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Abstract

Population size changes and gene flow are processes that can have significant impacts
on evolution. The aim of this study was to investigate the relationship of geography to
patterns of gene flow and population size changes in a pair of closely related Sphagnum
(peatmoss) species: S. recurvum and S. flexuosum. Both species occur in eastern North
America, and S. flexuosum also occurs in Europe. Genetic data from restriction-site-
associated DNA sequencing (RAD-seq) were used in this study. Analyses of gene flow
were accomplished using coalescent simulations of site frequency spectra (SFSs).
Signatures of gene flow were confirmed by f, statistics. For S. flexuosum, genetic di-
versity of plants in glaciated areas appeared to be lower than that in unglaciated areas,
suggesting that glaciation can have an impact on effective population sizes. There is
asymmetric gene flow from eastern North America to Europe, suggesting that Europe
might have been colonized by plants from eastern North America after the last gla-
cial maximum. The rate of gene flow between S. flexuosum and S. recurvum is lower
than that between geographically disjunct S. flexuosum populations. The rate of gene
flow between species is higher among sympatric plants of the two species than be-
tween currently allopatric S. flexuosum populations. There was also gene flow from
S. recurvum to the ancestor S. flexuosum on both continents which occurred through
secondary contact. These results illustrate a complex history of interspecific gene
flow between S. flexuosum and S. recurvum, which occurred in at least two phases:
between ancestral populations after secondary contact and between currently sym-

patric plants.
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1 | INTRODUCTION

Inferring patterns of demography and gene flow among diverg-
ing populations is crucial to understanding speciation processes
(Edelman & Mallet, 2021; Ellstrand, 2014; Nielsen et al., 2009).
Gene flow, the movement of genetic material between individuals
from differentiated populations, can act as a homogenizing force
among partially divergent species. In some instances, however,
gene flow can augment genetic diversity within populations and
provide potentially adaptive alleles or even promote the speciation
process (Abbott et al., 2013; Morjan & Rieseberg, 2004; Richards
& Martin, 2017; Slatkin, 1987; Suarez-Gonzalez et al., 2018). Rates
of gene flow can obviously be affected by physical distances; prox-
imate individuals are more likely to exchange genetic material than
more distant ones. Gene flow can occur between populations within
the same species (intraspecific gene flow) and between populations
of different species (interspecific gene flow). Since individuals from
different species usually have some degree of reproductive isolation,
interspecific gene flow in general should occur at lower levels than
intraspecific gene flow (Edelman & Mallet, 2021; Ellstrand, 2014).
Changes in population size through time can also influence the
genetic makeup of populations. For example, a population expan-
sion can create an excess of rare alleles that can mimic signatures
of selection. Population sizes can be influenced by changes in en-
vironmental conditions that cause populations to contract or ex-
pand (Nielsen et al., 2009). Major environmental changes such as
glaciation can have profound effects on population sizes (Abbott
& Brochmann, 2003). Founder events following dispersal or range
expansions can also significantly impact the genetic makeup of pop-
ulations (Hewitt, 1996).

Developments in sequencing technologies have made genome-
scale data in non-model organisms much easier to acquire. Such
large datasets allow for the analyses of complex evolutionary
models (Ekblom & Galindo, 2011). Statistical methods have been
developed to compare demographic models that include different
effective population sizes through time and variable gene flow histo-
ries (Beichman et al., 2018; Excoffier et al., 2013). This can be instru-
mental in understanding the speciation process of closely related
species, which involves a complex interaction of population diver-
gence, population size changes, and gene flow.

Peatmosses (Sphagnum spp.) are semiaquatic to terrestrial plants
that grow in bogs, fens, forests, and seepages (Rydin et al., 2013).

Sphagnum is of unparalleled ecological importance because some

25%-30% of the entire terrestrial pool of carbon is estimated to be
bound up in partially decomposed peat within Sphagnum-dominated
peatlands (Gorham, 1991; Yu, 2011). Thus, understanding evolu-
tionary and ecological processes in Sphagnum has profound implica-
tions for biogeochemistry and the control of global climate (Weston
etal., 2018).

There are around 300-500 species of Sphagnum worldwide,
and although the Sphagnum clade is hundreds of millions of years
old, most extant species seem to have emerged through relatively
recent diversification during the last 10-15 million years (Shaw
et al., 2010). Sphagnum is capable of long-distance dispersal via ei-
ther spores or vegetative fragments (Sundberg, 2013). Many spe-
cies have intercontinental ranges, with some degree of population
structure across their geographic ranges (Kyrkjeeide et al., 2016).
Long-distance dispersal allows populations in different geographic
regions, even between continents, to remain connected by gene
flow (Shaw et al., 2015; Stengien et al., 2011). Multiple species of
Sphagnum often occupy the same habitat, usually by specializing in
different microhabitats. In fact, many sites have ten or more sym-
patric species. Different Sphagnum species in the same habitat
can hybridize, at least occasionally (Cronberg, 1998; Cronberg &
Natcheva, 2002). In addition to hybridization occurring in current
populations, recent analyses using genomic data showed signatures
of ancient introgressions between Sphagnum species (Meleshko
et al., 2021). Many Sphagnum species occur in northern areas that
were covered by ice during the last glacial maximum (LGM) and have
experienced significant shifts in geographical range during the re-
cent past (Abbott & Brochmann, 2003; Gignac et al., 2000). These
attributes, interspecific gene flow, recent range changes, and the po-
tential for long distance dispersal can make the demographic history
of Sphagnum species very complex. Moreover, the broad interconti-
nental geographic ranges of individual Sphagnum species add a layer
of potential demographic and evolutionary complexity compared to
most seed plant species that have much more restricted geographic
ranges (Frahm & Vitt, 1993; Qian, 1999). Understanding patterns of
gene flow and population size changes in closely related Sphagnum
species is required to fully understand speciation processes and
Sphagnum diversification.

