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Abstract. Price-based revenue management is an important problem in operations manage-
ment with many practical applications. The problem considers a seller who sells one or multiple
products over T consecutive periods and is subject to constraints on the initial inventory levels
of resources. Whereas, in theory, the optimal pricing policy could be obtained via dynamic
programming, computing the exact dynamic programming solution is often intractable.
Approximate policies, such as the resolving heuristics, are often applied as computationally
tractable alternatives. In this paper, we show the following two results for price-based network
revenue management under a continuous price set. First, we prove that a natural resolving heu-
ristic attains O(1) regret compared with the value of the optimal policy. This improves the
O(InT) regret upper bound established in the prior work by Jasin in 2014. Second, we prove
that there is an Q(In T') gap between the value of the optimal policy and that of the fluid model.
This complements our upper bound result by showing that the fluid is not an adequate
information-relaxed benchmark when analyzing price-based revenue management algorithms.

Funding: This work was supported in part by the National Science Foundation [Grant CMMI-2145661].

Keywords: resolving « self-adjusting controls « price-based revenue management « dynamic pricing

1. Introduction

We study a classic price-based network revenue manage-
ment problem (Gallego and Van Ryzin 1994, 1997), in
which a seller sells one or multiple products over a finite
horizon given an initial resource inventory. Suppose
there are n products, m resources, and T consecutive sell-
ing periods. Throughout the paper, we index the periods
backward: t =T, T —1,...,1. We denote the initial inven-
tory level of the resources by y,€R}. Let A=
[4]1 <i<m,1<j<n be a constant matrix indicating that a prod-
uct in column j requires a;; units of resource in row 1.

At the beginning of period t, let y, be the current in-
ventory level of resources. The seller posts a price vec-
tor p,€ PCR]}. Let f: P — R’} be the mean demand
function. Let (Q, F, {F:}/_,,P) be a filtered probability
space. We assume that the realized demand d; is giv-

en by d; = f(p,) + &, where the demand noise {§t}tT=1 is
a martingale difference sequence adapted to the filtra-
tion {F t}tT:1~ Let s; be the demand satisfied in period ¢
that maximizes revenue subject to inventory con-
straints, namely,

st =arg max {p/s|0<s<d;,As<y,}. (1)
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The realized revenue r; in period t and remaining in-
ventory level y,_, in the next period are given by

ry = <Ptr St), Y=Y ™ As;. (2
When a resource is exhausted, the seller may not sell
any product using this resource afterward.

The seller’s objective is to design an admissible pric-
ing policy 7 to maximize the expected revenue over
the T periods. A pricing policy m can be represented
by 7 = (nr, ..., m1), where 7, is a mapping from the in-
ventory level vector y, to a price vector p, € P. A pric-
ing policy m is admissible or nonanticipating if the
posted price p, only depends on the history up to the
end of the previous period ¢ + 1, namely, p, is measur-
able with respect to F;.1. Given the initial (normal-
ized) inventory level xr := y; /T, the expected revenue
of an admissible policy 7 is denoted by

T
2T
=1

1.1. Existing Results on the Fluid Model and the
Resolving Heuristic

In principle, an optimal policy 7' maximizing

R™(T,xr) defined in Equation (3) can be obtained via

R™(T,x7):=E p;=mly,), Vt=T,..., 1. (3)



mailto:yining.wang@warrington.ufl.edu
https://orcid.org/0000-0001-9410-0392
mailto:he.wang@isye.gatech.edu
https://orcid.org/0000-0001-7444-2053
https://orcid.org/0000-0001-9410-0392
https://orcid.org/0000-0001-7444-2053
https://pubsonline.informs.org/journal/opre

Downloaded from informs.org by [128.177.22.132] on 02 January 2023, at 08:15 . For personal use only, all rights reserved.

Wang and Wang: Constant-Regret Resolving for Price Based Revenue Management

Operations Research, 2022, vol. 70, no. 6, pp. 3538-3557, © 2022 INFORMS

3539

dynamic programming (DP). However, it is well
known that the exact DP algorithm is often computa-
tionally intractable and suffers from the curse of di-
mensionality as the state space grows exponentially in
size with the number of resources.

The seminal work of Gallego and Van Ryzin (1994)
proposes a fluid approximation model of the optimal
dynamic pricing problem. To define the fluid model,
suppose there exists an inverse function £ of the de-
mand rate function of f. Let r(A):= ATf }(A) be the
mean revenue in one period given the price vector
£1(A). We assume r(A) is strictly concave and smooth
on its domain D C R’ (see Sections 3 and 6 for the pre-
cise statements of these assumptions). The fluid model
for the dynamic pricing problem is

g
s.t. 0 <AALXT. (4)

Let f and A" denote the optimal value and the opti-
mal solution of the fluid model, respectively. The opti-
mization problem (4) chooses a demand rate AF (or
equivalently, setting the price to £ '(AY)) such that the
revenue function is maximized subject to the initial in-
ventory constraint. The fluid approximation model
ignores the randomness caused by demand noises
and replaces the stochastic inventory constraint with a
deterministic constraint.

The following results are established by Gallego
and Van Ryzin (1994, 1997).

Theorem 1 (Gallego and Van Ryzin 1994, 1997). For
any admissible policy m and the initial inventory level
yr =xrT, the expected revenue is upper bounded by
R™(T,xr) < Tr¥. Furthermore, for a static pricing policy 1°
such that p, = AR (VE=T,...,1), the expected revenue
is lower bounded by R™ (T, xr) = Tr* — O(NT).

However, a main drawback of the static pricing pol-
icy is that it is not adaptive to random demand reali-
zation. Researchers propose various approaches to
modify the static pricing policy, aiming to improve
the O(VT) gap in Theorem 1 (see Section 2 for a sur-
vey). One intuitive approach is to resolve the fluid

model in every period using the current inventory lev-
el. At period t, we solve the updated problem
g
s.t. 0<AALX;,

where x; :=y,/t is the normalized inventory level real-
ized at the beginning of period t, namely, the amount
of remaining inventory divided by the remaining peri-
ods. Let the solution to the problem be A;. We then set
the price in period t as p, = f'(A;). We refer to this
policy as the resolving heuristic policy. Using the resolv-
ing heuristic, Jasin (2014) reduces the revenue gap
from O(VT) to O(InT) as shown by the following
result.

Theorem 2 (Jasin 2014). Let " = (n}, ..., 7}) be the re-
solving policy defined as p, = £~ (A). Assume that the opti-
mal dual variables of the fluid model (4) are strictly posi-
tive. The expected revenue is bounded by R™(T,xt) >
Tr¥ — O(InT), where xr =y, /T.

Note that the assumption by Jasin (2014) on dual
variables implies that all resources have constrained
initial inventory. However, we do not make such an
assumption in this paper.

1.2. Our Results: Constant Regret and
Logarithmic Gaps

In this paper, we establish two main results: constant
regret for the resolving heuristic and a logarithmic re-
gret lower bound on the gap between the value of the
optimal pricing policy and the fluid model. Figure 1
summarizes the results established in this paper
and compares them with existing results in the prior
literature. We establish an upper bound result in
Theorem 3, a lower bound result in Theorem 4, and
finally an upper bound result in Theorem 4, with de-
tails to follow.

Our first main result, as stated in Theorems 3 and 5,
asserts that, for any initial inventory level (except for
certain boundary cases), the cumulative regret of the
resolving heuristic 7" compared against the expected
reward of the optimal dynamic pricing policy =" is

Figure 1. (Color online) An Illustration of Existing Results (above) Compared with Our Results (Below)
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upper bounded by a constant that is independent of
T. Apart from the obvious improvement from O(InT)
to O(1) in regret bound, our proof technique differs
from the existing work as the latter typically compares
the expected reward of the resolving policy to a cer-
tain information-relaxed benchmark, such as the fluid
model or the hindsight optimum (HO) benchmark
(see Section 2). Instead, we compare the value of " di-
rectly with the value of the optimal DP policy 7" by
carefully analyzing the stochastic inventory levels un-
der the two policies.

Our second main result, stated in Theorem 4, shows
that there is an Q(InT) lower bound on the gap between
the expected revenue of the resolving heuristics 7"
and the optimal objective of the fluid model Trf. Cou-
pled with the O(1) regret upper bound established in
Theorem 3, this shows that there is an Q(InT) lower
bound on the gap between the value of the optimal
policy 7* and the fluid model as well. This demon-
strates a fundamental limitation of using the fluid
model as a benchmark to analyze the regret for the
price-based revenue management problem.

2. Related Work
The idea of using simple, easy-to-compute pricing poli-
cies to approximate optimal dynamic pricing policies
originates from the seminal work of Gallego and Van
Ryzin (1994, 1997), who propose a static price policy us-
ing fluid models and establish O(VT) regret. Later,
Maglaras and Meissner (2006) show that the resolving
heuristic has o(T) regret in the single resource case. Atar
and Reiman (2012) propose a pricing policy mimicking
the behavior of a Brownian bridge (their policy is close-
ly related to the resolving heuristic) and show it has
0(\/T ) regret in the network revenue management set-
ting. The most relevant prior research to our paper is
the work by Jasin (2014), who studies a price-based net-
work revenue management problem and shows that
resolving heuristics attain O(In T) asymptotic regret up-
per bound under mild conditions. Jasin (2014) also
shows that infrequent resolving has similar theoretical
performance guarantees and is much more computa-
tionally efficient. In this paper, we improve the regret of
the resolving heuristic to an O(1) constant bound inde-
pendent of T. Our analysis is different from the one in
Jasin (2014) in the sense that we directly compare the
expected revenue of resolving with the value of the op-
timal DP policy instead of the fluid model. Additional-
ly, we complement the result in Jasin (2014) by estab-
lishing an Q(InT) lower bound between the expected
revenue of the optimal DP policy and the fluid model.
Although we focus on price-based revenue manage-
ment in this paper, we note that resolving heuristics
have also been studied in quantity-based revenue man-
agement (Williamson 1992, Cooper 2002, Reiman and

Wang 2008, Secomandi 2008, Jasin and Kumar 2013,
Bumpensanti and Wang 2020). The decisions involved
in a quantity-based revenue management problem are
the opening and closing of available products, so the
feasible decisions form a discrete set. Vera et al. (2021)
propose a constant regret algorithm that works for
both quantity- and price-based revenue management
problems. However, the dynamic pricing model con-
sidered in Vera et al. (2021) assumes a single product
and a discrete price set, whereas our paper considers
multiple products and continuous price sets.

