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Abstract

We present AQUA, a new probabilistic inference algorithm that operates on probabilistic programs with
continuous posterior distributions. AQUA approximates programs via an efficient quantization of the
continuous distributions. It represents the distributions of random variables using quantized value intervals
(Interval Cube) and corresponding probability densities (Density Cube). AQUA’s analysis transforms
Interval and Density Cubes to compute the posterior distribution with bounded error. We also present
an adaptive algorithm for selecting the size and the granularity of the Interval and Density Cubes.
We evaluate AQUA on 24 programs from the literature. AQUA solved all of 24 bench-
marks in less than 43s (median 1.35s) with a high-level of accuracy. We show that AQUA
is more accurate than state-of-the-art approximate algorithms (Stan’s NUTS and ADVI) and
supports programs that are out of reach of exact inference tools, such as PSI and SPPL.

1 Introduction
Many modern applications (e.g., in machine
learning, robotics, autonomous driving, medical
diagnostics, and financial forecasting) need to
make decisions under uncertainty. Probabilistic
programming languages (PPLs) offer an intuitive
way to model uncertainty by representing complex
probabilistic models as simple programs [1]. They
expose randomness and Bayesian inference as first-
class abstractions by extending standard languages
with statements for sampling from probability
distributions and probabilistic conditioning. The
underlying programming system then automates
the intricate details of the probabilistic inference.

Probabilistic inference is a computationally
hard problem. Most current approaches that
emerged from the statistics and machine learning

communities applied aggressive numeric approxima-
tions, such as Markov Chain Monte Carlo sampling
(MCMC) or Variational Inference (VI). However,
these approaches often cannot obtain the level
of accuracy that is required in applications such
as algorithmic fairness [2], security/privacy [3, 4],
sensitivity analysis [5, 6], or software testing [7].

Symbolic techniques for inference have been
resurging as a more accurate alternative. They
use a symbolic representation of the model’s state
(e.g., elementary functions, piecewise-linear func-
tions, or hypercubes), and compute the posterior
distribution algebraically [7–9] or closely approxi-
mate programs using volume computation [2, 3, 10].
However, these approaches are often limited by the
classes of programs they can solve. For instance, con-
tinuous programs pose a major challenge for these
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1 D=40

2 Y=[3.4,0.3,...]

3 a~Uniform(-10,10)

4 b~Uniform(-10,10)

5 for (i in 1:D)

6 Y[i]~Normal(a+b,1)

7 return a,b

(a) Example program (b) AQUA prior (c) AQUA observe (d) AQUA result (e) NUTS result

Fig. 1: Example program and AQUA estimated probabilistic density v.s. NUTS histogram

approaches due to integrals in posterior calcula-
tion. State-of-the-art symbolic solvers cannot solve
many integrals exactly (often, the integrals do not
have a closed form). Similarly, volume computation
approaches have a limited support for continuous dis-
tributions (e.g., do not allow for conditioning on con-
tinuous random variables) and/or compute the prob-
ability of a single event, not the entire posterior dis-
tribution. An intriguing research question is how to

approximate multi-dimensional continuous distri-

butions in a principled manner that allows for more

expressive programs and can solve programs that are

out of reach of existing tools for exact inference.

AQUA. We present AQUA, a novel system for
symbolic inference that uses quantization of prob-
ability density function for delivering scalable and
precise solutions for a broad range of probabilistic
programs. AQUA’s inference algorithm approx-
imates the original continuous program via an
efficient quantization of the continuous distributions
by using multi-dimensional tensor representations
that we call Interval Cube and Density Cube. The
Interval Cube stores the quantized value ranges of
variables in the probabilistic program. The Density
Cube approximates the joint posterior distribution
by recording the probability of each hypercube
contained in the interval cube.

AQUA’s analysis transforms the symbolic state
to compute quantized approximate posterior distri-
bution.We derive the bounds for the approximation
error (due to the quantization and integration) and
show that our inference converges in distribution
to the true posterior. We also present an adaptive
algorithm for automatically selecting the granularity
of the Interval and Density Cubes.

Example. Figure 1a presents a probabilistic
program that represents the distribution of two
random variables. In the program, we have two
random variables a and b, each having Uniform

prior distribution (Lines 3-4). We then condition
the model on 40 data points Y, assuming that each

point is normally distributed with the mean a+b

(Lines 5-6). We finally query for the joint posterior
distribution (i.e., the distribution of latent variables
a and b after observing the data on Line 6).
Figure 1 presents AQUA’s results: 1b shows

the prior of the two variables, 1c shows the like-
lihood (observation) on a single data point, and
1d shows the posterior distribution. On each plot,
the X-axis and Y-axis represent a and b values,
and the Z-axis values are the probability densities
computed by AQUA. AQUA computes the result in
0.76s, whereas an MCMC based inference algorithm
(NUTS) produces a less accurate posterior within
the same amount of time (Figure 1e).

Evaluation. We evaluate our implementation of
AQUA on a set of 24 probabilistic programs from the
literature. We compare AQUA with exact inference
– PSI [7] and SPPL [9] – and approximate inference
– MCMC and VI implemetations in Stan [1]. We
show that AQUA can solve programs that are out
of reach for PSI and SPPL. Our results show AQUA
solved all benchmarks in less than 43s (median
1.35s). It is significantly more accurate than VI for
all programs (for the Kolmogorov-Smirnov metric).
AQUA is substantially more accurate than MCMC
for 10 programs, even when MCMC is given sub-
stantially more time to complete. We also present a
case study that shows AQUA can precisely capture
the tails of the distribution of robust models.

Contributions. This paper makes the following
contributions:
� Inference Algorithm: We present AQUA, a

novel inference algorithm that works on general,
real-world probabilistic programs with continuous
distributions based on quantization and symbolic
computation.

� Quantization with Interval and Density
Cubes: Our analysis defines symbolic transform-
ers on the abstract state consisting of the Interval
and Density Cubes. We also present theoretical
bounds on the quality of approximation.
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� Inference Algorithm Optimizations: We
present algorithm extensions that automatically
refine the size/granularity of the analysis to sat-
isfy a given precision threshold and aggressively
reduce the analysis overhead of local variables.

� Evaluation: Our experiments show that AQUA
is more accurate than approximate inference
algorithms (Stan’s MCMC/VI) and supports
programs with conditioning on continuous distri-
butions that are out of reach of exact inference
tools (PSI and SPPL).

2 Preliminaries
Language Syntax and Semantics. Figure 2
describes the syntax of a probabilistic program
using an imperative, first-order intermediate rep-
resentation, drawing from Storm-IR [11, 12]. It has
statements for sampling from distributions1 and
conditioning on data with factor and observe.

The language semantics are standard, inspired by
those presented by Gorinova et al. [13] (We present
the detailed semantics rules in the Appendix, avail-
able in the full version of the paper). In summary, a
probabilistic program evaluates the posterior prob-

ability density function. Our operational semantics
for a program defines its effect on the program state,
σ, which maps variables to values. A value V can
either be a constant c or an array of values [c1,c2,...].
The notations σ(x) and σ(x 7→V ) denote accessing
and updating a variable x respectively. We refer
to the return variables of the program as the global

variables, and the others as local variables. We
allow local variables to have discrete distributions
(e.g. Bernoulli), as long as the density of the global
variables are Lipschitz continuous. We define a spe-
cial variable L∈R

+ which tracks the unnormalized

posterior density of the probabilistic program. We
initialize σ(L) to 1.0 at the start of the program.

Probability Density. We review several basic
terms from the probability theory. Let x be the
set of variables with values in V , and D be the
set of observed data points. Then, the posterior
probability density function is p(x | D) : V → R,
such that

∫
x∈V

p(x | D)dx = 1. The distribution
p(x |D) can be calculated from the unnormalized

probability density function f(x,D) : V → R, by

1We support common continuous distributions including Nor-
mal, Uniform, Exponential, Beta, Gamma, Student-T, Laplace,
Triangular, and any mixture of the above distributions.

p(x | D) = 1
z f(x,D), where z is the normalizing

constant: z =
∫
f(x,D)dx. If x−i contains all the

variables in x excluding xi, we define the marginal

probability density function of xi as p(xi | D) =∫
p(x |D) dx−i. Hereon, we omit data symbol D to

write p(x) and f(x) when clear from the context.
In the semantics, f(x) is represented by σ(L).

