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ABSTRACT

Whole genome sequencing (WGS) is quickly becoming the custom-

ary means for identification of antimicrobial resistance (AMR) due

to its ability to obtain high resolution information about the genes

and mechanisms that are causing resistance and driving pathogen

mobility. By contrast, traditional phenotypic (antibiogram) testing

cannot easily elucidate such information. Yet development of AMR

prediction tools from genotype-phenotype data can be biased, since

sampling is non-randomized. Sample provenience, period of col-

lection, and species representation can confound the association

of genetic traits with AMR. Thus, prediction models can perform

poorly on new data with sampling distribution shifts. In this work

ś under an explicit set of causal assumptions ś we evaluate the

effectiveness of propensity-based rebalancing and confounding

adjustment on AMR prediction using genotype-phenotype AMR

data from the Pathosystems Resource Integration Center (PATRIC).

We select bacterial genotypes (encoded as 𝑘-mer signatures, i.e.

DNA fragments of length 𝑘), country, year, species, and AMR phe-

notypes for the tetracycline drug class, preparing test data with

recent genomes coming from a single country. We test boosted

logistic regression (BLR) and random forests (RF) with/without

bias-handling. On 10,936 instances, we find evidence of species,

location and year imbalance with respect to the AMR phenotype.

The crude versus bias-adjusted change in effect of genetic signa-

tures on AMR varies but only moderately (selecting the top 20,000

out of 40+ million 𝑘-mers). The area under the receiver operating

characteristic (AUROC) of the RF (0.95) is comparable to that of BLR

(0.94) on both out-of-bag samples from bootstrap and the external

test (n=1,085), where AUROCs do not decrease. We observe a 1%-5%

gain in AUROC with bias-handling compared to the sole use of
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genetic signatures. In conclusion, we recommend using causally-

informed prediction methods for modelling real-world AMR data;

however, traditional adjustment or propensity-based methods may

not provide advantage in all use cases and further methodological

development should be sought.
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1 INTRODUCTION

Identification of antimicrobial resistance (AMR) fromwhole genome

sequencing (WGS) data is becoming increasingly prevalent due to

its ability to render high resolution about the genes and mecha-

nisms that drive resistance and mobility; such resolution cannot be

achieved using traditional in vitro antibiotic phenotypic suscepti-

bility testing (antibiogram) [9, 13]. In addition, the development of

miniaturized sequencing technology (Oxford Nanopore technology)

will drive the emergence of WGS as the de facto method for predic-

tion of AMR genes and resistance phenotype. After the generation

of sequence data, computational methods are used to predict the

AMR genes and elements. Several of these methods identify the

presence of AMR genes using curated databases; for instance, AMR-

PlusPlus and the Resistance Gene Identifier align sequence data to

the MEGARes and the Comprehensive Antibiotic Resistance Data-

base databases, respectively [1, 6]. Other methods predict the AMR
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phenotype by learning from datasets where bacteria cultured for in

vitro antibiotic susceptibility testing are also sequenced, obtaining

genotype-phenotype pairs; for instance, interpretable models for

multiple antibiotics have been presented [7], using data from the

Pathosystems Resource Integration Center (PATRIC) [4].

Development of AMRprediction tools based on genotype-phenotype

learning can be biased because the data repositories are made upon

non-randomized sampling. Sample provenience and period of collec-

tion can affect species representation and confound the association

of genetic traits with AMR [19]. In general, any real-world data

that is observational in nature can be contaminated with different

biases, since the knowledge on the data generation process or the

relations among variables involved in such a process is limited

[20]. Learning algorithms estimate conditional probability 𝑃 (𝑦 |𝑋 )

in various forms to predict 𝑦 from 𝑋 but the effect of variables in 𝑋

on to 𝑦 could be due to unmeasured components 𝑍 , which are the

true causes of both 𝑋 and 𝑦. Learning models in the presence of

bias usually does not affect prediction performance, i.e., 𝑃 (𝑦 |𝑋 ) can

be approximated with negligible error, regardless 𝑋 being the true

causes of 𝑦. As a result, prediction models can have high perfor-

mance in cross-validation, yet perform poorly in real-world settings

because of sampling distribution shift, e.g. species prevalence [21].

In this work śunder explicit causal assumptionsś we evaluate

the effectiveness of propensity-based rebalancing and confounding

adjustment on AMR prediction with external data characterized by

species, time, and location distribution shifts.

2 METHODS

2.1 Potential outcomes and propensity scores

We use Rubin’s notation of potential outcomes for calculating ex-

posure or treatment effects [23]. We assume a sample population of

𝑁 individuals, who were exposed or received a treatment𝑇 (binary,

for ease) and an health outcome 𝑌 was observed after treatment.

