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Measurement of concentrations of the critical properties in a diesel powered machine’s lubricant oil is an
important task in preventing machine failure and excessive damage. While there are several existing sensors for
detecting these properties individually, they suffer from cross sensitivity issues and tedious calibrations for
varying operating temperatures. We developed an interdigital sensor array based on an artificial neural network
(ANN) automatically tuned with a stochastic global optimization (SGO) method for measuring water, base, soot,
and diesel fuel contaminant concentrations in a lubricant oil. The temperature effect was compensated with the
neural network. The neural network architecture was automatically selected through a unique simulated
annealing process which resulted in an increased prediction accuracy when compared to the ANN with tradi-
tionally selected architecture. Dropout and data augmentation techniques were used during training to prevent
overfitting. Experiment results demonstrated the ANN’s ability in accurately determining the oil properties from
the overlapped sensor responses as well as removing the need to calibrate for a variety of operating temperatures.
The sensor array is able to provide comprehensive information about a diesel powered machine’s health status.

1. Introduction

Diesel engines or diesel powered machines are widely used in con-
struction, transportation, and agriculture industries [1]. Proper lubri-
cation is critical to maintain the functionality of these engines/
machines. Online monitoring the condition of the lubricants of diesel
machines can help monitor the machine’s health status, significantly
reduce the maintenance cost and the unnecessary downtime, extend the
life cycle and avoid catastrophic machine failure [2,3].

Lubricants used in diesel powered machines are formulated differ-
ently as they are subjected to a different set of working conditions
compared to lubricants used in other machines [4]. Traditional lubri-
cation monitoring typically take the following measurements: 1) vis-
cosity, an indicator of the overall health of a lubricant [5], 2) water
content, to evaluate the risk of losing functionality and rust development
[2,6], and 3) the total base number (TBN), to determine the likelihood of
oxidation of the lubricant [7]. In addition to the above key parameters,
soot particles are generated from the combustion process of a diesel
engine, which can get into the lubricant. Soot has a variety of adverse
effects to the functionality of the lubricant and can lead to severe engine
wear and damage [8]. Diesel fuel may also leak to the lubricant which
can cause fuel dilution, resulting in a lower lubricant viscosity [9].
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Hence monitoring the above key parameters of lubricants (i.e. viscosity,
water content, TBN, soot content, fuel contamination) are critical to
judge the health status of the diesel machines. While viscosity can be
measured independently, to date there is no instrument that can take
accurate measurements of other key parameters online [5,10].

While the above parameters can be analyzed in laboratories, they are
not suitable for live monitoring as the results will typically take over a
week to be received. Many researches have utilized multiple sensors to
measure the specific lubricant properties online. For example, Surface
acoustic wave sensors were used for viscosity measurements [11,12].
Capacitive sensors were used in monitoring water, total acid number
(TAN), sulfur, and soot contents [11,13]. Excluding viscosity, most
property sensors are based on the electrochemical sensing; one major
challenge of these sensors is their cross-sensitivity or response over-
lapping, i.e., a sensor designed to measure a target property also re-
sponds to other properties. In our previous work, we had utilized a
general regression neural network (GRNN) to measure the water con-
tent, TAN, and TBN, with a maximum error of 15.7% for water content
[14]. However, all measurements were done in a constant temperature;
the mechanism is only valid at a constant temperature. In practice, the
operating temperature of lubricants typically varies during machine use,
which significantly affects sensor responses. If the temperature effect is
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Fig. 1. a) Microscopic picture of Interdigital electrodes of the capacitive sensor, b) Side view of IDE sensor with sensing layer.

not accounted for, the measurements from the sensor array would be
unreliable even if the ANN is used [15,16]. While calibration or training
can be done at each temperature, the procedures are prohibitively
tedious and time consuming if the temperature variation range is large.

