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A B S T R A C T   

Measurement of concentrations of the critical properties in a diesel powered machine’s lubricant oil is an 
important task in preventing machine failure and excessive damage. While there are several existing sensors for 
detecting these properties individually, they suffer from cross sensitivity issues and tedious calibrations for 
varying operating temperatures. We developed an interdigital sensor array based on an artificial neural network 
(ANN) automatically tuned with a stochastic global optimization (SGO) method for measuring water, base, soot, 
and diesel fuel contaminant concentrations in a lubricant oil. The temperature effect was compensated with the 
neural network. The neural network architecture was automatically selected through a unique simulated 
annealing process which resulted in an increased prediction accuracy when compared to the ANN with tradi
tionally selected architecture. Dropout and data augmentation techniques were used during training to prevent 
overfitting. Experiment results demonstrated the ANN’s ability in accurately determining the oil properties from 
the overlapped sensor responses as well as removing the need to calibrate for a variety of operating temperatures. 
The sensor array is able to provide comprehensive information about a diesel powered machine’s health status.   

1. Introduction 

Diesel engines or diesel powered machines are widely used in con
struction, transportation, and agriculture industries [1]. Proper lubri
cation is critical to maintain the functionality of these engines/ 
machines. Online monitoring the condition of the lubricants of diesel 
machines can help monitor the machine’s health status, significantly 
reduce the maintenance cost and the unnecessary downtime, extend the 
life cycle and avoid catastrophic machine failure [2,3]. 

Lubricants used in diesel powered machines are formulated differ
ently as they are subjected to a different set of working conditions 
compared to lubricants used in other machines [4]. Traditional lubri
cation monitoring typically take the following measurements: 1) vis
cosity, an indicator of the overall health of a lubricant [5], 2) water 
content, to evaluate the risk of losing functionality and rust development 
[2,6], and 3) the total base number (TBN), to determine the likelihood of 
oxidation of the lubricant [7]. In addition to the above key parameters, 
soot particles are generated from the combustion process of a diesel 
engine, which can get into the lubricant. Soot has a variety of adverse 
effects to the functionality of the lubricant and can lead to severe engine 
wear and damage [8]. Diesel fuel may also leak to the lubricant which 
can cause fuel dilution, resulting in a lower lubricant viscosity [9]. 

Hence monitoring the above key parameters of lubricants (i.e. viscosity, 
water content, TBN, soot content, fuel contamination) are critical to 
judge the health status of the diesel machines. While viscosity can be 
measured independently, to date there is no instrument that can take 
accurate measurements of other key parameters online [5,10]. 

While the above parameters can be analyzed in laboratories, they are 
not suitable for live monitoring as the results will typically take over a 
week to be received. Many researches have utilized multiple sensors to 
measure the specific lubricant properties online. For example, Surface 
acoustic wave sensors were used for viscosity measurements [11,12]. 
Capacitive sensors were used in monitoring water, total acid number 
(TAN), sulfur, and soot contents [11,13]. Excluding viscosity, most 
property sensors are based on the electrochemical sensing; one major 
challenge of these sensors is their cross-sensitivity or response over
lapping, i.e., a sensor designed to measure a target property also re
sponds to other properties. In our previous work, we had utilized a 
general regression neural network (GRNN) to measure the water con
tent, TAN, and TBN, with a maximum error of 15.7% for water content 
[14]. However, all measurements were done in a constant temperature; 
the mechanism is only valid at a constant temperature. In practice, the 
operating temperature of lubricants typically varies during machine use, 
which significantly affects sensor responses. If the temperature effect is 
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not accounted for, the measurements from the sensor array would be 
unreliable even if the ANN is used [15,16]. While calibration or training 
can be done at each temperature, the procedures are prohibitively 
tedious and time consuming if the temperature variation range is large. 

Additionally, online machine health monitoring typically requires 
onsite training due to different operating conditions and the different 
base lubricants used in various machines [17]. The challenge is that it 
takes significant amount of time to prepare samples (or generating the 
datasets) for training. While a large size of samples/datasets usually 
improves the prediction accuracy, it is impractical to generate a large 
amount of samples on site. In the past decade, deep learning techniques 
have been used to improve the accuracy without a need of generating a 
large amount of samples. Among these techniques, data augmentation 
was used to increase the dataset size without compromising prediction 
accuracy. Recently, data augmentation has been used in several deep 
learning applications such as radio modulation classification, electro
encephalography, and MRI reconstruction [18–20]. Dropout is a deep 
learning technique where nodes are randomly disabled during training, 
which greatly reduces overfitting issues in deep learning by preventing 
co-adaption among hidden nodes [21]. Dropout has shown effectiveness 
recently in credit card data analysis and ultrasonic flaw classification in 
weldments [22,23]. 

