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Abstract— Mobile sequencing technologies, including Oxford 

Nanopore's MinION, Mk1C, and SmidgION, are bringing 

genomics in the palm of a hand, opening unprecedented new 

opportunities in clinical and ecological research and translational 

applications. While sequencers now need only a USB outlet and 

provide on-board preprocessing (e.g., base calling), the main data 

analysis phases are tied to an available broadband Internet 

connection and cloud computing. Yet the ubiquity of tablets and 

smartphones, along with their increase in computational power, 

makes them a perfect candidate for enabling mobile/edge mobile 

bioinformatics analytics. Also, in on site experimental settings 

tablets and smartphones are preferable to standard computers 

due to resilience to humidity or spills, and ease of sterilization. We 

here present an experimental study on power dissipation, aiming 

at reducing the battery consumption that currently impedes the 

execution of intensive bioinformatics analytics pipelines. In 

particular, we investigated the effects of assorted data structures 

(including hash tables, vectors, balanced trees, tries) employed in 

some of the most common tasks of a bioinformatics pipeline, the k-

mer representation and counting. By employing a thermal camera, 

we show how different k-mer-handling data structures impact the 

power dissipation on a smartphone, finding that a cache-oblivious 

data structure reduces power dissipation (up to 26% better than 

others). In conclusion, the choice of data structures in mobile 

bioinformatics must consider not only computing efficiency (e.g., 

succinct data structures to reduce RAM usage), but also power 

consumption of mobile devices that heavily rely on batteries in 

order to function.  

Keywords—data structures, power dissipation, cache, k-mer, 

mobile bioinformatics, edge computing 

I. INTRODUCTION

Mobile sequencing technologies are bringing genomics in 
the palm of a hand, opening unprecedented new opportunities in 
clinical and ecological research and translational applications 
[1]. The chemistry behind is ‘nanopore’ sequencing, a 
technology employing nanometer-sized holes on a membrane 
through which a DNA molecule is passed and recognized. 
Nanopore sequencing enables very long DNA strands to be 
recognized (up to hundred thousands of bases), compared to 
shorter fragments deriving from high-throughput sequencers, 
e.g., Illumina (https://www.illumina.com/). Currently, Oxford
Nanopore Technologies ltd (https://nanoporetech.com/) is the
sole relevant market supplier with several devices: the MinION
sequencer, Mk1C, GridION, PromethION, and SmidgION. The
MinION sequencer weighs 90g and measures 10×3×2cm,

making it the smallest sequencing device currently available on 
the market. The maximum throughput is within the tens of 
gigabyte range: sequence reads have a median length of a few 
kilobases, but can reach hundreds of kilobases [2]. However, the 
long read throughput of these devices is affected by a high error 
rate, sensibly higher than other technologies, up to 10% for less 
recent chemistry, but decreased over the years [3]. 

In the same manner, mobile and edge computing have risen 
thanks to a strong smartphone/tablet market penetration, which 
rendered mobile devices an ubiquitous form of computing 
employed in different science domains, e.g., sociology [4-6], 
biomedicine, and human-computer interaction [7, 8]. However, 
the employment of mobile computing architectures is still 
limited within bioinformatics, where software tools are bound to 
desktop, sever, or cloud architectures, usually based on Intel-
compatible processors, thus rendering portable analytics still 
unfeasible and impractical [9]. 

Nanopore’s  MinION output format is called FAST5, and it 
is based on the standard Hierarchical Data Format 5 (HDF5, 
http://www.hdfgroup.org/HDF5/), allowing for metadata 
content. Since the reads exhibit high error rates and have a 
peculiar length distribution, there has been a substantial 
development of ad-hoc algorithms and data structures for 
MinION data analytics, with further development into data 
interoperable libraries, integrated data processing pipelines [10], 
and web-based tools at the consumer’s grade, e.g., the Metrichor 
(https://metrichor.com).  

Many sequencing analytics tools, e.g., de novo assembly, 
metagenomics taxonomy, functional classification, rely on data 
structures that exploit k-mers, i.e., strings of fixed length k.  

De novo assembly refers to the reconstruction of an 
organism’s genome by merging all the sequenced reads, and 
often relies on the de Bruijn graph data structure built upon k-
mers [11]. In the de Bruijn graph, nodes are k-mers, and two k-
mers are connected by an arc if they overlap exactly by (k-1) 
characters, by aligning (or sliding) them starting from the end of 
the first k-mer and the head of the second. For instance, the 7-
mers GATTACA and ATTACAT overlap by ATTAC. Once the 
graph has been built, the genome is reconstructed by applying 
an algorithm for Eulerian path discovery [12]. A number of 
efficient data structures and algorithmic solutions for setting up 
the de Bruijn graph and searching for Eulerian paths have been 
devised and implemented into usable tools [13-14]. 

