical surface reflectance. Underlying this analysis is
the assumption that sediment-laden ice with a range of sediment loads
covers the entire area, such that the areal fraction of sediment-laden ice
is equal to one. The hypothetical surface reflectance was produced by
the following equations:

Fi=1j=1 Ti=n j=1 Fi Ri—
: : : = : s (3)
Ti=N j=k Fion Rk

Yi=1j=k

YR =1, @

where N represents the number of randomly selected surface reflectance
for sediment-laden ice with full range of sediment loads. First, r;,; for two
different sediment loads were randomly selected out of all sediment
loads (i.e., 15 sediment loads from 25 to 1000 g m~3). Assuming that
fractions of sediment-laden ice with the selected sediment loads satisfy
Eq. (4), F; for each sediment-laden ice category were randomly deter-
mined by the MATLAB rand function (R2020b). Note that the sum of F;
was enforced to be one afterward, with lower and upper bounds of zero
and one, respectively. Next, the hypothetical areal surface reflectances
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were computed from r;,; and F; using Eq. (3). These procedures were
repeated 1000 times, and then F; were estimated by spectral unmixing
algorithms for MODIS and MISR bands. After 1000 iterations, the per-
formance of the spectral unmixing algorithms for estimating fractions of
sediment-laden ice was evaluated by statistical metrics described in
section 2.7. We repeated the entire procedure for variable numbers of
the randomly selected surface type (N) from two to 15 with random
fractions to ensure the stable performance of our approach for a complex
mosaic of a broader range of sediment-laden ice. Finally, the optimum
combinations of two sediment loads for MODIS and MISR were deter-
mined based on the statistical metrics. The surface types used here were
selected randomly for each repeat by the MATLAB randperm function
(R2020b).

Once we determined the best combinations of two sediment loads for
MODIS and MISR, this study further examined sensitivity of the MODIS-
and MISR-based spectral unmixing algorithms for mosaic of ice surface
types. For this sensitivity analysis, hypothetical areal surface reflectance
was generated using a variety of ice surface types, i.e., not only
sediment-laden ice but also other surface types, including clean ice,
ponded ice, and open water (i.e., 18 surface types in total). The pro-
cedure for this sensitivity analysis was the exact same as the afore-
mentioned approach for determining the best combination of sediment
loads, except the total number of ice surface types increased from 15 to
18.

2.6. Artificial neural network

As this study examined satellite images with high spatial resolution,
extracting surface types with the spectral unmixing algorithm based on a
least square method was a time-consuming process. To overcome this
obstacle, we developed an ANN for mapping sediment-laden ice using
satellite-derived surface reflectance. Among the different types of ANNs,
a multi-layered perceptron (MLP) has been chosen for its properties as
universal approximator of any continuous and derivable function
(Rumelhart et al., 1986). MLPs are a class of feed-forward ANNs that
consist of an input layer, one or more hidden layers, and an output layer
(Fig. 3). These layers contain neurons that are connected to the adjacent
layers and able to exchange information through weighted connections
(Atkinson and Tatnall, 1997). The development of MLPs establishes
these weights by a supervised learning process using predefined outputs
corresponding to the input data. In this study, we constructed MLPs with
two hidden layers using the MATLAB train function (R2020b, Deep
Learning Toolbox). A set of the optimal numbers of neurons in these two
hidden layers was determined by trial-and-error, i.e., the number of
neurons in each hidden layer were varied between five and 50 with five-
increment steps. Then, the optimal number of neurons for each layer was
determined based on the performance of the trained ANNs (see section
2.7). The sigmoid transfer function was used by the neurons in the two
hidden layers, whereas the softmax transfer function was used for the
output layer to constrain the sum of the output values to be exactly equal
to one with a set of lower and upper bounds of zero and one,
respectively.

To maximize the geographic and seasonal coverages of datasets for
the ANN development, we prepared a manageable dataset as a subset of
the overall MOD09GA data archive for 2020 during the six months of
north polar daylight (from April to September). First, a list of days with
cloud-free surface reflectances out of the overall MODO9GA data archive
for 2020 was compiled for each pixel. Out of the list, cloud-free surface
reflectances per pixel of ten randomly selected days were assigned to a
dataset used for training, validating, and testing ANNSs. If a pixel had less
than ten days with cloud-free surface reflectances, all cloud-free spectra
were included in the dataset. This approach ensured that a location or a
season with very few data points was still represented in the dataset, or
conversely prevented regions with many valid data or seasons with the
most favorable atmospheric conditions from dominating the training
process (Mélin and Vantrepotte, 2015). The resulting dataset for the
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ANN development amounted to over 16 million spectra, and the frac-
tional coverages of each surface type for each spectrum were computed
by applying the spectral unmixing algorithms to the dataset. Subse-
quently, based on the procedure proposed in Kulp and Strauss (2018),
the dataset was split into three subsets: a training subset (70%), a vali-
dation subset (15%), and a test subset (15%). In this study, ANNs were
trained using the MATLAB train function. A common problem encoun-
tered in machine learning is that the ANN model does not generalize
well from training data to unseen data because of overfitting of the
training data (Robilliard and Fonlupt, 2002). When an ANN begins to
overfit the data, the error on the validation subset typically begins to
rise. To avoid overfitting, the errors on the validation subset were
monitored during the training process. The training was stopped after
six consecutive increases in validation error, and the weights corre-
sponding to the minimum of the error on the validation subset were
returned as the resulting ANNS. Finally, the performance of the best ANN
was validated using the test subset.

2.7. Performance validation

The performance of the spectral unmixing algorithm and ANNs were
evaluated based on three statistical metrics: the median ratio (Rt), me-
dian absolute percent difference (MPD), and root mean square error
(RMSE) between the least-square-based and the ANN-based values.
Particularly, Rt, MPD, and RMSE were calculated as follows:

Y,
Rt = medi - 5
median (X,,)’ 5)
X, — Y,
MPD = median( LY S lOO)7 6)
RMSE = (X, — 1,2, %)

where X, and Y, represent the nth input and output values, respectively.
3. Results
3.1. Spectral albedos for different surface types

The model-simulated spectral albedos for four surface types for
wavelengths 400-2400 nm are shown in Fig. 4. Each surface type has a
unique spectral shape and magnitude of the albedo. For example, the
spectral albedo of clean ice exhibited a more pronounced peak at shorter
wavelengths (~470 nm) compared to the flatter maximum at longer
wavelength (~850 nm) for sediment-laden ice. As sediments are the
dominant absorber in the visible range, the difference in albedos be-
tween clean and sediment-laden ice was most distinct at shorter wave-
lengths. Towards longer wavelengths (>1000 nm) these differences
diminish because absorption by the ice becomes increasingly dominant
with greater wavelengths, reducing the relative importance of absorp-
tion by sediments. The lowest albedo was found for open water, which
exhibited a negligible spectral variation with albedo values of ~0.1
throughout the wavelength 400-2400 nm.

