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A B S T R A C T   

Sediment-laden sea ice is a ubiquitous phenomenon in the Arctic Ocean and its marginal seas. This study presents 
a satellite-based approach at quantifying the distribution of sediment-laden ice that allows for more extensive 
observations in both time and space to monitor spatiotemporal variations in sediment-laden ice. A structural- 
optical model coupled with a four-stream multilayer discrete ordinates method radiative transfer model was 
used to examine surface spectral albedo for four surface types: clean ice, sediment-laden ice with 15 different 
sediment loadings from 25 to 1000 g m−3, ponded ice, and ice-free open water. Based on the fact that the spectral 
characteristics of sediment-laden ice differ from those other surface types, fractions of sediment-laden ice were 
estimated from the remotely-sensed surface reflectance by a spectral unmixing algorithm using a least square 
method. Sensitivity analyses demonstrated that a combination of sediment loads of 50 and 500 g m−3 effectively 
represents the areal fraction of sediment-laden ice with a wide range of sediment loads. The estimated fractions 
of each surface type and corresponding remotely-sensed surface reflectances were used to train an artificial 
neural network to speed up processing relative to the least squares method. Comparing the fractions of sediment- 
laden ice derived from these two approaches yielded good agreements for areal fractions of sediment-laden ice, 
highlighting the superior performance of the neural network for processing large datasets. Although our 
approach contains potential uncertainties associated with methodological limitations, spatiotemporal variations 
in sediment-laden ice exhibited reasonable agreement with spatial patterns and seasonal variations reported in 
the literature on in situ observations of sediment-laden ice. Systematic satellite-based monitoring of sediment- 
laden ice distribution can provide extensive, sustained, and cost-effective observations to foster our under
standing of the role of sediment-laden ice in a wide variety of research fields including sediment transport and 
biogeochemical cycling.   

1. Introduction 

Sediment-laden sea ice (Fig. 1), also referred to as “dirty” sea ice, is a 
ubiquitous feature in the Arctic Ocean and its marginal seas (Barber 
et al., 2021; Darby et al., 2011; Eicken et al., 2000, 2005). Indeed, 
sediment-laden ice covers a substantial fraction of the total ice coverage, 
with a maximum of 40–60% in the Chukchi Sea (Tucker et al., 1999). 
Sediment entrainment into sea ice is likely caused by a direct interaction 
between frazil ice and resuspended sediments (Ito et al., 2015, 2019). 
Sea-ice transport of sediments plays an important role in redistribution 
and dispersal of suspended pollutants (Pfirman et al., 1995). Sediments 
incorporated into sea ice are an important source of iron and nutrients 

released during ice melt and support phytoplankton growth (Kanna 
et al., 2014; Nomura et al., 2010). At the same time, sediment entrain
ment into sea ice is a major constraint on in-ice and under-ice primary 
production (Gradinger et al., 2009). Considering these key roles and 
recent shifts in the Arctic ice regimes (reduced summer minimum ice 
extent, ice thinning, reduction in multi-year ice extent, altered drift 
paths and mid-winter landfast ice break-out events) that have likely 
increased the amount of sediment-laden ice in the Arctic (Eicken et al., 
2005), it is important to establish a method for monitoring large-scale 
variations in sediment-laden ice. 

Satellite remote sensing is an effective technique for large-scale ob
servations of Arctic sea ice because sea-ice condition vary substantially 
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within a short time span due to changes in ice variables such as snowfall, 
snow/ice melting, ponding, and meltwater drainage (Eicken et al., 2002; 
Perovich et al., 2007, 2017). Spaceborne optical sensors such as the 
Advanced Visible High Resolution Radiometer (AVHRR) and the Mod
erate Resolution Imaging Spectroradiometer (MODIS), as well as 
spaceborne passive microwave sensors such as the Advanced Microwave 
Scanning Radiometer – Earth Observing System (AMSR-E) and the 
Special Sensor Microwave/Imager (SSM/I), have provided essential data 
for different variables such as sea-ice extent, concentration, and surface 
reflectance over the decades. Huck et al. (2007) developed an approach 
to map the distribution of sediment-laden ice in the Arctic based on sea- 
ice albedo at two bands (visible and near-infrared) observed by AVHRR. 
Eicken et al. (2000) combined in situ sampling with remotely-sensed 
data from the Satellite Pour l'Observation de la Terre (SPOT) and 
AVHRR to determine sediment loads in sea ice in the Siberian Arctic. 
Furthermore, Zhang et al. (2015) developed an inversion algorithm 
based on the Classification and Regression Tree (CART) to detect sea ice 
in sediment-laden water using MODIS imagery in the Bohai Bay. In 
recent years, Barber et al. (2021) detected distribution of five surface 
types including sediment-laden ice using a supervised classification 
method based on surface reflectance of surface types at three MODIS 
bands. Overall, satellite-based methods for detecting sediment-laden ice 
have often been developed in the various regions. However, sea ice is a 
complex mosaic of a broader range of surface types, such as bare ice, 
snow, melt ponds, leads and open ocean (Perovich et al., 2002; Perovich 
and Polashenski, 2012), and the resulting existence of mixed surface 
types within a grid cell has been the main obstacle for satellite image 
interpretation and quantification (Zhang et al., 2011). 

Meanwhile, Tschudi et al. (2008) proposed a spectral unmixing al
gorithm for monitoring the spatial distribution of ponded ice using 
MODIS surface reflectance data. Spectral unmixing is the process by 
which the measured spectrum of a pixel is decomposed into a collection 
of constituent spectra, or endmembers, and a set of corresponding 
fractions, or abundances, indicating the proportion of each endmember 

present in the pixel (Shah and Varshney, 2004). This approach utilized 
differences in the spectral signatures of surface types, including ponded 
ice, white ice, snow-covered ice, and open water, and successfully esti
mated fractional coverages of ponded ice from space. As the spectral 
signatures of sediment-laden ice differ substantially from other surface 
types, the distribution of sediment-laden ice can be extracted from 
remotely-sensed sea-ice reflectance data as well. The key feature of this 
approach is the exploitation of the frequent temporal coverage and 
comprehensive spectral information available from satellites to provide 
ice-surface type information at sampling frequencies and over areas 
sufficiently large to be useful for climate studies and model evaluation 
(Tschudi et al., 2008). 

Here, we present a method for detecting the distribution of sediment- 
laden ice using satellite-derived surface reflectance, based on an artifi
cial neural network (ANN). ANNs are adaptive systems that consist of 
several neurons organized in hierarchical layers in which each neuron of 
a layer is fully interconnected to all neurons in the adjacent two layers 
through weighted paths. One of the main advantages of ANNs is their 
ability to learn relationships in data from training data without pre
defined or explicated equations (Marzban, 2009). Furthermore, once 
trained, ANNs are powerful tools for fast and efficient processing of large 
datasets such as satellite data (Paul and Huntemann, 2021). ANNs have 
been widely used for biogeochemical (Fourrier et al., 2020; Li et al., 
2020a; Sauzède et al., 2016), geophysical (Boulze et al., 2020; Chen 
et al., 2018; Paul and Huntemann, 2021), and ecological applications 
(Hu et al., 2018; Syariz et al., 2020). In fact, Rösel et al. (2012) suc
cessfully developed an ANN-based method to derive melt pond fractions 
for Arctic sea-ice surfaces. 

Given the potential importance of satellite-based mapping of 
sediment-laden ice, this study proposes a new approach to monitor 
sediment-laden ice from space, and explore spatiotemporal variations in 
sediment-laden ice at the pan-Arctic scale for the first time. The paper is 
organized as follows. First, spectral signatures of sediment-laden ice and 
other surface types are simulated using a radiative transfer model; next, 

Fig. 1. Photographs of sediment-laden ice taken near Point Barrow on July 30, 2006 (see Fig. 2).  
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based on the spectral signature of each surface type, fractions of each 
surface type are determined from satellite surface reflectance products; 
next, an ANN for determining fractions of each surface type from 
satellite-derived surface reflectance is trained using a training and test 
dataset; then, the resulting maps of sediment-laden ice fraction are 
compared with satellite true-color images; finally, we present a first 
large-scale, pan-Arctic assessment of sediment-laden ice based on sat
ellite data. 

2. Data and methods 

2.1. Modeled spectral albedo 

A structural-optical model (Light et al., 1998) coupled with a four- 
stream multilayer discrete ordinates method radiative transfer model 
(Grenfell, 1991) was used to calculate surface spectral albedo for clean 
bare ice (clean ice), sediment-laden bare ice (sediment-laden ice), 
ponded ice, and ice-free open water. In this study, we consider a series of 
sediment-laden ice cases with sediment loads of 25, 50, 75, 100, 125, 
150, 200, 300, 400, 500, 600, 700, 800, 900, and 1000 g m−3. The 
structural-optical model incorporates information about the physical 
properties of the ice (specifically, brine and gas inclusion size and 
number densities typical of sea ice) and predicts inherent optical prop
erties, whereas the radiative transfer model utilizes inherent optical 
properties, together with additional information about the boundary 
conditions, layer structure, and incident light field to solve the radiative- 
transfer equation and predict apparent optical properties. 