3 Inference with Density Cubes

3.1 Notation and Basic Definitions

We represent the closed, bounded set
{x∈R | a≤x≤ b} with its lower-bound a∈R and
upper-bound b∈R. We denote this abstraction as
an interval I=[a,b]∈R

2. We refer to the lower and
upper bound of I as I and I, respectively (I,I∈R).

A probabilistic program lifts a normal program
operating on single values to a distribution over
values. Hence, a probabilistic program represents
a joint distribution over its variables. For our
symbolic analysis, to represent the quantized values
of variables, we define tensors of intervals which we
will refer to as Interval Cube. We also assign a prob-
ability density to each interval in the Interval Cube.
We will refer to this assignment of densities as Den-

sity Cube. If there are N variables in the program,
the Density Cube will be an N -dimensional tensor.

Definition 1 (Interval Cube) We represent the value
of a variable x with Interval Cube, IxM1,M2,...,MN

where
[M1,M2, ... ,MN ] represents the shape of the Interval
Cube and each Mi∈N is the number of intervals (splits)
along the i-th dimension. Each element of IxM1,M2,...,MN

is a single interval. We let I be the set of all Interval
Cubes. For a constant c, we denote its Interval Cube as
[c], meaning a singleton interval with both lower and
upper bounds being c.

Example 1 Suppose a program has x ∼ Beta(2,2),
meaning that x following a Beta distribution. Beta
distribution has bounded support 0≤ x≤ 1, and thus
we consider splitting the possible values into, say, 10
equal-length intervals: Ix10=[[0,0.1],[0.1,0.2],...,[0.9,1]].

If the support is unbounded, e.g. x ∼ Normal(0,1),
where the Normal distribution has infinite support, we
will truncate the support into a bounded interval, and
ensure the probability that x being out of this interval
is small. For example, we may consider −12 ≤ x ≤ 12
with Pr(x < −12 or x > 12) = 3.6 · 10−33, and then
split the interval into 10 equal-length intervals: Ix10 =
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x ∈ Vars
c ∈ Consts
op ∈ {+,−,∗,>,...}
d ∈ {Normal,Uniform,...}

E := c | x | E[E*] | E op E |d (E*).pdf(E*) |f(E*)
S := x = E |x ∼ d (E∗) |factor(E) |observe(d(E∗),x)

| if (E) S∗ else S∗ | for x ∈ 1..N; {S∗}

P := S+; return x+

Fig. 2: Syntax of AQUA’s language

Table 1: Correspondence of Symbolic and Concrete Analysis

Concrete Symbolic

Value σ(x) :R Interval Cube σ#(x) : I

Density σ(L) :R+ Density Cube σ#(P ) : (R+)
∏N

i=1Mi

State :P(Vars 7→R) 7→R
+ Astate :P(Vars 7→ I) 7→(R+)

∏N
i=1Mi

JEK :State 7→R JEK# :Astate 7→I

JSK :State 7→State JSK# :Astate 7→Astate

[[−12,−9.6],[−9.6,−7.2],...,[9.6,12]]. In practice, AQUA
will adaptively select the bounded interval (Algorithm 2).

Definition 2 (Shape of the Interval Cube) To simplify
the notation, we hereon denote the shape of the hyper-
cube as M = [M1,M2, ... ,MN ] and each index in the
hypercube is m∈M, M={[m1,...,mN ] | mi∈ [1,...,Mi],
i∈{1,...,N}}. We write K=M1�M2 as the element-
wise product (Hadamard product) operation on two
shape vectors, namely Ki = M1i ×M2i, i ∈ {1,... ,N}.
We will use the operation in the computation of multi-
dimensional Interval Cubes (see Example 3). We use m1

to denote the index of a Interval Cube with shape M1,
m1 = [m1,...,mN ], mi ∈ {1,...,M1i}, and similarly we
use m2 for index in M2, and k for index in K.

Definition 3 (Density Cube) For a given probabilistic
program Prog withN sampled variables, x={x1,...,xN},
we define the Density Cube with shape M =[M1,...,MN ]

as PProg
M

, where

P
Prog
M

(m)=pm, for each index m∈M,

and pm denotes the value of the unnormalized probability
density function at the lower bound of the corresponding
interval in the Interval Cube. The densities at the lower
bound of intervals will help us do numerical integration for
posterior calculation. Here we use the density at the lower
bound for convenience. Using the upper bound or the mid-
point will give the same accuracy guarantee (Theorem 3).

Further, PProg
M

∈(R+)
∏

N

i=1Mi

, and pm∈R
+.

Example 2 (Density Cube for a Single Variable) In
Example 1 where I

x
10= [[0,0.1],[0.1,0.2],...,[0.9,1]], the

corresponding Density Cube is P x
10 = [0,0.54,...,0.54],

which are the densities of Beta(2,2) at each interval’s
lower bound. When there are sufficiently many splits,
the discretized P

x
10 will converge to the true density.

Example 3 (Density Cube for Multiple Variables) Sup-
pose we have a program defining two variables: x1 ∼
Beta(2,2), x2 ∼Beta(2,2). If we apply 10 equal-length
splits for x1 and 5 equal-length splits for x2, two Interval
Cubes will be defined: Ix1

10 =[[0,0.1],[0.1,0.2],...,[0.9,1.0]]

and I
x2
5 = [[0, 0.2], [0.2, 0.4], ... , [0.8, 1.0]]. The corre-

sponding Density Cube P
P
10,5 will have the shape

10 by 5, so that each element P
P
10,5([m1, m2]),

m1 ∈{1,...,10}, m2 ∈{1,...,5}, stores the approximate
joint density when x1 ∈ I

x1
10(m1) and x2 ∈ I

x2
5 (m2).

For example, P
P
10,5([10, 5]) = 0.5184 corresponds to

x1 ∈ I
x1
10(10) = [0.9,1.0] and x2 ∈ I

x2
5 (5) = [0.8,1.0].

The value 0.5184 is the exact joint density for
x1 = 0.9 and x2 = 0.8, and is the approximate
joint density for other x1 and x2 in their intervals.

For easy implementation and explanation, in AQUA
we represent x1’s Interval Cube as I

x1
10,1 and x2’s

Interval Cube as Ix2
1,5, by reshaping their intervals along

different dimensions. The shape of PP
10,5 will simply

be element-wise product (Hadamard product) of the
individual shape vectors, [10, 1] � [1, 5]. In fact, we
represent the intervals of all the Sampled Variables on
different dimensions. Sampled Variables are variables
initialized by sampling statements (e.g. x1∼Beta(2,2)),
not deterministic assignments (e.g. x3=x1+x2).

Definition 4 (Symbolic Domain) Our symbolic state
has two components, a map from variables to Interval
Cubes, and a Density Cube representing the joint density
approximation. Let Var denote the set of variables, and
P be the power set, the domain of the symbolic state is

Σ=P(Var 7→I) 7→(R+)
∏

N

i=1Mi

a symbolic state σ#∈Σ
will have the form

σ#=
〈

{x1 7→I
x1

M1
,x2 7→I

x2

M2
,...},P 7→P

Prog
M

〉

.

The symbolic domain expresses a piecewise constant
interpolation of the joint probability density at a
program point. Hereon, we refer to the set of all the
variables in the state σ# as x={x1,x2,...,xN}. The
shape vectors M1, M2, ... will remain the same
throughout the program.

3.2 Analysis

We approximate the posterior density function of
variables in our symbolic states. Table 1 presents the
correspondence of the objects in concrete semantics
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to symbolic states. While a concrete state has a sin-
gle valuation of variables and evaluates to a single
density value, our symbolic state stores all possible
variable values in Interval Cube and the correspond-
ing joint probability density in Density Cube. As the
concrete semantics for a expression maps state to
values, the symbolic semantics map symbolic state
to Interval Cube; and as the concrete semantics
for a statement map state to state, our symbolic
semantics map symbolic state to symbolic state.