This study focused on two closely related Sphagnum species:
S. recurvum P. Beauv. and S. flexuosum Dozy & Molk (Figure 1).
These species are members of the so-called S. recurvum com-
plex (Flatberg, 1992), which is part of the subgenus Cuspidata.
Phylogenetic analyses (Duffy et al.,, 2020) have shown that S.

FIGURE 1 Field-derived photographs
of (a) Sphagnum flexuosum and

(b) Sphagnum recurvum. Photos: Blanka
Aguero (with permission).
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flexuosum and S. recurvum are closely related. Sphagnum recurvum
is restricted to eastern North America, with the exception of a sin-
gle disjunct population in the Azores, while S. flexuosum occurs in
both eastern North America and western Europe. Analyses of ge-
netic structure have shown that European S. flexuosum are nested
within a clade of eastern North American plants, suggesting that
European plants were derived from eastern North America (Duffy
et al., 2020).

The geographic distributions of S. recurvum and S. flexuosum
provide a natural experiment for testing factors that impact pat-
terns of interspecific gene flow, intraspecific gene flow between
continents, and population size changes in these closely related
species. Plant communities in Europe and eastern North America
have been affected differently during the LGM. Europe suffered
more diversity lost during the LGM (Adams & Woodward, 1989;
Svenning, 2003). Fossil records have shown that there are many
woody plant genera that existed in Europe during the Upper Tertiary
(25-2 Mya) but now persist only in eastern North America and
Asia (Adams & Woodward, 1989). One explanation for this pattern
is that with the Appalachian Mountains oriented in a north-south
direction, plants in eastern North America were able to freely mi-
grate during cold periods of the Pleistocene, whereas plants in
Europe were more likely blocked by the east-west orienting Alps
(Hewitt, 1996; Soltis et al., 2006). Another explanation for greater
diversity loss in Europe during the LGM is that southern refugia in
Europe had dry climates that could not support many mesic tem-
perate plants (Svenning, 2003). Most of the mesic temperate tree
species in Europe that survived the LGM were restricted to only the
Mediterranean and Black Sea regions (Svenning et al., 2008). Since
S. flexuosum can occur only in moist habitats, the S. flexuosum popu-
lation in Europe might have suffered a severe bottleneck or was pos-
sibly eliminated completely during the LGM, only to be reestablished
by plants from eastern North America. This can result in S. flexuo-
sum plants in Europe having lower genetic diversity and a smaller
effective population size than plants in eastern North America. If
within eastern North America, S. flexuosum survived glaciation south
of the ice, we might predict lower genetic diversity among plants
in glaciated versus unglaciated areas. On the other hand, if spore-
producing Sphagnum plants are highly proficient dispersers, any such
genetic signal of migration and population bottlenecks could have
been erased.

Opportunities for interspecific gene flow between S. recurvum
and S. flexuosum were likely impacted by their intercontinental
ranges. Hybridization between the species is obviously more likely
between plants currently growing on the same continent, but inter-
continental migration within these spore-reproducing plants makes
it possible that plants now disjunct across the Atlantic Ocean could
bear signatures of gene flow as well (Shaw et al., 2014; Stengien
et al., 2011). There are several possibilities for interspecific gene
flow between S. flexuosum and S. recurvum: between presently allo-
patric plants (i.e., eastern North American S. recurvum and European
S. flexuosum), between presently sympatric plants (S. recurvum and
eastern North American S. flexuosum), or between plants ancestral
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to current population systems (S. recurvum and the ancestor of both
S. flexuosum populations).

The goals of this study were to answer the following questions.
(1) are eastern North American versus European metapopulation
systems within S. flexuosum connected by intraspecific gene flow? If
so, is the rate of gene flow symmetrical between the two continents?
(2) Is the rate of interspecific gene flow between S. flexuosum and
S. recurvum higher between plants currently sympatric on the same
continent than between plants currently separated on different con-
tinents? (3) Is there evidence of gene flow between S. recurvum and
those ancestral to the currently disjunct populations within S. flex-
uosum? And if so, was that gene flow limited to the period during
and after speciation, did it occur after secondary contact, or was it
continuous? (4) Is genetic diversity in S. flexuosum lower in glaciated

than unglaciated areas of eastern North America and Europe?

2 | METHODS
2.1 | Taxon sampling

Restriction-site-associated DNA sequencing (RAD-seq) raw reads
from Duffy et al. (2020) were used in this study. For DNA-extraction,
library preparation, sequencing protocols, and data availability, see
Duffy et al. (2020). A total of 60 samples were divided into three
groups for the present study: S. recurvum (16 samples), S. flexuosum
from eastern North America (28 samples, hereafter “ENA S. flexuo-
sum”), and S. flexuosum from Europe (16 samples, hereafter “EUR S.
flexuosum”). All our European samples of S. flexusosum were collected
from a relatively small area in Norway, which limits some generali-
ties about the species in “Europe.” Recently collected samples from
other areas were not available. Nevertheless, the questions we ad-
dress should be relatively robust to this sampling limitation (see dis-
cussion). Figure 2 shows the geographical locations of samples used
in this study. In addition to S. flexuosum and S. recurvum samples, one
sample of S. cuspidatulum Muill. Hal. and two samples of S. fallax H.
Klinggr. were also included for the introgression analysis. RAD-seq
reads for S. fallax samples were obtained from Duffy et al. (2020),
while the S. cuspidatulum sample was acquired from in silico diges-
tion of the genomic resequencing sample (see data availability for
more information). Specimen voucher information is provided in the
appendix (Table A1).