3.2. Performance of spectral unmixing algorithms

Using the modeled spectral albedo of sediment-laden ice for 15
different sediment loads, we generated hypothetical ice surfaces con-
sisting entirely of sediment-laden ice with a wide variety of sediment
loads. The predicted surface reflectance spectra accompanying the
resulting mosaics of sediment-laden ice were then used to compute areal
fractions of sediment-laden ice based on the spectral unmixing algo-
rithms with variable combinations of two categories for sediment-laden
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ice. Table 1 shows a comparison of the estimated and hypothetical areal
fractions for MODIS surface reflectance, suggesting that the combination
of sediment-laden ice with sediment loads of 50 and 500 g m > exhibited
the best performance for estimating areal fractions of sediment-laden
ice. Indeed, the spectral unmixing algorithm for MODIS with two
sediment-laden ice categories of 50 and 500 g m > estimates areal
fractions of hypothetical sediment-laden ice surfaces correctly with
average Rt, MPD, and RMSE of 0.99, 0.85%, and 1.80 x 1072, respec-
tively (Table 1).

Given the promising performance of the spectral unmixing algo-
rithm, we examined the sensitivity of this approach to identify the
optimal combination of two different sediment loads in capturing vari-
able mosaics of different surface types based on MODIS surface re-
flectances. The performances of the spectral unmixing algorithm for a
wide range of hypothetical complex mosaics of surface types are shown
in Table 2. The areal fraction of sediment-laden ice yielded an MPD and
RMSE of 1.90% and 8.11 x 1072 for the simplest hypothetical surface
pattern (N = 2), whereas those for the most complex pattern (N = 18)
were 0.57% and 0.76 x 1072, Across all four surface types, the
maximum MPD and RMSE were 6.80% and 8.11 x 102, respectively. In
addition, Rt for each surface type was close to 1.00 across the varying
complexity in surface. Moreover, the mean ratios and mean percent
differences also showed consistent results with Rt and MPD (e.g.,
sediment-laden ice yielded the mean ratio and mean percent difference
of 1.00 and 0.61% for the most complex pattern), suggesting these sta-
tistics can be seen as representative values. These statistics indicate that
the spectral unmixing algorithm for MODIS successfully retrieved areal
fractions of each surface type and sediment loads even for a complex
mosaic of the ice surface. Note that the spectral unmixing algorithm
yielded negligible areal fraction of sediment-laden ice (<0.01) for the
sediment-free hypothetical ice surface and marginal ice zone (i.e.,
mosaic of clean ice, ponded ice, and open water, except sediment-laden
ice).

The same procedures were applied to the spectral unmixing algo-
rithm for MISR. In accordance with MODIS data analysis, the combi-
nation of two sediment loads of 50 and 500 g m~> performed the best to
estimate areal fractions of sediment-laden ice using the spectral
unmixing algorithm for MISR surface reflectance (Table 3). However,
the resulting areal fraction of sediment-laden ice contained substantial
errors compared with those of the MODIS-based approach. As the sum of
each areal fraction was constrained to equal 1, such estimation errors in
the areal fraction of sediment-laden ice result in under- or over-
estimating of other surface types. In fact, the MISR-based approach in
the mosaic experiment demonstrated poorer estimation accuracy than
the MODIS-based approach across all of the surface types (Table 4).
Overall, MPD and RMSE for the areal fraction of sediment-laden ice in
the most complex mosaic ice surface (N = 18) were 2.86% and 3.36 x
1072, which are more than three times as large as those for the MODIS-
based approach. Overall, the three statistics for the MISR-based
approach yielded relatively poor results across all the four surface
types (Table 4). These results clearly indicate that MODIS data are more
suited for the spectral unmixing approach because more spectral bands
for capturing spectral variations are available when comparing with
MISR data.

3.3. Remote estimation of surface types

To further verify the performance our approach, we compared maps
of areal fractions of each surface type derived from the spectral
unmixing algorithm for MODIS surface reflectance with Terra/MODIS
true-color images for a region of near Point Barrow shown in Fig. 2. On
April 19 (Fig. 5), the fraction maps show that clean ice was the dominant
surface type (>0.8) over the area. It is important to recall that snow-
covered areas were classified as clean ice because snow was not speci-
fied in the spectral unmixing algorithm in this study. Therefore, the areal
fraction of clean ice was largely composed of snow coverage at this time
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Table 2

Performances of the MODIS-based spectral unmixing algorithm for a wide range of hypothetical mosaics of surface types. Rt, MPD, RMSE, and N represent median
ratio, median absolute percent difference, root mean square error, and number of selected surface types, respectively. Fc, Fp, Fp, and Fy represent areal fractions of
clean ice, sediment-laden ice, ponded ice, and open water.

