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Abstract

We give a tight bound for the triple intersection numbers of Paley graphs.
In particular, we show that any three vertices have a common neighbor
in Paley graphs of order larger than 25.
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Let q = 4t+ 1 be a prime power, and let � be Paley(q), the Paley graph on

q vertices, with as vertex set the finite field Fq of size q, where two vertices are

adjacent when their difference belongs to F⇤2
q , the set of nonzero squares in Fq.

This graph is connected with diameter 2, and self-complementary.

In [5], the authors needed the fact that any function  : F⇤2
q [ {0} ! C⇤

satisfying (i)  (0) = 1 and (ii)  (a) (b) =  (c) (d) whenever a + b = c + d
must be the restriction of some additive character of Fq if q > 5. The present

note provides a short proof of that fact.

Following the notation of [2] §3, define generalized intersection numbers

[ a1 a2 ··· a`
i1 i2 ··· i` ] for a1, . . . , a` 2 Fq and i1, . . . , i` 2 {0, 1, 2} by [ a1 a2 ··· a`

i1 i2 ··· i` ] :=
|�i1(a1)\ · · ·\�i`(a`)|, where �i(a) denotes the set of vertices at distance i from

a. Note that
P

i`
[ a1 ··· a`
i1 ··· i` ] = [ a1 ··· a`�1

i1 ··· i`�1
] and [ ai ] =

q�1
2 for all a and i = 1, 2,

and [ a b
i j ] =

q�1
4 � �hi�hj�ij for distinct a, b and h, i, j = 1, 2 where h is the

distance from a to b. It follows that all [ a b c
h i j ] are known if one knows [ a b c

1 1 1 ].

Proposition 0.1
��[ a b c

1 1 1 ]�
q�9
8

��  1
4

p
q + 3

4 for any three distinct a, b, c.

Proof. Let � be the quadratic character. If a, b, c are distinct, then

X

x

(1 + �(x� a))(1 + �(x� b))(1 + �(x� c)) = 8 [ a b c
1 1 1 ] + 4R

where R = [ a b c
0 1 1 ] + [ a b c

1 0 1 ] + [ a b c
1 1 0 ], so that R 2 {0, 1, 3}. Let S =

P
x �((x �

a)(x� b)(x� c)). Since
P

x 1 = q and
P

x �(x) = 0 and
P

x �(x(x� a)) = �1
for nonzero a, we see that q � 3 + S = 8 [ a b c

1 1 1 ] + 4R.

By Hasse [4], the number of points N on an elliptic curve over Fq satisfies

|N � (q + 1)|  2
p
q. Consider the curve y2 = (x � a)(x � b)(x � c). The
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homogeneous form is Y 2Z = (X � aZ)(X � bZ)(X � cZ) with a single point

(0, 1, 0) at infinity. If (x � a)(x � b)(x � c) is zero for 3 values of x, a nonzero

square for m values of x, and a nonsquare for the remaining q � 3 �m values

of x, then N = 1 + 3 + 2m and S = m � (q � 3 � m) = 2m + 3 � q. Hence

|S| = |N � (q + 1)|  2
p
q. It follows that

��[ a b c
1 1 1 ]�

q�9
8

��  1
4

p
q + 3

4 . 2

Corollary 0.2 If q > 25 then any three distinct vertices in � have a common

neighbor. 2

The table below gives for small q the values of [h i j] := [ a b c
h i j ] that occur. For each q, the

first line is for triangles abc, the second line for paths of length 2. The remaining cases follow
by complementation.

q [1 1 1] [1 1 2] [1 2 2] [2 2 2]
5 - - - -

0 0 2 0
9 0 0 6 0

0 3 2 1
13 0 3 6 1

0–1 3–6 2–5 1–2

q [1 1 1] [1 1 2] [1 2 2] [2 2 2]
17 0 6 6 2

1–2 3–6 5–8 1–2
25 0–2 6–12 6–12 2–4

2–3 6–9 8–11 2–3
29 2 9 12 3

2–4 6–12 8–14 2–4

Returning to the problem in the second paragraph, if  : F⇤2
q [ {0} ! C⇤

satisfies conditions (i) and (ii), then  (�a) =  (a)�1
for each a and the exten-

sion of  to  ̂ : Fq ! C⇤
via  ̂(a+ b) =  (a) (b) for a, b 2 F⇤2

q , is well-defined.

Given a, b 2 Fq, we locate c with c ⇠ 0, a,�b so that c, a� c, b+ c 2 F⇤2
q . Now

 ̂(a+ b) =  (a� c) (b+ c) =  (a� c) (c) (�c) (b+ c) =  ̂(a) ̂(b), showing

for q > 25 that  ̂ is an additive character. The cases 5 < q  25 can be done

by hand.

In the above, we gave bounds for [ a b c
1 1 1 ], in particular for the number of K4’s

on a given triangle abc. In case q = p is prime, a closed formula for the total

number of K4’s on a given edge was given by Evans, Pulham & Sheehan [3]. If

p = m2 + n2
where n is odd, this number is

1
64 ((p� 9)2 � 4m2).

The bounds of Proposition 0.1 are best possible:

Proposition 0.3 If q = (4s+ 1)2 for some integer s � 1, then

(i) For a suitable triangle abc one has [ a b c
1 1 1 ] =

q�9
8 � 1

4

p
q � 3

4 = 2(s2 � 1).
(ii) For a suitable cotriangle abc one has [ a b c

1 1 1 ] =
q�9
8 + 1

4

p
q+ 3

4 = 2s(s+1).

Proof. If abc is a triangle or a cotriangle, then [ a b c
1 1 1 ] + [ a b c

2 2 2 ] =
q�9
4 . Also,

[ a b c
2 2 2 ] = [ ea eb ec

1 1 1 ] for any nonsquare e. So (i) and (ii) are equivalent. Let

us prove (i), that is, prove that N = q � 2
p
q + 1 occurs for a suitable curve

y2 = (x� a)(x� b)(x� c) where abc is a triangle.

By Waterhouse [6] there are elliptic curves with N = q±2
p
q+1 points when

q is a square. A curve y2 = (x� a)(x� b)(x� c) has three points of order 2, so

2-torsion subgroup Z2⇥Z2, so that its number of points is 0 mod 4. Conversely,

by Auer & Top [1], given an elliptic curve E with 0 mod 4 points, there is one

with the same number of points in Legendre form y2 = x(x�1)(x��), except in

case q = r2 for a (possibly negative) integer r ⌘ 1 (mod 4) when |E| = (r+1)2.
Consequently, there is a curve y2 = x(x � 1)(x � �) with N = (r � 1)2 points.

2



Then S = N�(q+1) = �2r and 8 [ 0 1 �
1 1 1 ]+4R = N�4 = (r�1)2�1 = 16s2�4

and [ 0 1 �
1 1 1 ] = 2s2 � R+1

2 . In the extreme cases, E is supersingular (e.g. because

N ⌘ 1 (mod p)) and according to [1] (§3) � is a square in Fp2 , and then also

1� � is a square in Fp2 , so that {0, 1,�} is a triangle and R = 3. 2
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