Spectral albedos were computed based on the following experi
mental setups (Huck et al., 2007; Light et al., 1998). For each bare ice 
case, a three-layer model was used with a 0.05 m thick uppermost highly 
scattering layer. The particulates were assumed to be distributed evenly 
in the uppermost 0.25 m of the sediment-laden bare ice. Specific phys
ical and optical properties of the three layers are given in Table 1 of 
Light et al. (1998). In addition, melt ponds on ice were specified to be 
0.25 m deep (see Fig. 11 Perovich et al., 2003) with vertically uniform 
optical properties. The open water albedo was computed with the 
radiative transfer model assuming Fresnel reflection and refraction at 
the air-ocean interface and negligible (but non-zero) multiple scattering 
within the water column. The computed albedo is commensurate with 
albedos reported by Pegau and Paulson (2001). Further details are 
described in Huck et al. (2007) and Light et al. (1998). 

2.2. MODIS surface reflectance 

The latest collection (C61) of Terra/MODIS surface reflectance 
(MOD09GA) product at 500 m spatial resolution at seven narrow 

spectral bands 1–7 was downloaded from the NASA Level-1 and Atmo
sphere Archive and Distribution System (LAADS) Distributed Active 
Archive Center (DAAC) over the Arctic sea-ice region, defined here as 
the area northward of 60◦N. For comparison with the fraction maps of 
sediment-laden ice, level 1A Terra/MODIS images were downloaded 
from the NASA Ocean Color website (https://oceancolor.gsfc.nasa. 
gov/). Processing from level 1A to level 2 of the MODIS images was 
conducted using the latest version of NASA's SeaWiFS Data Analysis 
System (SeaDAS 7.5.3). True-color images at 250 m spatial resolution 
with the spectral band combination 1–4-3 were created using the Sea
DAS. Prior to analysis, the MOD09 product MODIS tiles were reprojected 
into a polar stereographic projection (EPSG 3413), mosaicked into daily 
images, and a cloud and land mask incorporated in the MOD09GA 
product was applied (Rösel et al., 2012). 

2.3. MISR surface reflectance 

In addition to MODIS surface reflectance, this study used a surface 
reflectance dataset derived from the Multi-angle Imaging Spectroradi
ometer (MISR) sensor onboard the Terra satellite. The MISR deploys 
nine cameras with different view angles, which provide for a near- 
instantaneous and high-quality sea-ice albedo data product at four 
narrow spectral bands (blue, green, red, and near-infrared). Daily im
ages of bi-hemispherical reflectance (BHR) at 1 km spatial resolution at 
four narrow spectral bands (446, 558, 672, and 866 nm), observed by 
the MISR sensor, were downloaded from the Quality Assurance for 
Essential Climate Variables (QA4ECV) website (http://www.qa4ecv. 
eu/). As MISR's cloud mask over snow or sea ice is not yet sufficiently 
robust since MISR's spectral bands are confined to the visible and the 
near-infrared, this MISR BHR product employs the simultaneously ac
quired MODIS cloud mask (Kharbouche and Muller, 2019). In general, 
the measured albedo of the surface, called blue-sky albedo, is a combi
nation of BHR and directional hemispherical reflectance (DHR). In the 
case of MISR, the BHR product is very close to the blue-sky albedo 
because of the simultaneous retrieval of a surface bi-directional reflec
tance factor and aerosol optical depth, and therefore the MISR BHR has 
been utilized as a proxy for large-scale sea-ice albedo (Kharbouche and 
Muller, 2019). 

2.4. Surface type distinction 

A spectral unmixing algorithm (Rösel et al., 2012; Tschudi et al., 
2008) was used to compute fractions of each surface type. The spectral 
unmixing algorithm is defined by the following set of linear equations: 

Table 1 
Summary statistics for the best five combinations of two sediment loads for MODIS relative to hypothetical sediment-laden ice surface covering the entire area of a 
pixel. Rt, MPD, RMSE, and N represent median ratio, median absolute percent difference, root mean square error, and number of selected sediment loads, respectively.   

Sediment 
loads (g 
m−3) 

N Mean Median 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Rt 50 500 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99 
50 600 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
75 700 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 
25 400 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 
25 500 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

MPD (%) 50 500 2.19 1.72 1.29 1.12 1.00 0.94 0.75 0.66 0.57 0.57 0.51 0.44 0.35 0.32 0.28 0.85 0.66 
50 600 2.42 1.67 1.34 1.14 0.99 0.91 0.80 0.72 0.67 0.61 0.61 0.57 0.53 0.50 0.51 0.93 0.72 
75 700 1.82 1.30 1.06 0.97 0.93 0.86 0.85 0.80 0.77 0.77 0.78 0.72 0.75 0.69 0.66 0.91 0.80 
25 400 2.94 2.40 1.78 1.34 1.39 1.00 0.96 0.84 0.71 0.68 0.62 0.54 0.47 0.44 0.33 1.10 0.84 
25 500 3.40 2.17 1.65 1.37 1.27 1.06 0.97 0.91 0.82 0.80 0.80 0.79 0.76 0.75 0.75 1.22 0.91 

RMSE (× 10−2) 50 500 5.72 4.04 2.87 2.09 1.75 1.49 1.30 1.20 1.09 1.01 0.94 0.93 0.88 0.86 0.83 1.80 1.20 
50 600 4.39 2.84 2.25 1.77 1.73 1.59 1.55 1.52 1.46 1.45 1.40 1.39 1.39 1.38 1.34 1.83 1.52 
75 700 3.52 2.59 2.20 2.09 2.03 2.00 1.91 1.91 1.89 1.89 1.86 1.83 1.86 1.84 1.82 2.08 1.91 
25 400 3.14 2.69 2.52 2.47 2.37 2.36 2.24 2.30 2.26 2.26 2.22 2.24 2.22 2.19 2.20 2.38 2.27 
25 500 8.22 5.73 4.20 3.52 3.01 2.18 1.95 1.68 1.36 1.29 1.18 1.05 0.94 0.85 0.75 2.53 1.68  
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where Fi represents the fractional area coverage of ith surface type per 
grid cell and Rj represents the satellite-derived surface reflectance of jth 
spectral band, with ri,j representing the model-simulated albedo of ith 
surface type at jth spectral band. Here, we assumed that the albedo is 
consistent with the surface reflectance at a single angular position. As 
MODIS and MISR provide surface reflectance at seven and four spectral 
bands, the number of spectral bands, k, corresponds to seven and four for 
MODIS and MISR, respectively. In this study, we estimated Fi for four 
major surface types: clean ice (FC), sediment-laden ice (FD), ponded ice 
(FM), and open water (FW). For sediment-laden ice, a greater number of 
sediment load categories would provide more accurate estimates for 
fractions of sediment-laden ice based on the spectral unmixing algo
rithm. In general, underdetermined systems, where the number of 
equations is less than the number of unknowns, have an infinite number 
of solutions. For this reason, we set two different sediment load cate
gories for both MODIS and MISR so that the number of equations is the 
same or smaller than the number of unknowns. Although snow is also 
one of the major surface types in the Arctic, we did not incorporate snow 
into the spectral unmixing algorithms because sediment-laden ice is a 
typical summer-specific feature observed after snow removal through 
melt. Furthermore, the thin residual snow cover is mostly metamorphic 
coarse-grained snow exhibiting spectral albedos similar to the bare ice 
(Lei et al., 2012), suggesting that eliminating snow from our satellite- 
based approaches would have a negligible impact on their perfor
mance in estimating sediment-laden ice fractions. This set of equations 
was solved by a least square method using the MATLAB lsqlin function 
(R2020b, Optimization Toolbox), with lower and upper bounds of zero 
and one on Fi (initialized at 0.20 for each Fi) and Eq. (2) as a further 
constraint. Note that we confirmed that the selection of the initial value 
for each Fi makes no difference in the resulting fractions. 