N Rt MPD (%) RMSE (x 1072)
Fc Fp Fp Fy Fc Fp Fp Fy Fec Fp Fp Fy
2 0.99 0.98 0.93 1.00 1.41 1.90 1.47 0.70 6.48 8.11 6.06 3.94
3 0.96 0.99 0.90 0.98 5.51 2.06 2.23 1.27 4.46 4.83 6.55 3.76
4 0.97 0.99 0.92 0.98 5.24 1.70 2.07 1.62 2.98 3.73 5.22 3.69
5 0.97 0.99 0.95 0.96 6.80 1.65 1.95 1.60 2.64 3.01 4.60 3.73
6 0.98 0.99 0.95 0.98 6.41 1.41 2.28 1.46 2.16 2.53 431 3.14
7 0.97 0.99 0.94 0.97 6.05 1.39 2.37 1.91 1.88 2.22 4.15 3.63
8 0.97 0.99 0.98 0.98 6.42 1.39 1.79 1.85 1.63 2.01 3.22 2.96
9 0.96 1.00 0.99 0.98 5.99 1.24 2.08 2.19 1.36 1.89 2.96 3.01
10 0.96 1.00 1.01 0.99 6.48 1.22 2.11 1.93 1.33 1.71 2.88 2.88
11 0.96 1.00 1.01 0.99 6.21 1.11 1.87 2.01 1.24 1.59 2.28 2.87
12 0.97 1.00 1.01 0.99 5.47 1.03 1.95 1.80 1.00 1.44 2.45 2.58
13 0.99 1.00 1.04 1.02 4.47 0.92 2.00 1.96 0.83 1.34 2.09 2.41
14 0.96 1.00 1.05 1.05 5.50 0.84 1.81 1.80 0.95 1.24 1.84 2.36
15 0.98 1.00 1.03 1.06 3.31 0.72 1.70 1.83 0.72 1.12 1.76 2.15
16 0.98 1.00 1.04 1.07 3.84 0.66 1.96 2.14 0.69 0.94 1.70 2.22
17 0.98 1.00 1.06 1.10 3.09 0.58 1.81 2.19 0.70 0.85 1.51 2.29
18 0.97 1.00 1.05 1.08 3.31 0.57 1.49 1.91 0.60 0.76 1.39 1.62
Table 3

Summary statistics for the best five combinations of two sediment loads for MISR relative to hypothetical sediment-laden ice surface covering the entire area of a pixel.
Rt, MPD, RMSE, and N represent median ratio, median absolute percent difference, root mean square error, and number of selected sediment loads, respectively.

Sediment N Mean Median
load
n‘:"fg,)s ® 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Rt 50 500 095 097 097 098 098 098 099 099 099 099 099 099 099 099 099 098  0.99

50 600 0.95 09 097 098 098 098 099 099 099 099 099 099 099 099 099 0098 0.99
75 700 0.96 097 098 098 098 098 098 098 098 099 099 099 099 099 099 0.98 0.98
25 400 0.96 097 097 098 098 098 098 098 098 098 098 098 098 098 099 0098 0.98
25 500 0.94 09 097 098 098 098 098 098 098 098 099 098 099 099 099 0098 0.98
MPD (%) 50 500 4.62 338 262 218 18 180 138 123 120 1.00 092 0.79 0.67 058 0.51 1.65 1.23
50 600 5.49 4.08 3.02 240 199 169 139 1.21 1.17 105 096 0.84 0.72 0.60 0.51 1.81 1.21
75 700 4.44 343 240 233 217 184 168 159 151 1.37 133 126 114 110 1.09 191 1.59
25 400 3.54 3.05 258 244 212 218 197 202 189 187 176 169 157 158 140 211 1.97
25 500 6.04 406 28 235 216 197 174 167 162 155 147 153 145 147 148 223 1.67
RMSE (x 1073 50 500 6.85 525 426 362 324 283 251 213 212 202 182 182 171 1.66 1.64 290 213
50 600 5.96 490 411 373 337 324 314 300 297 288 278 280 275 277 274 341 3.00
75 700 8.92 7.09 6.64 539 468 407 355 297 275 264 200 18 133 126 095 374 2.97
25 400 1027 7.88 6.49 587 482 417 361 3.02 272 234 203 188 1.51 1.38 1.34 3.96 3.02
25 500 10.54 7.52 6.24 552 462 377 343 290 247 228 216 206 201 198 195 3.96 2.90

Table 4

Performances of the MISR-based spectral unmixing algorithm for a wide range of hypothetical mosaics of surface types. Rt, MPD, RMSE, and N represent median ratio,
median absolute percent difference, root mean square error, and number of selected surface types, respectively. Fc, Fp, Fp, and Fy represent areal fractions of clean ice,
sediment-laden ice, ponded ice, and open water.

N Rt MPD (%) RMSE (x 1072)
Fc Fp Fp Fw Fc Fp Fp Fw Fc Fp Fp Fw

2 1.00 0.97 0.94 1.00 4.34 3.83 4.39 3.89 8.13 9.76 6.07 4.53
3 0.97 0.98 0.92 0.99 6.69 3.26 5.82 4.16 5.45 8.15 5.40 3.92
4 0.96 0.98 0.91 1.00 8.75 2.87 8.62 4.26 3.33 7.53 5.15 4.46
5 0.95 0.98 0.91 1.04 9.33 2.91 8.34 4.96 3.19 6.93 4.97 4.79
6 0.91 0.98 0.92 1.05 9.28 2.93 8.48 5.32 2.91 6.20 4.65 4.50
7 0.91 0.98 0.91 1.11 9.16 3.13 9.37 5.48 2.74 6.22 4.10 4.00
8 0.92 0.98 0.92 1.12 9.69 2.92 9.56 5.98 2.65 5.92 3.95 3.93
9 0.92 0.98 0.94 1.11 9.31 3.51 9.71 6.18 2.38 5.78 3.73 3.60
10 0.90 0.98 0.98 1.13 9.18 3.05 9.42 6.28 2.19 5.14 3.11 3.55
11 0.92 0.98 1.03 1.16 9.67 3.11 9.87 6.76 2.07 4.95 3.20 3.30
12 0.92 0.98 1.07 1.19 9.81 3.12 9.36 8.08 1.85 4.60 3.03 3.35
13 0.92 0.97 1.11 1.20 8.70 3.17 9.88 8.43 1.74 4.43 2.71 3.25
14 0.94 0.98 1.09 1.16 7.91 2.90 9.54 6.91 1.62 4.10 2.69 2.76
15 0.92 0.98 1.13 1.17 9.32 2.95 9.39 6.90 1.54 3.95 2.53 2.74
16 0.94 0.97 1.10 1.17 7.31 2.86 8.42 6.93 1.35 3.62 2.14 2.58
17 0.97 0.97 1.11 1.20 5.73 2.86 8.18 8.24 1.14 3.58 2.15 2.77
18 0.94 0.97 1.06 1.18 6.92 2.86 7.05 7.71 1.17 3.36 1.78 2.54
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of year, resulting in consistently white color in the Terra/MODIS true-
color image (Fig. 5a). These facts resulted in relatively small (~0.8)
R? (Fig. 5f), as a measure of goodness of fit of the spectral unmixing
algorithm. In addition, the true-color image shows a thin gray line in the
top left part of the image around 72-73°N and 156-152°W, presumably
because of the presence of a narrow lead. We detected a relatively high
fraction (>0.3) of open water in the area (Fig. 5e), suggesting our
approach would detect the lead in the ice region even at sub-pixel width
(i.e., less than 500 m width). Similarly, a quite small but non-zero
fraction (<0.1) of open water distributed widely in the area at some
distance to the coast, presumably representing the presence of narrow

Input layer Hidden layers Output layer

Fig. 3. Structure of the ANN with two hidden layers. Gray circles represent
neurons, and solid lines are connections with weights from one neuron to
another neuron in the adjacent layer. Four neurons in the input and output
layers represent the surface reflectance and the fractions of surface types,
respectively. The ANN developed in this study contains two hidden layers with
45 neurons for the first hidden layer and 35 neurons for the second hidden
layer; for illustration purposes the figure only shows an excerpt for each layer.