In this article, we present an interdigital micro sensor array for on
line monitoring of multiple properties of the diesel powered machines’ 
lubricants based on a new artificial neural network with stochastic 
global optimization tuning. The new ANN used a unique stochastic 
global optimization (SGO) method, which allowed for the network to 
have higher prediction accuracy. Deep learning techniques including 
data augmentation and dropout were used to: 1) reduce the amount of 
the training samples, which is critical for onsite training, and 2) prevent 
overfitting during training to improve accuracy. The temperature is used 
as an input for the neural network to remove the temperature effect so 
that the sensor array can provide accurate measurement of lubricant 
properties at varying temperatures. 

2. Material and methods 

An array of four interdigital capacitive microsensors is designed to 
monitor the four critical properties (diesel fuel, water, base, and soot). 
Each microsensor consists of an identical pair of gold interdigitated 
electrodes (IDEs), and a specific sensing layer coated above the IDEs. By 
selecting a specific sensing layer, each of these four sensors responds 
primarily to one of these target properties with a larger weight ratio, 
while they may still respond to other properties with a smaller weight 
ratio. The IDEs were fabricated through a standard photolithography 
process, with 40 pairs of 5 mm fingers, a 25 µm finger width, and a 50 
µm gap between fingers (see Fig. 1). Contents of water, acid, soot and 
fuel present in the lubricant are absorbed by the sensing layer, causing a 

change in the capacitance. Sensing layer thicknesses were selected to be 
smaller than W + G, where W is the IDE finger width, and G is the gap 
between the IDE fingers [11]. This selection was to ensure each sensor’s 
response was dominated by the target property, but still influenced by 
other properties with a smaller weight ratio [24]. Fig. 1 shows a 
microscopic picture of the interdigital electrodes of the interdigital 
sensor. The coatings for the sensor which provide dominant sensitivity 
to one target properties are listed in Table 1. All coatings were applied 
by spin coating. 

Polyimide (DuPont PI-2545) has proven to be effective in absorbing 
water, while preventing lubricant oil from being absorbed [25,26]. 
Nafion is commonly used in cation exchange membranes due to its 
ability to allow for the passage of positively charged ions, which make it 
excellent for sensing changes in the base content of a substance [14,27]. 
Tin Oxide (IV) has shown to be a good sensing layer for diesel 
contaminant sensors [28]. The soot sensor is a bare set of gold IDEs with 
no coating layer. Research shows that the amorphous carbon particles 
produced by incomplete combustion, adheres to gold electrodes easily, 
making it a suitable method for detecting soot. Each sensor’s response is 
dominated by its target property, while content changes in other prop
erties still have a small effect on the sensor response. The sensor re
sponses were entered into a new ANN with SGO tuning to eliminate the 
cross sensitivity effect. Furthermore, since the capacitance of an IDE 
sensor is dependent on temperature, and the lubricant operating tem
perature of a machine is dynamic, we used a thermocouple to monitor 
the temperature of the lubricant. The temperature data was used in the 
neural network to correct any error in the sensor response which would 
be caused by temperature changes. 

To train and validate the ANN, 64 samples containing varying con
centrations of the four critical properties were prepared. A 10 W-30 
synthetic grade lubricant for diesel engines (Grainger) was used as a 
base for all samples. Water levels of 500 ppm are known to be con
cerning, and concentrations of 1000 ppm are thought to be critical [6, 
29]. Water concentrations of 0 ppm, 500 ppm, and 1000 ppm were used 
in the training, which were modified by adding purified water to a 
sample. Base levels were modified by adding potassium hydroxide 

Fig. 1. a) Microscopic picture of Interdigital electrodes of the capacitive sensor, b) Side view of IDE sensor with sensing layer.  

Table 1 
Target properties and the selected sensing layers.   

Water Base Fuel 
contamination 

Soot 

Materials PI-2545 
polyimide 

Nafion 
Dispersion 

Tin Oxide 
Dispersion 

None 

Vendor DuPont Thermal 
Scientific 

Thermal Scientific N/A 

Thickness 4 µm 250 nm 1 µm N/A 
Meas. 