Additionally, online machine health monitoring typically requires
onsite training due to different operating conditions and the different
base lubricants used in various machines [17]. The challenge is that it
takes significant amount of time to prepare samples (or generating the
datasets) for training. While a large size of samples/datasets usually
improves the prediction accuracy, it is impractical to generate a large
amount of samples on site. In the past decade, deep learning techniques
have been used to improve the accuracy without a need of generating a
large amount of samples. Among these techniques, data augmentation
was used to increase the dataset size without compromising prediction
accuracy. Recently, data augmentation has been used in several deep
learning applications such as radio modulation classification, electro-
encephalography, and MRI reconstruction [18-20]. Dropout is a deep
learning technique where nodes are randomly disabled during training,
which greatly reduces overfitting issues in deep learning by preventing
co-adaption among hidden nodes [21]. Dropout has shown effectiveness
recently in credit card data analysis and ultrasonic flaw classification in
weldments [22,23].

In this article, we present an interdigital micro sensor array for on-
line monitoring of multiple properties of the diesel powered machines’
lubricants based on a new artificial neural network with stochastic
global optimization tuning. The new ANN used a unique stochastic
global optimization (SGO) method, which allowed for the network to
have higher prediction accuracy. Deep learning techniques including
data augmentation and dropout were used to: 1) reduce the amount of
the training samples, which is critical for onsite training, and 2) prevent
overfitting during training to improve accuracy. The temperature is used
as an input for the neural network to remove the temperature effect so
that the sensor array can provide accurate measurement of lubricant
properties at varying temperatures.

2. Material and methods

An array of four interdigital capacitive microsensors is designed to
monitor the four critical properties (diesel fuel, water, base, and soot).
Each microsensor consists of an identical pair of gold interdigitated
electrodes (IDEs), and a specific sensing layer coated above the IDEs. By
selecting a specific sensing layer, each of these four sensors responds
primarily to one of these target properties with a larger weight ratio,
while they may still respond to other properties with a smaller weight
ratio. The IDEs were fabricated through a standard photolithography
process, with 40 pairs of 5 mm fingers, a 25 um finger width, and a 50
um gap between fingers (see Fig. 1). Contents of water, acid, soot and
fuel present in the lubricant are absorbed by the sensing layer, causing a

Table 1
Target properties and the selected sensing layers.
Water Base Fuel Soot
contamination
Materials PI-2545 Nafion Tin Oxide None
polyimide Dispersion Dispersion
Vendor DuPont Thermal Thermal Scientific N/A
Scientific
Thickness 4 ym 250 nm 1 pm N/A
Meas. 0-1000 ppm 0 — 2000 ppm 0 - 4000 ppm 0-
Range 4%

change in the capacitance. Sensing layer thicknesses were selected to be
smaller than W + G, where W is the IDE finger width, and G is the gap
between the IDE fingers [11]. This selection was to ensure each sensor’s
response was dominated by the target property, but still influenced by
other properties with a smaller weight ratio [24]. Fig. 1 shows a
microscopic picture of the interdigital electrodes of the interdigital
sensor. The coatings for the sensor which provide dominant sensitivity
to one target properties are listed in Table 1. All coatings were applied
by spin coating.

Polyimide (DuPont PI-2545) has proven to be effective in absorbing
water, while preventing lubricant oil from being absorbed [25,26].
Nafion is commonly used in cation exchange membranes due to its
ability to allow for the passage of positively charged ions, which make it
excellent for sensing changes in the base content of a substance [14,27].
Tin Oxide (IV) has shown to be a good sensing layer for diesel
contaminant sensors [28]. The soot sensor is a bare set of gold IDEs with
no coating layer. Research shows that the amorphous carbon particles
produced by incomplete combustion, adheres to gold electrodes easily,
making it a suitable method for detecting soot. Each sensor’s response is
dominated by its target property, while content changes in other prop-
erties still have a small effect on the sensor response. The sensor re-
sponses were entered into a new ANN with SGO tuning to eliminate the
cross sensitivity effect. Furthermore, since the capacitance of an IDE
sensor is dependent on temperature, and the lubricant operating tem-
perature of a machine is dynamic, we used a thermocouple to monitor
the temperature of the lubricant. The temperature data was used in the
neural network to correct any error in the sensor response which would
be caused by temperature changes.