Remote Sensing of Environment 270 (2022) 112861

Fig. 2. Bathymetric map with place names. The black box
0 delineates the region of interest for a comparison between the
satellite-derived fraction maps with the corresponding Terra/
MODIS true-color images (see Figs. 6-10). Yellow stars repre-
sent the centers of 25 x 25 pixel (12.5 x 12.5 km) data subsets
used to analyze seasonal variations of the different surface
types (see Fig. 12). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version

1000 of this article.)

L 2000

Bathymetry (m)

3000

4000

sea-ice leads.

With removal of snow cover as a result of surface melt, clean ice
coverages increased substantially by June 13 (Fig. 6). Indeed, R? yielded
almost 1.00 across the area (Fig. 6f), suggesting our spectral unmixing
algorithm successfully captured spectral variations in ice surface
reflectance with the four major surface types (i.e., clean ice, sediment-
laden ice, ponded ice, and open water). Clean ice (Fig. 6b) was the
dominant surface type over a wide area (>0.8), whereas particularly
high areal fractions (>0.6) of sediment-laden ice were found in greater
vicinity of the coast (Fig. 6¢). These spatial patterns were consistent with
the distributions of white and brownish ice shown in the true-color
image (Fig. 6a). Additionally, we observed patchy areas with high
fractions of ponded ice (Fig. 6d) along the cloud shadow (Fig. 6a) sur-
rounded by high fractions of clean ice (Fig. 6b). Moreover, the true-color
image indicates that sea-ice leads were likely distributed widely around
71-72°N and 152-155°W, while most of these areas were masked out by
the MODIS cloud mask. It is noteworthy that the remnants of those sea-
ice lead areas were successfully distinguished as open water areas
(Fig. 6€).

The true-color image from July 24, 2006 (Fig. 7a), shows extensive
areas of brownish ice in the west, suggesting a more wide-spread dis-
tribution of sediment-laden ice. Indeed, the spatial distribution of
brownish ice in the true-color image and the high fraction of sediment-
laden ice in the corresponding areal fraction map agree well (Fig. 7c).
Furthermore, aerial photographs taken of sediment-laden ice near Point
Barrow on June 30, 2006 (Fig. 1) serve as ground-truth observations that
provide further confirmation for the time and region of interest. We also
observed moderate areal fractions of open water over the ice-covered
areas (Fig. 7e). Although ice-free areas were not distinguishable in the
true-color images, open water might have existed in the ice-covered
areas at finer spatial scales invisible from the true color image with
250 m spatial resolution. The spatial distribution of R? showed small
values along the coast, where very turbid (i.e., brown colored) waters
were expected. As our spectral unmixing algorithm specified only clean
seawater for ice-free surface types, such turbid water associated with
high concentrations of suspended materials was accompanied by poor
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Fig. 4. Modeled spectral albedos for the
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this article.)
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Fig. 5. (a) Terra/MODIS true-color image and maps of areal fractions of (b) clean ice, (c) sediment-laden, (d) ponded ice, (e) open water, and (f) R? of the spectral
unmixing algorithm near Point Barrow on April 19, 2006. The areal fractions were derived by the MODIS-based spectral unmixing algorithm. White pixels in (b)—(f)

were identified as cloud covered by the MODIS cloud mask.

goodness of fit by the spectral unmixing algorithm.

Spatial patterns of the dominant surface type on April 19, June 13,
and July 24, 2006 are shown in Fig. 8. As melt progresses, the proportion
of sediment-laden ice dominated areas increased. More specifically, the
proportion of sediment-laden ice dominated areas reached 56.6% near
Point Barrow on July 24, 2006, whereas those on April 19 and June 13,
2006, were 0.0% and 12.1%, respectively. Sediment-laden ice was the
dominant surface type in coastal areas on June 13, primarily as part of
the landfast ice. After break-up and displacement of the landfast ice, on
July 24 the vicinity of Point Barrow was characterized as marginal ice
zone associated with a open ice pack, with pixels dominated by

sediment-laden ice widely distributed across the area. Among the
extensive areas with a dominance of sediment-laden ice, we found large
patches of open water-dominant pixels around 71-72°N and
154-156°W. Comparing the true-color image (Fig. 8c) and map of the
dominant surface type (Fig. 8f), these patches corresponded well with
the particularly dark areas in the true-color image. The pixels in the
marginal ice zone would have contained both ice-covered area and open
water area. As a higher proportion of open water results in darker color
in the true-color image, the dark and less dark pixels in the sediment-
laden ice area would have been associated with more and less open
water area within the pixel, respectively. It is noteworthy that ponded
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Fig. 6. (a) Terra/MODIS true-color image and maps of areal fractions of (b) clean ice, (c) sediment-laden, (d) ponded ice, (e) open water, and (f) R? of the spectral
unmixing algorithm near Point Barrow on June 13, 2006. The areal fractions were derived by the MODIS-based spectral unmixing algorithm. White pixels in (b)—(f)

were identified as cloud covered by the MODIS cloud mask.

July 24, 2006
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Fig. 7. (a) Terra/MODIS true-color image and maps of areal fractions of (b) clean ice, (c) sediment-laden, (d) ponded ice, (e) open water, and (f) R? of the spectral
unmixing algorithm near Point Barrow on July 24, 2006. The areal fractions were derived by the MODIS-based spectral unmixing algorithm. White pixels in (b)—(f)

were identified as cloud covered by the MODIS cloud mask.
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Fig. 8. (a—c) Terra/MODIS true-color images and (d-f) maps of the dominant surface type near Point Barrow on April 19, June 13, and July 24, 2006. White pixels in

(d)-(f) were identified as cloud covered by the MODIS cloud mask.

ice was a less prominent surface type near Point Barrow during the time
of year examined in this study (Fig. 8d—f).