Assembly tools, as well as metagenomics classification 
tools, must deal with sequencing error rates, generating Supported in part by NSF SCH #2013998. 
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erroneous k-mers, which can be filtered through different 
approaches, based on overall frequency and/or consistency of 
paths in the de Bruijn graph [15-17]. Bottom line, the parsing 
and counting of all k-mers from reads, creating a table of all k-
mers and their frequencies, called the k-mer spectrum, is the 
prerequisite of most downstream analysis. Calculating a k-mer 
spectrum is an onerous task that has no trivial solution. Given 
the size of sequencers’ output files, in the tens and hundreds of 
gigabytes, a glut of diverse approaches has been devised [18-
24].  

Several tools employ out-of-core approaches, i.e., utilizing 
the disk in order to overcome the lack of RAM due to the size of 
the genomic sequences [18]. Additionally, binary trees and 
hashing techniques have been employed to speed-up the 
computation of the k-mer spectrum, either correctly or 
approximately [22-23], with genomes being represented 
implicitly or explicitly by means of integers or strings [19, 24]. 

As the current trend in computing shows, “cache is the new 
RAM.” Modern computers are not represented by the classic von 
Neumann architectures, with a progressive gap between theory 
and practice when comparing performances [13]. In fact, the 
concept of one single memory has been superseded by a 
hierarchy of memories with different performances [25]. From 
CPU registers to memory caches of various levels (L1 to L3), 
from RAM to disk and to the network, the performances degrade 
progressively and severely. Merely counting the number of 
machine instructions as a measure of algorithmic runtime does 
not account the cache levels involved in the computation, 
whereas the cache oblivious model [27] as opposed to the classic 
one, allows to focus on a two-layered memory model, extending 
its results to architectures with different memory hierarchies: 
results obtained in the cache oblivious model hold in 
architectures with three or more memory layers.  

Contribution. In this work we address the feasibility of truly 
portable k-mer representation and counting on mobile devices, 
by assessing the power consumption of diverse, commonly used 
k-mer-handling data structures. Additionally, we developed a 
cache-oblivious Van Emde Boas tree [26] to assess the cache 
efficiency usage on the power dissipation. By employing a 
thermal camera, we retrieved the thermal field on a smartphone 
running the counting algorithm, and we were able to compute 
the overall power dissipation. Results show that employing a 
cache-oblivious data structure can reduce the total power 
dissipated by 26% as compared to other data structures. 

Overview. This paper is organized as follows. Section II will 
introduce the principal data structures, and issues regarding 
them, employed in the bioinformatics field to tackle the k-mer 
representation and counting problem, motivating its importance. 
Section III will illustrate the experimental setup employed in the 
computation of the power dissipation. Section IV will illustrate 
the results, discuss them and draw conclusions. 

II. K-MER REPRESENTATION AND COUNTING 

The necessary steps to enable metagenomics, de novo 
assembly and other related analytics on mobile devices include 
initial parsing and processing read sequences into k-mers. Such 
data processing must be executable in reasonable turnaround 
time and with minimal side-effects, e.g., overheating, or 

excessive battery consumption. The analysis of high-throughput 
sequencing data often requires a considerable amount of 
memory and CPU resources, even when compressed data 
structures are used [22-23]. Therefore, it is highly likely that 
power efficient data structures are necessary. 

The first issue with k-mer counting relies in the 
representation itself of a k-mer. Counters parse a textual file 
containing a string of 8-bit ASCII characters representing 
individual nucleotide bases, namely adenosine (‘A’), cytosine 
(‘C’), thymine (‘T’), and guanine (‘G’), to say nothing of 
ambiguous bases, quality scores, and misplaced characters. The 
most recent introduction of binary files, such as the FAST5 file 
format, still rely on the ASCII description of the genetic 
sequence, output of a portable sequencer. A k-mer counter 
therefore should choose whether to store the string-based 
representation of the string [29], or to transcode the sequence 
into a more memory efficient form [20, 30]. As DNA is based 
on four nucleotides, one solution is to represent k-mers by 
employing 2 bytes per nucleotide, for instance indicating with 
00 (‘A’), 01 (‘C’), 11 (‘T’), and 10 (‘G’): such bitwise 
compacted representation requires less memory when compared 
with a string one [28], with no impact on performance. Hence, 
the bitwise is the representation of choice of most of k-mer 
counters.  