Analysis of Expressions. The symbolic trans-
former JEK# on an expression E takes a symbolic
state σ# :Astate as input, and outputs an Interval
Cube. Figure 3 presents the rules. We explain two
important cases in detail:
• JE1 op E2K

#
: For the arithmetic/boolean

operation on two Interval Cubes, which may
not always have the same shape, the result-
ing Interval Cube needs to contain all possible
value combinations. Specifically, for I

E1

M1
with

shape M1 = [M11,...,M1N ] and I
E2

M2
with shape

M2 = [M21, ... , M2N ], the result I
E1 op E2

K
has

shape K = [K1, ... ,KN ] with Ki = M1i ×M2i to
capture all the combinations of elements from I

E1

M1

and I
E2

M2
. If M1 and M2 are not of the same

length, we reshape both I
E1

M1
and I

E2

M2
to have

the same dimension, by letting some M1i or M2i

to have value 1. We let the arithmetic or boolean
operation on the interval pairs be I

E1

M1
(m1) op

I
E2

M2
(m2) := [IE1

M1
(m1) op I

E2

M2
(m2), I

E1

M1
(m1)

op I
E2

M2
(m2)]. We handle the case with multiple

intervals analogously. This operation on multiple
Interval Cubes can be implemented efficiently
with the broadcast function in tensor libraries.
• Jd(E1,...,En−1).pdf(En)K: Similar to arithmetic
operator, we apply the mathematical density
d pdf( ) of the distribution d whose parameters
(e.g., mean, location, shape or variance) are intervals
obtained by evaluating E1,...,En−1, and it takes
the intervals of En for which we seek the density.
We denote the shape of the result Interval Cube
as K, which is computed from the element-wise
product of the shapes of the input Interval Cubes.

Analysis of Statements. Figure 4 presents the
transformers JSK# on statements S, which takes an
abstract state σ# :Astate as input, and outputs
an abstract state. We explain two important rules
where we modify Density Cube (the remaining
statements are standard or rely on these two rules):

• Jx ∼ d(E1, ... , En)K
#, Jfactor(E)K#: We first

evaluate d.pdf( ) of the expressions into an Interval
Cube, and multiply the current Density Cube
with the lower bound of intervals from the Interval
Cube. Then at the lower bound of each interval,
the density is the same as the one from concrete
semantics (Lemma 1). Intuitively, we discretize the
density function and use the density at the lower
bound to represent each interval. For convenience,
our discretization uses the density at the lower
bound. Using the density at the upper bound or
the midpoint is also possible, and our accuracy
guarantee (Theorem 3) still holds.
• Jif (E) then {S1} else {S2}K

#: We first solve the
results from two branches one conditioning on E and
the other on 1−E. The true boolean expressions
evaluate to 1 and false to 0 in our analysis, and we get
the interval cubes for E and 1−E from expression
rules (Figure 3). We then Join the result states by
adding up the Density Cubes from both branches.

Definition 5 (Joins) Join (t) adds the Density Cubes

from two states. Formally, σ#
1 tσ#

2 =σ#
1 (P 7→P

Prog
M

),

where each element inPProg
M

at locationm isσ#
1 (P )(m)+

σ#
1 (P )(m), with m=[m1,m2,...,mN ], mi∈{1,...,Mi},

M =[M1,M2,...,MN ]. Since we already initialized the

global variables with their Interval Cube, σ#
1 and σ#

2
should have the same variables and Interval Cubes. Then
the joint probability density P is changed to the sum
of the densities from both states. Similarly, we can define

Meet (u) by product of σ#
1 (P )(m) and σ#

1 (P )(m).

Algorithm. Algorithm 1 takes as input a proba-
bilistic program Prog, the shape vector M where
each element Mi is the number of intervals for
variable xi, and the interval bounds C (optional).
In Section 4, we describe an adaptive scheme to
automatically search for a proper C for the analysis.

First, it initializes the joint probability density P
with the single interval [1.0] (Line 2). Then, it splits
the value domain for each xi in SampledVars, which
are variables sampled from a prior distribution xi∼
d(E1,...,En) and not from deterministic assignments,
into Mi equi-length intervals in Ci (in the function
GetInitIntervals, Line 3-5). Mi is the i-th element
in M , and Ci is the i-th element in C.

The algorithm follows the analysis rules to get
the state at the end of the program (Line 6). Then
it computes the joint probability density estimation
f̂ , as a piecewise function of σ#(P ) (Line 7).
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JEK
#
7→(Astate 7→ Interval Cube)

JxK
# :=λσ

#
.σ

#
(x)

JcK
# :=λσ

#
.[c]

JE1[E2]K
# :=λσ

#
.let [c,c]=JE2K

#
σ
#

in JE1[c]K
#
σ
#

JE1 op E2K
# :=λσ

#
.let I

E1
M1

=JE1K
#
σ
#
, I

E2
M2

=JE2K
#
σ
#
, K=M1�M2

in I
E1 op E2
K

, where I
E1 op E2
K

(k)=I
E1
M1

(m1) op I
E2
M1

(m2)

Jd(E1,...,En−1).pdf(En)K
# :=λσ

#
.let I

E1
M1

=JE1K
#
σ
#
,...,I

En

Mn
=JEnK

#
σ
#
, K=

n
⊙

i=1

Mi,

in I
dpdf
K

, where I
dpdf
K

(k)=d pdf(I
En

Mn
(mn),I

E1
M1

(m1),...,I
En−1
Mn−1

(mn−1))

Fig. 3: Analysis of Expressions

JSK
#
7→(Astate 7→Astate)

JskipK
# :=λσ

#
.σ

#

JS1;S2K
# :=λσ

#
.JS2K

#
(JS1K

#
σ
#
)

Jx=EK
# :=λσ

#
.let I=JEK

#
σ
#

in σ
#
(x 7→I)

Jx∼d(E1,...,En)K
# :=λσ

#
.let P

M0
=σ

#
(P ), I

dpdf
K

=Jd(E1,...,En).pdf(x)K
#
σ
#
, in

let M=M0�K, in σ
#
(P 7→P

′

M
),

where P
′

M
(m)=P

M0
(m0)·I

dpdf
K

(k), for all m=m0�k,

m0∈{[m01,...,m0N ] |m0i∈{1,...,M0N}},[M01,...,M0N ]=M0,

k∈{[k1,...,kN ] | ki∈{1,...,KN}}, [K1,...,KN ]=K

Jfactor(E)K
# :=λσ

#
.letP

M0
=σ

#
(P ), IK =JEK

#
σ
#
, M=M0�K

in σ
#
(P 7→P

′

M
), where P

′

M
(m)=P

M0
(m0)·IK

(k)

where P
′

M
, P

M0
and P

K
are as above

Jobserve(d(E1,...,En−1),En)K
# :=λσ

#
.Jfactor(d(E1,...,En−1).pdf(En))K

#
σ
#

Jif (E) then {S1} else {S2}K
# :=λσ

#
.
(

Jfactor(E);S1K
#
σ
#
)

t
(

Jfactor(1-E);S2K
#
σ
#
)

Jfor (i in E1..E2) SK
# :=λσ

#
.Ji=E1; if (i≤E2)then{S; for (i in E1+1..E2)S}else{skip}K

#
σ
#

Fig. 4: Analysis of Statements

Definition 6 (Concretization of Symbolic States)
Define γ as the concretization function, s.t.
γ(σ#) = f̂ , where f̂(x) = σ#(P )(m) if x ∈
⊗N

i=1[I
xi

Mi
(m),Ixi

Mi
(m))⊂R

N for any m, and 0 other-

wise. Intuitively, f̂ is a piecewise constant interpolation
of σ#.

The result f̂(x) is an approximation of the
true unnormalized probability density function
f(x). In the concrete domain, the posterior
probabilistic density function is calculated as
p(x)= 1

z f(x), but the integration z=
∫
f(x)dx is

often intractable. We compute our approximation
ẑ using integration on the piecewise function:

Definition 7 (Integration for Normalizing Constant)
Suppose there are N sampled variables x in the program,

and let C =
⊗N

i=1[ai,bi]⊂R
N for each xi ∈ [ai,bi]⊂R

be the bounded domain used in the analysis (
⊗

represents the Cartesian Product on intervals on
R). We initialize σ#[x] = C in the analysis. Then
z=

∫

C
f(x) dx is approximated with ẑ =

∫

σ#[x]f̂(x) dx

=
∑

m∈M(
∏N

i=1(I
xi

Mi
(m) −I

xi

Mi
(m))·PP

M (m)).

The algorithm finally computes the posterior and
the marginals for every variable (Lines 8-11). When
the program has N variables, and each variable
has the same number of intervals M , Algorithm
1 has the time complexity O(N ·MN ) and space
complexity O(MN ).

