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Abstract— Mobile sequencing technologies, including Oxford
Nanopore's MinlON, MkIC, and SmidgION, are bringing
genomics in the palm of a hand, opening unprecedented new
opportunities in clinical and ecological research and translational
applications. While sequencers now need only a USB outlet and
provide on-board preprocessing (e.g., base calling), the main data
analysis phases are tied to an available broadband Internet
connection and cloud computing. Yet the ubiquity of tablets and
smartphones, along with their increase in computational power,
makes them a perfect candidate for enabling mobile/edge mobile
bioinformatics analytics. Also, in on site experimental settings
tablets and smartphones are preferable to standard computers
due to resilience to humidity or spills, and ease of sterilization. We
here present an experimental study on power dissipation, aiming
at reducing the battery consumption that currently impedes the
execution of intensive bioinformatics analytics pipelines. In
particular, we investigated the effects of assorted data structures
(including hash tables, vectors, balanced trees, tries) employed in
some of the most common tasks of a bioinformatics pipeline, the k-
mer representation and counting. By employing a thermal camera,
we show how different £-mer-handling data structures impact the
power dissipation on a smartphone, finding that a cache-oblivious
data structure reduces power dissipation (up to 26% better than
others). In conclusion, the choice of data structures in mobile
bioinformatics must consider not only computing efficiency (e.g.,
succinct data structures to reduce RAM usage), but also power
consumption of mobile devices that heavily rely on batteries in
order to function.

Keywords—data structures, power dissipation, cache, k-mer,
mobile bioinformatics, edge computing

I.  INTRODUCTION

Mobile sequencing technologies are bringing genomics in
the palm of a hand, opening unprecedented new opportunities in
clinical and ecological research and translational applications
[1]. The chemistry behind is ‘nanopore’ sequencing, a
technology employing nanometer-sized holes on a membrane
through which a DNA molecule is passed and recognized.
Nanopore sequencing enables very long DNA strands to be
recognized (up to hundred thousands of bases), compared to
shorter fragments deriving from high-throughput sequencers,
e.g., lllumina (https://www.illumina.com/). Currently, Oxford
Nanopore Technologies Itd (https:/nanoporetech.con/) is the
sole relevant market supplier with several devices: the MinlON
sequencer, Mk1C, GridION, PromethION, and SmidgION. The
MinIlON sequencer weighs 90g and measures 10x3x2cm,
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making it the smallest sequencing device currently available on
the market. The maximum throughput is within the tens of
gigabyte range: sequence reads have a median length of a few
kilobases, but can reach hundreds of kilobases [2]. However, the
long read throughput of these devices is affected by a high error
rate, sensibly higher than other technologies, up to 10% for less
recent chemistry, but decreased over the years [3].

In the same manner, mobile and edge computing have risen
thanks to a strong smartphone/tablet market penetration, which
rendered mobile devices an ubiquitous form of computing
employed in different science domains, e.g., sociology [4-6],
biomedicine, and human-computer interaction [7, 8]. However,
the employment of mobile computing architectures is still
limited within bioinformatics, where software tools are bound to
desktop, sever, or cloud architectures, usually based on Intel-
compatible processors, thus rendering portable analytics still
unfeasible and impractical [9].

Nanopore’s MinlON output format is called FASTS, and it
is based on the standard Hierarchical Data Format 5 (HDFS,
http://www.hdfgroup.org/HDF5/), allowing for metadata
content. Since the reads exhibit high error rates and have a
peculiar length distribution, there has been a substantial
development of ad-hoc algorithms and data structures for
MinlON data analytics, with further development into data
interoperable libraries, integrated data processing pipelines [10],
and web-based tools at the consumer’s grade, e.g., the Metrichor
(https://metrichor.com).

Many sequencing analytics tools, e.g., de novo assembly,
metagenomics taxonomy, functional classification, rely on data
structures that exploit k-mers, i.e., strings of fixed length £.