3.4. Comparison between results derived from MISR and MODIS

The areal fractions of sediment-laden ice derived by the spectral
unmixing algorithms for the MODIS and MISR surface reflectance and
differences in areal fractions between these two sensors are shown in
Fig. 9. The MODIS surface reflectance allowed for accurate derivation of
areal sediment-laden ice fractions (Table 2), whereas the MISR-based
approach was associated with larger errors in estimating sediment-
laden ice fraction and other surface types (Table 4). On April 19, the
areal fraction maps showed negligible differences for sediment-laden ice
fractions (Fig. 9g), because clean ice was the dominant surface type
(Fig. 8d) with sediment-laden ice of small consequence. With sediment-
laden ice exposed at the ice surface as a result of surface melt, we found
clear differences between the two approaches in capturing sediment-
laden ice areal fractions. For example, the MODIS-based approach
yielded smaller but distinct areal fractions (<0.3) in a zone at some
distance to the coast on June 13 (Fig. 9b), whereas the MISR-based
approach observed no or negligible fractions (<0.1) in the correspond-
ing area (Fig. 9e). On July 24, extensive areas with larger areal fractions
of sediment-laden ice were found for the MISR-derived values (>0.8)
compared to those derived from MODIS (Fig. 9i). These differences in
the resulting areal fraction of sediment-laden ice highlight the advan-
tage of the larger number of available spectral bands (seven and four
bands for MODIS and MISR, respectively) in capturing spectral features
associated with heterogeneous ice surfaces. Note that comparisons in
areal fractions derived from MODIS surface reflectance using only four
spectral bands in the visible range with those derived from MISR showed
smaller differences between the two (Fig. 10), suggesting the major
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factor producing the differences in areal fractions derived from MODIS
and MISR was not related to sensor-specific features but the number of
available spectral bands for these sensors.

3.5. ANN training and validation

We trained 100 ANNs to determine the optimal number of neurons in
the two hidden layers. The resulting performance of the ANNs indicated
that the optimal number of neurons was 45 and 35 in the first and second
hidden layers, respectively. Comparisons of the values obtained from the
least squares method and the ANN showed good agreements for each
surface type (Fig. 11). For sediment-laden ice, the ANN retrievals were
associated with an MPD and RMSE of 0.233% and 3.05 x 10’4,
respectively. In addition, Rt for sediment-laden ice was 1.00, suggesting
accurate estimates of the fraction of sediment-laden ice with negligible
bias. These statistics highlight the outstanding performance of the ANN
(Fig. 11).

3.6. Seasonal variations in satellite-derived sediment-laden ice areal
fractions

Fig. 12 shows seasonal variations in the areal fractions of each sur-
face type for April through September 2020 for three different sub-
regions in the East Siberian Sea, Canada Basin, and the Canadian Arctic
Archipelago (see Fig. 2 for exact locations). The areal fractions of
sediment-laden ice yielded maximum values of 0.58, 0.50, and 0.16 in
the East Siberian Sea, Canada Basin, and Canadian Arctic Archipelago,
respectively. Sediment-laden ice was often the predominant ice surface
type in the East Siberian Sea and Canada Basin, particularly in the late
melt stage when ice melt progressed and matured in summer. Although
the areal fractions of sediment-laden ice in the East Siberian Sea and



H. Waga et al.

April 19, 2006

June 13,2006

Remote Sensing of Environment 270 (2022) 112861

July 24, 2006

04 06
Fraction

0.8

0.0 0.2
Difference

Fig. 9. Spatial patterns in areal fractions of sediment-laden ice retrieved by spectral unmixing algorithms for (a—c) MODIS surface reflectance using seven bands in
the visible and near-infrared ranges, (d—f) MISR surface reflectance, and (g-i) differences in the areal fractions between the two scenes near Point Barrow on April 19,
June 13, and July 24, 2006. White pixels were identified as cloud covered by the MODIS cloud mask.

Canadian Arctic Archipelago were reasonable, that of Canada Basin was
likely to be too high. Indeed, the areal fraction of sediment-laden ice in
the Canada Basin accounted for more than 50% of sea ice in late summer
and early fall. The sources of error associated with potential misclassi-
fication are discussed in greater depth below. The ponded-ice fractions
remained low (<0.2) during most of the period in the East Siberian Sea
and Canada Basin, whereas a maximum value of 0.57 was observed on
August 14 in the Canadian Arctic Archipelago. Larger proportions of
open water were observed during late summer in all three regions.
Particularly, open water accounted for close to 100% of areal fraction in
the East Siberian Sea in August-September, suggesting that little or no
sea ice remained in this area.

Maps for every other eight-day averaged fractions of sediment-laden
ice are shown in Fig. 13. At the pan-Arctic scale, sediment-laden ice was
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widely distributed in coastal areas, particularly over the Siberian,
Chukchi, and Beaufort shelves. Indeed, sediment-laden ice was the
dominant surface type over a wide area of the coastal areas (Fig. 14).
Moreover, small but non-negligible fractions (<0.2) of sediment-laden
ice were found at high latitudes in later summer, where clean or pon-
ded ice were the dominant surface types throughout the period. In
contrast, clean ice was registered as the dominant surface type
throughout the Arctic in spring to early summer. In the central Arctic,
clean ice dominated the surface even in summer, and ponded ice was
also identified as the dominant surface type in some areas.



H. Waga et al.

April 19, 2006

(b)

June 13, 2006

Remote Sensing of Environment 270 (2022) 112861

July 24, 2006

Yu -

)

RO K
00 02 04 06 08 1.0
Fraction

R

0.0 0.2
Difference

-04 -0.2

Fig. 10. Spatial patterns in areal fractions of sediment-laden ice retrieved by spectral unmixing algorithms for (a—c) MODIS surface reflectance using only four bands
in the visible range, (d-f) MISR surface reflectance, and (g-i) differences in the areal fractions between the two scenes near Point Barrow on April 19, June 13, and
July 24, 2006. White pixels were identified as cloud covered by the MODIS cloud mask.