Range 
0–1000 ppm 0 – 2000 ppm 0 – 4000 ppm 0 – 

4%  
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(KOH). Base levels of 2000 ppm are thought to be alarming; thus, 
samples were prepared to concentrations of 0 ppm, 1000 ppm, and 
2000 ppm [14]. A diesel fuel concentration of 2000 ppm is commonly 
accepted as a warning level, and 5000 ppm as an indicator for oil change 
[30]. Diesel concentrations of 0 ppm, 2000 ppm, and 5000 ppm were 
prepared to reflect these critical values and were altered by adding #2 
grade diesel fuel. Soot concentration of 4% is considered to be dangerous 
[8]. Therefore, samples with soot concentrations of 0%, 2%, and 4% by 
adding carbon black. To remove the temperature influence, each sample 
was measured at a range of temperatures near their expected operating 
ranges, specifically at 90 C◦, 100 C◦, and 110 C◦ [31]. 

3. Theory 

The neural network contains 5 inputs (4 from each of the 4 capacitive 
sensors, and 1 from a thermocouple) and 4 outputs (the contents of each 
property: water, base, diesel, and soot content). The neural network has 
many parameters which make up its architecture. These can be tuned to 
alter performance, including learning rate, optimization algorithm, the 
number of neurons in each layer, and the number of layers. To achieve 
highly accurate property predictions, we determined optimal network 
architecture using simulated annealing, which is a type of SGO [32,33]. 
Simulated annealing (SA) mimics the physical annealing process and is 
used for optimizing parameters in a neural network. This algorithm is 
proven useful for situations where there are a lot of local minima such 
that other algorithms (e.g. gradient descent) would be stuck at [34]. 

Using simulated annealing, an initial architecture was selected based 
on the number of input and output parameters in our network. The 
initial number of hidden neurons was selected as follows: 

N =
2
3

I + O  

where N is the number of hidden neurons, I is the number of input 
neurons, and O is the number of output neurons [35]. Following this 
criterion, we started with an architecture consisting of a single hidden 
layer with 7 neurons in it. The network had a learning rate of.01, and no 
extra hidden layers. We then defined a range of network architectures, 
with varied parameters of layers, neurons, and learning rates based on 
general guidelines [35,36]. The number of neurons in the first layer 
ranged from 5 to 15, the second layer from 0 to 11, and the third layer 
from 0 to 7. The learning rate ranged from 0.005 to 0.05. 

Next, the simulated annealing algorithm automatically determined 
the optimal network architecture by comparing the performance of a 
neighboring architecture, which is an architecture that is similar except 
for a single parameter change. If the neighboring architecture increases 
the performance, it jumps to this architecture and compares the per
formance to another neighboring architecture. If the performance gets 
worse, it continues using the current set with a probability 

P = e−[C(s′
)−C(s)]/kT  

where P is the probability it uses the current architecture, C(s′) is the 
cost of the neighboring architecture, C(s) is the cost of the current set of 
architecture, k is the Boltzmann constant, and T is a function which 
linearly decreases with each iteration [33]. The cost function is the root 
mean squared error for the property predictions. Once an architecture is 
selected, a single parameter is chosen at random and adjusted to another 
value within the predetermined ranges, with the following restrictions: 
1) architectures could not be repeated, and 2) the number of neurons in 
the second and third layer could not be greater than the number of 
neurons in a previous layer. Simulated annealing allows for an extensive 
search of the solution space during the beginning of the search, allowing 
it to pass over local minimums. When the T function nears zero, the 
search converges on the global minimum. This final set of parameters 
was used as our network architecture, which will be discussed in the 
results section. The neural network and optimization were completed 

using Python and the Keras deep learning library. 
To avoid using a large amount of datasets, data augmentation was 

used to increase the dataset size with no need to generate a large amount 
of samples and without compromising prediction accuracy. The stan
dard deviation of each sensor’s response was calculated at steady state 
(t = 60 mins). Next, each sensor’s noise was fit to a normal probability 
distribution. Values were probabilistically selected from this distribu
tion, and these values were then added to each individual sample, 
resulting in an augmented data point [18]. The dataset was effectively 
doubled, from 192 samples to 384 samples with this method. This 
technique is known to prevent overfitting for datasets with limited data 
[18–20]. In addition, dropout was used to further increase the network 
performance. To implement the dropout technique, nodes were 
randomly disabled during each training iteration, which greatly reduced 
overfitting issues in deep learning [21,22]. For each iteration of training, 
every node in the hidden layers had a 10% chance of being disabled for 
that iteration, i.e., the node would be temporarily removed from the 
network and woulF55d not input or output data. This process helped 
prevent nodes from co-adapting, where they became too reliant or 
dependent on other nodes in the network [22]. 