2.5. Sensitivity analyses 

To evaluate the performance of our approach with two specific 
sediment loads for sediment-laden ice representing a wide range of sea- 
ice sediment loads, we conducted a sensitivity analysis using modeled 
spectral albedo. For the sensitivity analysis, variable combinations of 
sediment loads (25, 50, 75, 100, 125, 150, 200, 300, 400, 500, 600, 700, 
800, 900, and 1000 g m−3) and their fractions were randomly assigned 
to produce hypothetical surface reflectance. Underlying this analysis is 
the assumption that sediment-laden ice with a range of sediment loads 
covers the entire area, such that the areal fraction of sediment-laden ice 
is equal to one. The hypothetical surface reflectance was produced by 
the following equations: 
⎡

⎣
ri=1,j=1 ⋯ ri=N,j=1

⋮ ⋱ ⋮
ri=1,j=k ⋯ ri=N,j=k

⎤

⎦

⎡

⎣
Fi=1

⋮
Fi=N

⎤

⎦ =

⎡

⎣
Rj=1

⋮
Rj=k

⎤

⎦, (3)  

∑N

i
Fi = 1, (4)  

where N represents the number of randomly selected surface reflectance 
for sediment-laden ice with full range of sediment loads. First, ri,j for two 
different sediment loads were randomly selected out of all sediment 
loads (i.e., 15 sediment loads from 25 to 1000 g m−3). Assuming that 
fractions of sediment-laden ice with the selected sediment loads satisfy 
Eq. (4), Fi for each sediment-laden ice category were randomly deter
mined by the MATLAB rand function (R2020b). Note that the sum of Fi 
was enforced to be one afterward, with lower and upper bounds of zero 
and one, respectively. Next, the hypothetical areal surface reflectances 

were computed from ri,j and Fi using Eq. (3). These procedures were 
repeated 1000 times, and then Fi were estimated by spectral unmixing 
algorithms for MODIS and MISR bands. After 1000 iterations, the per
formance of the spectral unmixing algorithms for estimating fractions of 
sediment-laden ice was evaluated by statistical metrics described in 
section 2.7. We repeated the entire procedure for variable numbers of 
the randomly selected surface type (N) from two to 15 with random 
fractions to ensure the stable performance of our approach for a complex 
mosaic of a broader range of sediment-laden ice. Finally, the optimum 
combinations of two sediment loads for MODIS and MISR were deter
mined based on the statistical metrics. The surface types used here were 
selected randomly for each repeat by the MATLAB randperm function 
(R2020b). 

Once we determined the best combinations of two sediment loads for 
MODIS and MISR, this study further examined sensitivity of the MODIS- 
and MISR-based spectral unmixing algorithms for mosaic of ice surface 
types. For this sensitivity analysis, hypothetical areal surface reflectance 
was generated using a variety of ice surface types, i.e., not only 
sediment-laden ice but also other surface types, including clean ice, 
ponded ice, and open water (i.e., 18 surface types in total). The pro
cedure for this sensitivity analysis was the exact same as the afore
mentioned approach for determining the best combination of sediment 
loads, except the total number of ice surface types increased from 15 to 
18. 

2.6. Artificial neural network 

As this study examined satellite images with high spatial resolution, 
extracting surface types with the spectral unmixing algorithm based on a 
least square method was a time-consuming process. To overcome this 
obstacle, we developed an ANN for mapping sediment-laden ice using 
satellite-derived surface reflectance. Among the different types of ANNs, 
a multi-layered perceptron (MLP) has been chosen for its properties as 
universal approximator of any continuous and derivable function 
(Rumelhart et al., 1986). MLPs are a class of feed-forward ANNs that 
consist of an input layer, one or more hidden layers, and an output layer 
(Fig. 3). These layers contain neurons that are connected to the adjacent 
layers and able to exchange information through weighted connections 
(Atkinson and Tatnall, 1997). The development of MLPs establishes 
these weights by a supervised learning process using predefined outputs 
corresponding to the input data. In this study, we constructed MLPs with 
two hidden layers using the MATLAB train function (R2020b, Deep 
Learning Toolbox). A set of the optimal numbers of neurons in these two 
hidden layers was determined by trial-and-error, i.e., the number of 
neurons in each hidden layer were varied between five and 50 with five- 
increment steps. Then, the optimal number of neurons for each layer was 
determined based on the performance of the trained ANNs (see section 
2.7). The sigmoid transfer function was used by the neurons in the two 
hidden layers, whereas the softmax transfer function was used for the 
output layer to constrain the sum of the output values to be exactly equal 
to one with a set of lower and upper bounds of zero and one, 
respectively. 

To maximize the geographic and seasonal coverages of datasets for 
the ANN development, we prepared a manageable dataset as a subset of 
the overall MOD09GA data archive for 2020 during the six months of 
north polar daylight (from April to September). First, a list of days with 
cloud-free surface reflectances out of the overall MOD09GA data archive 
for 2020 was compiled for each pixel. Out of the list, cloud-free surface 
reflectances per pixel of ten randomly selected days were assigned to a 
dataset used for training, validating, and testing ANNs. If a pixel had less 
than ten days with cloud-free surface reflectances, all cloud-free spectra 
were included in the dataset. This approach ensured that a location or a 
season with very few data points was still represented in the dataset, or 
conversely prevented regions with many valid data or seasons with the 
most favorable atmospheric conditions from dominating the training 
process (Mélin and Vantrepotte, 2015). The resulting dataset for the 
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ANN development amounted to over 16 million spectra, and the frac
tional coverages of each surface type for each spectrum were computed 
by applying the spectral unmixing algorithms to the dataset. Subse
quently, based on the procedure proposed in Kulp and Strauss (2018), 
the dataset was split into three subsets: a training subset (70%), a vali
dation subset (15%), and a test subset (15%). In this study, ANNs were 
trained using the MATLAB train function. A common problem encoun
tered in machine learning is that the ANN model does not generalize 
well from training data to unseen data because of overfitting of the 
training data (Robilliard and Fonlupt, 2002). When an ANN begins to 
overfit the data, the error on the validation subset typically begins to 
rise. To avoid overfitting, the errors on the validation subset were 
monitored during the training process. The training was stopped after 
six consecutive increases in validation error, and the weights corre
sponding to the minimum of the error on the validation subset were 
returned as the resulting ANNs. Finally, the performance of the best ANN 
was validated using the test subset. 

2.7. Performance validation 

The performance of the spectral unmixing algorithm and ANNs were 
evaluated based on three statistical metrics: the median ratio (Rt), me
dian absolute percent difference (MPD), and root mean square error 
(RMSE) between the least-square-based and the ANN-based values. 
Particularly, Rt, MPD, and RMSE were calculated as follows: 

Rt = median
(

Yn

Xn

)

, (5)  

MPD = median
(⃒

⃒
⃒
⃒
Xn − Yn

Xn

⃒
⃒
⃒
⃒ × 100

)

, (6)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1
(Xn − Yn)2

√
√
√
√ , (7)  

where Xn and Yn represent the nth input and output values, respectively. 

3. Results 

3.1. Spectral albedos for different surface types 

The model-simulated spectral albedos for four surface types for 
wavelengths 400–2400 nm are shown in Fig. 4. Each surface type has a 
unique spectral shape and magnitude of the albedo. For example, the 
spectral albedo of clean ice exhibited a more pronounced peak at shorter 
wavelengths (~470 nm) compared to the flatter maximum at longer 
wavelength (~850 nm) for sediment-laden ice. As sediments are the 
dominant absorber in the visible range, the difference in albedos be
tween clean and sediment-laden ice was most distinct at shorter wave
lengths. Towards longer wavelengths (>1000 nm) these differences 
diminish because absorption by the ice becomes increasingly dominant 
with greater wavelengths, reducing the relative importance of absorp
tion by sediments. The lowest albedo was found for open water, which 
exhibited a negligible spectral variation with albedo values of ~0.1 
throughout the wavelength 400–2400 nm. 

3.2. Performance of spectral unmixing algorithms 

Using the modeled spectral albedo of sediment-laden ice for 15 
different sediment loads, we generated hypothetical ice surfaces con
sisting entirely of sediment-laden ice with a wide variety of sediment 
loads. The predicted surface reflectance spectra accompanying the 
resulting mosaics of sediment-laden ice were then used to compute areal 
fractions of sediment-laden ice based on the spectral unmixing algo
rithms with variable combinations of two categories for sediment-laden 

ice. Table 1 shows a comparison of the estimated and hypothetical areal 
fractions for MODIS surface reflectance, suggesting that the combination 
of sediment-laden ice with sediment loads of 50 and 500 g m−3 exhibited 
the best performance for estimating areal fractions of sediment-laden 
ice. Indeed, the spectral unmixing algorithm for MODIS with two 
sediment-laden ice categories of 50 and 500 g m−3 estimates areal 
fractions of hypothetical sediment-laden ice surfaces correctly with 
average Rt, MPD, and RMSE of 0.99, 0.85%, and 1.80 × 10−2, respec
tively (Table 1). 