There are two major differences in the analysis of re-
solving heuristics as one moves from a discrete decision
set to a continuous decision set. First of all, when the de-
cision set is discrete (which is the case for quantity-based
revenue management or price-based revenue manage-
ment with a discrete price set), resolving the fluid model
leads to fractional solutions that require rounding; it is
shown that the design of the rounding procedures (e.g.,
by randomization, thresholding, etc.) plays a critical role
in the performance of resolving heuristics (Arlotto and
Gurvich 2019, Bumpensanti and Wang 2020, Vera and
Banerjee 2021). In contrast, when the decision set is con-
tinuous, resolving algorithms must precisely track the
updated inventory level in the fluid model without
rounding the fluid model solution. As such, analysis for
the continuous price-based revenue management prob-
lem is much different from the previous results for either
quantity- or discrete price-based revenue management.
Second, existing proofs of constant regret in quantity-
based revenue management often use an information-
relaxation bound called the hindsight-optimum benchmark.
However, the hindsight-optimum benchmark does not
admit a constant regret in the continuous price-based rev-
enue management problem (see Appendix B), and our
analysis does not rely on such a benchmark.

In this paper, we restrict our attention to a basic set-
ting with stationary demand. Several other papers
study revenue management problems with nonsta-
tionary, time-correlated, or arbitrary demand sequen-
ces (e.g., Chen and Farias 2013, Ma and Simchi-Levi
2020, Ma et al. 2020). Revenue management problems
with nonstationary demand are harder, and therefore,
these papers consider different performance metrics,
such as approximation or competitive ratios rather
than regret. Chen and Farias (2013) study a dynamic
pricing problem under a general nonstationary de-
mand setting. They show that resolving heuristics can
achieve constant competitive ratios, whereas static
pricing policies have asymptotically diminishing com-
petitive ratios. Because of different model assump-
tions, the results in Chen and Farias (2013) are not di-
rectly comparable to ours.

Another stream of related literature studies dynam-
ic pricing with demand learning, in which the underly-
ing demand function is unknown and needs to be
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learned on the fly from sales data. Many papers con-
sider demand learning settings using the price-based
finite-inventory revenue management model from
Gallego and Van Ryzin (1994) as the ground truth
model (e.g., Aviv and Pazgal 2005; Besbes and Zeevi
2009, 2012; Lei et al. 2014; Wang et al. 2014; den Boer
and Zwart 2015; Ferreira et al. 2018). Resolving heuris-
tics are also applied to demand learning algorithms
(Jasin 2015, Ferreira et al. 2018). In contrast, our paper
assumes that the seller has full information about the
demand curve and demand distributions, so we are
able to show O(1) regret, which is tighter than typical
regret bounds in the learning literature. Also, the low-
er bound result in this paper (Theorem 4) is proved
using different techniques from lower bound proofs
in the learning setting (e.g., Broder and Rusmevichien-
tong 2012, Wang et al. 2021) as the latter relies on
information-theoretical lower bounds.

3. Main Results

In this section, we focus on the single product setting.
The extension to a network revenue management mod-
el with multiple products and multiple resources is de-
ferred to Section 6. Although some of the results in this
section are special cases of those in the network revenue
management setting, presenting the single product set-
ting helps illustrate the key insight of our analysis with-
out the technical complication of multiple resources.

In the single product setting, given the initial nor-
malized inventory level xr, the fluid model (4)
becomes max yep{r(1) |0 <A < x7}. The resolving heu-
ristic sets the price as p;=f"'(A;) in each period
(Vt=T,...,1), where A; is the solution to max ep
{r(A)|0 < A <x:}. Let the realized demand be d; = A+
&t, where &; is the demand noise. We make the following
assumptions on the single product demand model:

Al. (Monotonicity). The demand rate function f:
[p,7] — R, is strictly decreasing with f(p) = d, f(p) = d.
(We allow either p < +o0 or p = +c0.) This implies the
existence of f's inverse function f~ on [d,d].

A2. (Strict Concavity). The expected revenue r(A) =
Af1(A) as a function of the demand rate A is strictly con-
cave. There exists a positive constant m > 0 such that
"(A) < —m for all A € [d,d]. The maximizer of 7(A) is in
the interior of the domain, that is, arg max (1) € (d, d).

A3. (Smoothness). The third derivative of r(1) exists
and satisfies |r””’(1)|< M for all A € [d,d]. Furthermore,
there exists a constant C > 0 such that |r(A) —r(1")| <
C|A=A|forall A,A" €[d,d].

A4. (Martingale Difference Sequence). Conditional
on the price p; (Vt =T,...,1), the demand noise &, satis-
ties E[&; | Fisa] =E[& |p] =0as., where Fiq con-
tains the history up to the previous period ¢t + 1. The
conditional distribution of &; given p; is denoted by
& ~ Q(py). In addition, |&;| < Bga.s. for some constants
Bg < oo.

A5. (Bounded Wasserstein Distance). There exists a
constant L > 0 such that, for any p,p’ € [E,;_a], it holds

that Wa(Q(p), Q(p")) < LI f(p) = f(p')], where Wa(Q, Q') :

=infzEe g 5[lE - &'IP] is the L,-Wasserstein distance

between Q, Q’, with E being an arbitrary joint distribu-
tion with marginal distributions being Q and Q’,
respectively.

Assumptions Al-A3 are standard assumptions in
price-based revenue management (Gallego and Van Ry-
zin 1994). In particular, the strict concavity of (1) stems
from the economic principle of diminishing marginal re-
turns. Assumption A4 allows demand noise to have a
rather general dependence on price. Assumption A5
states that, if two prices are close to each other, then the
demand noises given these prices should also have simi-
lar distributions. This assumption is naturally satisfied
when demand is modeled by a parametric family of dis-
tributions (e.g., Bernoulli, binomial, truncated normal)
whose parameters depend continuously on price.

3.1. Constant Regret of the Resolving Heuristic
Let 7 :=max)>r(A) and A" :=argmax,or(A) be the
unconstrained optimal revenue rate and its maximiz-
er, respectively. Because r(A) is strictly concave, it is
easily verified that the unique optimal solution to the
fluid model maxyep{r(1)|0<A<x7} is equal to
AF = min {x7,A"}, and hence, the fluid optimal price is
fH(min {xr, A"}).

When the normalized initial inventory level xr ex-
ceeds the (unconstrained) optimal demand rate AP", it
is easy to prove that both the static policy n°:p; =
f~1(A") and the resolving heuristic 77" have constant re-
gret (see proof in Appendix A).

Proposition 1. Suppose xr > A". Let 7 : p; = f~1(A") be
the static pricing policy. Then, R™(T,xr)> Tr"
—O(1) > R™(T,xr) — OQ1). In addition, the resolving heu-
ristic satisfies R™ (T, xr) > Tr* — O(1) > R™ (T, xr) — O(1).

However, analysis for the limited inventory case
(xr < A") is much more complicated. The static price
policy 7° =f~!(xr) typically suffers Q(VT) regret in
this case. Jasin (2014) shows that the regret of the re-
solving heuristic 7" when measured against the fluid
benchmark Tr(xr) is at most O(InT). Our next theo-
rem improves the regret of " to a constant.

Theorem 3. Suppose xr € (d,\"). Let 7" be the resolving
heuristic and 1" be the optimal policy. For T > 1, it holds
that R™ (T, xr) = R™ (T, x7) — O(1).

Theorem 3 is the main result of this section, and its
proof is given in Section 4. Unlike the previous results
by Gallego and Van Ryzin (1994) and Jasin (2014),
Theorem 3 compares the expected revenue of 7" di-
rectly with the optimal DP pricing policy 7 rather
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than comparing it with the fluid approximation value
Tr(xr). This change of benchmark allows us to derive
a tighter regret bound. As we establish in the next sec-
tion, it is impossible to obtain O(1) regret using the
fluid model as the benchmark.

In light of Proposition 1 and Theorem 3, we know
that the resolving heuristic 1" has constant regret in ei-
ther the sufficient inventory case (xr > A") or the limit-
ed inventory case (xr < A"). So the only remaining sce-
nario is the boundary case (xr = A"). We investigate
this scenario using numerical experiments in Section
5. Surprisingly, the numerical experiment indicates
that 71" does not have constant regret in the boundary
case. This observation is analogous to the situation for
the quantity-based revenue management problem, in
which the resolving heuristic has constant regret
when the fluid model (a linear program in that set-
ting) has nondegenerate solutions but does not have
constant regret in certain boundary cases when the
fluid model has degenerate solutions (Jasin and
Kumar 2012, Bumpensanti and Wang 2020).

3.2. Logarithmic Gap of the Fluid

Model Benchmark
In this section, we show that, in the limited inventory
case (xy <A"), the regret of the resolving policy ="
measured against the fluid approximation value
Tr(x7) must be at least Q(InT).

Theorem 4. Suppose xt € (d, ") and let 7" be the resolv-
ing policy defined in Theorem 2. Suppose there exists o > 0
such that E¢_g) [£2] > 0? for any p € [p,p]. For T >2, it
holds that R™ (T, xt) < Tr(x) — Q(InT).

Theorem 4 is proved in Section 4. It implies that the
logarithmic regret by Jasin (2014) (see the statement of
Theorem 2), which uses the fluid model benchmark, is
tight and cannot be improved. Because R™ (T, xr)—
R™(T,xr) = O(1) by Theorem 3, Theorem 4 also shows
that there is a logarithmic gap Q(InT) between the

Table 1. Notations Used in the Proof

value of the optimal DP policy and the fluid model.
This is why our constant regret analysis does not use
the fluid model as the benchmark.

Prior work on the quantity-based revenue manage-
ment problem (Reiman and Wang 2008, Bumpensanti
and Wang 2020, Vera et al. 2021) also considers differ-
ent regret benchmarks that are tighter than the fluid
model, including various versions of the hindsight op-
timum benchmark. The hindsight optimum model as-
sumes a clairvoyant who knows the aggregate realized
demands for the entire horizon at the start. In Appen-
dix B of this paper, we show that one version of the
hindsight optimum benchmark proposed by Vera et al.
(2021) has O(1) regret when measured against the flu-
id approximation benchmark. By Theorem 4, this
hindsight optimum benchmark is also Q(InT) away
from the value of the optimal DP policy.