4. Results and discussion 

4.1. Sensor testing 

The four sensors were immersed into an acrylic tank filled with oil 
samples with different water, diesel, base, and soot contents. The test 
setup is shown in Fig. 2, and is similar to that used in our prior publi
cation. [14]. Static fluid conditions were used for the testing. It is worth 
mentioning that our prior research showed the responses of capacitive 
property sensors were in good agreement in both static and dynamic 
conditions [24]. The difference is that a hot plate (Thermo Fischer) was 
added to heat the oil samples to different temperatures (90 ºC, 100 ºC, 
and 110 ºC). Typical sensor responses to different samples as a function 
of time were plotted in Fig. 3. The sensor responses became stable at 
t = 60 min after immersion in the samples. Thus, the sensor response to 
each sample was collected at t = 60 min. The sensors were cleaned and 
dried before being tested in another sample. 

Oil property changes cause changes in the dielectric constants of the 
sensing layer and the medium above the sensors and in turn causes 
capacitance changes of the sensors. The change in the capacitance of one 
sensor was measured in terms of a change of voltage across the sensor. A 
2 MHz, 5 Vpp, sine wave excitation signal was applied to each sensor 
from an Agilent 33 600 A function generator. 2 MHz was selected as the 
excitation frequency because decent sensor responses were observed at 

Fig. 2. Testing setup.  
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this frequency during a frequency sweep experiment. A rectifying circuit 
was placed into the measurement circuit so that the peak voltage values 

can be captured. The rectifying circuit took the sine wave signal from the 
sensor, and outputs the peak values to the DAQ. Voltage outputs from all 
sensors were recorded by an NI USB-6356 DAQ with a sampling rate of 
60 Hz, using LabVIEW software. 

The output of each sensor was analyzed in the frequency domain 
through a Fast Fourier Transform, and a bandpass filter was applied to 
remove unwanted noise present in the signal. A 10 s rolling average of 
the sensor was averaged to remove the remaining noise effect. The 
relative voltage change was then normalized to range from 0 to 1 as the 
inputs for the neural network. 

4.2. Neural network training 

After the dataset was increased with data augmentation, the 128 
samples (each at 90 ºC, 100 ºC, and 110 ºC), were used to train the 
network to minimize root mean square error (RMSE). 308 of the 384 
datapoints were randomly selected to be the training set, and the 
remaining 76 were used as the validation set. After each training iter
ation, a k-fold cross validation method was used to select new validation 
and training sets to prevent overtraining. Starting with the initial ar
chitecture of a single layer with 7 neurons and a learning rate of.01, the 
neural network was trained until no property had a normalized root 
mean square error (NRMSE) greater than.08 in the validation set, and 
greater than.05 in the training set. A maximum of 500 iterations was set 
to prevent the code from getting stuck on a single architecture. This 500 

Fig. 3. Typical sensors’ outputs from six samples. Sample 1: pure lubricant oil; Sample 2: 500 ppm water; Sample 3: 2000 ppm diesel; Sample 4: 1000 ppm base; 
Sample 5: 2% soot; Sample 6: 500 ppm water, 2000 ppm diesel, 1000 ppm base, 2% soot. 

Fig. 4. Validation error vs. iteration for the 1st, 10th, 20th, and 30th ranked 
architectures. 
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iteration limit was selected based on the error vs. training iteration 
curves from our networks. Beyond this limit a majority of the networks 
training failed to reach our desired stopping conditions. Hidden neurons 
were randomly selected for dropout at each iteration with a dropout rate 
of 10%. Once the iterations were complete for the initial architecture, 
the training and validation errors were recorded. The neural network 
was trained with this neighboring architecture, and the errors of this 
network were compared to the previous architecture. The simulated 
annealing algorithm determined which of the two compared architec
tures would be used for the next step. The architecture selected by the 
algorithm then had one of its parameters modified, and the process was 
repeated. 100 architectures were analyzed through this process. For 
each architecture, a normalized RMSE (NRMSE) was calculated for each 
property by dividing the RMSE by the maximum concentration of that 
property. The sum of the NRMSE of the validation set of data was used as 
the metric to rank the architectures. The network which performed the 
best had 11 neurons in the first layer, 9 neurons in the second layer, 5 
neurons in the third layer, and a learning rate of.01. This architecture 

was selected as the final set of network parameters. Fig. 4 shows the 
validation error as a function of training iteration number for the 1st, 
10th, 20th, and 30th ranked architectures, and Table 2 shows the pa
rameters of each architecture. 