Each subject 𝑖 is represented by the tuple {𝑇𝑖 , 𝑌𝑖 , 𝑋𝑖 }, where 𝑋 is

a vector of preexposure variables (e.g., sex, insurance status). We

define 𝑌 0

𝑖
and 𝑌 1

𝑖
as the potential outcomes for person 𝑖 under treat-

ment/exposures 𝑇𝑖 = 0 and 𝑇𝑖 = 1, respectively. The individual

treatment effect (ITE) 𝜏 (𝑥) is the difference in the average potential

outcome for 𝑖 under both 𝑇 , conditional on the preexposure vector

𝑋 = 𝑥 , i.e. 𝜏 (𝑥) = E[𝑌 1

𝑖
− 𝑌 0

𝑖
| 𝑋𝑖 = 𝑥]. People cannot have two dif-

ferent exposures (e.g. taking/not taking a therapy or having/not hav-

ing a genetic trait) at the same time, so only one śfactualś outcome

can be observed. Thus, the ITE 𝜏 (𝑥) usually cannot be calculated as

one outcome is missing. However, if one assumes that potential out-

comes are independent of the exposure conditional on preexposure

vector, i.e., {𝑌 1

𝑖
𝑌 0

𝑖
}⊥ 𝑇 |𝑋 , then the ITE can then be calculated under

the strongly ignorable treatment assignment (SITA) assumption, as

𝜏 (𝑥) = E[𝑌 1 | 𝑇 = 1, 𝑋 = 𝑥] − E[𝑌 0 | 𝑇 = 0, 𝑋 = 𝑥] = E[𝑌 | 𝑇 =

1, 𝑋 = 𝑥] −E[𝑌 | 𝑇 = 0, 𝑋 = 𝑥]. By assuming SITA and considering

the distribution of 𝑋 , we can calculate the average treatment effect

(ATE) 𝜏01 as 𝜏01 = E[𝜏 (𝑋 )] = E[𝑌 | 𝑇 = 1] − E[𝑌 | 𝑇 = 0]. The

ATE can also be conveniently expressed as an odds ratio, however,

the marginal and conditional effects are not guaranteed to coincide,

i.e., the treatment effect measure is not collapsible [5]. ITE and ATE

can be calculated with 𝑥 being equally matched in exposure/control

Figure 1: Causal structure (partially directed acyclic graph)

for the effect of genetic signatures of bacteria on to anti-

microbial resistance, confounded by country of sampling,

year, and species.

groups but stratification becomes infeasible as the number of di-

mensions increases. One way to match individuals without crisp

stratification is via propensity scores. The propensity score 𝜋 (𝑥)

represents the probability of receiving a treatment or being exposed

to 𝑇 = 1 (assuming that the alternative is no treatment or exposure

𝑇 = 0) conditioned on the preexposure covariates 𝑋 , and is denoted

as 𝜋 (𝑥) = 𝑃 (𝑇 = 1|𝑋 = 𝑥). Through the conditional probability

𝜋 (𝑥), we can balance the probability of being exposed either to

𝑇 = 1 or 𝑇 = 0 given 𝑋 = 𝑥 . The propensity score can be esti-

mated using any regression technique from logistic regression to

Bayesian additive regression trees [10]. The original dataset can

be then rebalanced with respect to the exposure by matching pairs

of exposed/unexposed subjects with similar propensity scores, i.e.,

performing propensity score matching (PSM). Several algorithms

can be used for PSM, such as nearest neighbor or caliper [2].

2.2 Proposed approach

As previously described, the effect of a genetic trait of a bacterium

on the odds of carrying AMR could be confounded by the fact that

the genetic trait itself is characteristic of a species that has been

unevenly sampled among antimicrobial-resistant cases. The species

could be found to be more prevalent in specific locations or periods

of time, and these two variables could affect the overall prevalence

of AMR in a population or environment. By considering AMR as

an outcome, we can model the genetic trait akin to an exposure

confounded by species, locations and times. Figure 1 shows the

causal relationships among the aforementioned variables using a

partially directed acyclic graph (PDAG). By using d-calculus, e.g.

the back-door criterion [17], it is possible to identify a minimal

set of variable adjustments for the total effect [18] of one or more

genetic signatures on to AMR. Depending on the directions of the

arrows between species and genes, the minimum adjustment set

would include only the species, or the species, country and year

together. Additional arrows between genetic signature pairs or

between genetic signatures and the AMR phenotype do not change

this adjustment set. Therefore, it is safe to use the species, country

and year together as adjustment covariates for effect estimation

since they do not add bias for (counterfactual) prediction.
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Table 1: Sampling characteristics of the PATRIC genotypes

with known tetracycline antibiogram results (n=10,936)

Set (N) Domain Variable Res N (%) Sus N (%)