Example 4 (Analysis Example) We use the following
example to show how analysis works. It is a simplified
version of the example in Section 1.
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Algorithm 1 Posterior Interval Analysis Algorithm

1: procedure PosteriorAnalysis(Prog, M , C)

2: σ#
init←{P 7→ [1]} . Initialize

3: for xi∈SampledVars(Prog) do

4: σ#
init[xi]←GetInitIntervals(xi,Mi,Ci)

5: end for

6: σ#←JProgKσ#
init . Apply analysis rules

7: f̂(x)←PiecewiseFunc(σ#(P ))

8: ẑ←
∫

σ#[x]
f̂(x) dx; p̂(x)← 1

ẑ
f̂(x) . Posterior

9: for xi∈SampledVars(Prog) do

10: Marginal[xi]←
1
z

∫

σ#[x
−i]

p̂(x) dx−i . Marginalize

11: end for

12: return (p̂, Marginal)
13: end procedure

1 a ~ Uniform(0,4)
2 b ~ Uniform(0,4)
3 c = a + b
4 observe(Normal(c, 1), 5)
5 return a, b

Fig. 5: Analysis Example

Before the analysis starts, we initialize the Den-

sity Cube as σ#
init(P ) = [1.0], which is a scalar.

We also initialize the Interval Cubes of a and b as:
σ
#

init
(a) = [0, 1] [1, 2] [2, 3] [3, 4]

σ
#

init
(b) = [0, 1]

[1, 2]

[2, 3]

[3, 4]

In this example we use 4 equal-length
splits per sampled variable. AQUA infers the
variable support [0,4] from the Uniform priors. The user
can specify the different number of intervals or interval
bounds. Also, note that the Interval Cubes for σ#(a)
and σ#(b) are on different dimensions. This will later
us calculate the joint density or dependent expression.

Then we go over the program to apply the analysis rules:
Line 1. a ~ Uniform(0,4) defines the prior distribu-
tions for variables a. It times the initial Density Cube

σ#
init(P ) with the density of a being at the lower bounds

of the 4 intervals [[0, 1], [1, 2], [2, 3],[3, 4]] respectively:

(Ja~Uniform(0,4)Kσ#
init

)(P ) = 1/4 1/4 1/4 1/4

The first 1/4 approximates the probability density when
a∈ [0,1] and the second 1/4 approximates the density

when a∈ [1,2], and so on. Denote the result state as σ#
1 .

Besides the Density Cube σ#
1 (P ) , σ#

1 also contains the

Interval Cubes σ#
1 (a)=σ#

init(a) and σ#
1 (b)=σ#

init(b).
Line 2. b ~ Uniform(0,4) defines the prior distribu-
tions for variables b. Denote the density of b at the lower
bounds of the intervals as

P
b
= 1/4

1/4

1/4

1/4

,

then the result Density Cube representing the joint
density of a and b will be:

(Jb~Uniform(0,4)Kσ#
1 )(P ) = 1/16 1/16 1/16 1/16

1/16 1/16 1/16 1/16

1/16 1/16 1/16 1/16

1/16 1/16 1/16 1/16

,

where the element at column i and row j is calculated

from (σ#
1 (P ))(i)·P b(j)= 1/4*1/4. It represents the den-

sity when a is in the i-th interval of σ#
1 (a) and b is in the

j-th interval of σ#
1 (b). Intuitively the rows correspond

to the intervals of a and the columns correspond to the
intervals of b. We let different sampled variables occupy

different dimensions, e.g. σ#
1 (a) has shape Ma=(4,1)

while σ#
1 (b) has shape Mb = (1,4). Then the shape

of the Density Cube for the joint density is simply

Ma�Mb=(4,4). Let the result state be σ#
2 with σ#

2 (P )

given above and σ#
2 (a)=σ#

1 (a) and σ#
2 (b)=σ#

1 (b).
Line 3. c = a + b specifies a dependent variable c. The
Interval Cube of c and the corresponding Density Cube
after the statement will be:

(Jc=a+bKσ#
2 )(c) = [0, 2] [1, 3] [2, 4] [3, 5]

[1, 3] [2, 4] [3, 5] [4, 6]

[2, 4] [3, 5] [4, 6] [5, 7]

[3, 5] [4, 6] [5, 7] [6, 8]

,

(Jc=a+bKσ#
2 )(P ) = 1/16 1/16 1/16 1/16

1/16 1/16 1/16 1/16

1/16 1/16 1/16 1/16

1/16 1/16 1/16 1/16

,

where in Interval Cube the interval at column i and row
j is calculated from the i-th interval of σ#

2 (a) and j-th

interval of σ#
2 (b). For example, [2, 4] at column 3 row

1 is from a∈[2, 3] and b∈[0, 1], by adding the lower
and upper bounds respectively. Then, each element of

(Jc=a+bKσ#
2 )(c) has its corresponding probability density

in (Jc=a+bKσ#
2 )(P ) at the same position: for example,

[2, 4] at column 3 row 1 has the corresponding density

in (Jc=a+bKσ#
2 )(P ) at column 3 row 1 being 1/16. Let

the result state be σ#
3 with σ#

3 (c) given above and

σ#
3 (P )=σ#

2 (P ), σ#
3 (a)=σ#

2 (a), and σ#
3 (b)=σ#

2 (b).
Line 4. observe(Normal(c, 1), 5) means that the
observed data (which is 5) follows a Normal distribution
with mean being c and variance 1. In Bayesian terminol-
ogy, it defines a likelihood function as Normal pdf(5,c,1).
To simplify the notation, we let

lik(c)=Normal pdf(5,c,1)=
1√
2π

e−
(5−c)2

2
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Since c can take multiple intervals, the result Density
Cube is

(Jobserve(Normal(c, 1), 5)Kσ#
3 )(P ) =

1/16*lik(0) 1/16*lik(1) 1/16*lik(2) 1/16*lik(3)
1/16*lik(1) 1/16*lik(2) 1/16*lik(3) 1/16*lik(4)
1/16*lik(2) 1/16*lik(3) 1/16*lik(4) 1/16*lik(5)
1/16*lik(3) 1/16*lik(4) 1/16*lik(5) 1/16*lik(6)

,

where each entry is by replacing c with the lower bound of

each interval in σ#
3 (c). Note that the density is accurate at

the lower bound of each interval, e.g. when a=2 (the lower

bound of the third interval in σ#
3 (a)) and b=0 (the lower

bound of the first interval in σ#
3 (b)) the result density will

be exactly 1/16*lik(2) (the element in the third column
and first row in the result Density Cube). Using the density
for other values in the interval may result in a bounded
error. The error can go to 0 when the number of splits

goes to infinity (Theorem 3). Let the result state be σ#
4

with σ#
4 (P ) given above and other variables unchanged.

Line 5. return a, b will let AQUA output the normal-
ized joint density and marginalized densities of a and b.
AQUA will first approximate the unnormalized joint den-
sity with a function f̂(a,b), which is constructed by the

piecewise constant interpolation (Definition 6) of σ#
4 (P ).

Recall the columns and rows of σ#
4 (P ) correspond to the

values of a and b stored in σ#
4 (a) and σ#

4 (b). Then AQUA

normalize f̂(a,b) to get the normalized joint density. To
get the marginalized densities of a, AQUA integrates

f̂(a,b) over b. This is equivalent to summing up σ#
4 (P )

along the rows, interpolating and normalizing. Similarly,
to get the marginalized densities of b, AQUA integrates

f̂(a,b) over a, which is equivalent to summing up σ#
4 (P )

along the columns, interpolating and normalizing.

3.3 Formal Guarantee of Accuracy

In this section we formally derive how well the
symbolic state σ# approximates the joint unnor-
malized density function f and the posterior
density function p. To simplify the presentation,
we use x

(m) = [Ix1

M1
(m), ... , I

xN

MN
(m)] for all

variables, and analogously for x(m).

Definition 8 Wewrite γ(σ#)=Q f ifσ#(P )(m)=f(x)

when x=x
(m), which means the abstract transformers

are exact at the lower bounds. Further, if f is µ-Lipschitz
continuous, namely | f(x1)−f(x2) |≤ µ‖x1−x2‖, we
write γ(σ#)=µ

Q f.

In Lemma 1, to allow the posterior distributions to
be Lipschitz continuous, we put an additional restric-
tion on our programs: if an expression follows a dis-
crete distribution, it must be a branching condition,

e.g. b ∼ Uniform(0,1); if (b > 0.5){...}
where b > 0.5 is discrete. The result posterior
distribution of the statement will be a mixture of
conditional distributions and thus is continuous. For
example, it is acceptable to have the conditional
statement if (b > 0.5) {x ∼ Normal(0,1)}
else {x ∼ Normal(1,1)}. We do not provide for-
mal guarantee for the programs with discrete distri-
butions elsewhere, nevertheless, AQUA may still run
on those programs and give results with small error.

Lemma 1 (Discretization Error) The error of dis-

cretization is | f̂(x)−f(x) |≤ µ ·maxm‖x(m)−x
(m)‖

if x 6=x
(m), and if x=x

(m) the error is 0.

