

Triple intersection numbers for the Paley graphs

Andries E. Brouwer

aeb@cwi.nl

William J. Martin*

martin@wpi.edu

2021-09-05

Abstract

We give a tight bound for the triple intersection numbers of Paley graphs.

In particular, we show that any three vertices have a common neighbor in Paley graphs of order larger than 25.

Mathematics Subject Classification – MSC2020: Primary 05E30; Secondary 12E20.

Let $q = 4t + 1$ be a prime power, and let Γ be Paley(q), the Paley graph on q vertices, with as vertex set the finite field \mathbb{F}_q of size q , where two vertices are adjacent when their difference belongs to \mathbb{F}_q^{*2} , the set of nonzero squares in \mathbb{F}_q . This graph is connected with diameter 2, and self-complementary.

In [5], the authors needed the fact that any function $\psi : \mathbb{F}_q^{*2} \cup \{0\} \rightarrow \mathbb{C}^*$ satisfying (i) $\psi(0) = 1$ and (ii) $\psi(a)\psi(b) = \psi(c)\psi(d)$ whenever $a + b = c + d$ must be the restriction of some additive character of \mathbb{F}_q if $q > 5$. The present note provides a short proof of that fact.

Following the notation of [2] §3, define *generalized intersection numbers* $[\begin{smallmatrix} a_1 & a_2 & \cdots & a_\ell \\ i_1 & i_2 & \cdots & i_\ell \end{smallmatrix}]$ for $a_1, \dots, a_\ell \in \mathbb{F}_q$ and $i_1, \dots, i_\ell \in \{0, 1, 2\}$ by $[\begin{smallmatrix} a_1 & a_2 & \cdots & a_\ell \\ i_1 & i_2 & \cdots & i_\ell \end{smallmatrix}] := |\Gamma_{i_1}(a_1) \cap \cdots \cap \Gamma_{i_\ell}(a_\ell)|$, where $\Gamma_i(a)$ denotes the set of vertices at distance i from a . Note that $\sum_{i_\ell} [\begin{smallmatrix} a_1 & \cdots & a_\ell \\ i_1 & \cdots & i_{\ell-1} \end{smallmatrix}] = [\begin{smallmatrix} a_1 & \cdots & a_{\ell-1} \\ i_1 & \cdots & i_{\ell-1} \end{smallmatrix}]$ and $[\begin{smallmatrix} a \\ i \end{smallmatrix}] = \frac{q-1}{2}$ for all a and $i = 1, 2$, and $[\begin{smallmatrix} a & b \\ i & j \end{smallmatrix}] = \frac{q-1}{4} - \delta_{hi}\delta_{hj}\delta_{ij}$ for distinct a, b and $h, i, j = 1, 2$ where h is the distance from a to b . It follows that all $[\begin{smallmatrix} a & b & c \\ h & i & j \end{smallmatrix}]$ are known if one knows $[\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix}]$.

Proposition 0.1 $|\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix}| - \frac{q-9}{8}| \leq \frac{1}{4}\sqrt{q} + \frac{3}{4}$ for any three distinct a, b, c .

Proof. Let χ be the quadratic character. If a, b, c are distinct, then

$$\sum_x (1 + \chi(x - a))(1 + \chi(x - b))(1 + \chi(x - c)) = 8[\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix}] + 4R$$

where $R = [\begin{smallmatrix} a & b & c \\ 0 & 1 & 1 \end{smallmatrix}] + [\begin{smallmatrix} a & b & c \\ 1 & 0 & 1 \end{smallmatrix}] + [\begin{smallmatrix} a & b & c \\ 1 & 1 & 0 \end{smallmatrix}]$, so that $R \in \{0, 1, 3\}$. Let $S = \sum_x \chi((x - a)(x - b)(x - c))$. Since $\sum_x 1 = q$ and $\sum_x \chi(x) = 0$ and $\sum_x \chi(x(x - a)) = -1$ for nonzero a , we see that $q - 3 + S = 8[\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix}] + 4R$.

By Hasse [4], the number of points N on an elliptic curve over \mathbb{F}_q satisfies $|N - (q + 1)| \leq 2\sqrt{q}$. Consider the curve $y^2 = (x - a)(x - b)(x - c)$. The

*Worcester Polytechnic Institute, Dept. of Mathematical Sciences, Worcester, MA USA

homogeneous form is $Y^2Z = (X - aZ)(X - bZ)(X - cZ)$ with a single point $(0, 1, 0)$ at infinity. If $(x - a)(x - b)(x - c)$ is zero for 3 values of x , a nonzero square for m values of x , and a nonsquare for the remaining $q - 3 - m$ values of x , then $N = 1 + 3 + 2m$ and $S = m - (q - 3 - m) = 2m + 3 - q$. Hence $|S| = |N - (q + 1)| \leq 2\sqrt{q}$. It follows that $\left| \left[\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix} \right] - \frac{q-9}{8} \right| \leq \frac{1}{4}\sqrt{q} + \frac{3}{4}$. \square

Corollary 0.2 *If $q > 25$ then any three distinct vertices in Γ have a common neighbor.* \square

The table below gives for small q the values of $[h \ i \ j] := \left[\begin{smallmatrix} a & b & c \\ h & i & j \end{smallmatrix} \right]$ that occur. For each q , the first line is for triangles abc , the second line for paths of length 2. The remaining cases follow by complementation.

q	[1 1 1]	[1 1 2]	[1 2 2]	[2 2 2]	q	[1 1 1]	[1 1 2]	[1 2 2]	[2 2 2]
5	-	-	-	-	17	0	6	6	2
	0	0	2	0		1-2	3-6	5-8	1-2
9	0	0	6	0	25	0-2	6-12	6-12	2-4
	0	3	2	1		2-3	6-9	8-11	2-3
13	0	3	6	1	29	2	9	12	3
	0-1	3-6	2-5	1-2		2-4	6-12	8-14	2-4