4. Proofs
Before presenting our proof, we first define some no-
tations. Let ¢;(x) = R™(t,x) and ¢ (x) = R™ (t,x) be the
expected cumulative revenue of the optimal DP pric-
ing policy 7* and the resolving policy 7', respectively,
starting from period t given xt units of remaining in-
ventory. Let x; and x] be the normalized inventory
levels under policy i* and 7" at the beginning of peri-
od t. These notations are summarized in Table 1 with
some additional notations defined later in the proof.
The rest of this section is organized as follows. In the
first section, we establish some properties of the optimal
policy 7* and the resolving policy 7t". More specifically,
we establish upper and lower bounds of the expected re-
wards ¢;(-), ¢}(-) using the key quantities of {A_;} (har-
monic series of optimal demand corrections), {&,,, & ,}
(harmonic series of stochastic noise variables), and T* (a
stopping time until which the demand noise process is
well behaved). We then proceed with the proofs of The-
orems 3 and 4 by carefully analyzing the differences in
the Taylor series expansions of ¢;(-), ¢} (-).

Notation Definition Meaning

A" A" = argmax ejg.4]7(A) The optimal demand rate without inventory constraints
¢, (x) ¢r(x) = R™ (t,x) Reward of DP n* given t periods and xt inventory

¢y (x) ¢j(x) =R™ (t,x) Reward of resolving n" given t periods and xt inventory
Fi o-algebra of {&;}.5; All the events known up to the end of period ¢

X, X} Remaining inventory divide by ¢ Normalized inventory levels under policy 7* and 7"

Ay See Equation (5) The optimal DP demand correction in period ¢

Ay % + ATszl + e +% Harmonic series of demand corrections up to ¢

&, & E~QUfF YY), &~ Q(F 1 (Ay) The stochastic demand noises at time t under 7*, 7"
g;_),,g:ﬂ LSl E Weighted demand noises up to t under ©* and 7"

& & r_,, - 5:, Difference in harmonic demand noise series

N A joint distribution over (&}, &}) The joint distribution that minimizes /Eg,[|&; — &} |2]

N A +& -yt Lost sales at time ¢

T* See Equation (8) A stopping time such that {x!} .1 is well-behaved
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4.1. Properties of the Optimal Policy and the
Resolving Heuristic

For any 7 > 1, let the random variable x; be the nor-
malized inventory level (i.e., remaining inventory di-
vided by remaining periods) at period 7 under policy
7*. Let y; = x.7 and y,—1 = x,_;(t — 1) be the actual in-
ventory levels at periods 7 and 7 -1, respectively. If
the policy selects the demand rate A € [d,d], let the re-
alized noise be &, and lost sales be £; = (A + &, —y,)";
then, we have y,—1 =y, — (A +&;) + €, which implies
X =yt /(T=1) =%~ (A4 & = € —x2)/(x - ).
Therefore, the value of the optimal policy 7" is given
by the following Bellman equation:

Aeld,d
. ., A+é& -l —x
(P’[l(x'[_% }’

where the first term is the expected revenue, the second
term represents the revenue-to-go function from period
7 —1 onward, and the last term subtracts revenue result-
ing from lost sales. Let A7 denote the maximizer of the
right-hand side and define A; := A} —x}. Let &} be the re-
alized demand noise, which by Assumption A4 is drawn
from the distribution Q(f '(A})), and let £; be realized
lost sales. The normalized inventory level at the start of
the next period is x}_; =x. — (A + &, = (;)/(t = 1). The
Bellman equation can be rewritten as

51 = 15, + )
G- e
V2<T<T, x>0, )

¢r(xy) = maXJ{r()\)”Ea ~Q(f (V)

X

) _f_l (A)f’f

+E

This equation implies d < x; + A, < d. However, x;
can be outside the domain [d,d].
Forany t < T, let

— AT AT_1 At+1
A= + +... 4+ ,
YT T-1 T2 t
E = Téfl +%+ et g‘f“, and
. [* * f*
A M i U 2 |
ST T-1 T-2 t

be the harmonic series of corresponding variables up
to time ¢ under the optimal policy. We also define

A_r=& ;=0 =0Tt then holds that

X=xr—A -, +C, Vi<t<T. (6)

Next, we consider the resolving heuristic ©". For
any 7 > 1, let the random variable x/ be the normal-
ized inventory level under the resolving heuristic. If
xr €[d,A"], the resolving heuristic selects the price
f7H(x7). Let &, be the realized demand noise under this

price, which is drawn from the distribution Q(f~(x)),
and the realized lost sales be € = (x + &, —y,)". The
normalized inventory level in the next period is equal to
X =t —x =&+ €/ (t=1) =xL — (&L - €)/(t - 1). Thus,
the value of the resolving policy 7" can be written as

Pr(ay) =r(x}) +E

r r a[_fff —1 /.
¢t1(x7 _1—1) -f 1(%)52]
V2<t<T, d<x.<A". (7)

Note that Equation (7) does not hold for x] > A",
in which case the resolving policy ©" chooses the un-
constrained optimal demand rate A" instead of x7.
Comparing Equation (7) with Equation (5), we remark
that the resolving heuristics 7" can be viewed as a spe-
cial case of the dynamic programming policy with the
decision rule restricted to A, =0 when the condition
xi < A" is satisfied.

This observation motivates the definition of a stop-
ping time T, which ensures that Equation (7) holds
for all T > T*. Specifically, we define a time index T* as

T —max{’(>1 |£

—T— 1|

i —d A% —
- min (’” G T S 7 (xr)

i 2B

®)

cr
where 5 ET +. +QTT” is the harmonic series of

demand norses under the resolving policy. (If
T <[2|r"(xr)| B¢ /7 (x1)], let T* := T.) Note that _,_; is
a function of {&/}]_, and is measurable with respect to
F., so T* is indeed a stopping time. Intuitively, T* is
the first time that the inventory level in the next period
x!_; falls outside of the interval [d,A"]. In other words,
the inventory level of the resolving heuristic x, satisfies
Equation (7) up to time T*. The additional term involv-
ing '(xt)/ |2r" (x7)| in Equation (8) is needed for a tech-
nical reason in the proof. Because |&_,|<min{xr—
d, A" — x7} holds for all T > T*, we have

X =xr-& ,Vr>T,andx,,  =(xr—& )" )
Note that the definition of T* in Equation (8) implies

that ¥/ =xr—Z >0 for all 7> T/, so the lost sales
¢ =0forall 7> T* + 1; however, lost sales may occur
at period T*.

The following lemma shows that E[T?] is bounded
by a constant that is independent of the horizon
length T. This critical fact is used later to prove cons-
tant regret as we reduce the expected regret to a func-

tion of E[T*].
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Lemma 1. For xr € (d,A") and any T > 1, it holds that
L 21" (xr)| Be

E[T*] <

= 7' (xr)
4B}

+ .

min {xr —d, A" = xr, - ' (xr) /2r" (x7)}*

We also use the following lemma in the proof to

bound the expected total revenues of the optimal poli-
cy and resolving heuristic as the sum of single period
revenues. The proofs of Lemmas 1 and 2 can be found
in Appendix A.

(10)

Lemma 2. Let xr € (d, A"). Let T* be the stopping time de-
fined in Equation (8). Then, it holds that

¢r(xr)<E ZT] r(xr + A7) + (T* - Dr(min{xy_,,A"})|,
T=T%
T
E| > r(x)| -7 <Ph(xr)
=Tt
<E ZT] r(x0) +(T* = Dr(min{x},_,,A"})|.
7=T*

4.2. Proof of Theorem 3
In this section, we prove Theorem 3. The proof is di-
vided into three main steps. In the first step (from
Equations (11)—(15)), we use Taylor expansion and the
strict concavity and smoothness properties of the rev-
enue function r to bound the expected revenue differ-
ence between the optimal DP policy and the resolving
policy. In the second step (from Equations (16)—(23)), the
regret expression is split into five terms denoted by
A,B,C,D,&, and each term is simplified separately. In
the third step (from Equations (24)—(26)), the five terms
are combined again, and the regret is eventually re-
duced to a function of E[T?], which is O(1) by Lemma 1.
In the first step of our proof to Theorem 3, we use
Taylor expansion and a “completing-the-square” trick
to upper bound the difference between ¢7(xr) and
¢r(xr), namely, the difference between the expected
revenues of the optimal DP solution and the resolving
heuristic. By Lemma 2, for any x7 € (d, A"), it holds that

or(xr) <E ZT: r(x, + A7) + (T* — 1)r(min X, A"D]
T=T%
11
T
qb’T(xT) >E Z r(x;)l _ (12)
T=T!

Recall that T* is the stopping time defined in Equation
(8). For any 7 > T%, we have x. —xT—A_>T &+

by Equation (6), and x_ = xr — E by Ecl’uatlon (9) For
notational simplicity, define 5_,T =&, ¢, To
bound the difference between r(x; + A;) — r(x}), we have

r(x; + Ag) —r(x7)
= r(xT - Z—V[ - ELT + Z;T + AT)_r(xT - ELT)
< V/ (d)E*—n + r(xT - K—W - E;T + AT)_r(xT - Er—w)
<P +7 (7= EL (A B+ EL ]
IS
A=A+ 2 5
SP@0 +7 (xr)[Ae = A +E1, ]
! =’ A =0
-r (xT)é_)T[AT - A—)T + 6_)7:]
M - - -, m — -5
o [ PIA = A + & | =S A= B+ EL P,
(13)
where the first inequality holds because .20
and r'(d) > r'(x) for any x € [d,d] by concavity, the sec-
ond inequality uses the strict concavity Assumption
A2, and the third inequality uses the smoothness
Assumption A3.
Define &0:=¢&" — &' Taking expectations on both

sides of Equation (13) and summing over 7=T,
T-1,...,T!, we have

E ZT] (r(a; +A) = r(xi))l

=Tt

T .
<E Z (r/(xT)[AT - Z—V[ + Eif - 52]
7=T*
— 1" ()E L [Ac = Ae] + 1 (xn)E L [ -, ]
M~ 2 — —5 m _ —5 12
+? 5_)»[ A’[_A—w"'g_)»[ _§|AT_A—>’[+E_)T
+7 (d)f_n)] (14)

where we add a few terms using E[X_&]=0 and
E[ZZ:TuELTéf] =0 by Doob’s optional stopping theo-
rem (recall that T* is a stopping time, and &,
surable with respect to F11).