2.2 | RAD-seq data assembly

The RAD-seq raw reads were assembled using ipyrad version 0.7.29
(Eaton, 2014) with default parameters except noted here. The reads
were aligned to the S. divinum (v1.1) reference genome (https://
phytozome-next.jgi.doe.gov/), which is an outgroup species relative
to S. recurvum and S. flexuosum (Shaw et al., 2016) in order to infer
derived versus ancestral alleles. The samples were treated as hap-
loid. Based on a previous study (Duffy et al., 2020), a read clustering
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FIGURE 2 Geographic locations of
S. recurvum and S. flexuosum samples used
in this study.
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threshold of 0.9 was used to maximize the number of variable sites.

Loci presented in less than 80% of the samples were discarded.

2.3 | Genetic diversity and introgression analysis

Within population nucleotide diversity (n), and pairwise F, ge-
netic distance (ny) and number of fixed, shared, and monomorphic
sites among ENA S. flexuosum, EUR S. flexuosum, and S. recurvum
were calculated by the R package popgenome (Pfeifer et al., 2014).
Nucleotide diversity and genetic distance are defined as the aver-
age pairwise nucleotide differences between samples within and
between populations, respectively (Nei & Li, 1979). For the analy-
sis comparing genetic diversity among geographic regions within S.
flexuosum, two subsets of ENA S. flexuosum samples were created:
Maryland (ten samples) and central New York (nine samples). These
subsets have similar distributional ranges to the Norwegian (EUR)
collections. The samples from Europe and central New York repre-
sent glaciated regions, and samples from Maryland come from an
unglaciated region. Our sampling is insufficient to confirm any rela-
tionship between glacial history and genetic diversity but can yield
a preliminary assessment. Nucleotide diversity was calculated for
each group of S. flexuosum samples using the same method as above.
Jackknife resampling was used to calculate the variance of nucleo-
tide diversity estimates; n subsamples of each group was made by
excluding one sample from the dataset, where n is the number sam-
ples in the group. Statistical differences of nucleotide diversity esti-
mates were analyzed by ANOVA and post-hoc Student's t-test using
Bonferroni correction for multiple comparisons. Additional samples
of ENA S. flexuosum samples were excluded from these geographic

comparisons so we could use samples from comparable areas, but
these were included in other analyses.

Two ABBA/BABA site pattern statistics were calculated using
the program Dsuite (Malinsky et al., 2021) to detect signatures of in-
trogression: Patterson's D statistics (Green et al., 2010) and f, ratios
(Patterson et al., 2012). In the introgression analyses, outgroup sam-
ples of S. cuspidatulum and S. fallax were also included. Sphagnum
cuspidatulum is a tropical species from Southeast Asia (Eddy, 1977).
Phylogenetic analyses have shown that S. cuspidatulum is strongly
supported as sister to S. recurvum (unpublished data). Including this
species in the analyses allows for an inference about introgression
between S. recurvum and the ancestor of S. flexuosum Europe and
eastern North America. Sphagnum fallax was also included as an
outgroup because it is one of the closest relatives to the “S. flexuo-

sum+S. recurvum” clade (Duffy et al., 2020).

2.4 | Demographic modeling

Multiple demographic models were compared using the approximate-
likelihood method in fastsimcoal2 (fsc26, Excoffier et al., 2013).
This method uses site frequency spectra (SFS) as input. Unfolded
SFS were calculated using easySFS pipeline (https://github.com/
isaacovercast/easySFS). It is possible to calculate unfolded SFS in
this case because the RAD-seq reads were aligned to an outgroup
reference genome, thus retaining information about derived and an-
cestral alleles. Since SFS requires each site to have no missing data,
the easySFS pipeline allows SNPs to be subsampled from the data-
set. This reduces the number of samples but increases the number
of SNPs with no missing data. The populations were subsampled as
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follows: S. recurvum: 8 of 16 samples, ENA S. flexuosum: 16 of 28
samples, EUR S. flexuosum: 11 of 26 samples. Unfolded SFS were
generated both using all SNPs and one SNP per RAD-seq locus.

The demographic models tested all utilize the same bifurcating
history: S. recurvum diverged from S. flexuosum and then S. flexuosum
diverged into two allopatric populations; that is, Europe (EUR) and
eastern North America (ENA). The differences among the models
are the presence/absence of gene flow between populations. There
are eight possible gene flow events: six between the three current
populations and two between ancestral populations. Of the eight
possible gene flow events, two are between populations of the same
species (intraspecific gene flow) and six are between populations of
different species (interspecific gene flow) (Figure B1). A total of 29
demographic models with several combinations of gene flow events
were included in the analysis, out of 128 possible combinations
(Table B1). This includes models with no gene flow, with all possi-
ble patterns of gene flow, and with only gene flow between current
populations. We also tested models in which one of the eight gene
flow events was excluded. Further model testing was designed by
excluding multiple gene flow events that might impact the likelihood
of the model when absent. All gene flows were treated as temporally
continuous. After identifying the best demographic model, further
comparisons were conducted by modifying the gene flow between
S. recurvum and the ancestor of the two allopatric S. flexuosum pop-
ulations as continuous gene flow, early gene flow shortly after diver-
gence of the population systems, and secondary contact.