To train and validate the ANN, 64 samples containing varying con-
centrations of the four critical properties were prepared. A 10 W-30
synthetic grade lubricant for diesel engines (Grainger) was used as a
base for all samples. Water levels of 500 ppm are known to be con-
cerning, and concentrations of 1000 ppm are thought to be critical [6,
29]. Water concentrations of 0 ppm, 500 ppm, and 1000 ppm were used
in the training, which were modified by adding purified water to a
sample. Base levels were modified by adding potassium hydroxide



A. Urban and J. Zhe

(KOH). Base levels of 2000 ppm are thought to be alarming; thus,
samples were prepared to concentrations of 0 ppm, 1000 ppm, and
2000 ppm [14]. A diesel fuel concentration of 2000 ppm is commonly
accepted as a warning level, and 5000 ppm as an indicator for oil change
[30]. Diesel concentrations of 0 ppm, 2000 ppm, and 5000 ppm were
prepared to reflect these critical values and were altered by adding #2
grade diesel fuel. Soot concentration of 4% is considered to be dangerous
[8]. Therefore, samples with soot concentrations of 0%, 2%, and 4% by
adding carbon black. To remove the temperature influence, each sample
was measured at a range of temperatures near their expected operating
ranges, specifically at 90 C°, 100 C°, and 110 C° [31].

3. Theory

The neural network contains 5 inputs (4 from each of the 4 capacitive
sensors, and 1 from a thermocouple) and 4 outputs (the contents of each
property: water, base, diesel, and soot content). The neural network has
many parameters which make up its architecture. These can be tuned to
alter performance, including learning rate, optimization algorithm, the
number of neurons in each layer, and the number of layers. To achieve
highly accurate property predictions, we determined optimal network
architecture using simulated annealing, which is a type of SGO [32,33].
Simulated annealing (SA) mimics the physical annealing process and is
used for optimizing parameters in a neural network. This algorithm is
proven useful for situations where there are a lot of local minima such
that other algorithms (e.g. gradient descent) would be stuck at [34].

Using simulated annealing, an initial architecture was selected based
on the number of input and output parameters in our network. The
initial number of hidden neurons was selected as follows:

2

N = 51 +0

where N is the number of hidden neurons, I is the number of input
neurons, and O is the number of output neurons [35]. Following this
criterion, we started with an architecture consisting of a single hidden
layer with 7 neurons in it. The network had a learning rate of.01, and no
extra hidden layers. We then defined a range of network architectures,
with varied parameters of layers, neurons, and learning rates based on
general guidelines [35,36]. The number of neurons in the first layer
ranged from 5 to 15, the second layer from 0 to 11, and the third layer
from O to 7. The learning rate ranged from 0.005 to 0.05.

Next, the simulated annealing algorithm automatically determined
the optimal network architecture by comparing the performance of a
neighboring architecture, which is an architecture that is similar except
for a single parameter change. If the neighboring architecture increases
the performance, it jumps to this architecture and compares the per-
formance to another neighboring architecture. If the performance gets
worse, it continues using the current set with a probability

P — o lC6)-CWwi/kr

where P is the probability it uses the current architecture, C(s') is the
cost of the neighboring architecture, C(s) is the cost of the current set of
architecture, k is the Boltzmann constant, and T is a function which
linearly decreases with each iteration [33]. The cost function is the root
mean squared error for the property predictions. Once an architecture is
selected, a single parameter is chosen at random and adjusted to another
value within the predetermined ranges, with the following restrictions:
1) architectures could not be repeated, and 2) the number of neurons in
the second and third layer could not be greater than the number of
neurons in a previous layer. Simulated annealing allows for an extensive
search of the solution space during the beginning of the search, allowing
it to pass over local minimums. When the T function nears zero, the
search converges on the global minimum. This final set of parameters
was used as our network architecture, which will be discussed in the
results section. The neural network and optimization were completed
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Fig. 2. Testing setup.

using Python and the Keras deep learning library.

To avoid using a large amount of datasets, data augmentation was
used to increase the dataset size with no need to generate a large amount
of samples and without compromising prediction accuracy. The stan-
dard deviation of each sensor’s response was calculated at steady state
(t = 60 mins). Next, each sensor’s noise was fit to a normal probability
distribution. Values were probabilistically selected from this distribu-
tion, and these values were then added to each individual sample,
resulting in an augmented data point [18]. The dataset was effectively
doubled, from 192 samples to 384 samples with this method. This
technique is known to prevent overfitting for datasets with limited data
[18-20]. In addition, dropout was used to further increase the network
performance. To implement the dropout technique, nodes were
randomly disabled during each training iteration, which greatly reduced
overfitting issues in deep learning [21,22]. For each iteration of training,
every node in the hidden layers had a 10% chance of being disabled for
that iteration, i.e., the node would be temporarily removed from the
network and woulF55d not input or output data. This process helped
prevent nodes from co-adapting, where they became too reliant or
dependent on other nodes in the network [22].