Define n = —(x%,_, —A")". By applying Equation (13)
to period © = T* — 1, we have

. is mea-

r(min {x,_y, A"}) = r(xp_q) = (X3 +1) = r(x7_y)
, — —6
<r (xT)[TT - A—>T1—1 + CS_>T1_1]
7 <! A =0
=1"(xr)épan—ALp +E ]
M 2 - =0
+3 1€ M —AS g +E ]
mo - -
-5 |T]_A—>Tj 1+ CE_>T1 1|2 +7r (d)g—q‘nq
=7 (XT)[
—=0
-7 (xT)CE—q“u_l [77 - A—>Tt—1 + ‘E_>Tt_1]

M oy M2y
+%|£—>T“—1| _%lé—ﬁﬂ—ll

A+ 5_>T1 1]

M — - =6
+E |57—>Tt—1|2 N—A_mq+E p |

m _ -5 -
_E |T] —A g+ 5_,Tt_1|2 +7r (d)f_miq
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’ A = ;
<) -Aspa +Ep] %+ . A”l 5—>r = 5) 7+ ”1 For the term A,
_r"(sz)Er_m_l [n- K_)Tj_ﬁ.zb_m_l] with elementary algebra, it can be verified that
M* —r 4 NP T ¢ ¢
- ~ 20 - =0
o S —ral +7 @0 r, @) S AR+~ &= (T DB -2y =0,
=T¢
where the last inequality follows by completing T (17)

the square as

M m
|5_>Tn 1| += |£_>Tt 1| In— A g 1+5_>Tt 1= 5 In

- R +E ol = 1B+
E;Tu,l 1> < 0 almost surely.
Subtracting (12) from (11), we obtain

¢r(xr) — Qrxr)

ZT: (r(x; +Ag) —r(x])) + (Tji —Dr(min{x7,_,A"})
=T*

T
SE| D7 (r(x; +Ac) = r(x) +(TF = 1)(r(xs_y +1)) = r(x’T:_l))]
T=T*

<E + 7"

+E[(T* = 1)r*] + 1
<E[r(x7)A—7"(x1)B+7"(x1)C+D+7(d)E] + r”E[Tﬁ],
(16)
where the second inequality holds because x7:_ +1 =
min{x},_,,A"} and 7 >r(x], ), the last inequality

uses Equations (14) and (15), and the terms
A,B,C,D, € are defined as

T .
A = Z [A'L'_E—YI +Eb_>7_ég]

T=T*!
~ =0
- (Tj - 1)(A—>Tt—1 - 5—>Tt_1) + (Tjj - 1)7],
T
B = Z 5—w[AT - A—>T] - (Tt - 1)5_)Tt_1A_)Tj_1
7=T%
+(T" - 1)Er—>Tt—1n/
o 6 _ g9 § <" =0
C= Z 5—)’[[5’[ - 5—)’[] - (T - 1>£—>T¢—1£—>Tﬁ—1/
7=T*
m —
P Z(lé_)»[l |A A_)T+é—>’[| §|AT_A—>T~
T=T*

+EiT|2)+ T-0

T
E= >0 +(T-1)l 4

=T!

In the second step of the proof to Theorem 3, we an-
alyze the five terms A,B,C, D, separately. We see
that many of the terms in A, 3,C, and D are equal to
zero either almost surely or in expectation and the
term & is upper bounded by a constant; thus, the
expression in the upper bound in Equation (16) can
be greatly simplified. Recall the definition A_,. =

which implies that E[A] = E[(T* — 1)7].
Reorganizing all terms in B by &; (V¢ > T*), we obtain

T
SVEL A=A ] = (TP = 1DE A Ly
7=T*¢
r t—1

= 3 S (=B = (B = DE B

tTj TT“

5t
—(Tj DEL 1A Ly

_Z E;Z—)t—li

t=T¢

Il

DAL + (TP =D)AL 4]

where the last equality uses EiTM = Té—_(%l +..0+ Ti;_jl
Note that the random variable A_,,_; = % +...+
TA_Tl is measurable with respect to 41 because the DP
policy is nonanticipating. By Doob’s optional stopping
theorem, we have E[—Zfzﬂézx_w_l] =0, and thus,

E[B] = E|(T = DE i) as)

Next, we analyze the term C. Note that C has a simi-
lar structure as B; therefore,

4 red b £?+1 5?
E[C]=E|-> &E 4 |= Zét( e +t—1)'
t=T* =Tt
T «red
&éy
=E|- ,

where the last equality uses Doob’s optional stopping
theorem. Because |&}| < Bga.s., we have

T ¢red T r|| cr *
étgt |€t”£t—£t|
- S <L _
B2 [FE 2
<BE ZT]L_EH = B:E ZT]L{Ti <t}L_5:|
- = -1 ¢ R

- BeE| ST < t}%]

t=2
T E r__ *12 .7:+
<B:E gl{Tﬁst}\/ e :’1' | ”]l, (19)

where the last equality holds because the event
(TP<t} ={T* 2t +1}° € Fp1.
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Because the regret is defined as the difference be-
tween the expected revenues under the optimal DP
policy and the resolving heuristic, we can choose the
joint distribution of (&, &f) arbitrarily as long as their
marginal distributions remain the same. We choose
the joint distributions as follows. At each time peri-
od t with posted prices p;,p; and corresponding de-
mand rates xj +A; and x], let (&}, &}) ~ B such that
the marginal distributions are Q:(p;), Q:(p}), and
furthermore,

\/]E[|5I - &P fm] = \/]E(é?,é¥)~5f[|‘§: - Eilz]

SLIf(pD) —fDl=LIx; + A= x{| as.

The existence of such a joint distribution E; is
implied by Wa(Q(p}), Q) < LI (7)) —F(p))] (see As-
sumption A5). As a result, Equation (19) can be sim-
plified to

g |AT_Z—>T+EO—)|
E < LB:E . 2
E(Cl < LB:E) 3, == (20)

Combining Equation (16) with Equations (17), (18),
and (20), we have

E|7 (x7)A =" (x7)B + "' (x7)C + D

MZ
<E (T’j | (xT)U_r (xT)E—}Tu 1M + |5HTt 1|
+2((|r"(xT>| B )18 - B+ 8
= Tt 2
_E IAT - A—n + 5_)—[| )
, A2
<E ( - 1)(7’ (xp)n—1" (xT)é—mt 1T]+ |5_>Tu al )
Z LB — o\
# 3 5l 2 P
T= T’1 2
MZ
<E ( - 1)(7’ (xT)TI_r (xT)é—mt 1T]+ |5_>Tu 1l )

2
LB M? _,
Z [( |1’//(XT)| _'5) +— |£—>’T|4] . (21)
= -1 4
In the second inequality, we use the fact that
m , m b, b b

- - (y — — <

p b= = S S o

for any b,u € R and m > 0. In the third inequality, we
use the fact that (a + b) < 2(a® +b?) for any a,b € R.

Because é_)Tu 1= _,Tj + &7 c/(Tﬁ 12> Er 7 — B/
(T* —1) > ¥'(xr)/r" (xT) by the definition of T* in Equa-
tion (8), it ensures that 7’ (x1) — r”(xT)cS_)Tt 1 = 0. Recall
that n=—(x,_, - AM* <0, so (7 (xr) - r”(xT)éHTM)n <0,
and hence, the first term in Equation (21) can be elimi-
nated. We get

E[7 (x7)A - r"(xT)B + 1" (x7)C + D]

<E|(T*- ) |5_>Tt S
2
5k [<|r"( ! LB&) MTELTP”. 22)
= Tj

For the term &, notice that, in any sample path, lost
sales can occur in at most one period during the entire
horizon. Suppose 7' > T* is the period in which the
lost sales occur (otherwise, £ = 0 if lost sales do not oc-
cur before T%).

Because
7 b G _ G
. T—1+T—2+"'+ . ]
for any 7 < v/, we have
T _. — -1l 7, l,
E=D 0 +(T -1y => "+ (T"- 1)
= i 1 -1

’ f;,
= _1)”[’—1

The lost sales are upper bounded by the realized de-
mand in period 7/, so £, < A}, + &,,. Because A%, <d by
Assumption Al and &, <B: by Assumption A4,
& <d + Bg. By Equation (22), we have

E[7 (x7)A - r”(xT)B +1"(xr)C+D+1'(d)E]

<E[(T* - 1) Iéw A
+Z ((lr XT 2+A£|€’ |4) +7(d)(d + By).
= Tj 4 -t B -
(23)

In the final step of our proof to Theorem 3, we up-
per bound each term in Equation (23). First, it is easy
to verify that

L (17" (xr)] LBg\?
> ()

7=T*
T-
1! 1 7
< (I7""(x1)| LB) Z_Z 2(17"(xr)| LBe)* as.  (24)
=1/
We next focus on the terms involving |£ | Recall
the definition E ” T+ + Let z:= 5-» 1-

Then, {zi} is a martmgale adapted to the filtration
{F1}]_, by Assumption A4, which implies that {| zf| }
is a submartingale. Let S; = ST, (t—1)(| z[*~ | zea|*);
then, {S;} is also a submartingale. Because T* is a stop-
ping time, we have

T
E[(T* - 1) |<§r_>Tn_1|4 + Z |‘Sr—>’[|4

T=T!

-1
=E[>) |5_>T|4l.
=1

=E[Sr:] <E[S1]

T

4

=E Z |z
=2
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It is easy to verify that Therefore,
2
. E[IE] €] 1\ 4B T
E[EL = >, — 55— <Bi{ >~ <—*. Bl S (r(xr) — r(x1) + (T = 1)(r(xr) — 1(x_,))

t ],kz>t(]_1)2(k_1)2 = = (]_1)2 tZ ;j T T T T:-1

Subsequently, , T _ _
> 7' (xr)E ZEHT + (Tﬁ -1D&
_(Tﬂ_1)|5_m i + Z i€ ] =T
T
2T-14B¢ ZB‘% " -
_MI4BE MPBE - ZT} Eal+ T -DITmaPl 09
dm — 12 m T

Combining Equations (16) and (23)—(25), we have
* 2M?2B4 21 () LB 2
Prlar) = Prlar) < ——+ (I (xr)| LBe)

m

+r'(d)(d +Bs) +"E[T*] = O(1), (26)

where the last equality holds by applying Lemma 1.
This completes the proof of Theorem 3.