Approximate likelihoods for each demographic model were cal-
culated by fastsimcoal2 in two steps, following Bagley et al. (2017).
First, demographic parameters were inferred from the SFS contain-
ing all SNPs. According to Excoffier et al. (2013), the use of linked
SNPs should not bias demographic parameter estimation and can
help increase the amount of information for parameter inference. At
least 100 independent runs were performed for each model. In each

run, the expected SFSs were generated from 50,000 simulations,
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and the demographic parameters were optimized in 40 ECM cycles.
In the second set of analyses, the best demographic parameters for
each model were used to compute the approximate likelihood based
on SFS containing only one SNP per RAD-seq locus. In this case, the
expected SFS was generated from 10 million simulations to increase
the accuracy of the approximate likelihood. This approximate like-
lihood was then used to calculate an Akaike information criterion
(AIC) for the model.

Confidence intervals of demographic parameters in the best
model were obtained from parametric bootstrap. Demographic pa-
rameters in the best model were used to simulate 100 independent
SFSs. For each of the simulated SFS, ten independent runs were per-
formed using 50,000 simulations and 40 ECM cycles. Demographic
parameters from the best run of each simulated SFS were then com-

bined to calculate confidence intervals.

3 | RESULTS

3.1 | RAD-seqreads assembly

The total number of raw reads from 60 samples was 90,196,383,
ranging from 375,249 to 2,594,985 reads per sample (me-
dian+SD =1,565,588.5+572,048.9). The assembly pipeline yielded
14,874 loci that are present in more than 80% of the samples, and
13,756 of those contained one or more SNPs. The mean SNP cover-
age was 75.12%.

3.2 | Genetic diversity analysis

The DNA sequence matrix used in these calculations contained
282,865 sites, of which 12,307 were biallelic. S. recurvum has higher
nucleotide diversity (r = 0.00626) than S. flexuosum (r = 0.00462).

TABLE 1 Nucleotide diversity within populations (r) and pairwise comparisons of the fixation index (F,), genetic distance (ny), shared
polymorphic sites, and fixed differences between S. recurvum and populations within S. flexuosum

Within population

Population N Nucleotide diversity
S. recurvum 16 0.00627

ALL S. flexuosum 44 0.00463

EUR S. flexuosum 16 0.00403

ENA S. flexuosum 28 0.00460

Between population

Population pair Fst ny Shared polymorphic sites Fixed Differences
ALLS. flexuosum and S. recurvum 0.594 0.0134 2287 1274

EUR S. flexuosum and ENA S. flexuosum 0.104 0.00482 2904 0

EUR S. flexuosum and S. recurvum 0.615 0.0134 1549 1403

ENA S. flexuosum and S. recurvum 0.597 0.0135 2061 1323

Abbreviations: ALL, including both ENA and EUR samples; ENA, eastern North America; EUR, Europe.
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TABLE 2 Nucleotide diversity (x) for populations within S. flexuosum and statistical comparison using ANOVA and Student's t-test

Summary

Population Continent Glaciation during LGM N Nucleotide diversity (SD)
Maryland ENA No 10 0.00436 (1.2x107™4
Upstate New York ENA Yes 9 0.00418 (9.7x107°)
Central Norway EUR Yes 16 0.004031 (1.2x 107
ANOVA

Source of variation SS df MS F p-value (@ = 0.05)
Between groups 7.27x107 2 3.63x107 57.1 2.75x10™

Within groups 2.03x107 32 6.36x1077

Total 9.29x107 34

Post-hoc Student's t-test

Population comparisons

Maryland - Upstate New York
Maryland - Central Norway
Upstate New York - Central Norway

Abbreviations: ENA, eastern North America; EUR, Europe.

Both F_ and genetic distance (ny) values between S. recurvum
and S. flexuosum (F, = 0.594, D,, = 0.0134) are higher than the
value between allopatric ENA and EUR populations of S. flexuosum
(F,,=0.104, ny =0.00482). EUR S. flexuosum and S. recurvum share
1549 polymorphic sites and have 1403 fixed differences. ENA S.
flexuosum and S. recurvum share 2061 polymorphic sites and have
1323 fixed differences. These measurements suggest that differen-
tiation between S. recurvum and S. flexuosum is higher than that of
the allopatric populations of S. flexuosum (Table 1).

Within S. flexuosum, nucleotide diversity in ENA S. flexuosum
(r = 0.00460) is higher than that of EUR S. flexuosum (r = 0.00403)
(Table 1). However, these estimates were incomparable since EUR
S. flexuosum samples were collected from much smaller range than
ENA S. flexuosum. Nevertheless, when ENA S. flexuosum was re-
duced into two subsets with comparable sampling range as EUR S.
flexuosum, estimates for the three regions are significantly different
(p<.05). Plants from Maryland (ENA, unglaciated) have the highest
nucleotide diversity (x = 0.00436), followed by central New York
(ENA, glaciated) (xr = 0.00418), and central Norway (EUR, glaciated)
has the lowest nucleotide diversity (x = 0.00403) (Table 2).

3.3 | Introgession estimates: ABBA/BABA site
patterns analyses

In all four species trios (Table 3), P1 and P2 share more derived al-
leles (BBAA sites, pattern concordant with species tree) than either
P1 or P2 with P3 (ABBA/BABA sites, patterns discordant with spe-
cies tree), confirming the topology of phylogenetic relationships
used in this analysis (Figure 3). For the discordant site patterns,

p-value (@ = 0.0167)

0.000987
391x107%
6.89%x107°

under a hypothetical scenario with only incomplete lineage sorting
and the phylogeny being (([P1, P2], P3), outgroup), it is expected that
P1 and P2 share equal numbers of derived alleles with P3. That is,
the number of ABBA and BABA sites should be roughly equal (D-
statistics not significantly different from zero). In all four species
trios, D-statistics were significantly different from zero (p<.05).
Table 3 and Figure 3 summarize ABBA/BABA site patterns statistics
for each species trio.