4. Discussion
4.1. Advantages of the proposed approach

This study specified four surface types with two sediment loads for
the sediment-laden ice class (50 and 500 g m ) based on seven MODIS
spectral bands. Our sensitivity analyses showed that the proposed
approach has sufficient accuracy for estimating areal fraction of not only
sediment-laden ice but also other surface types (Tables 1 and 2). Both
comparisons of the areal fractions of surface types with true-color im-
ages (Figs. 5-8) and spatiotemporal variations in sea ice types
(Figs. 12-14) showed reasonable patterns. Comparing with the existing
approaches for mapping sediment-laden ice using satellite data (Barber
et al., 2021; Huck et al., 2007; Zhang et al., 2015), our approach has the
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following advantages.

A greater number of spectral bands allows for the capture of spectral
variations in surface reflectance through application of a spectral
unmixing algorithm. The MODIS sensor has seven spectral bands
ranging from the visible to near-infrared range, whereas the MISR sensor
has four spectral bands in the visible range (Fig. 4). Our results clearly
indicated the superior performance of the spectral unmixing algorithms
for MODIS surface reflectance compared to MISR surface reflectance
(Tables 1-4). Although spectral differences among surface types were
smaller in the near-infrared range than in the visible range (Fig. 4), the
many spectral bands with broader spectral coverage would contribute to
reducing misclassifications of surface types based on optical properties.
As other proposed approaches for detecting sediment-laden ice utilized
several MODIS bands (three bands in Barber et al., 2021; and four bands
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Fig. 11. Scatter plots comparing areal fractions of (a) clean ice, (b) sediment-laden ice, (c) ponded ice, and (d) open water derived from the least square method
(LSM) and ANN approach using the MODIS surface reflectance. A total of 2,414,514 (out of 16,096,762) spectra was used for testing the performance of the ANN.

in Zhang et al., 2015) or AVHRR bands (two bands in Huck et al., 2007),
our approach has an advantage in the number of spectral bands that can
improve the performance of capturing spectral variations.

The proposed approach retrieves areal fractions not only for
sediment-laden ice but also other surface types, including clean ice,
ponded ice, and open water. The sensitivity analyses demonstrated that
the spectral unmixing algorithm for the MODIS surface reflectance re-
trieves areal fractions of these surface types with estimation error of less
than 5% (Table 2). For ponded ice, there are some MODIS and other
satellite algorithms for retrieving areal fractions in the Arctic using
several bands in the visible range (e.g., four bands in Rosel et al., 2012;
three bands in Tschudi et al., 2008). Therefore, the number of spectral
bands utilized in the approach taken here represents a strong advantage
in the retrieval of both sediment-laden and ponded ice.

Our approach offers areal fractions of sediment-laden ice with more
than double the spatial resolution of previously proposed approaches by
Huck et al. (2007) and Zhang et al. (2015). Such spatially higher reso-
lution product allows for better discrimination between heterogeneous
ice environments and can reduce errors due to a mix of different surface
types within a pixel. According to Tucker et al. (1999), sediment con-
centrations in sea ice measured by their trans-Arctic sampling campaign
varied from 2 to 2000 g m >, and the mean for all samples was 360 g
m 3 with a standard deviation of 523 g m~>. As sediment-laden ice
typically occurs in bands or patches (Ficken et al., 2005; Tucker et al.,
1999), spectral signatures of sediment-laden ice would be less promi-
nent at a coarse spatial resolution because other common ice types can
overwhelm the sediment-laden ice-specific spectral features. Therefore,
our approach with a 500 m spatial resolution would provide a better
estimation of sediment-laden ice distribution.

This study constructed an ANN to speed up the processing satellite
imagery relative to the spectral unmixing algorithm relying on a least
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squares method. As the MODIS surface reflectance has a fine spatial
resolution of 500 m, processing a time-series of the MODIS surface
reflectance at the pan-Arctic scale with a least squares method is a time-
consuming process. For a pan-Arctic satellite scene gridded into a polar
stereographic projection with 500 m spatial resolution, processing with
the ANN was two orders of magnitude faster than with the least squares
method. It is important to recall that the resulting areal fractions derived
by the ANN showed good agreements with those computed by the least
squares method (Fig. 11).

4.2. Sources of uncertainty and errors

Arctic sea ice is a complex mosaic of a broader range of surface types
(Perovich et al., 2002; Perovich and Polashenski, 2012). Our sensitivity
analyses demonstrated the promising performance (Tables 2 and 4) of
the approach introduced here to map sediment-laden ice. Nevertheless,
several sources of error may require additional work to refine and
further enhance the method. Specifically, we utilized spectral albedo as
representative of several idealized surface types (Fig. 4) to examine the
performance of our approach for a wide variety of hypothetical ice-
covered areas and marginal ice zone. For example, spectral albedos for
clean ice and sediment-laden ice were simulated as dry surfaces, yet
spectral signatures of wet ice surfaces deviate somewhat from those of
dry ice surfaces. Wet clean ice causes less incoming solar radiation re-
flected to space compared to those by dry clean ice (Grenfell and May-
kut, 1977), associated with similar shapes of spectral albedo for dry
sediment-laden ice with wet clean ice. The analysis indicated that
sediment-laden ice accounts for more than 50% of sea ice in late summer
and early fall in the Canada Basin (Fig. 12). These values are considered
as too high given the deep-water location, distance from the coast and
likely ice drift paths (Fig. 2). This is not to exclude the possibility of such
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Fig. 12. Seasonal variations in areal fractions of each surface type for 2020 at three sites: (a) East Siberian Sea, (b) Canada Basin, and (c) Canadian Arctic Ar-
chipelago. An artificial neural network for estimating areal fractions of each surface type from the MODIS surface reflectance was used to retrieve these fractions.
Numbers of cloud-free pixels, depicted as white circles, represent the total cloud-free pixels within the 25 x 25 pixel (12.5 x 12.5 km) subsets for each site (see Fig. 2

for exact locations).

high areal fractions (given that there is good agreement with limited
ground truth data for the northern Alaska region (Fig. 1), but without
further dedicated ground truthing uncertainty remains. Overall, wet sea
ice in summer and fall would be one of the major sources of uncertainty
and errors in retrieving the areal fraction of sediment-laden ice, sug-
gesting the sensitivity analyses based on spectral albedo for several
idealized surface type may not fully translate into summer conditions for
Arctic ice pack settings.