4. Results and discussion
4.1. Sensor testing

The four sensors were immersed into an acrylic tank filled with oil
samples with different water, diesel, base, and soot contents. The test
setup is shown in Fig. 2, and is similar to that used in our prior publi-
cation. [14]. Static fluid conditions were used for the testing. It is worth
mentioning that our prior research showed the responses of capacitive
property sensors were in good agreement in both static and dynamic
conditions [24]. The difference is that a hot plate (Thermo Fischer) was
added to heat the oil samples to different temperatures (90 °C, 100 °C,
and 110 °C). Typical sensor responses to different samples as a function
of time were plotted in Fig. 3. The sensor responses became stable at
t = 60 min after immersion in the samples. Thus, the sensor response to
each sample was collected at t = 60 min. The sensors were cleaned and
dried before being tested in another sample.

Oil property changes cause changes in the dielectric constants of the
sensing layer and the medium above the sensors and in turn causes
capacitance changes of the sensors. The change in the capacitance of one
sensor was measured in terms of a change of voltage across the sensor. A
2 MHz, 5 Vj,;, sine wave excitation signal was applied to each sensor
from an Agilent 33 600 A function generator. 2 MHz was selected as the
excitation frequency because decent sensor responses were observed at
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Sensor 2 (Tin Oxide coating)
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Fig. 3. Typical sensors’ outputs from six samples. Sample 1: pure lubricant oil; Sample 2: 500 ppm water; Sample 3: 2000 ppm diesel; Sample 4: 1000 ppm base;
Sample 5: 2% soot; Sample 6: 500 ppm water, 2000 ppm diesel, 1000 ppm base, 2% soot.

this frequency during a frequency sweep experiment. A rectifying circuit
was placed into the measurement circuit so that the peak voltage values
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Fig. 4. Validation error vs. iteration for the 1st, 10th, 20th, and 30th ranked
architectures.

can be captured. The rectifying circuit took the sine wave signal from the
sensor, and outputs the peak values to the DAQ. Voltage outputs from all
sensors were recorded by an NI USB-6356 DAQ with a sampling rate of
60 Hz, using LabVIEW software.

The output of each sensor was analyzed in the frequency domain
through a Fast Fourier Transform, and a bandpass filter was applied to
remove unwanted noise present in the signal. A 10 s rolling average of
the sensor was averaged to remove the remaining noise effect. The
relative voltage change was then normalized to range from O to 1 as the
inputs for the neural network.

4.2. Neural network training

After the dataset was increased with data augmentation, the 128
samples (each at 90 °C, 100 °C, and 110 °C), were used to train the
network to minimize root mean square error (RMSE). 308 of the 384
datapoints were randomly selected to be the training set, and the
remaining 76 were used as the validation set. After each training iter-
ation, a k-fold cross validation method was used to select new validation
and training sets to prevent overtraining. Starting with the initial ar-
chitecture of a single layer with 7 neurons and a learning rate of.01, the
neural network was trained until no property had a normalized root
mean square error (NRMSE) greater than.08 in the validation set, and
greater than.05 in the training set. A maximum of 500 iterations was set
to prevent the code from getting stuck on a single architecture. This 500



A. Urban and J. Zhe

Table 2
Parameters of architectures of the 1st, 10th, 20th, and 30th ranked architectures.
Rank 1% Layer 2" Layer 3" Layer Learning
Neurons Neurons Neurons Rate
Ist 11 9 5 0.01
10th 13 5 0.01
20th 11 11 7 0.005
30th 15 3 0.01