These non-zero D statistics value suggest a signature of intro-
gression, and f,-ratio values show the proportions of genomes that
were introgressed (Table 3). In the first species trio, EUR S. flexuosum
(P1) shares more derived alleles with S. cuspidatulum (P3) relative to
ENAS. flexuosum (P2), suggesting introgression between EUR S. flex-
uosum and S. cuspidatulum. In the second and third species trios, S.
recurvum (P2) shares more derived alleles with both ENA and EUR S.
flexuosum (P3), relative to S. cuspidatulum (P1), suggesting introgres-
sion between S. flexuosum and S. recurvum. In the fourth species trio,
ENA S. flexuosum (P2) shares more derived alleles with S. recurvum
(P3), relative to EUR S. flexuosum (P1), suggesting introgression be-

tween ENA S. flexuosum and S. recurvum.

3.4 | Demographic history

Of 33 demographic models tested, the best model was “model 10
with secondary contact” (Figure 4). This model consists of three
gene flow events: from ENA S. flexuosum to EUR S. flexuosum, from
ENA S. flexuosum to S. recurvum, and from S. recurvum to the line-
age ancestral to ENA and EUR S. flexuosum. In this model, there is

also anisolation period after S. recurvum diverged from the ancestral
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TABLE 3 ABBA/BABA site pattern statistics. Z-score and p-value of D statistics were computed by jackknife. Significant p-value (<.0125) suggests the presence of introgression.

BABA

ABBA
sites

sites

BBAA

sites

no. of

Putative introgression pair

Z-score p-value f4-ratio

D statistics

P2 P3

P1

species trio

EUR S. flexuosum and S. cuspidatulum

2.50067 .00620 0.00475 544156 392791 352936
0.0695 1123.63

0.0557 1174.62

1119.49

5.08219

0.0534438
0.13912

EURSS. flexuosum S. cuspidatulum

ENA S. flexuosum

S. recurvum and ENA S. flexuosum

1486.8

1900.53

1.87E-07

3.49E-06
.00378

ENA S. flexuosum

S. recurvum

S. cuspidatulum

S. recurvum and EUR S. flexuosum

1473.49
1203.59

1921.5

4.49452

0.112862

EURSS. flexuosum

S. recurvum

S. cuspidatulum

ENA S. flexuosum and S. recurvum

8913.22

0.00949

0.0362019 2.67152

S. recurvum

ENA S. flexuosum

EUR
S. flexuosum

Note: f,-ratio indicates proportion of the genome involved in introgression. In all of species trios, S. fallax was used as an outgroup population.
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EUR ENA

S. flexuosum S. flexuosum S. recurvum  S. cuspidatulum

Trio 1, f,= 0.0095

Trio 4, f,= 0.0047

M

Trio 2, f,=0.070
Trio 3, f,=0.056

FIGURE 3 ABBA/BABA statistics analysis. The double-headed
arrows represent the putative introgression events, numbers

of species trio are based on Table 3, and f, values represent the
proportion of genome involved in introgression. Thick arrow is used
for introgression events with f, higher than 0.01.

EUR ENA Time
S. flexuosum  S. flexuosum S. recurvum (generations)
_ _ %104
Ne =45 0.0527 | Ne = 245 | 1.13*10 | T-28
Ne =452
0.0136 T=274
Ne =21 = = == ==
I |
I No gene flow | =309
|
I
Ne =5,769

FIGURE 4 Best demographic model (“model 10 with secondary
contact”). The width of the boxes is roughly proportional to the
effective population sizes (N ); the height of the boxes is roughly
proportional to divergence time; arrows represent the presence
and direction of gene flow; thick arrows is used when gene flow
rate exceeds 0.01.

population of S. flexuosum. For effective population sizes, EUR S.
flexuosum has the smallest effective population size, followed by
ENA S. flexuosum, and then S. recurvum with the largest. Figure 5
shows variation in demographic parameter estimates from paramet-
ric bootstrap. Tables B1 and B2 show demographic parameters, ap-
proximate likelihoods, and AIC values for all 33 demographic models
tested. Table B2 provides 95% confidence intervals for demographic
parameters in “full migration”, “full migration with secondary con-
tact”, “model 10”, and “model 10 with secondary contact” models
based on parametric bootstrap. Figures B2-B5 show boxplots of
demographic parameters estimates for the models included in
Table B2.
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101 -
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104 - ¥
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S. recurvum to ancestral ENA S. flexuosum to ENA S. flexuosum to Ancestral Ancestral EUR ENA S. recurvum
population of S. flexuosum EURS. flexuosum S. recurvum population of  population of S. flexuosum S. flexuosum (NPOP3)
(manc31) (migr21) (migr23) S. flexuosum S. flexuosum (NPOP1) (NPOP2)
(NANC1) and S.recurvum

(NANC2)

FIGURE 5 Variations in gene flow rates and effective population sizes of the best demographic model as inferred from parametric

bootstrap.