4.3. Neural network testing 

Finally, a separate set of testing data containing 10 samples (each at 
3 temperatures) which were unused in training and validation were used 
to evaluate the performance of the top 20 performing architectures, and 
to further ensure that the networks were not being overtrained. Fig. 5 
shows the predictions of the 10 testing samples at 3 temperatures 
compared with the actual value for each sample. The average prediction 
for water, diesel, base and soot contents were 12.1%, 7.8%, 5.7%, and 
3.9% respectively. The maximum prediction for these target properties 
were 15.2% (for water at 1000 ppm, 100 ºC), 12.3% (for diesel at 
5000 ppm, 100 ºC), 6.7% (for base at 1500 ppm, 100 ºC), and 3.7% (for 
soot at 2%, 90 ºC). Water contained the largest maximum and average 
percent error, which was expected as the sensitivity of the polyimide 
sensor had the smallest sensitivity. Soot contained the smallest error, 
which was also expected since all of the sensors were more sensitive to 
changes in soot content than any other property. These errors are within 
industry guidelines for each property [8,30,37]. 

Predictions were also analyzed at different temperatures to see if the 
prediction errors were affected by temperature. The average error of 
each property was calculated for each temperature group to see if there 
was a correlation between temperature and error. There was an average 
testing error of 5.85%, 4.68%, and 6.04% at 90 ºC, 100 ºC, and 110 ºC 

Table 2 
Parameters of architectures of the 1st, 10th, 20th, and 30th ranked architectures.  

Rank 1st Layer 
Neurons 

2nd Layer 
Neurons 

3rd Layer 
Neurons 

Learning 
Rate 

1st  11  9  5  0.01 
10th  13  7  5  0.01 
20th  11  11  7  0.005 
30th  15  3  3  0.01  

Fig. 5. Predicted concentration vs actual concentration of test samples at different temperatures.  
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respectively. The average validation error at 90 ºC, 100 ºC, and 110 ºC 
was 5.33%, 5.68%, and 5.94% respectively. There is no consistent 
pattern between error and temperature or significant deviations. Based 
on this, the new neural network is able to effectively remove the tem
perature effect on property prediction. 

We also compared the prediction accuracy of the neural network 
with and without using the deep learning techniques and SGO. Without 
using these techniques and using the same training and testing data sets, 
the average prediction accuracies were: 16.1%, 11.3%, 7.1%, and 4.2% 
for water, diesel, base, and soot concentrations. Apparently using the 
data augmentation, dropout, and SGO improves the accuracy without a 
need to add more datasets. This is particularly important for onsite 
training for online health monitoring where there is a challenge in 
generating a large amount of training samples onsite. 

Finally, to test if the sensor array can predict the system in an 
environment with unstable temperatures, we selected a sample con
taining 2000 ppm of diesel contaminant, 500 ppm of water, 1000 ppm 
of base, and 2% of soot. First, the sensor array was placed into this 
sample for 60 min so that the sensor responses were stabilized. Next, the 
sample was gradually heated to mimic the arbitrary temperature change 
of the environment. A thermocouple (36GL12, Dayton) was used to 
monitor the oil temperature at real time (see Fig. 6(a), red curve). The 
outputs of the sensor array were recorded and analyzed using the neural 
network described above. Predictions on the oil’s target properties were 
made at 9 095 100 105, and 100 ºC (see Fig. 6). In general, the predicted 
concentrations of target properties were in good agreement with actual 
concentrations. The largest error was found in water 105 ºC with an 
error of 15.8%, which was slightly above the maximum error of water of 
15.2% in static tests (in Fig. 5). The largest errors in this test were mostly 

at 95 and 105 ºC, which were expected as all samples in our dataset were 
taken at 90 100, and 110 ºC. The results (shown in Fig. 6) show that the 
sensor array is able to compensate the temperature effect even in an 
environmental where the temperature is arbitrarily varied. 