De novo assembly refers to the reconstruction of an
organism’s genome by merging all the sequenced reads, and
often relies on the de Bruijn graph data structure built upon -
mers [11]. In the de Bruijn graph, nodes are k-mers, and two .-
mers are connected by an arc if they overlap exactly by (£-1)
characters, by aligning (or sliding) them starting from the end of
the first k-mer and the head of the second. For instance, the 7-
mers GATTACA and ATTACAT overlap by ATTAC. Once the
graph has been built, the genome is reconstructed by applying
an algorithm for Eulerian path discovery [12]. A number of
efficient data structures and algorithmic solutions for setting up
the de Bruijn graph and searching for Eulerian paths have been
devised and implemented into usable tools [13-14].

Assembly tools, as well as metagenomics classification
tools, must deal with sequencing error rates, generating
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erroneous k-mers, which can be filtered through different
approaches, based on overall frequency and/or consistency of
paths in the de Bruijn graph [15-17]. Bottom line, the parsing
and counting of all k-mers from reads, creating a table of all &-
mers and their frequencies, called the k-mer spectrum, is the
prerequisite of most downstream analysis. Calculating a k-mer
spectrum is an onerous task that has no trivial solution. Given
the size of sequencers’ output files, in the tens and hundreds of
gigabytes, a glut of diverse approaches has been devised [18-
24].

Several tools employ out-of-core approaches, i.e., utilizing
the disk in order to overcome the lack of RAM due to the size of
the genomic sequences [18]. Additionally, binary trees and
hashing techniques have been employed to speed-up the
computation of the k-mer spectrum, either correctly or
approximately [22-23], with genomes being represented
implicitly or explicitly by means of integers or strings [19, 24].

As the current trend in computing shows, “cache is the new
RAM.” Modern computers are not represented by the classic von
Neumann architectures, with a progressive gap between theory
and practice when comparing performances [13]. In fact, the
concept of one single memory has been superseded by a
hierarchy of memories with different performances [25]. From
CPU registers to memory caches of various levels (L1 to L3),
from RAM to disk and to the network, the performances degrade
progressively and severely. Merely counting the number of
machine instructions as a measure of algorithmic runtime does
not account the cache levels involved in the computation,
whereas the cache oblivious model [27] as opposed to the classic
one, allows to focus on a two-layered memory model, extending
its results to architectures with different memory hierarchies:
results obtained in the cache oblivious model hold in
architectures with three or more memory layers.

Contribution. In this work we address the feasibility of truly
portable k-mer representation and counting on mobile devices,
by assessing the power consumption of diverse, commonly used
k-mer-handling data structures. Additionally, we developed a
cache-oblivious Van Emde Boas tree [26] to assess the cache
efficiency usage on the power dissipation. By employing a
thermal camera, we retrieved the thermal field on a smartphone
running the counting algorithm, and we were able to compute
the overall power dissipation. Results show that employing a
cache-oblivious data structure can reduce the total power
dissipated by 26% as compared to other data structures.

Overview. This paper is organized as follows. Section IT will
introduce the principal data structures, and issues regarding
them, employed in the bioinformatics field to tackle the k-mer
representation and counting problem, motivating its importance.
Section IIT will illustrate the experimental setup employed in the
computation of the power dissipation. Section I'V will illustrate
the results, discuss them and draw conclusions.

II. K-MER REPRESENTATION AND COUNTING

The necessary steps to enable metagenomics, de novo
assembly and other related analytics on mobile devices include
initial parsing and processing read sequences into k-mers. Such
data processing must be executable in reasonable turnaround
time and with minimal side-effects, e.g., overheating, or

3202

excessive battery consumption. The analysis of high-throughput
sequencing data often requires a considerable amount of
memory and CPU resources, even when compressed data
structures are used [22-23]. Therefore, it is highly likely that
power efficient data structures are necessary.

The first issue with k-mer counting relies in the
representation itself of a k-mer. Counters parse a textual file
containing a string of 8-bit ASCII characters representing
individual nucleotide bases, namely adenosine (‘A’), cytosine
(‘C’), thymine (‘T’), and guanine (‘G’), to say nothing of
ambiguous bases, quality scores, and misplaced characters. The
most recent introduction of binary files, such as the FASTS file
format, still rely on the ASCII description of the genetic
sequence, output of a portable sequencer. A k-mer counter
therefore should choose whether to store the string-based
representation of the string [29], or to transcode the sequence
into a more memory efficient form [20, 30]. As DNA is based
on four nucleotides, one solution is to represent k-mers by
employing 2 bytes per nucleotide, for instance indicating with
00 (‘A”), 01 (‘C’), 11 (‘T’), and 10 (‘G’): such bitwise
compacted representation requires less memory when compared
with a string one [28], with no impact on performance. Hence,
the bitwise is the representation of choice of most of k-mer
counters.