4 | DISCUSSION

41 | Gene flow between S. flexuosum and S.
recurvum

There is much evidence that hybridization is widespread in plants and
can have significant evolutionary impacts (Rieseberg, 1995; Rieseberg
& Carney, 1998; Suarez-Gonzalez et al., 2018). One possible outcome
of hybridization is introgression, where hybrids backcross to one
or both parental species. After generations of backcrossing, a small
genomic fraction can be transferred from one species to another
(Abbott et al., 2013; Edelman & Mallet, 2021). In mosses, the initial
F1 hybrid is the short-lived sporophyte generation, but meiosis in
the sporangia (capsules) of such hybrids yields recombinant haploid
gametophytes with allelic representation from the two parental spe-
cies across loci. There is no (or little) heterozygosity to shield hybridity
from natural selection. In Sphagnum, it is common for many species
to grow intimately mixed, and demonstrably recombinant individuals
have been detected in Sphagnum (Cronberg, 1989; Cronberg, 1998;
Cronberg & Natcheva, 2002). Allopolyploid species with diploid ga-
metophytes and tetraploid sporophytes have also been documented
in Sphagnum from all over the world (for example, Karlin et al., 2010;
Ricca & Shaw, 2010; Sastad et al., 2001), and these provide further
evidence that hybridization can and does occur in the genus.

The results from both ABBA/BABA statistics and demographic
modeling strongly suggest that there has been gene flow between
S. flexuosum and S. recurvum. Furthermore, interspecific gene flow
occurred in at least two phases: before and after the divergence be-
tween European and eastern North American plants within S. flex-
uosum. Demographic modeling indicates that the first hybridization
event(s) occurred between S. recurvum and the ancestor of divergent
North American and European S. flexuosum and the second event(s)
between S. recurvum and regionally sympatric North American
plants of S. flexuosum after the divergence of the European clade.

Two phases of gene flow can also be indirectly inferred from ABBA/
BABA statistics. When S. cuspidatulum is treated as P1 and S. recur-
vum is P2, the results indicate that S. recurvum shares more derived
alleles with both European and eastern North American S. flexuo-
sum. This pattern suggests hybridization between S. recurvum and
the ancestor of European and eastern North American S. flexuosum.
When European S. flexuosum is treated as P1, North American S.
flexuosum as P2, and S. recurvum as P3 in the analyses, it is eastern
North American S. flexuosum that shares more derived alleles with S.
recurvum. This suggests that there was another introgression event
that occurred between S. recurvum and S. flexuosum in eastern North
America, but not with S. flexuosum in Europe. Consistent with that in-
terpretation, S. recurvum shares more polymorphic sites, fewer fixed
differences, and a lower estimated F, with eastern North American
S. flexuosum than with European S. flexuosum.

The best demographic model suggests that gene flow between S.
recurvum and the ancestor of European and eastern North American
S. flexuosum occurred during secondary contact after a period of iso-
lation. From this, it can be inferred that speciation of S. recurvum
and S. flexuosum may have occurred in allopatry. While their ranges
are currently sympatric in eastern North America today, S. flexuosum
and S. recurvum might have had allopatric distributions in the past.
Duffy et al. (2022) showed that some continuously distributed east-
ern North American species of Sphagnum exhibit population struc-
ture that suggests regional divergence that presumably developed
during previous periods of allopatry.

Based on f, values, at least 5.5% of the genome has been trans-
ferred between S. flexuosum and S. recurvum in the first phase of
gene flow. The best demographic models suggest that the direction
of transfer has been from S. recurvum to S. flexuosum. This direc-
tion of gene flow is consistent across all of the demographic mod-
els tested (Table B1). The best model indicates that the population
size of S. flexuosum after divergence from S. recurvum was very small
(Ne = 21), relative to the ancestral population size (Ne = 5769). With
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this small population size, genetic drift can have an enormous in-
fluence on the gene pool; beneficial alleles might be eliminated, or
slightly deleterious mutations could be fixed. Gene flow with S. re-
curvum during secondary contact could have reintroduced beneficial
alleles in the ancestral population that were lost or could have intro-
duced new alleles that originated within S. recurvum.

Since S. recurvum is restricted to eastern North America (except
for one site in the Azores), this first phase of interspecific gene flow
also suggests that the ancestral population of the current S. flexuo-
sum populations occurred in eastern North America. This is consis-
tent with the phylogenetic inference that S. flexuosum in Europe was
derived from plants in eastern North America (Duffy et al., 2020).

The second phase of gene flow occurred between S. recurvum
and eastern North American S. flexuosum. Both the rate of gene flow
estimated by demographic modeling and the f, value from ABBA/
BABA statistics clearly indicate that the magnitude of interspecific
gene flow before the divergence of European and North American S.
flexuosum was higher than in the second phase after they diverged.
This result suggests that reproductive isolation between sympatric
S. flexuosum and S. recurvum in eastern North America is strong,
even if not absolute. The relatively high estimate for interspecific
gene flow before the divergence of S. flexuosum compared to gene
flow after divergence of continental populations is consistent across
most demographic models tested.

In contrast to the earlier phase of introgression between S. recur-
vum and the ancestor of North American and European S. flexuosum,
the direction of the second phase of interspecific gene flow appears
from the best demographic model to have occurred from eastern
North American S. flexuosum into S. recurvum. The inferred direction
of gene flow is not consistent across the models tested, but the oc-
currence of gene flow is strongly and consistently supported. Since
this gene flow occurs only with North American S. flexuosum, it could
contribute to the differentiation between intercontinentally disjunct
populations of S. flexuosum.

Gene flow could potentially result in merger of two differentiated
clades. However, even if hybridization is still occurring between S. re-
curvum and S. flexuosum in eastern North America, this appears un-
likely because the rate of gene flow is low. If the value of parametersin
the best demographic model are assumed to be accurate, the value of
N,m (number of individuals migrating per generation) between S. flexu-
osumand S. recurvum is 452*(1.13*107* = 0.051, or around 1 individual
per 20 generation. Under Wright's Island model for haploid organisms,
N.m = %
of N,m has to be 4.5 individuals per generation (Cutter, 2019). The

current rate of gene flow between S. flexuosum and S. recurvum is too

(Fi - 1), in order to have an equilibrium F_, of 0.1, the value
st
low to homogenize the two species in the long run.