4.4. Discussion 

We have developed a sensor array containing four property sensors 
and a thermocouple, which is utilized with an artificial neural network 
to accurately monitor critical properties of a lubricant oil used in a 
diesel-powered engine. Sensors with chemical-based sensing mecha
nisms are used for diesel monitoring, but they are unable to provide long 
term measurements. On the other hand, individual capacitive sensors 
which are used for monitoring these properties can suffer from cross 
sensitivity and provide less accurate results if another contaminant is 
present. The system we developed is able to monitor water, diesel fuel, 
base, and soot content in the oil simultaneously, live, and for extended 
periods of time. 

The neural network architecture was uniquely selected from a 
simulated annealing process, which automatically searches through a 
range of neural network architectures to find an optimal architecture. 
This process helped maximize the prediction accuracy of the system to a 
degree not attainable through traditional methods, by overcoming local 
minimums and converging on a more effective architecture. The system 
was able to predict the water, diesel, base, and soot concentrations with 
an average error of 12.1%, 7.8%, 5.7%, and 3.9% respectively. This 
neural network had improved accuracy when compared to the pre
dictions made using a general regression neural network (GRNN) similar 
to our previous work. Using the same set of data, the GRNN had average 

Fig. 6. Temperature variation of testing sample and predicted diesel, water, base, and soot concentration vs. time, showing that the temperature effect was removed 
in an environment with arbitrary temperature variations. 
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prediction errors of 14.9%, 13.1%, 5.8%, and 6.1% for water, diesel, 
base, and soot respectively. The prediction errors of 3 different neural 
networks, 1st ranked architecture, the 20th ranked architecture, and the 
GRNN, were fit to Weibull distributions. The shape and scale parameters 
of the Weibull distribution were then used to plot each distribution to 
compare each network’s performance (i.e. probability density at 
different prediction errors) [38]. Fig. 7 shows the testing data prediction 
error probability density of the three networks. The results clearly show 
that the probability density for a small prediction error was enhanced by 
the simulated annealing optimization, so that it was able to make more 
accurate predictions than the GRNN. 

In addition, the temperature effect on the capacitive sensors was also 
removed by implementing a thermocouple to the system. Traditional 
temperature correction methods involve generating tedious calibration 
curves for a wide range of temperatures. The addition of adding a 
temperature measurement as an input to our neural network allows for 
accurate predictions at different temperatures, where our past work 
would need to be retrained for every temperature. 

Finally, the use of data augmentation and dropout is particularly 
important for onsite training. New data must be collected for training for 
each application, since changes in the base oil and operating tempera
tures will affect the sensor outputs. It is impractical to gather very large 
amounts of data for each application, therefore it is important to use 
deep learning methods to counteract the negatives of a smaller dataset. 
Overfitting on the training set is a large issue in models with smaller 
datasets. Thus, applying dropout during training is of elevated impor
tance since it reduces the effects of overfitting. Furthermore, data 
augmentation allows for the dataset to be artificially increased in size, 
alleviating the small dataset problems for onsite training. 

5. Conclusions 

An interdigital capacitive sensor array and artificial neural network 
tuned with stochastic global optimization was demonstrated for accu
rately measuring multiple properties of diesel powered machines. This 
ANN with an SGO parameter tuning process is used to untangle the 
overlapped responses of the sensors in the array. Simulated annealing 
was able to select a network architecture that had better prediction 
accuracy than if the architecture parameters had been selected with 
traditional methods. In addition, two deep learning techniques, data 
augmentation and dropout were used to prevent overfitting by artifi
cially increasing the dataset and randomly disabling nodes, preventing 
co-adaption during training. Four critical properties: water, diesel, base, 

and soot concentrations were measured. Results showed that the system 
was able to predict the water, diesel, base, and soot concentrations with 
an average error of 12.1%, 7.8%, 5.7%, and 3.9% respectively, and 
maximum errors of 15.2%, 12.3%, 6.8%, and 6.0% respectively. 
Compared to general regression network, with the use of SGO, dropout, 
and data augmentation techniques, the accuracy of the ANN was 
improved. This sensing system is able to provide comprehensive infor
mation of current conditions of lubricants of a diesel powered machine, 
and thus provide online diagnostics and prognostics of the machine. 
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