4.3. Proof of Theorem 4
Because this proof only concerns the resolving policy,
for convenience we drop the superscript r and denote
&, é _. simply by &;,&_,; in this section.

Invoking Lemma 2, we have

T
Tr(xr) — Pip(xr) = E| D (r(xr) — r(x}))

T=T¢*

H(T* = D(r(xr)—r(min {xf,_,, A“}D]

T
=E| > (rlxr) = r(x})) + (TF = 1)(r(xr)

=T¢

—r(x’p_l))]

E|(T* = 1)(r(x}._y) — r(min {xf,_;, A"}))].
(27)
By the smoothness of r(1) (Assumption A3) and the

fact that x7, < A" (see Equation (8)), the second term in

Equation (27) is bounded by
E[(T* = 1)(r(x}s_,) — r(min{x},_, A"})]
> —CE[(T* = 1)(xfs_, = A")"]
> —CE[(T* - 1) ¥}, — %} |]
Ert

—CE|(T* - 1) > —CBs

= Er

-1

where the last inequality holds because | &, |[< Bga.s
for all 7.

In the rest of the proof, we bound the first term in
Equation (27). Expanding the difference r(x]) — r(xr) at
xr and using the strict concavity of r(1) (Assumption
A2), by Equation (9),

rxr) =r(e) = 1) =r(xr =E ) 27 & o+ 3 ol

3 V1> T_jj
r(xr) —r(xq_y) =r(xr) —r((xr - Eop)) =t (xTi)é—m—l
+E| 5—>Tt—1|2~

For the first term in Equation (28), because &, =
S &/ (1), it holds that

=0 (29

T
=E[> &

+=T*

T
E Z E_V[ + (Tjj - 1)E—>T1—1

=T}

by Doob’s optional stopping theorem. For the second
term in Equation (28), using &_,; :%+... +57—T”, we
have

T
E Z P+ (TP =1) | E_>Tt_1|zl

T=T%
T2, _
=K 2(517 - 51%4)]
=1
T =2 _ _ _ T'-2 _ _ )
(o —Eom)érg [HE Z(é—vc_‘g—ﬂ"ﬁ—l) l
=1 =1
T:-2 Tf— T:-2( T'-1 5 2
SB[ s S z l z(z ﬁ) (30)
=1j= =1/ =1 \j=r+1/ ~

Because T+ is a stopping time and {&.} is a martingale
difference sequence, we have E[¢;|j< T]=0 and
E[&&k |j <k < T*]=0.So we have
Ti-2 Ti-1 5 2 Tt-1 2
Eq(30) =0+ 3} Zl( ) l IZ( 1)( ) l
= ] T+ ]

Ti-1

ZE

Moreover, E[5_ & |= [Z]T2]51] 3L 2] >
/ 1T u'du =0%nT, so by the preceding equation and

< BiE[T*-2].

Equation (30), we have

T
E| > EoP+(TF =1 [Ep

=T%

> o’InT - BIE[T* - 2]

=0’InT - O(1), (31)
where the last equality holds by Lemma 1.
Combining Equatlons (27)-(29) and (31), we get

Tr(xr) = pr(xr) > m" InT - O(1), and the proof of The-
orem 4 is complete

5. Numerical Results
We corroborate the theoretical findings in the last sec-
tion with a few simple numerical experiments. In the
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simulation, we assume a linear demand curve with
Bernoulli demand distribution: P[d; =1 |p;] = a — Bp,
Pld;=0|p]=1-Pld;=1|p:] with pe[0,1],a=3/4
and g = 1/2. The (normalized) initial inventory level is
xr =5/16, which means that, for problem instances
with T periods, the initial inventory level is
xrT =5T/16. 1t is easy to verify that the optimal de-
mand rate A" without inventory constraints is
A" =3/8 > xr, and the fluid approximation suggests a
Tr(xr) = (19/32)T = 0.59375T expected revenue. We
select the Bernoulli demand distribution because the
states of inventory levels are discrete, and therefore, the
dynamic programming model can be calculated exactly.

In Table 2, we report the regret of the fluid approxi-
mation, the static policy 7° : p; = f}(xr) =7/8, and the
resolving heuristics 7". All regret is defined with re-
spect to the value (expected reward) of the optimal
DP pricing policy, and the regret for the fluid approxi-
mation benchmark is negative because the fluid mod-
el always upper bounds the value of any policy. Both
the static policy 7° and the resolving heuristics 7" are
run for each value of T ranging from T =2°=64 to
T =2%=32,768 to obtain an accurate estimation of
their expected rewards. We plot the horizontal axis of
Figure 2 in the logarithmic scale to show the regret
growth rate of each policy.

As we can see from Table 2 and Figure 2, the gap
between the value of the optimal policy and the value
of the fluid model grows with a nearly constant slope
as the number of periods T grows exponentially,
which verifies the Q(InT) growth rate established in
Theorem 4. On the other hand, the growth of regret of
the resolving heuristics 7" stagnated at T >2'" and is
nearly the same for any T ranging from 2'° to 2'°. This
shows the asymptotic growth of regret of 7" is far
slower than O(InT) and is compatible with the O(1)
regret upper bound we prove in Theorem 3.

We report additional sets of numerical results in
Figure 3, in which we only report the cumulative re-
gret of the resolving heuristic compared against the
benchmark of the optimal DP policy. On the left panel
of Figure 3, we report the regret of the resolving heu-
ristic with T ranging from 2* =16 to 2%° ~ 1,000,000
and different A" — x7 gap values. More specifically, all
four curves are reported under the demand model d =
0.75 — 0.5p with unconstrained optimum A" = .375 and
(normalized) initial inventory levels xr € {0.3,0.325,
0.35,0.375}. Figure 3 clearly shows that the regret of

Figure 2. (Color online) Plots of Regret of the Fluid Model,
the Static Policy 7°, and the Resolving Heuristics 7" Com-
pared Against the Value of the Optimal DP Pricing Policy

Regret vs. log, T

10
—e - Static LP relaxation
—e— Stationary policy
=4 Resolving policy
5 L
0 L
_5 1 1 L 1 |
4 6 8 10 12 14 16
log 5 T

the resolving heuristic increases as the gap between
A" and x narrows, and furthermore, in the bound-
ary case (i.e., xy = A"), the regret seems to grow loga-
rithmically in T. It would be an interesting direction
of future research to formally establish the logarith-
mic regret for the boundary case and explore alter-
native policies that attain constant regret with
Xt = A,

On the right panel of Figure 3, we report the regret
of the resolving heuristic with different a, b values in
the demand model d=a-bp with a=b€{0.3,0.5,
0.7,0.9}. The normalized initial inventory level is fixed
at xy = 0.1. With different values of the slopes, the de-
mand and revenue models exhibit different strong
concavity parameter values with 7’(p)=-b/2 and
r”(d) = —1/(2b). Unlike the gap A" —xr, the results re-
ported in the right panel of Figure 3 do not paint a
clear picture of the role the strong concavity parame-
ters play in the regret. Overall, intermediate values
(b=0.5,r"(p) = —0.25,7"(d) = —1) seem to result in the
lowest regret of the resolving heuristic.

6. Extension to Network

Revenue Management
In this section, we extend the analysis of the resolving
heuristic to a general network revenue management

Table 2. Regret for the Fluid Model, the Optimal Static Policy 7, and the Resolving Heuristics 7" Compared Against the

Value of the Optimal DP Pricing Policy

log,T 6 7 8 9 10 11 12 13 14 15

Fluid model -0.90 -1.13 -1.37 -1.63 -1.91 -2.19 —2.48 -2.78 -3.08 -3.37
Static policy 7 0.38 0.70 1.22 2.03 3.27 513 7.84 11.81 17.55 25.84
Resolving policy 7" 0.11 0.15 0.18 0.21 0.23 0.23 0.24 0.24 0.24 0.25




Downloaded from informs.org by [128.177.22.132] on 02 January 2023, at 08:15 . For personal use only, all rights reserved.

Wang and Wang: Constant-Regret Resolving for Price Based Revenue Management

Operations Research, 2022, vol. 70, no. 6, pp. 3538-3557, © 2022 INFORMS

3549

Figure 3. (Color online) Cumulative Regret of the Resolving Heuristic (Compared with the Optimal DP Value) Under Different

A" —x1 and m Settings

Regret vs. Iog2 T with different x"-x

-
0.7

log, T

model with n products (with possibly correlated de-
mand) and m resources. Recall the constant matrix
A = [a]1<j<m1<j<n indicates that a product j requires a;;
units of resource i. The seller starts in period T with
an initial resource inventory level y,=x7rT, where
xr = (x7(1),...,x7(m)) € R} is the normalized initial in-
ventory. At period ¢ (ie., t periods remaining), the
seller posts a price vector p, = (pi(1),...,p(n)) € PC
R? and observes a realized demand vector
d; = f(p,) + &, where f: P — D is the demand curve
and & ~ Q(p,) is a centered noise vector. Let 0 <s; <
d; be the fulfilled demand defined in Equation (1) and
1; = d; —s; be the lost sales. The realized revenue at pe-
riod tis 7, = (p,, s¢).

Throughout this section, we use ||x|| to denote the
Euclidean norm of any vector x, and ||X||, to denote
the spectral norm of any matrix X. We extend the de-
mand Assumptions A1-A5 in the single product set-
ting to the multiproduct setting as follows:

Bl1. (Invertibility). The demand rate function f: P —
D is a bijection, where P C R, DCR". Let f ' : D — P
denote its inverse function. Assume D is convex, com-
pact, has nonempty interior, and satisfies 0 € D.

B2. (Strict Concavity). The expected revenue r(A) =
(M, £71(N)) as a function of the demand rate vector A is
strictly concave. That is, there exists a positive constant
m’ > 0 such that V2r(A)< —m’I, for all A € D. The maxi-
mizer of r(A) is in the interior of the domain D.

B3. (Smoothness). r(A) is three times continuously
differentiable in the interior of D.

B4. (Martingale Difference Sequence). Conditional
on any price vector p,€ P (Vt=1,...,T), the demand
noise & is independent of {er,..., &1} and satisfies
Elg; | Fia1] = E[#; | p;] = 0a.s. The conditional distribu-
tion of & given p, is denoted by &; ~ Q(p,). In addition,
let & :=Ag;; then, || ]| <B:a.s. for some constant
Bg < 00.