Lemma 1 shows that at any program point,
the error is bounded if we use the analysis result
γ(σ#) = f̂ as an approximation of joint density
function f , and the error will reduce when the
number of intervals is increased.

Proof of Lemma 1 We need to show that γ(σ#)=µ
Q f at

any program point. The proof is by structural induction
on Expressions and Statements.

First we prove for all expressions E, (JEK#σ#)(m)

= [(JEKσ)(x(m)), (JEKσ)(x(m))], and further JEKσ
about variable x is µE-Lipschitz continuous if JEKσ is
not the condition in if-then-else. We assume the function
J K binding σ and J K# binding σ# have the highest prece-
dence, so hereon we omit the parentheses around them.
The proof is by structural induction on expressions:

Base case for expressions: for constants,

JcK#σ#
0 (·) = [c,c] = [JcKσ0,JcKσ0], where JcKσ0 = c is a

constant and thus is 0-Lipschitz continuous. For variables,

JxK#σ#
0 (m) = [Ix, Ix] = [JxKσ0(x

(m)), JxKσ0(x
(m))]

and JxKσ0 about x is 1-Lipschitz continuous.
Inductive steps for expressions:
1. JE1[E2]K

# : E2 must be evaluated to a constant,
in the form of [c,c]. Then JE1[E2]K

#=JE1[c]K
#, and we

evaluate E1[c] in σ# as an individual variable.

2. JE1 op E2K
#σ#

0 : each element in the result

Interval Cube is JE1 op E2K
#σ#

0 (m) = [IE1 op I
E2 ,

I
E1 op I

E2 ]= [JE1Kσ0(x
(m)) op JE2Kσ0(x

(m)),

JE1Kσ0(x
(m)) op JE2Kσ0(x

(m))]. Because JE1Kσ0 and
JE2Kσ0 about x are Lipschitz continuous (by inductive
hypothesis), and op is one of +,-,*, JE1 op E2Kσ0 about
x is Lipschitz continuous. If op is /, we only allow E2 to
be a non-zero constant. If op is >, we represent the result
True and False with 0 and 1 respectively. If JE1 >E2

is not the condition in the conditional statements, we
require the operands of > to be independent of x and
thus be Lipschitz continuous.
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3. Jd(E1,...).pdf(En)K
#σ#

0 : Let IEi

Mi
=JEiK

#σ#
0 for

i∈{1,2,...,n}, and Jd(E1,...).pdf(En)K
#σ#

0 =I
dpdf
K

.

Then each element in the Interval Cube Idpdf
K

(k)=

[d pdf (IEn

Mn
(mn),I

E1

M1
(m1),...), d pdf (IEn

Mn
(mn),

I
E1

M1
(m1),...)]=[d pdf (JEnKσ0(x

(k)),JE1Kσ0(x
(k)),...),

d pdf (JEnKσ0(x
(k)), JE1Kσ0(x

(k)), ...)] =

[Jd pdf(En,E1,...)Kσ0(x
(k)),Jd pdf(En,E1,...)Kσ0(x

(k))].
And for all the distributions in this language, d pdfs
about x is Lipschitz continuous.

Then we prove the lemma for statements: as
the base case, we initialize f(·) = 1, and σ#(P )(·) =
1, so γ(σ#) =0

Q f (f is 0-Lipschitz continuous). By
applying the function GetInitIntervals in Algorithm 1,
we have the initial splits for all variables x, and
σ#(P )(m)=1 for any m as the index of density cube.

Then (σ#) =0
Q f . Suppose γ(σ#

0 ) =µ0

Q f0 holds before

statement S. In inductive steps we prove γ(σ#
1 )=µ1

Q f1

where σ#
1 =JSK#σ#

0 , and f1=(JSKσ)(L) is true density
function after the statement.

We apply structural induction on statements:

1. JskipK#: σ#
1 (x) = σ#

0 (x), f0(x) = f1(x)

=⇒ γ(σ#
1 )=µ1

Q f1 where µ1=µ0<∞.

2. Jx = EK#: σ#
1 (P ) = σ#

0 (P ) since this assign is
deterministic and does not change the density cube, so

f0=f1. Because γ(σ
#
0 )=µ0

Q f0, γ(σ
#
1 )=µ1

Q f1.

3. JS1;S2K
#: Let σ0 be the concrete state with variable

x before the statement, and let σ1 be the concrete state
after the statement, namely σ0(L)=f0(x) and σ1(L)=
f1(x). Then, since γ(σ

#
0 )=µ0

Q f0, by inductive hypothesis,

(JS1K
#σ#

0 )(P )(m) = f1(x
(m)) = (JS1Kσ0)(L)(x(m)),

and f1 is µ1-Lipschitz continuous. Let σ#
1 = JS1K

#σ#
0 ,

then γ(σ#
1 ) =µ1

Q f1. Apply inductive hypothesis again,

(JS2K
#σ#

1 )(P )(m) = f2(x
(m)) = (JS2Kσ1)(L)(x(m))

and f2 is µ2-Lipschitz continuous. So γ(σ#
2 )=µ2

Q f2.

4. Jfactor(E)K#: In concrete semantics, let (JEKσ0)
be the result of evaluating E. The true density function
is derived as f1(x) = f0(x) · ((JEKσ0)(x)). In sym-

bolic semantics, JEK#σ#
0 is the interval cube where

(JEK#σ#
0 )(m) = [(JEKσ0)(x

(m)), (JEKσ0)(x
(m))].

Then σ#
1 (P )(m) = σ#

0 (P )(m) · ((JEKσ0)(x
(m)))

=⇒ σ#
1 (P )(m)=f1(x

(m)). To show f1 is µ1-Lipschitz
continuous, | f1(x1)−f1(x2) |≤ µ0‖x2−x1‖ | f1(x1) |
+ | f0(x1)− f0(x2) || f0(x2) | = (µ0 | f1(x1) | +µE |
f0(x2) |) ‖x2 −x1‖ = µ1‖x2 −x1‖, where µE is the
Lipschitz constant of the expression JEK (see the proof

for expressions below). This implies γ(σ#
1 )=µ1

Q f1.

5. Jobserve(d(E1,...,En−1),En)K
#: by Jfactor(E)K#

rule above.

6. Jx∼d(E1,...,En)K
#: First, we evaluate the expres-

sion Jd(E1, ... ,En).pdf(x)K
#σ#

0 to get I
dpdf
K

(see the
proof for expressions below). According to the analysis

rule in Figure 4, σ#
1 (P )(m) = σ#

0 (P )(m0) · IdpdfK
(k).

Also, f1(x) = f0(x) ·(Jd(E1, ... , En).pdf(x)Kσ0)(x).

By inductive hypothesis, σ#
0 (P )(m) = f0(x

(m)),

so σ#
1 (P )(m) =σ0(x

(m)) · Idpdf
K

(k) = f1(x), which

implies γ(σ#
1 ) =µ1

Q f1, where µ1 is the Lipschitz
constant of f1. To prove f1 is µ1-Lipschitz con-
tinuous, | f(x1) − f(x2) |≤| f(x1) · d pdf(x1)
−f(x2) ·d pdf(x2) | ≤ µ0· | d pdf(x1) | + | d pdf(x1)−
d pdf(x2) ||f0(x2) |=µ1<∞. Therefore, γ(σ#

1 )=µ1

Q f1.

7. Jif (E) then S1 else S2K
#σ#

0 =

(Jfactor(E); S1Kσ
#
0 ) t (Jfactor(1− E); S2Kσ

#
0 ). After

evaluating the statement in the true branch we get

γ(σ#
T )=µT

Q fT , and after evaluating the false branch we

get γ(σ#
F )=µF

Q fF . Then (σ#
T tσ#

F )(P )(m) =σ#
T (P )(m)

+σ#
F (P )(m) = fT (x

(m))+fF (x(m)). Also, | f1(x1)−
f1(x2) |=| fT (x1) + fF (x1) − (fT (x2) + fF (x2)) |
≤ µT |x1−x2 | +µF |x1−x2 | = (µT +µF )‖x1−x2‖
=µ1‖x1−x2‖. Therefore, γ(σ#

1 )=µ1

Q f1.

8. Jfor (i in E1..E2) SK# is reduced to if-then-else
and sequencing. Thus the property holds. �

The error of AQUA’s approximation to the
normalizing constant z is also bounded:

Lemma 2 (Integration Error) Let U =
∏N

i=1 (bi−ai)
be the volume of C. For all the probability distribu-
tions supported in our language, the error is |z− ẑ| ≤
Uµmaxm‖x(m)−x

(m)‖. If we useM equal-length inter-

vals for each variable, |z−ẑ|≤Uµ 1
M (

∑N
i=1(bi−ai)

2)
1
2 .