This study assumed that the model-simulated albedo is consistent
with the satellite-derived surface reflectance at a single angular position,
whereas albedo and surface reflectance are independent, with the
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satellite-derived reflectances dependent on solar and sensor zenith an-
gles. To resolve and minimize these effects on estimating sediment-laden
ice distribution using satellite-derived reflectance data, Huck et al.
(2007) generated a look-up table for correcting satellite-derived reflec-
tance based on bidirectional reflectance distribution functions (BRDF).
As the BRDF correction enhanced their method substantially (Huck
et al., 2007), minimizing the gap between the model-simulated albedo
and satellite-derived surface reflectance can help diminish the ensuing
uncertainty and errors.

We should also take into account uncertainties associated with sub-
pixel contaminations. The most representative example of subpixel



H. Waga et al.

0.4

60°y
e) Jun 25-Jul 02

0.6

Remote Sensing of Environment 270 (2022) 112861

c) May 24-31

120°

120 (f) Jul 11-18

08 1.0

Fraction

Fig. 13. Every other eight-day averaged areal fractions of sediment-laden ice in the pan-Arctic for 2020. An artificial neural network for estimating areal fractions of
each surface type from the MODIS surface reflectance was used to retrieve these fractions. Black stars represent the centers of 25 x 25 pixel (12.5 x 12.5 km)
subregions analyzed in the East Siberian Sea, Canada Basin, and Canadian Arctic Archipelago (shown in Fig. 12). White pixels represent the areas where no cloud-free

data was available for each eight-day time frame.

contamination would be a substantial non-zero fraction (<0.1) of open
water distributed widely in the area at some distance to the coast on
April 19, 2006 (Fig. 5e). Excepting sea-ice leads, the ice surface at this
time of year would have been covered by snow. One potential expla-
nation for the non-zero fraction of open water aside from visible sea-ice
leads (gray lines in Fig. 5a) is that these small values might be associated
with subpixel (i.e., <500 m) sea-ice leads which were invisible in the
MODIS sensor. Sea-ice leads range from several meters up to several km
or even hundreds of km wide, which are more prevalent in areas of thin
ice than in the central Arctic ice pack (Wadhams et al., 1985), indicating
certain portions of sea-ice leads are likely to be invisible from the MODIS
sensor. It is important to note here that the subpixel contamination
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would not be the only factor producing non-zero fractions of open water
before ice melt has commenced. Rather, a complex mixture of all po-
tential factors described in this section could have contributed to pro-
ducing uncertainties in our results, including the non-zero open water
fraction during the snow-covered season.

Another potential source of errors and uncertainties is the MODIS
cloud mask that identifies four categories of cloud state (clear, cloud,
mixed, and not set - assumed clear) and two categories for cloud shadow
(presence and absence). The influence of clouds is a serious problem for
measurements of surface reflectance from satellites; however, un-
certainties still exist in the MODIS cloud mask which can introduce er-
rors into MODO09 product applications (Liu and Liu, 2013), particularly
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Fig. 14. Spatial distributions of the dominant surface types in the pan-Arctic for 2020. The dominant surface type was determined based on every other eight-day
averaged areal fractions of each surface type retrieved by an artificial neural network from the MODIS surface reflectance. Black stars represent the centers of 25 x 25
pixel (12.5 x 12.5 km) subregions analyzed in the East Siberian Sea, Canada Basin, and Canadian Arctic Archipelago (shown in Fig. 12). White pixels represent the

areas where no cloud-free data was available for each eight-day time frame.

for the Arctic because the MODIS cloud mask is not tailored towards
brighter surfaces comprising snow and ice. Indeed, we found a cloud
shadow even after applying the MODIS cloud mask to the MOD09
product (Fig. 6a), resulting in patchy areas with unrealistically high
fractions of ponded ice (Fig. 6e) along the cloud shadow. As areal
fractions of ponded ice apart from the cloud shadow were consistently
small, the patchy area was likely misclassified as ponded ice due to the
cloud shadow that should have been masked out by the MODIS cloud
mask.

In the Canadian Arctic Archipelago, areal fractions of ponded ice
typically show high values shortly after melt ponds begin to form. For
example, Li et al. (2020b) examined seasonal variations in melt pond
coverage in 2017 based on WorldView-2 satellite images and reported
that the ponded ice coverage reached a seasonal maximum of 54% on

16

first-year ice in late June 2017. Similarly, using the MODIS melt pond
coverages dataset for 2009-2011 (Rosel et al., 2012), Howell et al.
(2020) reported that initial melt pond formation occurred in May with
the peak melt pond coverage in early June to mid-July. Overall, we
observed a clear difference in the timing of peak ponded ice coverage in
the Canadian Arctic Archipelago between the present (mid-August;
Fig. 12) and previous studies (Howell et al., 2020; Li et al., 2020b). For
the East Siberian Sea and Canada Basin, the areal fraction of ponded ice
remained low through April to September compared to previous studies
(Fig. 12). One potential factor for this discrepancy is the misclassifica-
tion of sediment-laden ice as ponded ice in past studies. As spectral al-
bedo of sediment-laden ice is similar to that of ponded ice with high
sediment loads particularly in the visible range (Fig. 4), previous studies
not accounting for sediment-laden ice would have misclassified
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sediment-laden ice as ponded ice. This scenario is particularly relevant
for the East Siberian Sea and the Canada Basin with previously described
occurrences of sediment-laden ice, whereas it is less likely the origin of
differences observed in the Canadian Arctic Archipelago. Without
further dedicated validation/calibration procedures, it is not clear
whether the aforementioned uncertainties or other unrecognized factors
such as interannual variability drove these inconsistencies in ponded ice
coverages between the present and previous studies.

4.3. Sediment-laden ice distribution

Seasonal variations in the areal fractions of different surface types
showed patterns that conform with results from previous studies
(Fig. 12). In the Arctic, the surface snow layer begins to diminish in
thickness and extent during the early melt phase giving way to bare ice
and ponded ice surfaces (Eicken et al., 2002). While sediment-laden ice
was negligible in the early melt phase because sediments are typically
distributed throughout the upper ice layers and the ice interior and only
begin to be exposed and accumulate at the ice surface once melt has
commenced (Eicken et al., 2005; Niirnberg et al., 1994). Indeed, our
satellite-based approach retrieved substantial areal fractions of
sediment-laden ice in the East Siberian Sea and Canada Basin when ice
melt progressed and matured in summer, whereas that of the Canadian
Arctic Archipelago was quite small compared with those observed in the
East Siberian Sea and Canada Basin — as to be expected for a region with
comparatively deep water and fewer records of sediment-laden ice
(Fig. 12). It is important to clarify that the proposed approach cannot
detect sediments in the interior and lower layers of the ice because of the
optically thick surface snow and ice layers (Grenfell, 1983, 1991),
indicating large-scale spatial distributions of sediment-laden ice in this
study would have not have reflected the actual distribution of sediment-
laden ice until after surface snow and clean ice had been removed as a
result of melt progression.