Regret vs. Iog2 T with different m values

0.07

0.06 |

0.05]

0.04 |

0.03

0.02 |

0.01 - : : -
5 10 15 20
log, T
B5. (Bounded Wasserstein Distance). There exists a
constant L > 0 such that, for any p,p’ € P, it holds that

W2(Q(p), Q(p") < L[| £(p) — £(p’)ll, where W»(Q, Q') :=

inf EJEE,E/NE[HS —¢'|]*] is the L,-Wasserstein distance
between Q, Q" with E being an arbitrary joint distribution
with marginal distributions being Q and Q’, respectively.

Recall that x7 € R is the normalized inventory level
vector of the m resources at the beginning of period T,
namely, the total inventory is xrT. The fluid approxi-
mation model is formulated as

max {r(A), s.t. 0 < AX < xt}.
AeD

At the beginning of each period t =T, ..., 1, the resolv-
ing heuristic solves

max{r(A), s.t. 0 < AN < x;}, (32)
AeD

where x; is the normalized inventory level at the be-
ginning of period t. Because 0 € D by Assumption B1,
Equation (32) always has a feasible solution. Let the
optimal solution to (32) be A;. The resolving policy
sets the price vector to p, = f*(A;) for period t. In ad-
dition, let p, := AA; denote the expected resource con-
sumption rate given the demand rate A;.

In (32), for any given x; € R, the m resources are
partitioned into two disjoint sets based on whether
the inventory constraints are active. The inventory-con-
strained resource set Z and the inventory-unconstrained
resource set U are defined as

T :={k € [m]: p,(k) = x:(k)},

33
U= {k e [m]: p,(k) < x:(K)}. (33)

As a special case, in the single product setting of Sec-
tion 3 (n=m=1), we have Z=0,U ={1} if x;,> A" =
argmax eg4]r(A) and Z = {1}, U = 0 if x; < A"
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From the definitions in Equations (32) and (33), it is
clear that the sets 7 and I/ are uniquely determined by
the inventory vector x;, which serves as the right-hand
side of the fluid problem (32). We may, thus, write
Z(x:), U(x¢) to emphasize such dependency. This leads
to a partition of R into 2" subregions {Sz, VI C [m]},
where

Sr={xeRT:Z(x)=1}. (34)

We specify an additional assumption on the initial in-
ventory level xt for the network revenue management
setting:

C1. The initial inventory level xr is in the interior of
Sz for some Z C [m]. That is, given xr € Sz, there exists
a neighborhood Bs,(xr) = {x" € R :||x’ —x7|| < 6o} with
6o > 0 such that Bs,(xr) C S7.

Intuitively, Assumption C1 asserts that, when the
constrained inventory level x; fluctuates in a close
neighborhood of xr, the set of active constraints in the
fluid problem Equation (32) remains unchanged. In
the single product case (n = m = 1), Assumption C1 re-
duces to the condition x7 # A".

We now characterize the expected value of the opti-
mal DP policy and the resolving heuristic 77" for the
price-based network revenue management problem.
Let ¢ (x;) be the expected revenue of the optimal poli-
cy 7" when there are 7 time periods left with the (nor-
malized) inventory level being x; € R’'. Similar to the
single-product case, we have the following Bellman
equation:

Pr(x7) = max {7()‘) +E o)

[ o ( _AQre-l)- ) e (A)Tlt]}

vVtr=T,...,1

We denote the maximizer of the Bellman equation by
A, so the optimal policy selects the price vector
p, =f(X). Let & be the realized demand noise un-
der this price and let I! = (A + & —1x.)" be the real-
ized lost sales. We define A;:=AX, —x}, & = A€,
and £; := Al’, so the Bellman equation can be rewrit-
ten as

e B
=

Vr=T,...1. (35)

O () =r(A}) +E

The resolving heuristic 7" and its expected revenue
¢’ (x), on the other hand, satisfy the following recur-
sive equation. Recall that A;=argmaxyep{r(A),
s.t. 0<AA<X[} is the solution to the fluid model
with x] being the right-hand side and p,:= AA..
Define &, := A¢! and £, := Al,, where &£ is the noise

vector associated with the price vector A; and I, is the
realized lost sales. We have

A +E) x4

R
0]

¢r(xr) =r(A;) +E

r r
r_p7+§"(_x;+£’[

¢;_1(X1 T)

—ﬁqu v=T,...,1. (36)

=r(A)+E

The following theorem extends the constant regret re-
sult of the resolving heuristic in Section 3 to the multi-
product setting.

Theorem 5. Given a demand function f and an initial in-
ventory level xr € St satisfying Assumptions B1-B5 and
C1, forall T = 1, we have

Pr(xr) = Pr(xr) — O(1).
In the rest of this section, we prove Theorem 5.

6.1. Partial Optimization on a Subset
of Resources

Compared with the single-product setting, the analy-
sis for the multiple resource setting is complicated by
the fact that, in Equation (32), some of the resources
have binding inventory constraints, whereas other re-
sources have nonbinding inventory constraints. We
introduce some tools in this section to handle this
complication.

For any vector x € R" and subset S C [m], denote
x(S) = (x(k) : k € S) as the |S|-dimensional subvector of
x whose coordinates are restricted to the subset S. The
following observation follows immediately from the
definition of Sz in Equation (34), and the proof is
omitted.

Lemma 3. Suppose xe€ Sz for some I C[m]. Let
U = [m]\Z. For any inventory vector x" € R with x'(7) =
x(Z) and X' (U) = x(U), we have X' € St.

Consider a fixed xreSz with Zc[m]. Let
Z:={zeR¥:30eD, p=Ar z=p(Z)}. For every
z € Z, define R(z) as the value of partial optimization
of r(A) by fixing the resource levels in the set Z:

R(z) :== max {r(A),s.t. AA=p, p(Z)=1z}. (37)
AeD, peRY

The motivation for Equation (37) is that, in the region
81, the solution of the resolving heuristic is only af-
fected by the inventory levels of the constrained resour-
ces in Z. The following lemma establishes some useful
properties of the function R. The proof can be found
in Appendix A.
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Lemma 4. The function R has the following properties:

1. For any x, €87 and z,=x(Z), it holds that
R(z¢) = r(Ay), where Ay is the solution to max yr(X) subject
to0<AAL Xt.

2. It holds that R(z) is strictly concave and three times
continuously differentiable for all z € Z and satisfies
V2R(z) <-ml, |V°R(z)|l, <M with some constants
m>0,M > 0.

3.Given z,z’ € Z, let A, N’ be part of the optimal solutions
in (37). Then, ||A — X'|| < L, ||z — 2’|| for some constant L, >
0 uniformly on Z.

6.2. Stopping Time with Bounded Expectation
Recall that {£}!_, = {Ae’}!_, are the stochastic noise
vectors at each time period on the path of the resolv-

ing heuristic policy 7. For any 7, define £, :=

—T
£ 45 Let rg:=mingrdR(xr(T))/dxr(k). Note
that ro > 0 by Assumption C1. Define T* as

s
—>T—1|

T* ::max{’ch:Hg |>min(

To
3 ||V2R(xT(I))||2)}’

y {2 ||v2R(er(I ) 1}’ (38)
0

where g > 0 is the constant parameter in Assumption
C1. Because £, ; is measurable with respect to F,, the
event {T* =t} is adaptive to the filtration {F,}, and
therefore, T* is a stopping time. We note that this defi-
nition implies the inequality VR(xr(Z))— V?R(xr(Z))
£ . (T)=0. The definition of T* also ensures that
lost sales are zero for all T > T? (see Lemma 5).

Recall that x! is the normalized inventory vector of
the m resources when 7 time periods are remaining.
The following lemma gives a characterization of x/ in
terms of £ , . It also gives an upper bound on E[T?],
similar to Lemma 1.

Lemma 5. Under Assumptions B1-B5 and C1, the follow-
ing holds for all T > T*:

Xo(Z) = XH(Z) - E, (D)X U) = X (U) - E, (W),
(39)

where T =7Z(xr), U =U(xT) as defined in Assumption C1.
For © > T%, we have x. € 8z; for , we have 1. = 0. Further-
more, the stopping time is bounded by E[T*] = O(1).

6.3. Complete Proof of Theorem 5

Given the initial inventory level xr € Sz, we first up-
per bound the value function of the optimal DP policy
by considering a relaxed problem in which the inven-
tory of the products in 7 is x(Z), but the inventory of
the products in & is unbounded. Let {x’}!_, be the
path of inventory level process for this relaxed prob-
lem. Define z; :=x}(Z). Similar to Equation (35), we

define ®(z;) as the value function of this relaxed
problem. Clearly, we have ¢7(xr) < ®7(zr) as the lat-
ter has fewer inventory constraints.

With a slight abuse of notation, we denote
A(T),E(T),&E(T),£.(T) simply by A, &,&,£.. Then,
itholds that z* =zr —A_,, — &, +£_,_, where

~ Ar Ay o T £
A= .+, = .. 42l
4 T T-1 T § T-1 T
an
— y 4
0 =—T 4 4=
-t T-1 T

By adapting Equation (11) to the multiproduct setting,

we have
T

Pr(xr) < Dip(zr) <E| D R(Z, + Ac) + (TF = DR(z8:1) |,
7=T*

40
where (40)

Z7: 1= arg max {R(z)|z <z}, _,}.

Next, we analyze the inventory process under the re-
solving heuristic (for the original problem rather than the
relaxed probleril). Let z7 :=x!(Z). By Lemma 5, it holds
that z =zr—&_,, for all 7>T* In addition, for all
7 > T, it holds that 7(A;) = R(z},) by Lemma 4. By adapt-
ing Equation (12) to the multiproduct setting, we get
T

Pr(xr) = E| > r(Ar)| - sup r(d)
=Tt deD
=E ZT: R(z)|—sup r(d). (41)
=T} deD

The outline for the rest of the proof is similar to that
for the single-product case in Section 4.2. The proof is
again divided into three main steps. In the first step
(from Equations (42)—(44)), we use Taylor expansion to
bound the expected revenue difference between the op-
timal DP policy and the resolving policy. In the second
step (from Equations (45)~(50)), the regret expression is
split into five terms, and each term is simplified sepa-
rately. In the third step (from Equations (51)-(53)), the
five terms are combined, and the regret is eventually re-
duced to a function of E[T*], which is O(1) by Lemma 5.