Then |z−ẑ|→0 as M→∞.

Proof of Lemma 2 Recall, all posteriors f in our lan-
guage (Section 2) are Lipschitz continuous. We derive
the error bound by applying the Lipschitz continu-
ous property of f and the triangle inequality. First,

ẑ =
∫

C
f̂(x)dx =

∑M

m

(

∏N
i (x(m)−x

(m))·p(m)
)

.

According to Lemma 8, f̂ is a quantization of f , meaning
f̂(x) = f(x) at the points x = x

(m), while for other

x∈(x(m),x(m)), f̂(x)=f(x(m)). Then

|z−ẑ|= |
∫

C

f(x)dx−
∫

C

f̂(x)dx| (Error term)

≤
∫

C

|f(x)−f̂(x)|dx (Triangle ineq.)

≤U ·max
x

|f(x)−f̂(x)| (U is volume of C)

Then we prove maxx|f(x) − f̂(x)| ≤
µmaxm‖x(m)−x

(m)‖. For each interval box [x(m)],

f(x)−f̂(x)=f(x)−f(x(m)). Because f is µ-Lipschitz
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continuous, |f(x) − f(x(m))| ≤ µ‖x − x
(m)‖ ≤

µmaxm‖x(m)−x
(m)‖. �

Moreover, the integration error bound above
will decrease when we decrease the interval length,
or increase the number of intervals. Then at the
end of the analysis, we approximate the posterior

probability density function p(x) on C as:

Definition 9 (Posterior Probability Density Approxima-
tion) Define p̂(x)= 1

ẑ f̂(x) as the approximation of p(x).

Now we show the end-to-end error of the analysis.
As Theorem 3 states, by applying sufficiently many
intervals, the random variables following AQUA’s
posterior estimation in C will converge in distri-

bution to the true posterior in C. Without loss of
generality, suppose we apply at least M equal-length
intervals for each variable in its domain [ai,bi], i.e.
M=min{M1,M2,...,MN}. And we refer p̂M (x) as
AQUA’s approximation of p(x) by applying at least
M equal-length intervals for each variable.

Theorem 3 (Convergence of Posterior Density Approx-
imation) Define FC(x) = 1

z

∫ x

−∞1[u∈C]· ·p(u)du as the
true cumulative distribution function (CDF) on C, where
z =

∫

C
p(x)dx, and F̂C,M (x) =

∫ x

−∞ p̂M (u)du as the
approximate CDF. Then

lim
M→∞

F̂C,M (x)=FC(x).

Proof of Theorem 3 Recall C =
⊗N

i=1[ai, bi], so a is
the lower bound of C. Given Lemma 1 for the quan-
tization error |f̂(x)− f(x)| ≤ µmaxm‖x(m)−x

(m)‖,
we know |

∫ x

a
f̂(u)− f(u)du| ≤

∫ x

a
|f̂(u)− f(u)|du ≤

θµmaxm ‖x(m) − x
(m)‖, where θ = ‖x − a‖. Using

M equal-length splits for each variables, we can write

maxx‖x(m)−x
(m)‖=

√

∑N
i=1

(

bi−ai

M

)2
= h

M where

h=

√

∑N
i=1(bi−ai)

2 is a constant.
By combining the error bounds in Lemma 1 and

Lemma 2 and applying triangle inequality (Tri. ineq.),
we show the convergence of the end-to-end error:

|F̂C,t(x)−FC(x)|

= |
∫ x

−∞p̂(u)du
∫

C
p̂(x)dx

−
∫ x

−∞1[u∈C]p(u)du
∫

C
p(x)dx

| (Definition 9)

= |
∫ x

a
f̂(u)du

ẑ
−
∫ x

a
f(u)du

z
| (Definition 7)

≤
z|
∫ x

a
f̂(u)−f(u)du|+

∫ x

a
f(u)du|z−ẑ|

ẑz
(Tri. ineq.)

≤
z(θµh/M)+

∫ x

a
f(u)du|z−ẑ|

ẑz
(Lemma 1)

≤
z(θµh/M)+

∫ x

a
f(u)du(Uµh/M)

ẑz
(Lemma 2)

≤ zθµh+FC(x)Uµh

M ·ẑz
→0 as M→∞
Then θ, µ (Lipschitz constant of f), z (normalizing
constant), U (volume of C), and FC(x) are all con-
stants regarding M , and ẑ → z > 0 as M →∞. Hence
| F̂C,t(x)−FC(x) |→0 as M→∞. �

We allow a user to provide a bounded domain
C, or infer it with automatically with a heuristic
(Section 4). Although AQUA’s formal guarantee is
in a bounded domain, it can give runtime warnings
when any prior or likelihood has probability greater
than a given threshold on the rest of the domain
R

N−C. If AQUA does not give any warning, the
final error caused by truncating infinite domain
into C will be smaller than the threshold.

4 AQUA Optimizations

Adaptive Intervals. To find the suitable bounded
intervals C=[C1,C2,...,CN ] that cover most proba-
bility, we design a adaptive algorithm (Algorithm 2)
to adjust C the based on the result from last run.
Algorithm 2 takes as inputs the program, the

vector of number of intervals, and two thresholds
t0 and tdist for deciding the interval bounds C.
Increasing Ci or increasing the number of intervals
in Ci will help reduce the approximation error.
The function GetInitBounds (Line 2) takes the

prior distribution of each xi as a rough estimate
of the distribution to determine an initial interval
split. If the domain of the prior distribution is

Algorithm 2 Posterior Interval Analysis with
Adaptive Interval

1: procedure PosteriorAdaptiveAnalysis(Prog,M ,t0,tdist)
2: C← GetInitBounds(Prog,t0) . C=[C1,C2,...,CN ]
3: changed ← True
4: while changed do . Stop if C no longer changes
5: (p̂,Marginal)←PosteriorAnalysis(Prog,M ,C)
6: changed ← False
7: for xi∈SampledVars(Prog) do . Adapt each Ci

8: p̂i(xi)←Marginal[xi]
9: if ∃xi∈Ci, p̂i(xi)<tdist then

10: ai← inf{xi | p̂i(xi)>tdist}
11: bi←sup{xi | p̂i(xi)>tdist}
12: Ci← [ai,bi]
13: changed ← True
14: end if

15: end for

16: end while

17: return (p̂, Marginal)
18: end procedure
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Table 2: Program Description and Characteristics

Description Distributions #D #N

prior mix Mixture model[14] B×(N+N)×T 10 10 1
zeroone Bayesian neural network[15] U2×M20 20 2
tug Causal cognition model[16] U2×(N+N)2×B40 40 2
altermu Model with param symmetry[17] N3×N40 40 3
altermu2 Model with param symmetry[17] U2×N40 40 2
neural Bayesian neural network[18] U2×(B×M)39 39 2
normal mixture Mixture model with mixing rate[19] N2×Be×(B×(N+N))63 63 3
mix asym prior Mixture model with scale params[19] N2×G2×(B×(N+N))40 40 4
logistic Logistic regression[19] U2×(B×M)100 100 2
logistic RW Reweighted logistic regression[19, 20] U2×Be100×(B×M)100 100 102
anova Linear regression [19] U2×N40 40 2
anova RP Localized linear regression[19, 21] U2×G40×N40 40 42
anova RW Reweighted linear regression[19, 20] U2×Be40×N40 40 42
lightspeed Linear regression[19] N×U×N66 66 2
lightspeed RP Localized linear regression[19, 21] N×U×G66×N66 66 68
lightspeed RW Reweighted linear regression[19, 20] N×U×Be66×N66 66 68
unemployment Linear regression[19] N2×U×N40 40 3
unemployment RP Localized linear regression[19, 21] N2×U×G40×N40 40 43
unemployment RW Reweighted linear regression[19, 20] N2×U×Be40×N40 40 43
timeseries Timeseries analysis[19] U3×N39 39 3
gammaTransform Transformed param[9] G 0 3
GPA Hybrid continuous & discrete distr.[22] B×(B×(A+U)+B×(A+U)) 1 3
radar query1 Bayesian network in robotics[7] B×(A+B)×U×N×(Tr+Tr) 2 6
radar query2 Bayesian network in robotics[7] B×(A+B)×U2×N×Tr 1 6

Distributions: A: Atomic, B: Bernoulli, Be: Beta, G: Gamma, M: Softmax, N: Normal, T: Student-T, Tr: Triangular, U: Uniform. ‘+’
represents the mixture of two distributions, and ‘×’ represents the product of the individual density functions in the joint probability
density function.

bounded in [ai,bi] where −∞ < ai < bi < ∞, e.g.
xi∼Uniform(a,b), AQUA divides [ai,bi] into Mi

equi-length intervals, each with length (bi−ai)/Mi,
where Mi is given in M by the user. If the distri-
bution is not bounded, e.g. xi∼Normal(0,1), the
user can specify a threshold t0 for AQUA to infer
Cis such that values from the prior being out of
Cis has probability smaller than t0. Otherwise by
default we set t0=4·10−32.