iteration limit was selected based on the error vs. training iteration
curves from our networks. Beyond this limit a majority of the networks
training failed to reach our desired stopping conditions. Hidden neurons
were randomly selected for dropout at each iteration with a dropout rate
of 10%. Once the iterations were complete for the initial architecture,
the training and validation errors were recorded. The neural network
was trained with this neighboring architecture, and the errors of this
network were compared to the previous architecture. The simulated
annealing algorithm determined which of the two compared architec-
tures would be used for the next step. The architecture selected by the
algorithm then had one of its parameters modified, and the process was
repeated. 100 architectures were analyzed through this process. For
each architecture, a normalized RMSE (NRMSE) was calculated for each
property by dividing the RMSE by the maximum concentration of that
property. The sum of the NRMSE of the validation set of data was used as
the metric to rank the architectures. The network which performed the
best had 11 neurons in the first layer, 9 neurons in the second layer, 5
neurons in the third layer, and a learning rate of.01. This architecture
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was selected as the final set of network parameters. Fig. 4 shows the
validation error as a function of training iteration number for the 1st,
10th, 20th, and 30th ranked architectures, and Table 2 shows the pa-
rameters of each architecture.

4.3. Neural network testing

Finally, a separate set of testing data containing 10 samples (each at
3 temperatures) which were unused in training and validation were used
to evaluate the performance of the top 20 performing architectures, and
to further ensure that the networks were not being overtrained. Fig. 5
shows the predictions of the 10 testing samples at 3 temperatures
compared with the actual value for each sample. The average prediction
for water, diesel, base and soot contents were 12.1%, 7.8%, 5.7%, and
3.9% respectively. The maximum prediction for these target properties
were 15.2% (for water at 1000 ppm, 100 °C), 12.3% (for diesel at
5000 ppm, 100 °C), 6.7% (for base at 1500 ppm, 100 °C), and 3.7% (for
soot at 2%, 90 °C). Water contained the largest maximum and average
percent error, which was expected as the sensitivity of the polyimide
sensor had the smallest sensitivity. Soot contained the smallest error,
which was also expected since all of the sensors were more sensitive to
changes in soot content than any other property. These errors are within
industry guidelines for each property [8,30,37].

Predictions were also analyzed at different temperatures to see if the
prediction errors were affected by temperature. The average error of
each property was calculated for each temperature group to see if there
was a correlation between temperature and error. There was an average
testing error of 5.85%, 4.68%, and 6.04% at 90 °C, 100 °C, and 110 °C
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Fig. 5. Predicted concentration vs actual concentration of test samples at different temperatures.
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Fig. 6. Temperature variation of testing sample and predicted diesel, water, base, and soot concentration vs. time, showing that the temperature effect was removed

in an environment with arbitrary temperature variations.

respectively. The average validation error at 90 °C, 100 °C, and 110 °C
was 5.33%, 5.68%, and 5.94% respectively. There is no consistent
pattern between error and temperature or significant deviations. Based
on this, the new neural network is able to effectively remove the tem-
perature effect on property prediction.

We also compared the prediction accuracy of the neural network
with and without using the deep learning techniques and SGO. Without
using these techniques and using the same training and testing data sets,
the average prediction accuracies were: 16.1%, 11.3%, 7.1%, and 4.2%
for water, diesel, base, and soot concentrations. Apparently using the
data augmentation, dropout, and SGO improves the accuracy without a
need to add more datasets. This is particularly important for onsite
training for online health monitoring where there is a challenge in
generating a large amount of training samples onsite.

Finally, to test if the sensor array can predict the system in an
environment with unstable temperatures, we selected a sample con-
taining 2000 ppm of diesel contaminant, 500 ppm of water, 1000 ppm
of base, and 2% of soot. First, the sensor array was placed into this
sample for 60 min so that the sensor responses were stabilized. Next, the
sample was gradually heated to mimic the arbitrary temperature change
of the environment. A thermocouple (36GL12, Dayton) was used to
monitor the oil temperature at real time (see Fig. 6(a), red curve). The
outputs of the sensor array were recorded and analyzed using the neural
network described above. Predictions on the oil’s target properties were
made at 9 095 100 105, and 100 °C (see Fig. 6). In general, the predicted
concentrations of target properties were in good agreement with actual
concentrations. The largest error was found in water 105 °C with an
error of 15.8%, which was slightly above the maximum error of water of
15.2% in static tests (in Fig. 5). The largest errors in this test were mostly

at 95 and 105 °C, which were expected as all samples in our dataset were
taken at 90 100, and 110 °C. The results (shown in Fig. 6) show that the
sensor array is able to compensate the temperature effect even in an
environmental where the temperature is arbitrarily varied.