Generalizing the arguments from Equations (28)
and (29) and using the second property of Lemma 4,
we obtain
T

2Rz + A = R(zp))

=T*

E

<E ZT]((VR(O),Z;T> +(VR(zr),A; = A + £, — &)

=T*

~(&, )"V R(z)[Ac — A + (E,)"V2R(z1)[ £ - E‘LT}

M = - =0 m — —5
> IE JPNA - A + & - A=A+ fﬂlli)],

(42)
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2 ._48 &
—&and & =204 43

T

where & :=

Define n = —(z},_, —zp:_;’)", where (z)" denotes the
element-wise positive part of a vector z. Note that
z: =zp,_, +1 because zp: <z}, _,. Equation (15)
can be generahzed to

R(z7:q) — R(Zg"t_l) = R(Z 1t 77) R(ZTu 1)

. =5
<(VR(0),2_7:_1) +(VR(zr), M- A g + & 1oy)
_ _ -
—(E 1) VR[N - Ay + E ]

M?
g IE-ral (43)

Let o denote the element-wise product. Subtracting
Equation (41) from Equation (40) and then combining
Equation (43) with Equation (42), we obtain

¢r(xr) = Pr(x7)
< E[(VR(zr),E) - V’R(Z7) 0 B+ V’R(Z1) o C+ D

+(VR(0),F)] + O(E[T?]), (44)
where
E= 3 [Ac-Bo+ £~ €]
T DB B )+ (T D,
B = SE. A Aol (- DE Ay

7=T¢
"‘(Tj 1)E;Tﬁ 1 nT,

C= Zgw[g‘s & - (T -1 & ]

T=T!

t=T*
1A =B + LI +<Tﬁ—1)%||élﬂ_ln4,
T _, .
= >0, +(T -1 5,y
7=T*

Recall that in the deflmtlons of B,C,D,E,F, all vec-
tors AT,A_W,f‘s ,gﬂ,g%n,eﬂ are restricted to coor-
dinates in Z. B, C are |Z| X |Z|-dimensional matrices, D
is a scalar, and E, F are |Z|-dimensional vectors. Using
the same calculations as in Section 4, these quantities
can be reduced to

E[E] =E[(T* - 1)n], (45)
E[B] = IE[(Tﬁ - 1>Eim m'l, (46)
t=T¢
|[F|| < sup [|d|| +Be. (48)
deD

Generalizing Equation (19), it holds that

2]

t=T*

2

[T E T 2 F
< bt Forpre <y YEUIE - 6P Fro
| t=2 t—1
[T Omax (A)A/E sr_s*zf
<BE| DT <t} ( )\/ E” tl il t+1]l
| =2 —

Omax (A)L ”A; B Ai.‘”
t—1

[ T
<B:E Zl{:rﬁ <t}

< B:E ZI{Tj <t} (49)

L ||zt+At z;ul

where the second inequality holds because ||& — & <
Omax (A) ||€] — €/||, where 0max (A) is the largest singu-
lar value of A, the third inequality uses the bound on
the Wasserstein distance in Assumption B5, and the
fourth inequality uses the third property in Lemma 4
with L’ = L,Lomax (A). As a result, ||E[C]||, can be up-
per bounded as
T — =5
IB(Cll, < 1/Be| 331272 el
) -1

Because VR(x7(Z)) — V2R(xr(Z))€ 1 = 0 by the defini-
tion of T?, combining Equation (44) with Equations
(45), (46), and (50) and using the same derivation that
leads to Equation (22), we have

E[(VR(zr),E) - V*R(Z1) o B+ V’R(Z7) 0o C+ D

(50)

+(VR(0), F)]

< Bl 02 3 (1R Gn 1, 2
= T“
2EIE)
VRO sup Il +5c) 61
deD

To complete the proof, we upper bound each term in
Equation (51). First, it is easy to verify that

Z (”VZR(ZT)HZLI

2T—1 l
2

el ) < (IV*R(zn),LBe)

T=T¢ j=1

< 2(|V?R(zr)l,L'B:)*  as. (52)
Note
} is a submartingale adapted to the

Si=3" (= DEL I -

We next focus on the terms involving ||&

filtration {]:T}T=1- Let

L
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Figure 4. (Color online) Inventory State Partition and Numerical Results for a 2-Product, 2-Resource Setting
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Notes. Left: Partition of inventory states according to the resources being constrained “C” or unconstrained “U.” Right: Regret versus log,T for
the two-product, two-resource example with initial inventory levels being (1 — 6)T for both resources.

IE",.II"); then, {S,} is also a submartingale. Because T*
is a stopping time, we have
E

T
(T = D IE ey I* + D7 IELNI*| = B[S ] <E[S,]

=T%

=E

T -
D lESF)
=1

It is easy to verify that

2
- E[IgI 1€ 1 4B}
B[N < > =5 = a<BH > —| < 5"
j,k>t(]_1) (k=1) >t (]—1)
Subsequently,
MZ . MZ T .
Mo 4 M 4
Bl (T = D IEal+ 0 35 IEL
M? I 4B} 2M?B}
<—> —=< <.
TAdm—L 2 T om (53)

Finally, combining Equations (42), (44), (51), and (53)
and using Lemma 5, we obtain

2p4 ) o
Or(xr) = Pp(x7) < ZA/Tlnt " 2(|[V°R(z7)||,L'Be)

m
HWM@M?EWW%%+MMWD=QH

which completes the proof of Theorem 5.

6.4. Numerical Results

We provide a numerical example with two products
and two resources (n = m =2). We assume that prod-
uct 1 requires two units of the first resource and one

unit of the second resource, whereas product 2 re-
quires one unit of the first resource and two units of
the second resource. Both resources have initial inven-
tory levels of (1—0)T, where T is the total number of
selling periods and 6 €{0,0.1,0.2,0.3} is a parameter
that varies in the experiment. At each time ¢, the seller
could choose a demand rate vector x = (x1,x,) € [0,1]%,
and the corresponding prices are given by p1(x1) =
04— 0.5X1, Pz(Xz) =02- 0.5X2.

In the left panel of Figure 4, we show the partition
of inventory states based on which resource con-
straints are active. More specifically, each point
(y1,7,) on the plane corresponds to a problem in-
stance for which the initial inventory level of the first
resource is ;T and the initial inventory level of the
second resource is y,T. The plane is partitioned into
four regions. The region (U, U) means that inventory
constraints of neither resource are active at the begin-
ning of the first selling period. The region (C, U)
means that the inventory constraint for the first re-
source is active but not the constraint for the second
resource and vice versa for (U, C). The region (C, C)
means that both inventory constraints are active. It is
easy to verify that, with 6 = 0, the initial normalized
inventory (y,,7,)=(1,1) lies on the boundary be-
tween the (U, U) and the (C, U) regions, which viola-
tes Assumption C1. For 0 <6 <1, the initial normal-
ized inventory (1-0,1-0) belongs to the interior of
the (C, U) region and, thus, satisfies Assumption C1.

In the right panel of Figure 4, we report the regret
of this two-product, two-resource example under dif-
ferent initial inventory levels. We observe that, when
0 = 0 (Assumption C1 does not hold), the cumulative
regret of the resolving heuristics is unbounded and
seems to scale logarithmically with time horizon T.
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On the other hand, with 6 € {0.1,0.2,0.3} (Assumption
C1 holds), the regret is bounded for sufficiently large
time horizons. This numerical result validates our the-
oretical findings and is also qualitatively similar to
our numerical results for the single-product, single-re-
source example in Section 5.

7. Conclusion

In this paper, we analyze a simple resolving heuristic
for the classic price-based revenue management prob-
lem with either a single or multiple products. The
heuristic resolves the fluid model in each period to re-
set the prices.

We establish two complementary theoretical re-
sults. First, the resolving heuristic attains O(1) regret
compared against the value of the optimal policy. The
O(1) regret depends on the shape of the demand func-
tion as well as how close the initial inventory level is
to certain “boundaries.” Going forward, an open
question is whether the boundary condition can be re-
moved. Our numerical experiment shows that the re-
solving heuristic considered in this paper may not
have O(1) regret when the initial inventory is on the
boundary, so the pricing algorithm needs to be modi-
fied for the boundary case.

Second, we show that there exists an Q(InT) gap
between the value of the optimal policy and the val-
ue of the fluid model. For that reason, our regret
analysis does not use the fluid model as a bench-
mark; the proof directly compares the value of the
optimal policy and that of the heuristic. An interest-
ing future direction is to find a different benchmark
that is within O(1) of the optimal value, which may
help simplify our proof.

Appendix A. Additional Proofs

Proof of Proposition 1. For any 1 <t<T, let x; = y;/t be
the normalized inventory level in period t. The static pric-
ing policy commits to the price p; =f1(A") in every peri-
od. If x; > A", the resolving heuristic also selects the price
pr =f1(A"). Let 7 denote either the static pricing policy 7°
or the resolving heuristic 7. Let & = {sup j+1<r<1 ), & <
T(xr —A")} be the event that the inventory level never
drops below A, from the start to the beginning of period
t. Let d; and s; = max{d;, y;} be the realized and satisfied
demand at period ¢, respectively. We have

T
D psi{E}

t=1

R™(T,x7) > E

prdtl{gt

Zlﬂt(dt - st)l{&}] (A1)

Because d;=A"+¢&, under event & €F;1 and E[&; ]
Fir1] =0 by Assumption A4, the first term in Equation
(A.1) is equal to

Zptdtl{gt

Zf (A)I{ENE[d; |-7:t+1]}

=E if*lw)l{&w
t=1

T
=E Z Tul{gt}
t=1

The second term in Equation (A.1) measures the
amount of revenue loss resulting from partial demand ful-
fillment. The event of partial demand fulfillment can hap-
pen at most once during the entire horizon because the in-
ventory level is zero afterward. By the bound on demand
noises &; in Assumption A4, we have

E zT: p[(dt - St)l{gt} Sfil(Au)(/\u + B‘f)
t=1

Therefore,

R™(T,xr) 2 E

T
>, r”l{&}} —fH(A")(A" + Be)

=1
T
=T = > PIET| - (A")A" + By).
=1
By Doob’s martingale inequality, for any 1 <t < T, we have