Training Country Canada 131 (59%) 90 (41%)
(9,851) Israel 70 (18%) 318 (82%)

South Africa 281 (56%) 224 (44%)
UK 567 (43%) 750 (57%)
USA 2150 (51%) 2059 (49%)
Other-Unkn. 1278 (40%) 1933 (60%)

Year 1905-2006 981 (70%) 492 (30%)
2007-2010 606 (56%) 472 (44%)
2011-2014 1363 (48%) 1451 (52%)
2015- 1479 (34%) 2877 (66%)

Species Streptococcus 919 (42%) 1254 (58%)
Salmonella 1102 (54%) 921 (46%)
Staphylococcus 322 (16%) 1693 (84%)
Other 2134 (67%) 1056 (33%)

Test Country/Year USA, 2015- 702 (65%) 383 (35%)
(1,085) Species Streptococcus 1 (100%) 0 (%)

Salmonella 4 (19%) 17 (81%)
Staphylococcus 0 (0%) 5 (100%)
Other 698 (67%) 350 (33%)

Using this explicit causal structure, we define the following data

rebalancing and adjusting strategies to handle bias: (i) simple co-

variate adjustment pooling together all 𝑘-mers with country 𝑐 , year

𝑦, and species 𝑠 variables; (ii) data rebalancing using PSM on 𝑐, 𝑠,𝑦

with respect to AMR phenotype 𝑟 , i.e. 𝑃 (𝑟 |𝑐,𝑦, 𝑠); (iii) covariate rank-

ing and pre-selection based on calculation of ATE of each 𝑘-mer

adjusted by 𝑐, 𝑠,𝑦 with respect to AMR; (iv) data rebalancing using

𝑘-mer clustering (since 𝑘-mers are differently distributed within

species, this would balance species oversampling regardless the

contribution of single 𝑘-mers to AMR). For the PSM, we compare

three different techniques: nearest neighbor matching with either

logistic regression (LR) or random forest (RF) score learning, and

coarsened exact matching. The 𝑘-mer clustering is done via logistic

principal component analysis (LPCA) [12] of the 𝑘-mer vectors,

then passed on to an agglomerative hierarchical average linkage

algorithm, selecting the best number of clusters by maximizing

the average silhouette values. Each bias-handling strategy can be

applied in conjunction with any machine learning model of choice

(whereas the base model is the one that uses only 𝑘-mers as input

to predict AMR), and here we use boosted LR (BLR) and RF [3, 8].

2.3 Data and experimental settings

We extract genotype-phenotype AMR data and metadata (country,

year, species) from the PATRIC repository (https://www.patricbrc.

org). For this work, we use the tetracycline class of antibiotics as

a use case (representing a whole antibiotic class as opposed to

single drug compounds, and among the most frequent in the data

base). Only bacterial genomes with an associated laboratory test are

considered, and only entries that have at least a known metadata

attribute. The bacterial genomes (nucleotides) are encoded into

𝑘-mers (strings of fixed length 𝑘), with 𝑘 = 17, chosen on the basis

of optimization from prior studies. Since the total number of 𝑘-

mers can be overwhelming (hundreds or tens of millions depending

on the species diversity), and since 𝑘-mers have very long-tailed

distributions of frequencies, we select the top 10,000 𝑘-mers based

on frequency, and the top 10,000 𝑘-mers based on information

gain with respect to the AMR phenotype (sole training set). These

20,000 are then re-ranked according to each rebalancing strategy,

e.g. calculating odds ratio on the basis of PSM for strategy (i) or

using the adjusted ATE for strategy (iii), and then the top 5,000

are fed to the internal feature selection of BLR or RF. Countries

with low frequency (<90% cumulative, after ordering) are grouped

into a single ’other’ category. Years are divided into quartiles, and

species are grouped at the genus level. A test set is created by

selecting instances from a single country, collected in the most

recent quartile year. This procedure respects the overlap condition

for PSM estimation and yet induces a shifted dataset.

We assess discriminating ability of models using the area un-

der the receiver operating characteristics (AUROC), estimated ro-

bustly using out-of-bag samples (10 bootstrap replicates) and on

the external shifted dataset. All parameter optimizations (number

of boosting iterations and of random trees, between 100 and 6,000)

and rebalancing procedures are done internally to the bootstrap-

ping. The PATRIC data preprocessing, LPCA, 𝑘-mer counting and

extraction śmade using KMC3 [11]ś are executed on the Univer-

sity of Florida’s HiPerGator3 high-performance computing cluster

(https://www.rc.ufl.edu/services/hipergator/). All subsequent analy-

ses are performed on an Intel laptop with i9-10885H CPU at 2.4GHz

and 32MB RAM, using R [22], including libraries cluster, mboost,

MatchIt, parallelDist, ranger, ROCR. R scripts and datasets are avail-

able at https://github.com/DataIntellSystLab/amr_bias.