4.2 | Relative genetic diversity and intercontinental
gene flow in S. flexuosum

The last glacial maximum caused huge changes in species distribu-
tions and genetic structure of organisms in the Northern Hemisphere
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(Abbott & Brochmann, 2003; Hewitt, 2000). Plants in areas previ-
ously covered by ice sheets could have survived in local refugia or
could have been extirpated and recolonized from another continent
after the ice sheet receded. It has been shown that for angiosperms,
Europe suffered more diversity losses during the last glacial maxi-
mum than did those in North America (Adams & Woodward, 1989;
Svenning, 2003). With its intercontinental amphi-Atlantic distribu-
tion, and with most of its current distribution located in areas pre-
viously glaciated, S. flexuosum provides an opportunity to compare
genetic diversity between glaciated and unglaciated regions in
Europe and eastern North America.

Due to the limited sampling range of EUR S. flexuosum samples, a
generalized comparison of genetic diversity between S. flexuosum in
eastern North America and Europe cannot be made with the sample
we have. In order to compare samples from the two continents, we
selected two subsets of ENA S. flexuosum samples from smaller re-
gions: Maryland and central New York. Our estimates indicate that
European plants have lower nucleotide diversity than both of the
eastern North American regions. Moreover, within eastern North
America, S. flexuosum plants from the unglaciated region (Maryland)
had higher nucleotide diversity than plants from glaciated regions
(central New York) (Table 2). Since all of EUR S. flexuosum samples
were collected from central Norway, which is also glaciated, this sug-
gests that plants in unglaciated areas have higher genetic diversity
than plants in glaciated areas. Nevertheless, this observation needs
to be tested with additional sampling from more glaciated and ungla-
ciated areas.

Previous analyses of phylogenetic structure have shown that
European S. flexuosum forms a monophyletic group that is nested
within eastern North American plants (Duffy et al., 2020), suggest-
ing that extant plants originated in North America and subsequently
expanded to Europe. This inference coincides with our best demo-
graphic model, which indicates that gene flow has occurred in one
direction from eastern North America to Europe. European and
North American plants of S. flexuosum are clearly genetically similar,
with F values much lower than interspecific F, of either S. flexuo-
sum group (European, North American) with S. recurvum. Moreover,
there are no fixed differences between S. flexuosum in eastern North
America versus Europe in contrast to thousands of fixed differences
between S. recurvum and S. flexuosum at the species level (Table 1).

However, when considering demographic models with all pos-
sible migration events, migration rates and directions between
S. flexuosum in Europe and eastern North America are not consistent
(Tables B2 and B3). In the “full migration” model, the migration rate
from eastern North America to Europe is 20 times higher than the
rate from Europe to eastern North America. This pattern corresponds
to the best demographic model. However, in the “full migration with
secondary contact” model, the pattern is reversed; the migration
rate from eastern North America to Europe is approximately half the
migration rate from Europe to eastern North America. Nevertheless,
the inference that S. flexuosum plants in Europe and eastern North
America are connected by gene flow is consistent across most of the
demographic models tested.
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Integrating inferences about contrasting levels of genetic diver-
sity between plants of S. flexuosum in North America and Europe,
phylogenetic relationships among plants on the two continents, and
evidence for intercontinental gene flow, we suggest the following
historical scenario. Sphagnum flexuosum was extirpated in Europe
during the LGM and was recolonized by North American plants
during the Holocene. A founder effect associated with that recol-
onization gave rise to the lower level of genetic diversity in Europe
relative to North America. An alternative scenario is that S. flexu-
osum originated in eastern North America and expanded its range
to Europe, subsequent to speciation. Then, S. flexuosum plants in
Europe have persisted through the glaciation periods in some re-
fugia within the continent. A weak signal of introgression between
European S. flexuosum and S. cuspidatulum, currently restricted to
Asia, could suggest that during glaciation, S. flexuosum persisted in
some part of Europe that is close to Asia. This is possible, although if
that were the case, we might expect a stronger introgression signal
between European S. flexuosum and S. capidatulum than we detected.
The weak introgression signal detected here could have come from
long-distance dispersal between current populations of S. flexuosum
in Europe and S. cuspidatulum in Asia. Although we cannot date the
origin of S. flexuosum confidently because of the absence of fossils
for calibration, recent estimates for the diversification of extant
Sphagnum species suggest dates on the order of at least 10million
years ago (e.g., Shaw et al.,, 2010, 2019). Nevertheless, it seems
unlikely that a genetic signature of any bottleneck associated with
that ancient speciation process and range expansion persists today.
Another important signature of recent population divergence is that
there is no fixed difference between S. flexuosum in eastern North
America and Europe. Thus, the difference in genetic diversity de-
tected here is more likely to be caused by recent events and possibly
associated with glaciation. This scenario corresponds to an earlier
work by Ledent et al. (2019) which showed that post-glacial assem-
bly of European bryophytes involves high contribution of migrants
from other continents.