Given the promising performance of the spectral unmixing algo
rithm, we examined the sensitivity of this approach to identify the 
optimal combination of two different sediment loads in capturing vari
able mosaics of different surface types based on MODIS surface re
flectances. The performances of the spectral unmixing algorithm for a 
wide range of hypothetical complex mosaics of surface types are shown 
in Table 2. The areal fraction of sediment-laden ice yielded an MPD and 
RMSE of 1.90% and 8.11 × 10−2 for the simplest hypothetical surface 
pattern (N = 2), whereas those for the most complex pattern (N = 18) 
were 0.57% and 0.76 × 10−2. Across all four surface types, the 
maximum MPD and RMSE were 6.80% and 8.11 × 10−2, respectively. In 
addition, Rt for each surface type was close to 1.00 across the varying 
complexity in surface. Moreover, the mean ratios and mean percent 
differences also showed consistent results with Rt and MPD (e.g., 
sediment-laden ice yielded the mean ratio and mean percent difference 
of 1.00 and 0.61% for the most complex pattern), suggesting these sta
tistics can be seen as representative values. These statistics indicate that 
the spectral unmixing algorithm for MODIS successfully retrieved areal 
fractions of each surface type and sediment loads even for a complex 
mosaic of the ice surface. Note that the spectral unmixing algorithm 
yielded negligible areal fraction of sediment-laden ice (<0.01) for the 
sediment-free hypothetical ice surface and marginal ice zone (i.e., 
mosaic of clean ice, ponded ice, and open water, except sediment-laden 
ice). 

The same procedures were applied to the spectral unmixing algo
rithm for MISR. In accordance with MODIS data analysis, the combi
nation of two sediment loads of 50 and 500 g m−3 performed the best to 
estimate areal fractions of sediment-laden ice using the spectral 
unmixing algorithm for MISR surface reflectance (Table 3). However, 
the resulting areal fraction of sediment-laden ice contained substantial 
errors compared with those of the MODIS-based approach. As the sum of 
each areal fraction was constrained to equal 1, such estimation errors in 
the areal fraction of sediment-laden ice result in under- or over
estimating of other surface types. In fact, the MISR-based approach in 
the mosaic experiment demonstrated poorer estimation accuracy than 
the MODIS-based approach across all of the surface types (Table 4). 
Overall, MPD and RMSE for the areal fraction of sediment-laden ice in 
the most complex mosaic ice surface (N = 18) were 2.86% and 3.36 ×
10−2, which are more than three times as large as those for the MODIS- 
based approach. Overall, the three statistics for the MISR-based 
approach yielded relatively poor results across all the four surface 
types (Table 4). These results clearly indicate that MODIS data are more 
suited for the spectral unmixing approach because more spectral bands 
for capturing spectral variations are available when comparing with 
MISR data. 

3.3. Remote estimation of surface types 

To further verify the performance our approach, we compared maps 
of areal fractions of each surface type derived from the spectral 
unmixing algorithm for MODIS surface reflectance with Terra/MODIS 
true-color images for a region of near Point Barrow shown in Fig. 2. On 
April 19 (Fig. 5), the fraction maps show that clean ice was the dominant 
surface type (>0.8) over the area. It is important to recall that snow- 
covered areas were classified as clean ice because snow was not speci
fied in the spectral unmixing algorithm in this study. Therefore, the areal 
fraction of clean ice was largely composed of snow coverage at this time 
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Table 2 
Performances of the MODIS-based spectral unmixing algorithm for a wide range of hypothetical mosaics of surface types. Rt, MPD, RMSE, and N represent median 
ratio, median absolute percent difference, root mean square error, and number of selected surface types, respectively. FC, FD, FP, and FW represent areal fractions of 
clean ice, sediment-laden ice, ponded ice, and open water.  

N Rt MPD (%) RMSE (× 10−2) 

FC FD FP FW FC FD FP FW FC FD FP FW 

2 0.99 0.98 0.93 1.00 1.41 1.90 1.47 0.70 6.48 8.11 6.06 3.94 
3 0.96 0.99 0.90 0.98 5.51 2.06 2.23 1.27 4.46 4.83 6.55 3.76 
4 0.97 0.99 0.92 0.98 5.24 1.70 2.07 1.62 2.98 3.73 5.22 3.69 
5 0.97 0.99 0.95 0.96 6.80 1.65 1.95 1.60 2.64 3.01 4.60 3.73 
6 0.98 0.99 0.95 0.98 6.41 1.41 2.28 1.46 2.16 2.53 4.31 3.14 
7 0.97 0.99 0.94 0.97 6.05 1.39 2.37 1.91 1.88 2.22 4.15 3.63 
8 0.97 0.99 0.98 0.98 6.42 1.39 1.79 1.85 1.63 2.01 3.22 2.96 
9 0.96 1.00 0.99 0.98 5.99 1.24 2.08 2.19 1.36 1.89 2.96 3.01 
10 0.96 1.00 1.01 0.99 6.48 1.22 2.11 1.93 1.33 1.71 2.88 2.88 
11 0.96 1.00 1.01 0.99 6.21 1.11 1.87 2.01 1.24 1.59 2.28 2.87 
12 0.97 1.00 1.01 0.99 5.47 1.03 1.95 1.80 1.00 1.44 2.45 2.58 
13 0.99 1.00 1.04 1.02 4.47 0.92 2.00 1.96 0.83 1.34 2.09 2.41 
14 0.96 1.00 1.05 1.05 5.50 0.84 1.81 1.80 0.95 1.24 1.84 2.36 
15 0.98 1.00 1.03 1.06 3.31 0.72 1.70 1.83 0.72 1.12 1.76 2.15 
16 0.98 1.00 1.04 1.07 3.84 0.66 1.96 2.14 0.69 0.94 1.70 2.22 
17 0.98 1.00 1.06 1.10 3.09 0.58 1.81 2.19 0.70 0.85 1.51 2.29 
18 0.97 1.00 1.05 1.08 3.31 0.57 1.49 1.91 0.60 0.76 1.39 1.62  

Table 3 
Summary statistics for the best five combinations of two sediment loads for MISR relative to hypothetical sediment-laden ice surface covering the entire area of a pixel. 
Rt, MPD, RMSE, and N represent median ratio, median absolute percent difference, root mean square error, and number of selected sediment loads, respectively.   

Sediment 
loads (g 
m−3) 

N Mean Median 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Rt 50 500 0.95 0.97 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 
50 600 0.95 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99 
75 700 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 
25 400 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.98 
25 500 0.94 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.98 0.98 

MPD (%) 50 500 4.62 3.38 2.62 2.18 1.85 1.80 1.38 1.23 1.20 1.00 0.92 0.79 0.67 0.58 0.51 1.65 1.23 
50 600 5.49 4.08 3.02 2.40 1.99 1.69 1.39 1.21 1.17 1.05 0.96 0.84 0.72 0.60 0.51 1.81 1.21 
75 700 4.44 3.43 2.40 2.33 2.17 1.84 1.68 1.59 1.51 1.37 1.33 1.26 1.14 1.10 1.09 1.91 1.59 
25 400 3.54 3.05 2.58 2.44 2.12 2.18 1.97 2.02 1.89 1.87 1.76 1.69 1.57 1.58 1.40 2.11 1.97 
25 500 6.04 4.06 2.85 2.35 2.16 1.97 1.74 1.67 1.62 1.55 1.47 1.53 1.45 1.47 1.48 2.23 1.67 

RMSE (× 10−2) 50 500 6.85 5.25 4.26 3.62 3.24 2.83 2.51 2.13 2.12 2.02 1.82 1.82 1.71 1.66 1.64 2.90 2.13 
50 600 5.96 4.90 4.11 3.73 3.37 3.24 3.14 3.00 2.97 2.88 2.78 2.80 2.75 2.77 2.74 3.41 3.00 
75 700 8.92 7.09 6.64 5.39 4.68 4.07 3.55 2.97 2.75 2.64 2.00 1.85 1.33 1.26 0.95 3.74 2.97 
25 400 10.27 7.88 6.49 5.87 4.82 4.17 3.61 3.02 2.72 2.34 2.03 1.88 1.51 1.38 1.34 3.96 3.02 
25 500 10.54 7.52 6.24 5.52 4.62 3.77 3.43 2.90 2.47 2.28 2.16 2.06 2.01 1.98 1.95 3.96 2.90  

Table 4 
Performances of the MISR-based spectral unmixing algorithm for a wide range of hypothetical mosaics of surface types. Rt, MPD, RMSE, and N represent median ratio, 
median absolute percent difference, root mean square error, and number of selected surface types, respectively. FC, FD, FP, and FW represent areal fractions of clean ice, 
sediment-laden ice, ponded ice, and open water.  