3 RESULTS

After querying PATRIC (currently hosting over 80,000 bacterial

genomes) according to the inclusion criteria, we obtain 10,936 geno-

types and metadata pairs with an antibiogram test result for tetracy-

cline. Of note, additional 8,815 samples meet the inclusion criteria

but do not have a legit AMR phenotype. After removing the samples

from USA collected in the most recent year quartile, the training

Figure 2: Propensity score matching of sampling variables

(spe=species’ genus, cou=country, yeaq=quartile year) with

respect to AMR phenotype. Black dots show absolute stan-

dardized mean difference for the rebalanced data, whilst

white dots show the original data.
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Figure 3: Adjusted vs. crude ATE estimation of each genetic

signature (n=20,000) with respect to the AMR phenotype.

Left panel shows scatterplot of effect sizes (dashed lines

cross zero effect), whilst the right panel compares p-values

(dashed lines are p=0.05).

set comprises 9,851 instances, while the external test set includes

1,085. Table 1 shows sampling characteristics of the training and

test set, stratified by AMR phenotypes; it is evident how species,

country and year differ sensibly among the datasets and strata.

After performing PSM on the AMR phenotypes (with coarsened

exact matching being the best method compared to LR or RF nearest

neighbor), the sampling variables seem to be perfectly rebalanced

with respect to the phenotype (Fig 2). The ATE estimation per-

formed on each 𝑘-mer shows that there is dispersion between the

crude and the bias-adjusted values, but the direction of the effects

does not seem to be strongly affected, with only 8.1% of ATEs chang-

ing direction when adjusted (Fig 3). Of note, 20.2% of the 𝑘-mers

have a p-value>0.05 when the crude p-value<=0.05.

The discriminative performance of prediction models on the

out-of-bag samples drawn from the training data shows that RF is

comparable to BLR using both bias-handling strategies and no bias-

handling. The optimal number of boosting iterations for BLR and

number of trees for RF stabilizes around 3,000. For BLR, AUROCs

range from 0.93 obtained using any of the bias-handling strategies

(i)-(iii) to 0.9 without bias handling. For RF, AUROCs range from 0.95

with strategy (iii) to 0.9 without bias handling. The bias-handling

strategies yielded an increase in AUROC of 3% to 5% in the out-

of-bag validation. When applying the models on the external test

dataset, AUROC did not decrease significantly. The gain of the bias-

handling strategies was 1%-5%. Fig 4 shows all AUROCs for BLR

and RF with respect to each strategy.

4 DISCUSSION

In this work, we explore different strategies to assess putative bias

in prediction of AMR from real-world data under explicit causal

assumptions. In the PATRIC genotype-phenotype data relative to

tetracycline antibiotics, we find strong evidence of sampling and

confounding bias with respect to species, country, and year of col-

lection. Nonetheless, the change in effect for each individual genetic

signature with respect to ATE when comparing crude and adjusted

estimation is mild. Genetic signatures likely already contain infor-

mation that defines the species, but they likely cannot account for

prevalence changes in AMR by country and year. Causally-informed

methods improve discriminating ability of AMR as compared to

approaches that use only genetic signatures, but the gain is 5% or

less for most configurations.

One limitation of this approach is that we analyze only 20,000

gene signatures out of over 40 million. Half of the pre-selection

is based on information gain, which is basically a crude ATE and

could be biased. Another possible issue is that the test set is a single

realization and thus the AMR distribution shift is non-generalized.

Regardless the use of bias-handling, nonlinear ensemble classi-

fiers like the RF can be computationally burdensome to run even

after training. Given that bacterial sequencing is being increasingly

done in real-time and mobile settings [15], development of fast

classifiers is warranted, thus the choice of BLR seems favorable.

Here, we restrict interest to WGS but extension to metagenomics

data warrants future investigations. Studying bias in this setting

is complicated by the prevalence of multiple ś sometimes putative

ś AMR pathogens and species, which will confound the 𝑘-mer

composition. Moreover, geographical location has shown to have a

substantial effect of metagenomes [14, 16] so we hypothesize that

our results will be more pronounced in a metagenomics setting.

In conclusion, we recommend the usage of causally-informed

methods for the development of computational AMR prediction

models using observational, real-world data, when there is evidence

of bias in species sampling; however, traditional adjustment or

propensity-based methods may not provide advantage in all use

cases and further methodological development should be sought.

Figure 4: Discriminating ability in prediction ofAMRpheno-

type by random forest and boosted logistic regression with

different bias-handling strategies (vs. none) on ten out-of-

bag samples (top panel) and external test set (bottom panel).
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