Stengien et al. (2011) inferred from microsatellite data that
European plants of the the amphi-Atlantic species Sphagnum anger-
manicum were established relatively recently from eastern North
America plants via long-distance dispersal. European plants of S.
angermanicum, like those of S. flexuosum, are less genetically diverse
than are those in eastern North America. In contrast, demographic
analyses of other amphi-Atlantic bryophytes have shown that levels
of genetic diversity in European and North American populations are
similar; bottleneck events of similar magnitudes have also been in-
ferred on both continents (Désamoré et al.,2016). Thisis also the case
in some circumarctic angiosperms (Brochmann & Brysting, 2008).
Such demographic patterns could reflect the occurrence of northern
refugia in both Europe and North America where both bryophytes
and Arctic angiosperms could survive the glaciation. This discrep-
ancy in the effects of the LGM can be explained by the difference in
plant response to climate during the LGM. Paleoclimactic data have
shown that ice-free areas in Europe were drier than in eastern North
America, which can produce severe effects on plants that cannot

tolerate drought (Svenning, 2003). A study using species distribu-
tion modeling on European trees during the LGM has shown that
boreal species have existed in northern refugia across the plains of
Central and Eastern Europe, while nemoral species were restricted
to southern refugia such as the Mediterranean and Black Sea re-
gions (Svenning et al., 2008). Furthermore, a comparison of niche
requirements of the relictual and extinct plant taxa in Europe has
shown that relictual taxa are more cold and drought-tolerant than
the extinct taxa (Svenning, 2003). Studies of genetic diversity of
bryophytes within glaciated and unglaciated areas of Europe also
yielded similar patterns. Plants of the epiphytic bryophyte Leucodon
sciuroides, which relies on host trees, have lower genetic diversity
in glaciated areas than unglaciated areas (Cronberg, 2000). On the
other hand, the cold-tolerant Hylocomium splendens appears to have
a center of genetic diversity in Northern Scandinavia, which was gla-
ciated (Cronberg et al., 1997). Thus, since Sphagnum requires mesic
habitats, it is reasonable to expect that Sphagnum in Europe would
have been affected by the LGM in ways similar to temperate angio-

sperms that were less able to tolerate drought.

4.3 | Limitations associated with the inference of
demographic models

Our results provide some clear inferences about genetic diversity
and gene flow (both intraspecific and interspecific) in S. flexuosum
and S. recurvum. There are, nevertheless, important limitations and
uncertainty associated with the data and approaches used in this
study. With regard to sampling, all our collections of S. flexuosum in
Europe came from central Norway (Figure 2; Table A1), even though
S. flexuosum is widespread in Europe. Furthermore, central Norway
is the northern edge of S. flexuosum in Europe (Laine et al., 2018)
and might not represent the actual genetic diversity of S. flexuosum
in Europe. Thus, the effective population size of EUR S. flexuosum as
inferred from the demographic model might be lower than the actual
value. Instead of using effective population size estimates from the
demographic model, we reduce the scope of the question to only
comparing the genetic diversity of S. flexuosum in glaciated areas
and unglaciated areas within Europe and eastern North America. In
this case, genetic diversity was used as a proxy for effective popula-
tion size since the two values are correlated according to the neutral
model (Ellegren & Galtier, 2016; Kimura, 1983). Variation in muta-
tion rates can alter the relationship between genetic diversity and
effective population size, but since this study focuses on plants from
the same species, it can be assumed that the mutation rates are simi-
lar in all the groups being compared. There are empirical evidence
showing positive correlation between genetic diversity and effec-
tive population sizes (Hague & Routman, 2016; Leimu et al., 2006).
There are also caveats regarding the interpretation of demo-
graphic models. Sphagnum life history does not strictly correspond
to the Wright-Fisher model used in SFS simulations. The mutation
rate of Sphagnum is unknown, and the default value of 2.8x1078
mutations per site per generation was used in this study. Estimated
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values for demographic parameters should be considered relative
values, not absolute values.

Moreover, in complex demographic models, different combina-
tions of parameters can give similar approximate likelihoods. The
most complex model in this study contained 19 parameters, and it
can be difficult to reach the global optimum in parameter space.
For some models, there can be a set of parameters that explain the
data even better than the best model, but those set of parameters
were not evaluated. It is also possible that 100 independent runs
per model are not enough to adequately cover the parameter space.
This can be problematic if there are multiple demographic models
with similar approximate likelihood but have substantially different
values of demographic parameters. In this case, it will be difficult to
determine the best demographic model. Thus, in addition to the best
demographic model reported here, it is prudent to compare param-
eter estimates of the best model with other models that have similar
approximate likelihoods, especially the “full migration model” which
contains all demographic parameters.

5 | CONCLUSIONS

This study supports the interpretation that S. flexuosum in glaciated
areas has lower genetic diversity than unglaciated areas, that plants
in Europe are derived from eastern North America, and that the
population systems disjunct across the Atlantic Ocean are still con-
nected by gene flow. Interspecific gene flow between S. flexuosum
and S. recurvum occurred in at least two phases: before and after
population divergence of S. flexuosum. Gene flow before population
divergence of S. flexuosum has much higher magnitude than gene
flow after population divergence, and it occurred through second-
ary contact. Gene flow after population divergence of S. flexuosum

occurred only between sympatric plants in eastern North America.
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FIGURE B1 Diagram showing variable names for the

model
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FIGURE B2 Variations in effective population sizes (N) inferred from parametric bootstrap of the “full migration model” and “model 10”".
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FIGURE B3 Variations in gene flow rates inferred from parametric bootstrap of the “full migration model” and “model 10”.
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FIGURE B4 Variations in effective population sizes inferred from parametric bootstrap of the “full migration model with secondary

contact” and “model 10 with secondary contact”.
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FIGURE B5 Variations in gene flow rates inferred from parametric bootstrap of the “full migration model with secondary contact” and

“model 10 with secondary contact”.
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