N Rt MPD (%) RMSE (× 10−2) 

FC FD FP FW FC FD FP FW FC FD FP FW 

2 1.00 0.97 0.94 1.00 4.34 3.83 4.39 3.89 8.13 9.76 6.07 4.53 
3 0.97 0.98 0.92 0.99 6.69 3.26 5.82 4.16 5.45 8.15 5.40 3.92 
4 0.96 0.98 0.91 1.00 8.75 2.87 8.62 4.26 3.33 7.53 5.15 4.46 
5 0.95 0.98 0.91 1.04 9.33 2.91 8.34 4.96 3.19 6.93 4.97 4.79 
6 0.91 0.98 0.92 1.05 9.28 2.93 8.48 5.32 2.91 6.20 4.65 4.50 
7 0.91 0.98 0.91 1.11 9.16 3.13 9.37 5.48 2.74 6.22 4.10 4.00 
8 0.92 0.98 0.92 1.12 9.69 2.92 9.56 5.98 2.65 5.92 3.95 3.93 
9 0.92 0.98 0.94 1.11 9.31 3.51 9.71 6.18 2.38 5.78 3.73 3.60 
10 0.90 0.98 0.98 1.13 9.18 3.05 9.42 6.28 2.19 5.14 3.11 3.55 
11 0.92 0.98 1.03 1.16 9.67 3.11 9.87 6.76 2.07 4.95 3.20 3.30 
12 0.92 0.98 1.07 1.19 9.81 3.12 9.36 8.08 1.85 4.60 3.03 3.35 
13 0.92 0.97 1.11 1.20 8.70 3.17 9.88 8.43 1.74 4.43 2.71 3.25 
14 0.94 0.98 1.09 1.16 7.91 2.90 9.54 6.91 1.62 4.10 2.69 2.76 
15 0.92 0.98 1.13 1.17 9.32 2.95 9.39 6.90 1.54 3.95 2.53 2.74 
16 0.94 0.97 1.10 1.17 7.31 2.86 8.42 6.93 1.35 3.62 2.14 2.58 
17 0.97 0.97 1.11 1.20 5.73 2.86 8.18 8.24 1.14 3.58 2.15 2.77 
18 0.94 0.97 1.06 1.18 6.92 2.86 7.05 7.71 1.17 3.36 1.78 2.54  
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of year, resulting in consistently white color in the Terra/MODIS true- 
color image (Fig. 5a). These facts resulted in relatively small (~0.8) 
R2 (Fig. 5f), as a measure of goodness of fit of the spectral unmixing 
algorithm. In addition, the true-color image shows a thin gray line in the 
top left part of the image around 72–73◦N and 156–152◦W, presumably 
because of the presence of a narrow lead. We detected a relatively high 
fraction (>0.3) of open water in the area (Fig. 5e), suggesting our 
approach would detect the lead in the ice region even at sub-pixel width 
(i.e., less than 500 m width). Similarly, a quite small but non-zero 
fraction (<0.1) of open water distributed widely in the area at some 
distance to the coast, presumably representing the presence of narrow 

sea-ice leads. 
With removal of snow cover as a result of surface melt, clean ice 

coverages increased substantially by June 13 (Fig. 6). Indeed, R2 yielded 
almost 1.00 across the area (Fig. 6f), suggesting our spectral unmixing 
algorithm successfully captured spectral variations in ice surface 
reflectance with the four major surface types (i.e., clean ice, sediment- 
laden ice, ponded ice, and open water). Clean ice (Fig. 6b) was the 
dominant surface type over a wide area (>0.8), whereas particularly 
high areal fractions (>0.6) of sediment-laden ice were found in greater 
vicinity of the coast (Fig. 6c). These spatial patterns were consistent with 
the distributions of white and brownish ice shown in the true-color 
image (Fig. 6a). Additionally, we observed patchy areas with high 
fractions of ponded ice (Fig. 6d) along the cloud shadow (Fig. 6a) sur
rounded by high fractions of clean ice (Fig. 6b). Moreover, the true-color 
image indicates that sea-ice leads were likely distributed widely around 
71–72◦N and 152–155◦W, while most of these areas were masked out by 
the MODIS cloud mask. It is noteworthy that the remnants of those sea- 
ice lead areas were successfully distinguished as open water areas 
(Fig. 6e). 

The true-color image from July 24, 2006 (Fig. 7a), shows extensive 
areas of brownish ice in the west, suggesting a more wide-spread dis
tribution of sediment-laden ice. Indeed, the spatial distribution of 
brownish ice in the true-color image and the high fraction of sediment- 
laden ice in the corresponding areal fraction map agree well (Fig. 7c). 
Furthermore, aerial photographs taken of sediment-laden ice near Point 
Barrow on June 30, 2006 (Fig. 1) serve as ground-truth observations that 
provide further confirmation for the time and region of interest. We also 
observed moderate areal fractions of open water over the ice-covered 
areas (Fig. 7e). Although ice-free areas were not distinguishable in the 
true-color images, open water might have existed in the ice-covered 
areas at finer spatial scales invisible from the true color image with 
250 m spatial resolution. The spatial distribution of R2 showed small 
values along the coast, where very turbid (i.e., brown colored) waters 
were expected. As our spectral unmixing algorithm specified only clean 
seawater for ice-free surface types, such turbid water associated with 
high concentrations of suspended materials was accompanied by poor 

Fig. 2. Bathymetric map with place names. The black box 
delineates the region of interest for a comparison between the 
satellite-derived fraction maps with the corresponding Terra/ 
MODIS true-color images (see Figs. 6–10). Yellow stars repre
sent the centers of 25 × 25 pixel (12.5 × 12.5 km) data subsets 
used to analyze seasonal variations of the different surface 
types (see Fig. 12). (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version 
of this article.)   

Fig. 3. Structure of the ANN with two hidden layers. Gray circles represent 
neurons, and solid lines are connections with weights from one neuron to 
another neuron in the adjacent layer. Four neurons in the input and output 
layers represent the surface reflectance and the fractions of surface types, 
respectively. The ANN developed in this study contains two hidden layers with 
45 neurons for the first hidden layer and 35 neurons for the second hidden 
layer; for illustration purposes the figure only shows an excerpt for each layer. 
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goodness of fit by the spectral unmixing algorithm. 
Spatial patterns of the dominant surface type on April 19, June 13, 

and July 24, 2006 are shown in Fig. 8. As melt progresses, the proportion 
of sediment-laden ice dominated areas increased. More specifically, the 
proportion of sediment-laden ice dominated areas reached 56.6% near 
Point Barrow on July 24, 2006, whereas those on April 19 and June 13, 
2006, were 0.0% and 12.1%, respectively. Sediment-laden ice was the 
dominant surface type in coastal areas on June 13, primarily as part of 
the landfast ice. After break-up and displacement of the landfast ice, on 
July 24 the vicinity of Point Barrow was characterized as marginal ice 
zone associated with a open ice pack, with pixels dominated by 

sediment-laden ice widely distributed across the area. Among the 
extensive areas with a dominance of sediment-laden ice, we found large 
patches of open water-dominant pixels around 71–72◦N and 
154–156◦W. Comparing the true-color image (Fig. 8c) and map of the 
dominant surface type (Fig. 8f), these patches corresponded well with 
the particularly dark areas in the true-color image. The pixels in the 
marginal ice zone would have contained both ice-covered area and open 
water area. As a higher proportion of open water results in darker color 
in the true-color image, the dark and less dark pixels in the sediment- 
laden ice area would have been associated with more and less open 
water area within the pixel, respectively. It is noteworthy that ponded 
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Fig. 4. Modeled spectral albedos for the 
four surface types (i.e., clean ice, 
sediment-laden ice, ponded ice, open 
water) for wavelengths 400–2400 nm 
under direct incident illumination with 
solar zenith angle 50◦. Each green 
symbol represents sediment loads be
tween 25 and 1000 g m−3; for illustra
tion purposes the figure only shows an 
excerpt for 7 sediment loads out of the 
full range of sediment loads considered 
in this study. The blue and gray bars 
represent the range of the four MISR 
bands and seven MODIS bands, respec
tively. (For interpretation of the refer
ences to color in this figure legend, the 
reader is referred to the web version of 
this article.)   

Fig. 5. (a) Terra/MODIS true-color image and maps of areal fractions of (b) clean ice, (c) sediment-laden, (d) ponded ice, (e) open water, and (f) R2 of the spectral 
unmixing algorithm near Point Barrow on April 19, 2006. The areal fractions were derived by the MODIS-based spectral unmixing algorithm. White pixels in (b)–(f) 
were identified as cloud covered by the MODIS cloud mask. 
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Fig. 6. (a) Terra/MODIS true-color image and maps of areal fractions of (b) clean ice, (c) sediment-laden, (d) ponded ice, (e) open water, and (f) R2 of the spectral 
unmixing algorithm near Point Barrow on June 13, 2006. The areal fractions were derived by the MODIS-based spectral unmixing algorithm. White pixels in (b)–(f) 
were identified as cloud covered by the MODIS cloud mask. 