4.4. Discussion

We have developed a sensor array containing four property sensors
and a thermocouple, which is utilized with an artificial neural network
to accurately monitor critical properties of a lubricant oil used in a
diesel-powered engine. Sensors with chemical-based sensing mecha-
nisms are used for diesel monitoring, but they are unable to provide long
term measurements. On the other hand, individual capacitive sensors
which are used for monitoring these properties can suffer from cross
sensitivity and provide less accurate results if another contaminant is
present. The system we developed is able to monitor water, diesel fuel,
base, and soot content in the oil simultaneously, live, and for extended
periods of time.

The neural network architecture was uniquely selected from a
simulated annealing process, which automatically searches through a
range of neural network architectures to find an optimal architecture.
This process helped maximize the prediction accuracy of the system to a
degree not attainable through traditional methods, by overcoming local
minimums and converging on a more effective architecture. The system
was able to predict the water, diesel, base, and soot concentrations with
an average error of 12.1%, 7.8%, 5.7%, and 3.9% respectively. This
neural network had improved accuracy when compared to the pre-
dictions made using a general regression neural network (GRNN) similar
to our previous work. Using the same set of data, the GRNN had average
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Fig. 7. Prediction error probability density for the 1st Ranked Architecture,
20th Ranked Architecture, and the GRNN.

prediction errors of 14.9%, 13.1%, 5.8%, and 6.1% for water, diesel,
base, and soot respectively. The prediction errors of 3 different neural
networks, 1st ranked architecture, the 20th ranked architecture, and the
GRNN, were fit to Weibull distributions. The shape and scale parameters
of the Weibull distribution were then used to plot each distribution to
compare each network’s performance (i.e. probability density at
different prediction errors) [38]. Fig. 7 shows the testing data prediction
error probability density of the three networks. The results clearly show
that the probability density for a small prediction error was enhanced by
the simulated annealing optimization, so that it was able to make more
accurate predictions than the GRNN.

In addition, the temperature effect on the capacitive sensors was also
removed by implementing a thermocouple to the system. Traditional
temperature correction methods involve generating tedious calibration
curves for a wide range of temperatures. The addition of adding a
temperature measurement as an input to our neural network allows for
accurate predictions at different temperatures, where our past work
would need to be retrained for every temperature.

Finally, the use of data augmentation and dropout is particularly
important for onsite training. New data must be collected for training for
each application, since changes in the base oil and operating tempera-
tures will affect the sensor outputs. It is impractical to gather very large
amounts of data for each application, therefore it is important to use
deep learning methods to counteract the negatives of a smaller dataset.
Overfitting on the training set is a large issue in models with smaller
datasets. Thus, applying dropout during training is of elevated impor-
tance since it reduces the effects of overfitting. Furthermore, data
augmentation allows for the dataset to be artificially increased in size,
alleviating the small dataset problems for onsite training.

5. Conclusions

An interdigital capacitive sensor array and artificial neural network
tuned with stochastic global optimization was demonstrated for accu-
rately measuring multiple properties of diesel powered machines. This
ANN with an SGO parameter tuning process is used to untangle the
overlapped responses of the sensors in the array. Simulated annealing
was able to select a network architecture that had better prediction
accuracy than if the architecture parameters had been selected with
traditional methods. In addition, two deep learning techniques, data
augmentation and dropout were used to prevent overfitting by artifi-
cially increasing the dataset and randomly disabling nodes, preventing
co-adaption during training. Four critical properties: water, diesel, base,
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and soot concentrations were measured. Results showed that the system
was able to predict the water, diesel, base, and soot concentrations with
an average error of 12.1%, 7.8%, 5.7%, and 3.9% respectively, and
maximum errors of 15.2%, 12.3%, 6.8%, and 6.0% respectively.
Compared to general regression network, with the use of SGO, dropout,
and data augmentation techniques, the accuracy of the ANN was
improved. This sensing system is able to provide comprehensive infor-
mation of current conditions of lubricants of a diesel powered machine,
and thus provide online diagnostics and prognostics of the machine.
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