In each iteration, the algorithm applies the anal-
ysis on the current C (line 5) and check if we need
to adapt C. We adapt C when any variable xi has
density value p̂i(xi) being almost about 0 – smaller
than the user provided threshold tdist (e.g. 10

−8)
(line 8-12). We shrink Ci to focus on the smallest
area with density greater than a given threshold
tdist. With the same number of intervals Mi, the
smaller Ci will produce thiner intervals and result
in more accurate results. Practically, this adaptive
algorithm is as accurate but is much more efficient
than naively increasing the number of intervals
Mi on the whole initial domain Ci. Suppose the
program takes A adaptive iterations, and it has N
variables and each variable has the same number of
intervals M , Algorithm 2 has the time complexity
O(A ·N ·MN ) and the space complexity O(MN ).
In our experiments, A is usually less than 5.
Improving Inference for Many Local Vari-
ables. In this optimization we change the analysis

of statements in Section 3 to marginalize the local
variables as soon as possible. Local variables are
those defined and only used in local blocks (e.g. in
for-loop and if-then-else from Figure 4).
By marginalizing out the local variables, we

avoid repeatedly computing the joint density on the
unused variables. For example, in a robust model one
may naively calculate the joint density via f̂(x)=
∏D

i=1 d pdf(x,wi), where wis are local variables
defined in each loop body. This requires keeping
a (D+1)-dimensional density cube to capture all
the variables x and wis. Instead, our optimization
divides the above product into calculating the indi-
vidual d pdf(x,wi), when wi leaves its scope, so we
do not carry the current wi to the next iteration. In
each iteration we only operate on a 2-dimensional
Density Cube for variables x and a single wi. If
out of N variables in the program D are local vari-
ables we will have a time complexity O(N ·MN−D)
for Algorithm 1 (while the original is O(N ·MN )).

5 Methodology
We evaluate AQUA on 24 probabilistic programs
collected from existing literature. We compare the
execution time of AQUA on these programs with
other probabilistic programming languages: Stan [1],
PSI [7], and SPPL [9]. We implement AQUA in
Java using ND4J library for tensor computation,
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and run all experiments on Intel Xeon 3.6 GHz
machine with 6 cores and 32 GB RAM. For numeri-
cal stability, we use log probability/density (instead
of original probability/density) for Density Cube.
Benchmarks. Table 2 presents the benchmarks
obtained from the literature. Column Descrip-
tion summarizes the task of each program.
Column Distributions shows the distributions
of observable and latent variables. For example,
the distributions in program “prior mix” are one
Bernoulli (B), one Mixture of two Normals (N+N ),
and 10 Student-T distributions (T 10). All posterior
distributions are continuous. Column #D shows the
number of data observations, #N shows the number
of random variables in the program. The benchmarks
“prior mix”, “normal mixture”, “mix asym prior”,
“GPA”, “radar query1” and “radar query2” have
discrete distributions in the if-then-else conditions,
but the result posterior density functions are con-
tinuous and thus AQUA’s formal guarantee holds.
“zeroone” and “tug” have discrete distributions in
the intermediate results and posterior densities,
where AQUA cannot provide the formal guarantee.
However, Section 6.1 gives empirical evidence that
AQUA’s result error is very small.

Comparing Posterior Distributions. The
Kolmogorov-Smirnov (KS) statistic measures the
distance between two probability distributions.
We use the KS statistic for the accuracy evalu-
ation in the analysis. Let Ftruth and F̂ denote
the cumulative density functions of the posterior
distributions of the variable x from the original
input data and the noisy data respectively, the KS

statistic is defined as KS=supx|Ftruth(x)− F̂ (x)|,
namely, the maximum difference in the cumulative
distribution functions. The KS statistic takes a
value between 0 (most close distributions) and 1
(most different distributions). Therefore, smaller
KS statistic implies better accuracy.

Experimental Setup. We manually derived the
ground truth posterior distributions for all the pro-
grams. We run AQUA with the adaptive algorithm
described in Section 4. We use the equal number of
M=max{60,d40000(1/N)e} intervals for each vari-
able, where N is the number of sampled variables,
so that the total number intervals MN ≥ 40000.
Rounding up the total number of intervals to 40000
does not significantly affect time but will guar-
antee more accurate results. We test Stan on its
two major inference algorithms, NUTS (a variant

of MCMC) and ADVI (a variant of variational
inference). For fair comparison, we allow running
VI/NUTS until it reaches the same accuracy level
(in KS statistic) as AQUA and report the average
time, or until it reaches the maximum iterations
(fixed at 400000 for both VI and NUTS). We set the
timeout to be 20 minutes for all the inference tools.

6 Evaluation

6.1 Runtime/Accuracy Comparison

Table 3 presents the runtime and accuracy com-
parison of AQUA with Stan, PSI, and SPPL.
Column Program shows the name of the prob-
abilistic program. Columns Time (s) show the
execution time (in seconds) of each tool, averaged
across 5 runs. We report the total time for com-
puting joint density and marginals for all sampled
variables. Columns Error show the error (KS statis-
tic, Section 5) of each tool vs. the ground truth when
run for the same time, averaged across 5 runs.
Overall, AQUA (Column 2-3) solves the prob-

abilistic programs with average time 5.08s, median
time 1.35s. For 20 out of 24 programs, it takes less
than two seconds to compute the results. AQUA
results in average error 0.01, median error 0.01,
and maximum error 0.02. With our optimization
on local variables (Section 4), we are able to handle
the 7 robust programs which have 42-102 variables,
which might timeout with a naive approach.

Stan VI (Column 4-5) finishes fast but results in
significantly larger error than AQUA or Stan NUTS.
The average error from VI is 0.15, minimum error
is 0.03 and maximum error is 0.34. For all cases,
VI cannot reach the same accuracy level as AQUA.
While VI often fits the posterior means correctly
but it is not able to capture the joint distribution
shape especially when it is non-Gaussian (it is a
well known characteristic of VI). Stan NUTS
(Column 6-7) takes more time than AQUA to reach
the same level of accuracy of AQUA, although in
theory NUTS will converge to the true distribution
with enough iterations. AQUA provides the similar
(with difference < 0.01) or even better accuracy
(with smaller KS statistic) in all cases for NUTS
and NUTS fails to reach the same accuracy level
by the maximum number of iterations in 12 cases.
PSI (Column 8) and SPPL (Column 9) are not

able to give result in many cases. PSI does not finish
running within 20 minutes in 11 cases, or evaluates
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Table 3: Runtime Comparison for AQUA, Stan, PSI, and SPPL. Stan column shows time needed reach
AQUA’s accuracy.

Program AQUA Stan VI Stan NUTS PSI SPPL

Time(s) Error Time(s) Error Time(s) Error Time (s) Time (s)

prior mix 4.77 0.02 0.53 0.31 5.67 0.19 inte �

zeroone 0.98 0.00 0.44 0.21 630.73 0.21 91.16 �

tug 0.83 0.01 1.20 0.25 519.94 0.06 inte �

altermu 1.35 0.00 0.96 0.31 29.46 0.03 inte �

altermu2 0.76 0.00 0.75 0.34 25.98 0.07 inte �

neural 0.85 0.01 0.82 0.03 5.10 0.01 t.o. �

normal mixture 1.19 0.02 1.02 0.12 25.67 0.04 t.o. �

mix asym prior 24.63 0.02 1.04 0.09 16.41 0.03 t.o. �

logistic 0.99 0.02 0.74 0.07 17.31 0.02 t.o. �

logistic RW 1.87 0.01 15.37 0.09 72.45 0.02 t.o. �

anova 0.90 0.01 0.75 0.07 6.72 0.02 inte �

anova RP 1.55 0.01 6.89 0.07 77.48 0.02 t.o. �

anova RW 1.40 0.01 6.93 0.06 24.67 0.02 t.o. �

lightspeed 0.74 0.00 0.71 0.04 3.56 0.00 inte �

lightspeed RP 1.37 0.01 6.18 0.06 61.37 0.02 t.o. �

lightspeed RW 1.09 0.02 6.19 0.05 61.37 0.05 t.o. �

unemployment 1.44 0.02 0.64 0.21 5.07 0.01 inte �

unemployment RP 42.34 0.01 6.78 0.25 12.46 0.01 t.o. �

unemployment RW 27.41 0.02 7.07 0.23 2.53 0.01 t.o. �

timeseries 1.55 0.01 0.87 0.23 12.66 0.01 inte �

gammaTransform 0.72 0.00 0.62 0.05 3.01 0.01 inte 1.30
GPA 0.46 0.02 � � � � 0.12 0.05
radar query1 0.87 0.01 � � � � inte �

radar query2 1.82 0.02 � � � � inte �

Avg 5.08 0.01 3.17 0.15 77.12 0.04 � �

Median 1.35 0.01 0.99 0.10 20.99 0.02 � �

[time] : VI or NUTS takes more time than AQUA, or AQUA take more time than VI and NUTS.
[error ] Has the error (in terms of a KS statistic) larger than 0.01 from the best solution.