Sediment-laden ice was the dominant surface type in coastal areas,
particularly in the Siberian, Chukchi, and Beaufort shelves (Fig. 14).
These regional patterns in sediment-laden ice correspond with those in
previous studies reporting sediment inclusions are often associated with
entrainment of frazil ice into deformed, multiple layers of rafted nilas,
indicative of a flaw-lead environment adjacent to the landfast ice of the
Chukchi and Beaufort shelves (Eicken et al., 2005; Tucker et al., 1999).
Note also that satellite data show a high incidence of sediment-laden ice
in the East Siberian and Laptev Seas surrounding the New Siberian
Islands, which conforms with previous findings that pointed to this re-
gion as a major source area of sediments (Eicken et al., 2000), fostered
also by high tidal current velocities in this region (Baumann et al., 2020;
Lyard, 1997). In consequence, we confirmed the spatial distribution of
sediment-laden ice retrieved from satellite data were broadly consistent
with previous findings based on in situ measurements.

In addition, we also identified substantial areal fractions of sediment-
laden ice in the central Arctic (Fig. 13). As sediment entrainment into
sea ice would not occur over deep waters at quite some distance to the
coast (Ito et al., 2015, 2019), it is anticipated that sediment-laden ice
observed in the central Arctic would have been transported from coastal
areas. In fact, Krumpen et al. (2020) reported that the ice formed around
the New Siberian Islands in winter with inclusions of sediment was
transported to the central Arctic Ocean. Therefore, major Arctic coastal
polynyas over shallow continental shelves, such as the East Siberian Sea
and Chukchi Sea coastal polynyas (Tamura and Ohshima, 2011), and
potentially broken-out landfast ice (Eicken et al., 2005; Tucker et al.,
1999) are likely to be primary sources of sediment-laden ice not only in
coastal areas but also in the central Arctic.

4.4. Implications for future work

As shown in the comparison result in the spectral unmixing algo-
rithms between the MODIS and MISR surface reflectance (Figs. 9-10),
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higher spectral resolution can improve capture of spectral variations
associated with ice surface heterogeneity. In addition, with more spec-
tral bands, more surface types can be specified in the spectral unmixing
algorithm. Thus, the accuracy of estimating areal fractions of surface
types would improve by using advanced multispectral and hyperspectral
satellite sensors employed in the future. An alternative approach for
improving retrieval accuracy with the existing multispectral satellite
sensors is to utilize spectral band ratios which can highlight differences
in spectral signature between the two bands. Lee et al. (2020) developed
a satellite capability to detect melt ponds on Arctic sea ice using various
combinations of band ratios in MODIS surface reflectance. Although the
spectral unmixing algorithm would not be directly applicable to the
band ratio method, there is a potential to retrieve areal fractions of each
surface type accurately.

One of the most important steps in future work is to confirm the
robustness of the proposed approach by validating and calibrating the
performance using actual in situ data. Although our results presented in
this study showed reasonable consistency with previously established
field-based findings, a quantitative assessment of the performance was
beyond the scope of this study. As errors in satellite products are known
unknowns, quantifying their uncertainties by analytical comparison
with actual data is a crucial requirement from the end user perspective
(Loew et al., 2017; Otto et al., 2016). While our sensitivity analyses
demonstrated accurate performance of the proposed approach for a
wide range of hypothetical ice surfaces, we identified several sources of
uncertainty and errors as detailed in section 4.2. Therefore, field-based
validation and calibration procedures are required to identify time pe-
riods (e.g., melting and freezing seasons), ice surface and cloud condi-
tions, and geographical areas for which sediment-laden ice can be
mapped reliably. Such dedicated future work would provide convincing
evidence that the technique can be a powerful tool across different
research fields.

Sediments incorporated into sea ice act as an important source of
iron and nutrients (Kanna et al., 2014; Nomura et al., 2010), which
support phytoplankton population growth and, in turn, the development
of phytoplankton blooms in spring. Conversely, turbid meltwater
released from sediment-laden ice suppresses growth of phytoplankton
because turbid meltwater drastically decreases light penetration into the
water column (Nishioka et al., 2014). These two conflicting impacts of
sediment-laden ice could likely affect spring phytoplankton bloom dy-
namics, particularly the timing of spring phytoplankton blooms that is a
crucial factor for Arctic marine ecosystems (Campbell et al., 2009;
Grebmeier and McRoy, 1989). Besides, sea-ice transport of sediments
plays an important role in the redistribution and dispersal of pollutants
(Pfirman et al., 1995) originating from coastal and inland sources such
as river flows, coastal erosion, and oil and gas exploration and devel-
opment (Kasper et al., 2017). Moreover, discrimination of clean and
sediment-laden ice based on our approach contributes to more accurate
estimates of solar heating in the Arctic, because sediment-laden ice has a
substantially lower albedo than clean ice (Fig. 4). Thus, a near real-time
and cost-effective satellite-based approach for monitoring spatiotem-
poral variations in the distribution of sediment-laden ice could be an
effective tool for a wide variety of research fields.

5. Summary and conclusions

This study introduced a near real-time and efficient satellite-based
approach for the detection and mapping of sediment-laden ice. As the
spectral characteristics of sediment-laden ice differ from those other
surface types, the fraction of sediment-laden ice was estimated from the
remotely-sensed surface reflectance based on a spectral unmixing al-
gorithm. Although our approach contains potential uncertainties asso-
ciated with methodological limitations, spatiotemporal variations in
sediment-laden ice exhibited reasonable agreement with spatial pat-
terns and seasonal variations reported in the literature that reported in
situ observations of sediment-laden ice. As the role of sediment-laden ice
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in biogeochemical cycling is very different from that of clean ice but still
poorly understood, satellite-based monitoring of sediment-laden ice
along with in situ observations and model simulations can foster our
understanding of the impacts of sediment-laden ice on a wide variety of
research fields including sediment transport and biogeochemical
cycling.
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