Fig. 7. (a) Terra/MODIS true-color image and maps of areal fractions of (b) clean ice, (c) sediment-laden, (d) ponded ice, (e) open water, and (f) R2 of the spectral 
unmixing algorithm near Point Barrow on July 24, 2006. The areal fractions were derived by the MODIS-based spectral unmixing algorithm. White pixels in (b)–(f) 
were identified as cloud covered by the MODIS cloud mask. 
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ice was a less prominent surface type near Point Barrow during the time 
of year examined in this study (Fig. 8d–f). 

3.4. Comparison between results derived from MISR and MODIS 

The areal fractions of sediment-laden ice derived by the spectral 
unmixing algorithms for the MODIS and MISR surface reflectance and 
differences in areal fractions between these two sensors are shown in 
Fig. 9. The MODIS surface reflectance allowed for accurate derivation of 
areal sediment-laden ice fractions (Table 2), whereas the MISR-based 
approach was associated with larger errors in estimating sediment- 
laden ice fraction and other surface types (Table 4). On April 19, the 
areal fraction maps showed negligible differences for sediment-laden ice 
fractions (Fig. 9g), because clean ice was the dominant surface type 
(Fig. 8d) with sediment-laden ice of small consequence. With sediment- 
laden ice exposed at the ice surface as a result of surface melt, we found 
clear differences between the two approaches in capturing sediment- 
laden ice areal fractions. For example, the MODIS-based approach 
yielded smaller but distinct areal fractions (<0.3) in a zone at some 
distance to the coast on June 13 (Fig. 9b), whereas the MISR-based 
approach observed no or negligible fractions (<0.1) in the correspond
ing area (Fig. 9e). On July 24, extensive areas with larger areal fractions 
of sediment-laden ice were found for the MISR-derived values (>0.8) 
compared to those derived from MODIS (Fig. 9i). These differences in 
the resulting areal fraction of sediment-laden ice highlight the advan
tage of the larger number of available spectral bands (seven and four 
bands for MODIS and MISR, respectively) in capturing spectral features 
associated with heterogeneous ice surfaces. Note that comparisons in 
areal fractions derived from MODIS surface reflectance using only four 
spectral bands in the visible range with those derived from MISR showed 
smaller differences between the two (Fig. 10), suggesting the major 

factor producing the differences in areal fractions derived from MODIS 
and MISR was not related to sensor-specific features but the number of 
available spectral bands for these sensors. 

3.5. ANN training and validation 

We trained 100 ANNs to determine the optimal number of neurons in 
the two hidden layers. The resulting performance of the ANNs indicated 
that the optimal number of neurons was 45 and 35 in the first and second 
hidden layers, respectively. Comparisons of the values obtained from the 
least squares method and the ANN showed good agreements for each 
surface type (Fig. 11). For sediment-laden ice, the ANN retrievals were 
associated with an MPD and RMSE of 0.233% and 3.05 × 10−4, 
respectively. In addition, Rt for sediment-laden ice was 1.00, suggesting 
accurate estimates of the fraction of sediment-laden ice with negligible 
bias. These statistics highlight the outstanding performance of the ANN 
(Fig. 11). 

3.6. Seasonal variations in satellite-derived sediment-laden ice areal 
fractions 

Fig. 12 shows seasonal variations in the areal fractions of each sur
face type for April through September 2020 for three different sub
regions in the East Siberian Sea, Canada Basin, and the Canadian Arctic 
Archipelago (see Fig. 2 for exact locations). The areal fractions of 
sediment-laden ice yielded maximum values of 0.58, 0.50, and 0.16 in 
the East Siberian Sea, Canada Basin, and Canadian Arctic Archipelago, 
respectively. Sediment-laden ice was often the predominant ice surface 
type in the East Siberian Sea and Canada Basin, particularly in the late 
melt stage when ice melt progressed and matured in summer. Although 
the areal fractions of sediment-laden ice in the East Siberian Sea and 

April 19, 2006 June 13, 2006 July 24, 2006

Fig. 8. (a–c) Terra/MODIS true-color images and (d–f) maps of the dominant surface type near Point Barrow on April 19, June 13, and July 24, 2006. White pixels in 
(d)–(f) were identified as cloud covered by the MODIS cloud mask. 
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Canadian Arctic Archipelago were reasonable, that of Canada Basin was 
likely to be too high. Indeed, the areal fraction of sediment-laden ice in 
the Canada Basin accounted for more than 50% of sea ice in late summer 
and early fall. The sources of error associated with potential misclassi
fication are discussed in greater depth below. The ponded-ice fractions 
remained low (<0.2) during most of the period in the East Siberian Sea 
and Canada Basin, whereas a maximum value of 0.57 was observed on 
August 14 in the Canadian Arctic Archipelago. Larger proportions of 
open water were observed during late summer in all three regions. 
Particularly, open water accounted for close to 100% of areal fraction in 
the East Siberian Sea in August–September, suggesting that little or no 
sea ice remained in this area. 

Maps for every other eight-day averaged fractions of sediment-laden 
ice are shown in Fig. 13. At the pan-Arctic scale, sediment-laden ice was 

widely distributed in coastal areas, particularly over the Siberian, 
Chukchi, and Beaufort shelves. Indeed, sediment-laden ice was the 
dominant surface type over a wide area of the coastal areas (Fig. 14). 
Moreover, small but non-negligible fractions (<0.2) of sediment-laden 
ice were found at high latitudes in later summer, where clean or pon
ded ice were the dominant surface types throughout the period. In 
contrast, clean ice was registered as the dominant surface type 
throughout the Arctic in spring to early summer. In the central Arctic, 
clean ice dominated the surface even in summer, and ponded ice was 
also identified as the dominant surface type in some areas. 

April 19, 2006 June 13, 2006 July 24, 2006

Fig. 9. Spatial patterns in areal fractions of sediment-laden ice retrieved by spectral unmixing algorithms for (a–c) MODIS surface reflectance using seven bands in 
the visible and near-infrared ranges, (d–f) MISR surface reflectance, and (g–i) differences in the areal fractions between the two scenes near Point Barrow on April 19, 
June 13, and July 24, 2006. White pixels were identified as cloud covered by the MODIS cloud mask. 
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4. Discussion 

4.1. Advantages of the proposed approach 

This study specified four surface types with two sediment loads for 
the sediment-laden ice class (50 and 500 g m−3) based on seven MODIS 
spectral bands. Our sensitivity analyses showed that the proposed 
approach has sufficient accuracy for estimating areal fraction of not only 
sediment-laden ice but also other surface types (Tables 1 and 2). Both 
comparisons of the areal fractions of surface types with true-color im
ages (Figs. 5–8) and spatiotemporal variations in sea ice types 
(Figs. 12–14) showed reasonable patterns. Comparing with the existing 
approaches for mapping sediment-laden ice using satellite data (Barber 
et al., 2021; Huck et al., 2007; Zhang et al., 2015), our approach has the 

following advantages. 
A greater number of spectral bands allows for the capture of spectral 

variations in surface reflectance through application of a spectral 
unmixing algorithm. The MODIS sensor has seven spectral bands 
ranging from the visible to near-infrared range, whereas the MISR sensor 
has four spectral bands in the visible range (Fig. 4). Our results clearly 
indicated the superior performance of the spectral unmixing algorithms 
for MODIS surface reflectance compared to MISR surface reflectance 
(Tables 1–4). Although spectral differences among surface types were 
smaller in the near-infrared range than in the visible range (Fig. 4), the 
many spectral bands with broader spectral coverage would contribute to 
reducing misclassifications of surface types based on optical properties. 
As other proposed approaches for detecting sediment-laden ice utilized 
several MODIS bands (three bands in Barber et al., 2021; and four bands 

April 19, 2006 June 13, 2006 July 24, 2006

Fig. 10. Spatial patterns in areal fractions of sediment-laden ice retrieved by spectral unmixing algorithms for (a–c) MODIS surface reflectance using only four bands 
in the visible range, (d–f) MISR surface reflectance, and (g–i) differences in the areal fractions between the two scenes near Point Barrow on April 19, June 13, and 
July 24, 2006. White pixels were identified as cloud covered by the MODIS cloud mask. 
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in Zhang et al., 2015) or AVHRR bands (two bands in Huck et al., 2007), 
our approach has an advantage in the number of spectral bands that can 
improve the performance of capturing spectral variations. 