The second issue is to efficiently count the k-mers from files
that can be very large. Usually, two different approaches are
sought: in-core and out-of-core, i.e., relying on the main
memory and utilizing the external mass storage, respectively. In
either case, appropriate data structures must be employed.
Popular data structures employed to store the k-mer spectrum
include hash-based and tree-based structures, exact (lossless,
collision-free) or probabilistic (i.e. lossy).

Hash tables are notoriously fast for item access, with O(1)
theoretical computational complexity, and usually implemented
by starting from a vector, or a contiguous portion of RAM.
However, such approach has several drawbacks. Several items
could be assigned the same hash value, thus rendering the
memory continuity layout impossible to maintain, requiring
either rehashing or collision lists. As the concurrent access to a
hash table is required in order to speedup computations, several
tools—see, for instance, [18]—employ minimizers, or shorter
hashes requiring less bits, in order to minimize the impact of
concurrent access.

Other approaches employ trees or a variation of such data
structure. For instance, in [23] the authors implemented a trie,
i.e., a non-binary tree whose nodes represent single nucleotide,
and a path from the root a genomic sequence. Vectors and arrays
were employed [24] in lieu of hashing with significant
performance improvement, especially in the context of parallel
processing of sequences reads. Such structures offer inherent
cache-efficient memory handling, and some trees also may be
laid out in memory to exploit the benefits offered by cache
memory layers.

III. POWER DISSIPATION

In order to perform a comprehensive assessment of the
power dissipation involved in the k-mer representation and
counting processes, we tested the major data structures
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employed by state-of-the-art software tools, namely: (i) a
resizable sorted vector; (ii) a red-black self-balancing tree; (iii)
and a hash table. To be consistent across tests, we used the ISO
C++14 programming language. Also, C++ has been proven one
of the top performing, portable, energy efficient programming
languages [31], a highly desirable property in the context of
application development for mobile devices [34].

Among the chosen data structures, only the sorted vector is
cache-efficient, as items are stored in a contiguous portion of the
main memory. Hash tables, in case of no collisions, store items
in a single memory block, however, owing to the hashing
properties, memory addresses are accessed randomly, thus
invalidating the spatial locality required by the cache. Trees are
node-based data structures with values and pointers, with each
node allocated at runtime in a non-necessarily contiguous
fashion, thus with negated cache benefits. However, tree-
enabling cache-oblivious data structures can be used, as
explained in the next subsection.

A. The Van Emde-Boas Tree

The use of cache-oblivious data structures has been recently
proposed in the bioinformatics field [32]. Such structures are
cache optimized without any prior knowledge of the cache
implementation [25]. In this experimental setup, we
implemented a binary tree employing the Van Emde Boas
memory layout [26].

Given a binary search tree, where each node has a constant
number of children, a recursive mapping from the tree nodes to
memory locations is made as follows, and pictured in Figure 1.
The tree is subdivided in half with respect to the height. This
operation leads to portions of the tree containing O(Vn) nodes,
being n the total number of nodes in the tree: the top containing
the root, and each sub-tree of the top-portion’s leaves. Then,
each fragment of the tree is assigned to a contiguous vector, in
order: the top, and each sub-tree starting from the leftmost one.
Then, recursively, each sub-tree is subdivided in the same
fashion until the base case is reached, i.e., a subtree consisting
of only three nodes, a root and two leaves. This recursive
mapping implements an associative array with m-bit integer
keys [26] storing a large number of elements and performing
operations in O(log m) time, or equally in O(log log n) time. We
refer the reader to [27] for a review of cache-oblivious binary
trees.

B. Experimental Setup

Our experimental setup has the objective of recording the
power dissipation in a common smartphone executing the k-mer
parsing, representation and counting. In order to measure the
power dissipation, we employed a Teledyne FLIR model A310
(cf. https://www.flir.com/products/a310/). This particular model
is capable of recording accurate temperature fields ranging from
-20 °C to +120 °C, with a £2% accuracy.