Returning to the problem in the second paragraph, if $\psi: \mathbb{F}_q^{*2} \cup \{0\} \rightarrow \mathbb{C}^*$ satisfies conditions (i) and (ii), then $\psi(-a) = \psi(a)^{-1}$ for each a and the extension of ψ to $\hat{\psi}: \mathbb{F}_q \rightarrow \mathbb{C}^*$ via $\hat{\psi}(a+b) = \psi(a)\psi(b)$ for $a, b \in \mathbb{F}_q^{*2}$, is well-defined. Given $a, b \in \mathbb{F}_q$, we locate c with $c \sim 0, a, -b$ so that $c, a - c, b + c \in \mathbb{F}_q^{*2}$. Now $\hat{\psi}(a+b) = \psi(a-c)\psi(b+c) = \psi(a-c)\psi(c)\psi(-c)\psi(b+c) = \hat{\psi}(a)\hat{\psi}(b)$, showing for $q > 25$ that $\hat{\psi}$ is an additive character. The cases $5 < q \leq 25$ can be done by hand.

In the above, we gave bounds for $\left[\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix} \right]$, in particular for the number of K_4 's on a given triangle abc . In case $q = p$ is prime, a closed formula for the total number of K_4 's on a given edge was given by Evans, Pulham & Sheehan [3]. If $p = m^2 + n^2$ where n is odd, this number is $\frac{1}{64}((p-9)^2 - 4m^2)$.

The bounds of Proposition 0.1 are best possible:

Proposition 0.3 *If $q = (4s+1)^2$ for some integer $s \geq 1$, then*

- (i) *For a suitable triangle abc one has $\left[\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix} \right] = \frac{q-9}{8} - \frac{1}{4}\sqrt{q} - \frac{3}{4} = 2(s^2 - 1)$.*
- (ii) *For a suitable cotriangle abc one has $\left[\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix} \right] = \frac{q-9}{8} + \frac{1}{4}\sqrt{q} + \frac{3}{4} = 2s(s+1)$.*

Proof. If abc is a triangle or a cotriangle, then $\left[\begin{smallmatrix} a & b & c \\ 1 & 1 & 1 \end{smallmatrix} \right] + \left[\begin{smallmatrix} a & b & c \\ 2 & 2 & 2 \end{smallmatrix} \right] = \frac{q-9}{4}$. Also, $\left[\begin{smallmatrix} a & b & c \\ 2 & 2 & 2 \end{smallmatrix} \right] = \left[\begin{smallmatrix} ea & eb & ec \\ 1 & 1 & 1 \end{smallmatrix} \right]$ for any nonsquare e . So (i) and (ii) are equivalent. Let us prove (i), that is, prove that $N = q - 2\sqrt{q} + 1$ occurs for a suitable curve $y^2 = (x - a)(x - b)(x - c)$ where abc is a triangle.

By Waterhouse [6] there are elliptic curves with $N = q \pm 2\sqrt{q} + 1$ points when q is a square. A curve $y^2 = (x - a)(x - b)(x - c)$ has three points of order 2, so 2-torsion subgroup $\mathbb{Z}_2 \times \mathbb{Z}_2$, so that its number of points is 0 mod 4. Conversely, by Auer & Top [1], given an elliptic curve E with 0 mod 4 points, there is one with the same number of points in Legendre form $y^2 = x(x-1)(x-\lambda)$, except in case $q = r^2$ for a (possibly negative) integer $r \equiv 1 \pmod{4}$ when $|E| = (r+1)^2$. Consequently, there is a curve $y^2 = x(x-1)(x-\lambda)$ with $N = (r-1)^2$ points.

Then $S = N - (q+1) = -2r$ and $8[\begin{smallmatrix} 0 & 1 \\ 1 & 1 \\ 1 & \lambda \end{smallmatrix}] + 4R = N - 4 = (r-1)^2 - 1 = 16s^2 - 4$ and $[\begin{smallmatrix} 0 & 1 & \lambda \\ 1 & 1 & 1 \end{smallmatrix}] = 2s^2 - \frac{R+1}{2}$. In the extreme cases, E is supersingular (e.g. because $N \equiv 1 \pmod{p}$) and according to [1] (§3) λ is a square in \mathbb{F}_{p^2} , and then also $1 - \lambda$ is a square in \mathbb{F}_{p^2} , so that $\{0, 1, \lambda\}$ is a triangle and $R = 3$. \square

Acknowledgments

The second author thanks Bill Kantor for helpful remarks. The work of the second author was supported, in part, through a grant from the National Science Foundation (DMS Award #1808376) which is gratefully acknowledged.

Declarations of interest: none

References

- [1] R. Auer & J. Top, *Legendre curves over finite fields*, J. Number Th. **95** (2002) 303–312.
- [2] K. Coolsaet & A. Jurišić, *Using equality in the Krein conditions to prove nonexistence of certain distance-regular graphs*, J. Combin. Th. (A) **115** (2008) 1086–1095.
- [3] R. J. Evans, J.R. Pulham & J. Sheehan, *On the number of complete subgraphs contained in certain graphs*, J. Combin. Th. (B) **30** (1981) 364–371.
- [4] H. Hasse, *Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F. K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fällen*, Nachr. Ges. Wiss. Göttingen, Math.-Phys. K. (1933) 253–262.
- [5] W. J. Martin and E. Washcock, *On ideals of the eigenpolytopes of Paley graphs and related equiangular lines*, In preparation, 2022.
- [6] W. C. Waterhouse, *Abelian varieties over finite fields*, Ann. Sci. École Norm. Sup. (4) **2** (1969) 521–560.