The proposed approach retrieves areal fractions not only for 
sediment-laden ice but also other surface types, including clean ice, 
ponded ice, and open water. The sensitivity analyses demonstrated that 
the spectral unmixing algorithm for the MODIS surface reflectance re
trieves areal fractions of these surface types with estimation error of less 
than 5% (Table 2). For ponded ice, there are some MODIS and other 
satellite algorithms for retrieving areal fractions in the Arctic using 
several bands in the visible range (e.g., four bands in Rösel et al., 2012; 
three bands in Tschudi et al., 2008). Therefore, the number of spectral 
bands utilized in the approach taken here represents a strong advantage 
in the retrieval of both sediment-laden and ponded ice. 

Our approach offers areal fractions of sediment-laden ice with more 
than double the spatial resolution of previously proposed approaches by 
Huck et al. (2007) and Zhang et al. (2015). Such spatially higher reso
lution product allows for better discrimination between heterogeneous 
ice environments and can reduce errors due to a mix of different surface 
types within a pixel. According to Tucker et al. (1999), sediment con
centrations in sea ice measured by their trans-Arctic sampling campaign 
varied from 2 to 2000 g m−3, and the mean for all samples was 360 g 
m−3 with a standard deviation of 523 g m−3. As sediment-laden ice 
typically occurs in bands or patches (Eicken et al., 2005; Tucker et al., 
1999), spectral signatures of sediment-laden ice would be less promi
nent at a coarse spatial resolution because other common ice types can 
overwhelm the sediment-laden ice-specific spectral features. Therefore, 
our approach with a 500 m spatial resolution would provide a better 
estimation of sediment-laden ice distribution. 

This study constructed an ANN to speed up the processing satellite 
imagery relative to the spectral unmixing algorithm relying on a least 

squares method. As the MODIS surface reflectance has a fine spatial 
resolution of 500 m, processing a time-series of the MODIS surface 
reflectance at the pan-Arctic scale with a least squares method is a time- 
consuming process. For a pan-Arctic satellite scene gridded into a polar 
stereographic projection with 500 m spatial resolution, processing with 
the ANN was two orders of magnitude faster than with the least squares 
method. It is important to recall that the resulting areal fractions derived 
by the ANN showed good agreements with those computed by the least 
squares method (Fig. 11). 

4.2. Sources of uncertainty and errors 

Arctic sea ice is a complex mosaic of a broader range of surface types 
(Perovich et al., 2002; Perovich and Polashenski, 2012). Our sensitivity 
analyses demonstrated the promising performance (Tables 2 and 4) of 
the approach introduced here to map sediment-laden ice. Nevertheless, 
several sources of error may require additional work to refine and 
further enhance the method. Specifically, we utilized spectral albedo as 
representative of several idealized surface types (Fig. 4) to examine the 
performance of our approach for a wide variety of hypothetical ice- 
covered areas and marginal ice zone. For example, spectral albedos for 
clean ice and sediment-laden ice were simulated as dry surfaces, yet 
spectral signatures of wet ice surfaces deviate somewhat from those of 
dry ice surfaces. Wet clean ice causes less incoming solar radiation re
flected to space compared to those by dry clean ice (Grenfell and May
kut, 1977), associated with similar shapes of spectral albedo for dry 
sediment-laden ice with wet clean ice. The analysis indicated that 
sediment-laden ice accounts for more than 50% of sea ice in late summer 
and early fall in the Canada Basin (Fig. 12). These values are considered 
as too high given the deep-water location, distance from the coast and 
likely ice drift paths (Fig. 2). This is not to exclude the possibility of such 

Fig. 11. Scatter plots comparing areal fractions of (a) clean ice, (b) sediment-laden ice, (c) ponded ice, and (d) open water derived from the least square method 
(LSM) and ANN approach using the MODIS surface reflectance. A total of 2,414,514 (out of 16,096,762) spectra was used for testing the performance of the ANN. 
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high areal fractions (given that there is good agreement with limited 
ground truth data for the northern Alaska region (Fig. 1), but without 
further dedicated ground truthing uncertainty remains. Overall, wet sea 
ice in summer and fall would be one of the major sources of uncertainty 
and errors in retrieving the areal fraction of sediment-laden ice, sug
gesting the sensitivity analyses based on spectral albedo for several 
idealized surface type may not fully translate into summer conditions for 
Arctic ice pack settings. 

This study assumed that the model-simulated albedo is consistent 
with the satellite-derived surface reflectance at a single angular position, 
whereas albedo and surface reflectance are independent, with the 

satellite-derived reflectances dependent on solar and sensor zenith an
gles. To resolve and minimize these effects on estimating sediment-laden 
ice distribution using satellite-derived reflectance data, Huck et al. 
(2007) generated a look-up table for correcting satellite-derived reflec
tance based on bidirectional reflectance distribution functions (BRDF). 
As the BRDF correction enhanced their method substantially (Huck 
et al., 2007), minimizing the gap between the model-simulated albedo 
and satellite-derived surface reflectance can help diminish the ensuing 
uncertainty and errors. 

We should also take into account uncertainties associated with sub
pixel contaminations. The most representative example of subpixel 
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contamination would be a substantial non-zero fraction (<0.1) of open 
water distributed widely in the area at some distance to the coast on 
April 19, 2006 (Fig. 5e). Excepting sea-ice leads, the ice surface at this 
time of year would have been covered by snow. One potential expla
nation for the non-zero fraction of open water aside from visible sea-ice 
leads (gray lines in Fig. 5a) is that these small values might be associated 
with subpixel (i.e., <500 m) sea-ice leads which were invisible in the 
MODIS sensor. Sea-ice leads range from several meters up to several km 
or even hundreds of km wide, which are more prevalent in areas of thin 
ice than in the central Arctic ice pack (Wadhams et al., 1985), indicating 
certain portions of sea-ice leads are likely to be invisible from the MODIS 
sensor. It is important to note here that the subpixel contamination 

would not be the only factor producing non-zero fractions of open water 
before ice melt has commenced. Rather, a complex mixture of all po
tential factors described in this section could have contributed to pro
ducing uncertainties in our results, including the non-zero open water 
fraction during the snow-covered season. 

Another potential source of errors and uncertainties is the MODIS 
cloud mask that identifies four categories of cloud state (clear, cloud, 
mixed, and not set - assumed clear) and two categories for cloud shadow 
(presence and absence). The influence of clouds is a serious problem for 
measurements of surface reflectance from satellites; however, un
certainties still exist in the MODIS cloud mask which can introduce er
rors into MOD09 product applications (Liu and Liu, 2013), particularly 

Fig. 13. Every other eight-day averaged areal fractions of sediment-laden ice in the pan-Arctic for 2020. An artificial neural network for estimating areal fractions of 
each surface type from the MODIS surface reflectance was used to retrieve these fractions. Black stars represent the centers of 25 × 25 pixel (12.5 × 12.5 km) 
subregions analyzed in the East Siberian Sea, Canada Basin, and Canadian Arctic Archipelago (shown in Fig. 12). White pixels represent the areas where no cloud-free 
data was available for each eight-day time frame. 
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for the Arctic because the MODIS cloud mask is not tailored towards 
brighter surfaces comprising snow and ice. Indeed, we found a cloud 
shadow even after applying the MODIS cloud mask to the MOD09 
product (Fig. 6a), resulting in patchy areas with unrealistically high 
fractions of ponded ice (Fig. 6e) along the cloud shadow. As areal 
fractions of ponded ice apart from the cloud shadow were consistently 
small, the patchy area was likely misclassified as ponded ice due to the 
cloud shadow that should have been masked out by the MODIS cloud 
mask. 