ZZ:H]E[‘S%]

T
> Tlar = A")| <
sup > & (xr ) Tty — A1)

1< <T 7=1'
T —t)B2 B?
< T8 ]
T(xr = A")" T(xr = A")
Thus, R™(T,xt)>r"[T- (B )/ (er = A" — Y AM(A" +Bg) =
Tr* —O(1). The proof is complete by noting that Tr* >
R™(T,xr) using Theorem 1. O

P& =

Proof of Lemma 1. Let y:=min{x;r—d, A" —xr,7'(x7)/
|21 (x7)[}. By the definition from Equation (8), for
©>2|r"(x7)| B¢ /7' (x1) + 1, we have

P[T*>7]=P sup |5_)t| >y

T-1<t<T

[Iéﬂ 1 1
e

which follows from Doob’s martingale inequality by noting
that {&;/1} is a martingale difference sequence (see As-
sumption A4). Recall that &, :%+... +’5;T*1 with |&]] <
Bea.s. For ©>2|r"(xr)| B¢ /v’ (x1) + 1, it is easily verified that

, E[E7 1E5] ( B2 )( B2 )
E 5*)1—7 4 — ] < < &
R K]-,qu(j—l)z(k—l)z TS]ZST(]'—DZ T;g(k—nz
4B4
o1

Using the equality E[T*] = 3.'_ P[T* > 1], we have

& : I 4B}
E[Tﬁ] < "2|7’ /(-xT)| Bs“+1+z ; < -
7’ (xr) Syt -1)
’” . 4B4
L2 (XT)|B‘,+2+_45. O
r'(xr) 14

Proof of Lemma 2. For the optimal DP policy, by Equa-
tion (5), the revenue collected in period 7 is r(x} + Ac)+
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FHx + A)(EL = C2). At the beginning of period TF —1, the
remaining inventory level is x3, | (T* —1). Therefore,

T
Orlar) =E| D7 [r(x; + Ac) +f 71 (x5 + A)(E = )] +¢}u1(x}:_1)}

| 7=T*

[ T
SE[ D [r(x + A+ (6 + A)E ]+ ¢y (X}jl)}
| T=T!

T
=K Z r(xf[ +AT)+¢§"311(X*T:_1):|/
=T}

where the second equality holds because E[3)/_p.f'(x: +
A;)&;] =0 by applying Doob’s optional stopping theorem.
Similarly, for the resolving policy, the cumulative revenue
collected in periods T,T-1,..., T is ZZ:T” [r(xh) +fF71 ()
Tg], so we have

T
Pr(xr) <E| D [r(h) +f 71 ()] + q’rrﬂ—l(er“l)}
=T*
T
=E| > r() + ¢l (W) |-
7=T*

Recall that the resolving policy does not incur lost sales
before period T* +1 by the definition in Equation (8). Be-
cause r(x) <r" for any x, we have

T T
Pr(x) ZEl > ()| =E| D] r(x,’[)} -
T=T4+1 T=T*

To complete the proof, note that, for any admissible policy
n, we have 0<¢7.  (xp_q) <(TF = r(min{xp:_;,A"}) by
Theorem 1. O

Proof of Lemma 4. The first property follows immedi-
ately from the definition of R(z) in Equation (37) and the
definition of Sz in Equation (34) as

R(z;) = max {r(A), s.t. AN =p, p(T) = x(T), pUU) < x:(U)}
=1(Ay).

To prove the second property, consider the Lagrangian
LA, m,z):=7(A) +uT(z—AzA) of (37), where Az consists
of the subset of rows of A corresponding to those resour-
ces in Z. Because 7(A) is concave, D is a convex set with
nonempty interior by Assumption Bl, and the optimiza-
tion problem (37) satisfies Slater’s condition, £ has a sad-
dle point (X*(z), w'(z)) satisfying

R(z) = max min L(A ,z) = min max L(A, n, z)
A€D yerM peR? A€D

=L(A'(z), w'(2),2).

Note that the saddle point (A*(z), p*(z)) is unique because
r(A) is strictly convex by Assumption B2. By the envelop
theorem for saddle point problems (Milgrom and Segal
2002, theorem 5), if the saddle point is unique for every z,
the function R(z) is differentiable in the interior of Z with

VR(z) = p'(2). (A2)
By the Karush-Kuhn-Tucker conditions of (37), we have

Vr(A'(z)) = ATp*(z) and AzA*(z) = z. Suppose rank(Az) = k.
Let PeR"M*" be a matrix whose rows are linearly

independent and orthogonal to the rows of Az, so
PVr(A'(z)) = PATu*(z) = 0. By Assumption B2, the Hessian
V2r(X'(2)) is invertible, so PV?r(A*(z)) has rank 1 — k. Now,
consider the system of equations made of PVr(A*(z)) =0
and A7A’(z) =z, which determines A" as an implicit func-
tion of z. By the implicit function theorem, because the Ja-
cobian matrix with respect to A" is invertible, A*(z) is con-
tinuously differentiable. We denote its derivative by
VA'(z), which satisfies A7VA*(z) =1. Note that this implies
that Az has linearly independent rows and VA*(z) has line-
arly independent columns.

Because VR(z) = u*(z) by Equation (A.2) and Vr(A'(z)) =
Alu*(z), we have

A%VR(Z) = Agu’“(z) =Vr(A'(z)).
As X'(z) is differentiable, using the chain rule, we get
A;VZR(Z) =V2r(N'(z))VA'(2).

Multiplying both sides by VA'(z)" and using AzVA'(z) =1,
we have

V2R(z) = (A7VA*(2)) ' V2R(z) = VA*(2) "V2r (A (z))VA' (z).

Recall that V2r(A*(z)) is negative definite by Assumption
B2. Because VA*(z) has linearly independent columns, the
Hessian V°R(z) is negative definite, which implies that
R(z) is strictly concave.

Next, we establish the smoothness condition of R(z). Re-
call that A*(z) satisfies PVr(A*(z)) =0 and AzA*(z) =z; the
Jacobian matrix with respect to A" is invertible. Because Vr
is twice continuously differentiable by Assumption B3, by
the implicit function theorem for the C? class (Krantz and
Parks 2012, theorem 3.3.1), A*(z) is also twice continuously
differentiable, and hence, V2R(z) = VA*(z)' V2r(A'(z))VA'(z)
is continuously differentiable. Because the domain Z is
compact by Assumption B1, V°R(z) is uniformly bounded
in Z.

Finally, the third property of the lemma regarding the
Lipschitz continuity of A*(z) is straightforward because
the domain Z is compact, and we show that A*(z) is con-
tinuously differentiable in z. O

Proof of Lemma 5. We first prove Equation (39) by in-
duction. The base case of 7=T clearly holds because

= xr, which belongs to S; by Assumption C1. Suppose
Equatlon (39) holds at period 7. Because T > T?, it holds
that ||§_,T|| < g, and therefore, by Assumption C1 and
Lemma 3. Let A; =argmaXaep{r(A), s.t. AA<x.} be the
demand rate chosen by the resolving heuristic at period t
and let p, = AA;. Because X, € Sz, we have p (Z7) =x.(T)
and p,(U) < X.(U). Therefore,

X0 =x () - D XD ED ) ED)
=XT(Z)_E:T 1(D);
¥t =) - LU ERD 5 ) ECD

>xr(U) - €, (U).

Furthermore if 7>T¢, we have x/_; >0 by the definition
of €., and T¥, which implies that lost sales do no occur
in period .
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Next, we prove the upper bound on E[T*]. Recall that
& = A¢’. By Assumption B4, {||§HT|| } is a submartingale
and ||§2|| < Bga.s. Using the identical proof by Doob’s mar-
tingale inequality in Lemma 1, we have E[T*] = O(1). O

Appendix B. The HO Benchmark

The HO benchmark is used to analyze resolving algo-
rithms for quantity-based network revenue management
(Reiman and Wang 2008, Bumpensanti and Wang 2020).
Because, in quantity-based network revenue management,
the demand rates are not affected by the (adaptively cho-
sen) prices, the formulation in Bumpensanti and Wang
(2020) is not directly applicable to our setting. Instead, we
formulate an HO benchmark following the strategy in
Vera et al. (2021), which also considers price-based reve-
nue management with a finite subset of prices.

Definition B.1 (The HO Benchmark). For any p, define
random variable Dr(p):= >\ d; as the total realized de-
mand with fixed price p; =p. A policy 7 is HO-admissible
if, at time f, the price decision p; depends only on
{pvxvdp}psy and {D1(p)}perp5)- The HO benchmark RHO
(T,xp) is defined as the expected revenue of the optimal
HO-admissible policy .

At a high level, the HO benchmark equips a policy
with the knowledge of the total realized demand for each
hypothetical fixed price p€[p,p] in hindsight. Clearly,
such policies are more powerful than an ordinary admissi-
ble policy, which only knows the expected demand but not
the realized demand for a specific price p.

Our next proposition shows that the HO benchmark
RUO(T,x7) has a constant gap compared against the fluid
model value Tp*f(p*) in the single-product setting. Hence,
it also has an Q(InT) gap from the resolving heuristic and
the optimal DP solution. The conclusion in Theorem 4
then holds with Tr(xr) replaced by RHO(T, x1).

Proposition B.1. For any xre(d,A*), it holds that
RUO(T, x7) > Tr(xr) — O(1), where yr = xrT.

Proof of Proposition B.1. Consider a single-product set-
ting in which &r,...,& are independent and identically
distributed and inventory is constrained (xy <A"). It is
clear that knowing the aggregate demand {Dr(p)} e, 5] is
equivalent to knowing &=137,& because Dr(p)=
T(f(p)+¢&) for all p. Given the knowledge of &, the HO
benchmark sets the price to p=f"!(xr — &) for all periods
so that the realized total demand T(f(p)+&) exactly
matches the inventory level xrT. Let g :=f~! be the inverse
demand function. Recall that we assume g is twice differ-
entiable in (d,d) with |g”(d)] < C (Assumption A3). By ap-
plymg the Taylor expansion of g because E[E]=0 and

E[£7] =0O(1/T), the expected regret of the HO benchmark
can be bounded as

TEg [xrg(xr — &)] - Txrg(xr) = TxrEsz

5 -5 |
= -%TE[ 1=-001).

Because Tr(xr) = Txrg(xt), the proof is complete. O
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