“�”: the PPL cannot work on the program. “t.o.”: timeout, “inte”: evaluates to unsolved integrals.

to unsolved integrals in 11 cases, since the exact inte-
gration in posterior calculation is often intractable.
SPPL does not allow transformed variables in
factor statements, which is essential to specify the
likelihood of the variables given observed data, and
thus is inapplicable to most of the programs.

Figure 6 presents the posterior densities from six
programs where Stan NUTS was not able to reach
the same accuracy level of AQUA, within maximum
iterations. X-axis shows the value of a variable in
the program, Y-axis shows the posterior probability
density of the variable. A solid blue line shows the
ground truth, a dashed red line shows the density
function computed from AQUA, the gray histogram
shows the density estimated with samples from Stan
NUTS after running for the same time as AQUA.
For each program we present the posterior from one
variable (the first one in alphabetical order); the pos-
teriors from other variables show a similar pattern.

These examples show that AQUA is able to
closely track the density of mixture models with

large difference in densities (“prior mix”), non-
differentiable distributions (“zeroone” and “tug”),
models with variable symmetries (in “altermu”
and “altermu2” such symmetries can cause non-
identifiability of variables from data), and some
robust models with strong correlation between
variables that can form complicated posterior
geometries (“anova RP”).

6.2 Estimating the Posterior Tails

We illustrate AQUA’s ability to capture tails on
several robust models. The distribution for robust
models are often more spread-out than the original
model, as they are designed to capture outliers in
the data. We consider two different robust models:
(1) Reparameterized-Localization (RP) [21], which
assumes that each data point is from its distribution
with a local variance variable; (2) Reweighting (RW)
[20], which down-weights potential outliers in the
data. We show the results from AQUA and NUTS
running for the same amount of time, together with
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Fig. 6: Programs handled by AQUA for which Stan NUTS is imprecise.
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Fig. 7: Capturing tails by AQUA and Stan NUTS

the ground truth. We omit VI since its accuracy
is significantly worse.

Figure 7 presents the comparison of AQUA and
NUTS. Plots (a),(e) are the full posterior distribu-
tions of original distribution. We highlight the left
tail [µ−4σ, µ−2σ], where µ is the posterior mean
of and σ its standard deviation. Plots (b),(f) show
the magnified tails from original distribution, plots
(c),(g) show the tails from the RP transformation,
and (d),(h) show the tails from RW transformation.
AQUA is able to capture the tails precisely for
both original and robust models, while Stan NUTS
is less precise on the robust models (e.g., its KS
statistic is 0.05 compared to AQUA’s 0.02).

7 Related Work
Probabilistic Programming Languages. In
recent times, Probabilistic programming languages
have gained traction in both academic communities
and industry. Most of these languages are thightly

coupled with specific algorithms for approximate
probabilistic inference. The majoristy of the lan-
guages are sampling-based [1, 23–29], and several
recent languages support variational inference [1, 30–
32]. These languages support a rich set of features
including general loops and some have support for
higher-order inference. These languages are Turing
complete and some of them also support advanced
features like higher order functions and composabil-
ity with neural networks. More recently, languages
like Edward and Pyro began combining Bayesian
reasoning with deep learning [30, 31]. However,
they are inherently approximate: sampling-based
approaches can reach accurate solution only in the
limit, while the variational inference-based may
not have theoretical guarantees (except for specific
distributions). Recently, there has been interest
in expanding the reach of exact or near-exact
inference methods. Although these methods are
computationally intractable in general, they can
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solve many practical problems. We next discuss
these techniques falling in the domain of symbolic
inference and volume computation.
Symbolic Inference. Researchers have proposed
several symbolic inference techniques in recent
years [7–9, 33]. Each of these techniques have
limitations which AQUA improves upon. DICE [33]
performs fast and exact inference by reducing
discrete probabilistic programs to weighted model
counting. It supports only programs with discrete
distributions.

Hakaru [8] and PSI [7] languages have constructs
for both discrete and continuous distributions. They
perform exact inference using computer algebra
(e.g., Hakaru usues Maple and PSI uses Mathemat-
ica). However, they often cannot solve integrals for
even modestly complicated probabilistic programs
with continuous distributions (as our evaluation has
also demonstrated for PSI).

SPPL [9] performs exact inference and supports
programs with discrete and continuous distributions.
Its inference is enabled by translating programs
into sum-product expressions. Nevertheless, it
does not allow users to specify the likelihood on
transformed variables with continuous distributions,
which is a necessity for many real-world models like
hierarchical regression or time-series models (such
as those used in our evaluation).

QCoral [34] and SYMPAIS [35] combine symbolic
execution with sampling to solve the satisfaction
probability of constraints. They aim to quantify the
probability of a target event by representing the path
conditions of the event with symbolic expressions.
They apply constraint solver and sampling to com-
pute the probability under the symbolic conditions.
However, they only compute the probability of a
given event and do not output the whole posterior.

Earlier works [36–40] perform symbolic inference
on graphical models. The distributions they support
in the graphical models are limited and are not able
to represent many models allowed in probabilistic
programs. Shachter et al. [36] works on discrete
distributions. Chang et al. [37] allows both discrete
and continuous distributions, but restricts contin-
uous distributions to be linear-Gaussian related.
Other works [38–40] use easy-to-integrate approx-
imations to replace the continuous distributions,
which include gaussian mixtures, truncated expo-
nentials, and polynomials. These approximations
may introduce inevitable error, and these works
do not provide any formal guarantee of the error

bound. On the contrary, AQUA avoids distorting
the distribution by using quantizations of the
original distribution. AQUA’s quantizations have
the guarantee to converge to the true distributions
when using sufficiently many splits (Theorem 3).

In contrast to these existing approaches, AQUA
supports a wide range of probabilistic models with
continuous distribution, involving transformed or
correlated random variables, and provides scalable,
exact (or approximately exact), and interpretable
solutions.
Volume Computation. Several works use vol-
ume computation methods to make a precise
approximation of probabilistic inference [2, 3, 10].
These approaches have constraints on the form of
programs they support, regarding conditioning and
continuous distributions. None of these systems can
support conditioning on continuous variables, and
thus we have not used them in our evaluation.

Sankaranarayanan et al. [10] estimates the prob-
ability upper and lower bounds for properties of
probabilistic programs. It applies symbolic execu-
tion, bounds the path probabilities with hypercubes
and does volume bound computation to estimate the
probability of the given property. FairSquare [2] ver-
ifies the fairness property of probabilistic programs.
It generates probabilistic verification conditions and
computes the weighted volume described by the con-
ditions. In the volume computation, it presents an
approach to discretize some continuous distributions,
but it is inflexible. For instance, it approximates
Gaussians with only five intervals. These techniques
compute only the probability of an event, not the
entire posterior. Sweet et al. [3] estimates the proba-
bility of information leakage of a query. It ensures a
sound over-estimation combining sampling with con-
colic execution. They support only discrete models.

8 Conclusion

AQUA is a new inference algorithm which works on
general, real-world probabilistic programs with con-
tinuous distributions. By using quantization with
symbolic inference, AQUA solved all benchmarks in
less than 43s (median 1.35s). Our evaluation shows
that AQUA is more accurate than approximate
algorithms and supports programs that are out of
reach of state-of-the-art exact inference tools.

Supplementary information. AQUA is
avaliable at https://github.com/uiuc-arc/AQUA.
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