In the Canadian Arctic Archipelago, areal fractions of ponded ice 
typically show high values shortly after melt ponds begin to form. For 
example, Li et al. (2020b) examined seasonal variations in melt pond 
coverage in 2017 based on WorldView-2 satellite images and reported 
that the ponded ice coverage reached a seasonal maximum of 54% on 

first-year ice in late June 2017. Similarly, using the MODIS melt pond 
coverages dataset for 2009–2011 (Rösel et al., 2012), Howell et al. 
(2020) reported that initial melt pond formation occurred in May with 
the peak melt pond coverage in early June to mid-July. Overall, we 
observed a clear difference in the timing of peak ponded ice coverage in 
the Canadian Arctic Archipelago between the present (mid-August; 
Fig. 12) and previous studies (Howell et al., 2020; Li et al., 2020b). For 
the East Siberian Sea and Canada Basin, the areal fraction of ponded ice 
remained low through April to September compared to previous studies 
(Fig. 12). One potential factor for this discrepancy is the misclassifica
tion of sediment-laden ice as ponded ice in past studies. As spectral al
bedo of sediment-laden ice is similar to that of ponded ice with high 
sediment loads particularly in the visible range (Fig. 4), previous studies 
not accounting for sediment-laden ice would have misclassified 

Fig. 14. Spatial distributions of the dominant surface types in the pan-Arctic for 2020. The dominant surface type was determined based on every other eight-day 
averaged areal fractions of each surface type retrieved by an artificial neural network from the MODIS surface reflectance. Black stars represent the centers of 25 × 25 
pixel (12.5 × 12.5 km) subregions analyzed in the East Siberian Sea, Canada Basin, and Canadian Arctic Archipelago (shown in Fig. 12). White pixels represent the 
areas where no cloud-free data was available for each eight-day time frame. 
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sediment-laden ice as ponded ice. This scenario is particularly relevant 
for the East Siberian Sea and the Canada Basin with previously described 
occurrences of sediment-laden ice, whereas it is less likely the origin of 
differences observed in the Canadian Arctic Archipelago. Without 
further dedicated validation/calibration procedures, it is not clear 
whether the aforementioned uncertainties or other unrecognized factors 
such as interannual variability drove these inconsistencies in ponded ice 
coverages between the present and previous studies. 

4.3. Sediment-laden ice distribution 

Seasonal variations in the areal fractions of different surface types 
showed patterns that conform with results from previous studies 
(Fig. 12). In the Arctic, the surface snow layer begins to diminish in 
thickness and extent during the early melt phase giving way to bare ice 
and ponded ice surfaces (Eicken et al., 2002). While sediment-laden ice 
was negligible in the early melt phase because sediments are typically 
distributed throughout the upper ice layers and the ice interior and only 
begin to be exposed and accumulate at the ice surface once melt has 
commenced (Eicken et al., 2005; Nürnberg et al., 1994). Indeed, our 
satellite-based approach retrieved substantial areal fractions of 
sediment-laden ice in the East Siberian Sea and Canada Basin when ice 
melt progressed and matured in summer, whereas that of the Canadian 
Arctic Archipelago was quite small compared with those observed in the 
East Siberian Sea and Canada Basin – as to be expected for a region with 
comparatively deep water and fewer records of sediment-laden ice 
(Fig. 12). It is important to clarify that the proposed approach cannot 
detect sediments in the interior and lower layers of the ice because of the 
optically thick surface snow and ice layers (Grenfell, 1983, 1991), 
indicating large-scale spatial distributions of sediment-laden ice in this 
study would have not have reflected the actual distribution of sediment- 
laden ice until after surface snow and clean ice had been removed as a 
result of melt progression. 

Sediment-laden ice was the dominant surface type in coastal areas, 
particularly in the Siberian, Chukchi, and Beaufort shelves (Fig. 14). 
These regional patterns in sediment-laden ice correspond with those in 
previous studies reporting sediment inclusions are often associated with 
entrainment of frazil ice into deformed, multiple layers of rafted nilas, 
indicative of a flaw‑lead environment adjacent to the landfast ice of the 
Chukchi and Beaufort shelves (Eicken et al., 2005; Tucker et al., 1999). 
Note also that satellite data show a high incidence of sediment-laden ice 
in the East Siberian and Laptev Seas surrounding the New Siberian 
Islands, which conforms with previous findings that pointed to this re
gion as a major source area of sediments (Eicken et al., 2000), fostered 
also by high tidal current velocities in this region (Baumann et al., 2020; 
Lyard, 1997). In consequence, we confirmed the spatial distribution of 
sediment-laden ice retrieved from satellite data were broadly consistent 
with previous findings based on in situ measurements. 

In addition, we also identified substantial areal fractions of sediment- 
laden ice in the central Arctic (Fig. 13). As sediment entrainment into 
sea ice would not occur over deep waters at quite some distance to the 
coast (Ito et al., 2015, 2019), it is anticipated that sediment-laden ice 
observed in the central Arctic would have been transported from coastal 
areas. In fact, Krumpen et al. (2020) reported that the ice formed around 
the New Siberian Islands in winter with inclusions of sediment was 
transported to the central Arctic Ocean. Therefore, major Arctic coastal 
polynyas over shallow continental shelves, such as the East Siberian Sea 
and Chukchi Sea coastal polynyas (Tamura and Ohshima, 2011), and 
potentially broken-out landfast ice (Eicken et al., 2005; Tucker et al., 
1999) are likely to be primary sources of sediment-laden ice not only in 
coastal areas but also in the central Arctic. 

4.4. Implications for future work 

As shown in the comparison result in the spectral unmixing algo
rithms between the MODIS and MISR surface reflectance (Figs. 9–10), 

higher spectral resolution can improve capture of spectral variations 
associated with ice surface heterogeneity. In addition, with more spec
tral bands, more surface types can be specified in the spectral unmixing 
algorithm. Thus, the accuracy of estimating areal fractions of surface 
types would improve by using advanced multispectral and hyperspectral 
satellite sensors employed in the future. An alternative approach for 
improving retrieval accuracy with the existing multispectral satellite 
sensors is to utilize spectral band ratios which can highlight differences 
in spectral signature between the two bands. Lee et al. (2020) developed 
a satellite capability to detect melt ponds on Arctic sea ice using various 
combinations of band ratios in MODIS surface reflectance. Although the 
spectral unmixing algorithm would not be directly applicable to the 
band ratio method, there is a potential to retrieve areal fractions of each 
surface type accurately. 

One of the most important steps in future work is to confirm the 
robustness of the proposed approach by validating and calibrating the 
performance using actual in situ data. Although our results presented in 
this study showed reasonable consistency with previously established 
field-based findings, a quantitative assessment of the performance was 
beyond the scope of this study. As errors in satellite products are known 
unknowns, quantifying their uncertainties by analytical comparison 
with actual data is a crucial requirement from the end user perspective 
(Loew et al., 2017; Otto et al., 2016). While our sensitivity analyses 
demonstrated accurate performance of the proposed approach for a 
wide range of hypothetical ice surfaces, we identified several sources of 
uncertainty and errors as detailed in section 4.2. Therefore, field-based 
validation and calibration procedures are required to identify time pe
riods (e.g., melting and freezing seasons), ice surface and cloud condi
tions, and geographical areas for which sediment-laden ice can be 
mapped reliably. Such dedicated future work would provide convincing 
evidence that the technique can be a powerful tool across different 
research fields. 

Sediments incorporated into sea ice act as an important source of 
iron and nutrients (Kanna et al., 2014; Nomura et al., 2010), which 
support phytoplankton population growth and, in turn, the development 
of phytoplankton blooms in spring. Conversely, turbid meltwater 
released from sediment-laden ice suppresses growth of phytoplankton 
because turbid meltwater drastically decreases light penetration into the 
water column (Nishioka et al., 2014). These two conflicting impacts of 
sediment-laden ice could likely affect spring phytoplankton bloom dy
namics, particularly the timing of spring phytoplankton blooms that is a 
crucial factor for Arctic marine ecosystems (Campbell et al., 2009; 
Grebmeier and McRoy, 1989). Besides, sea-ice transport of sediments 
plays an important role in the redistribution and dispersal of pollutants 
(Pfirman et al., 1995) originating from coastal and inland sources such 
as river flows, coastal erosion, and oil and gas exploration and devel
opment (Kasper et al., 2017). Moreover, discrimination of clean and 
sediment-laden ice based on our approach contributes to more accurate 
estimates of solar heating in the Arctic, because sediment-laden ice has a 
substantially lower albedo than clean ice (Fig. 4). Thus, a near real-time 
and cost-effective satellite-based approach for monitoring spatiotem
poral variations in the distribution of sediment-laden ice could be an 
effective tool for a wide variety of research fields. 

5. Summary and conclusions 

This study introduced a near real-time and efficient satellite-based 
approach for the detection and mapping of sediment-laden ice. As the 
spectral characteristics of sediment-laden ice differ from those other 
surface types, the fraction of sediment-laden ice was estimated from the 
remotely-sensed surface reflectance based on a spectral unmixing al
gorithm. Although our approach contains potential uncertainties asso
ciated with methodological limitations, spatiotemporal variations in 
sediment-laden ice exhibited reasonable agreement with spatial pat
terns and seasonal variations reported in the literature that reported in 
situ observations of sediment-laden ice. As the role of sediment-laden ice 
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in biogeochemical cycling is very different from that of clean ice but still 
poorly understood, satellite-based monitoring of sediment-laden ice 
along with in situ observations and model simulations can foster our 
understanding of the impacts of sediment-laden ice on a wide variety of 
research fields including sediment transport and biogeochemical 
cycling. 
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