The smartphone of choice was an Apple iPhone 6, an ARM-
based smartphone, chosen because it has been the most
successful smartphone ever produced, accounting 222 million
units sold to date [33]. The experimental setup is depicted in
Figure 2, with the smartphone and thermal FLIR A310 camera
attached to the data processing computer, running the Microsoft
Windows operating system.
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Fig. 1 The Van Emde Boas binary tree recursive layout.

IV. RESULTS

We conducted the k-mer processing tests on the smartphone
by considering the k-mer spectrum of the publicly available
Escherichia Coli genome (NCBI accession SRR14875861 /
SRX11193265). All k-mers were encoded as 64-bits integers by
transcoding the ASCII sequence into a string of 2-bits per
nucleotide as described in Section 2.

Due to the limitations of RAM and permanent storage
allowed on the device, we limited the number of &-mers to fit the
maximum allowed size each of the considered data structures,
as managed by the operating system.

In order to be able to record the temperature field without
any interference, we developed an application in C++ and
Objective-C in Apple Xcode IDE, allowing the user to tap on a
button and starting the k-mer count with a delay sufficient for
the operator to place a distance from the thermal camera and
cause no thermal interference on the results.

We recorded the execution and temperature field of the
smartphone from the start of the execution up to 1,200 seconds
from the beginning. The thermal plots of the experiments and
the smartphone’s thermal field for each data structure are
depicted in Figure 3.

The last piece of information needed to compute the power
dissipation of each data structure, is the thermal conductivity
coefficient of the smartphone, being the power dissipation
determined as P = cr AT, with ¢y being the thermal conductivity
coefficient, while AT being the change in temperature. In order
to retrieve ¢y we conducted an additional experiment in a
controlled environment following the specifications from the
manufacturer. The total battery energy is 6.55 Wh (cf. Apple,
Inc. technical specifications), and we allowed the device to
navigate the web uninterrupted for 2 hours, reaching a
temperature of 37 °C, with an ambient temperature of 24 °C,
identical to the initial temperature of the device at rest. With the
energy data, time, and temperature increase we were able to
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Fig. 2 The experimental setup with the thermal camera, smartphone, and data processing workstation. On the monitor screen the thermal field is visible.

compute the thermal conductivity coefficient as cr=0.25 W/°C.
With the thermal coefficient determined we calculated the total
power dissipation for the four data structures under scrutiny, and
detailed in Table 1 (results are averaged over 10 independent
replications).

As one can see, of the four data structures, the most power
efficient ones are the sorted vector and the Van Emde Boas tree,
owing to their cache optimization, consuming on average 2.0 W
and 1.7 W, respectively. When compared to the most commonly
employed data structures, trees and hash tables that consume 2.3
W, we can conclude that, by implementing a k-mer counter with
a cache-oblivious data structure, the power dissipation can be
reduced by 26%, and thus the strain on the battery.

TABLE L. EXPERIMENTAL RESULTS OVER 10 REPLICATIONS
Do Smacure | P et | Fove D )
Sorted vector 32.5(2.3) 2.0 (0.5)
Red-Black tree 33.3(2.8) 2.3(0.7)
Hash table 33.5(2.8) 2.3 (0.5)
Van Emde Boas tree 31.2(24) 1.7 (0.5)

V. CONCLUSIONS

We conducted an experimental survey aimed at determining
the quantitative effects in terms of power dissipation for
different data structures used commonly by bioinformatics
analytics tools. Our tests were focused on k-mer-handling
processes, which are common to many analytics procedures,
from error correction, to genome assembly, to metagenomics
classification. We implemented three commonly used data
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structures—a sorted vector, a tree, a hash map—and additionally
developed a cache-oblivious data structure, the Van Emde Boas
tree. The thermal camera recording allowed us to measure the
power dissipation for the data structures, and showed how the
cache-oblivious Van Emde Boas tree achieves a 26% reduction
in power dissipation with respect to the state-of-the-art data
structures, i.e., trees and hash tables.

In conclusion, cache-oblivious data structures should be
considered as an advantageous and realistic option for the
development of mobile bioinformatics tools.
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