The second issue is to efficiently count the k-mers from files 
that can be very large. Usually, two different approaches are 
sought: in-core and out-of-core, i.e., relying on the main 
memory and utilizing the external mass storage, respectively. In 
either case, appropriate data structures must be employed. 
Popular data structures employed to store the k-mer spectrum 
include hash-based and tree-based structures, exact (lossless, 
collision-free) or probabilistic (i.e. lossy). 

Hash tables are notoriously fast for item access, with O(1) 
theoretical computational complexity, and usually implemented 
by starting from a vector, or a contiguous portion of RAM. 
However, such approach has several drawbacks. Several items 
could be assigned the same hash value, thus rendering the 
memory continuity layout impossible to maintain, requiring 
either rehashing or collision lists. As the concurrent access to a 
hash table is required in order to speedup computations, several 
tools—see, for instance, [18]—employ minimizers, or shorter 
hashes requiring less bits, in order to minimize the impact of 
concurrent access.  

Other approaches employ trees or a variation of such data 
structure. For instance, in [23] the authors implemented a trie, 
i.e., a non-binary tree whose nodes represent single nucleotide, 
and a path from the root a genomic sequence. Vectors and arrays 
were employed [24] in lieu of hashing with significant 
performance improvement, especially in the context of parallel 
processing of sequences reads. Such structures offer inherent 
cache-efficient memory handling, and some trees also may be 
laid out in memory to exploit the benefits offered by cache 
memory layers. 

III. POWER DISSIPATION 

In order to perform a comprehensive assessment of the 
power dissipation involved in the k-mer representation and 
counting processes, we tested the major data structures 
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employed by state-of-the-art software tools, namely: (i) a 
resizable sorted vector; (ii) a red-black self-balancing tree; (iii) 
and a hash table. To be consistent across tests, we used the ISO 
C++14 programming language. Also, C++ has been proven one 
of the top performing, portable, energy efficient programming 
languages [31], a highly desirable property in the context of 
application development for mobile devices [34]. 

Among the chosen data structures, only the sorted vector is 
cache-efficient, as items are stored in a contiguous portion of the 
main memory. Hash tables, in case of no collisions, store items 
in a single memory block, however, owing to the hashing 
properties, memory addresses are accessed randomly, thus 
invalidating the spatial locality required by the cache. Trees are 
node-based data structures with values and pointers, with each 
node allocated at runtime in a non-necessarily contiguous 
fashion, thus with negated cache benefits. However, tree-
enabling cache-oblivious data structures can be used, as 
explained in the next subsection. 

A. The Van Emde-Boas Tree 

The use of cache-oblivious data structures has been recently 
proposed in the bioinformatics field [32]. Such structures are 
cache optimized without any prior knowledge of the cache 
implementation [25]. In this experimental setup, we 
implemented a binary tree employing the Van Emde Boas 
memory layout [26]. 

Given a binary search tree, where each node has a constant 
number of children, a recursive mapping from the tree nodes to 
memory locations is made as follows, and pictured in Figure 1. 
The tree is subdivided in half with respect to the height. This 
operation leads to portions of the tree containing O(√n) nodes, 
being n the total number of nodes in the tree: the top containing 
the root, and each sub-tree of the top-portion’s leaves. Then, 
each fragment of the tree is assigned to a contiguous vector, in 
order: the top, and each sub-tree starting from the leftmost one. 
Then, recursively, each sub-tree is subdivided in the same 
fashion until the base case is reached, i.e., a subtree consisting 
of only three nodes, a root and two leaves. This recursive 
mapping implements an associative array with m-bit integer 
keys [26] storing a large number of elements and performing 
operations in O(log m) time, or equally in O(log log n) time. We 
refer the reader to [27] for a review of cache-oblivious binary 
trees. 

B. Experimental Setup 

Our experimental setup has the objective of recording the 
power dissipation in a common smartphone executing the k-mer 
parsing, representation and counting. In order to measure the 
power dissipation, we employed a Teledyne FLIR model A310 
(cf. https://www.flir.com/products/a310/). This particular model 
is capable of recording accurate temperature fields ranging from 
-20 °C to +120 °C, with a ±2% accuracy.  

The smartphone of choice was an Apple iPhone 6, an ARM-
based smartphone, chosen because it has been the most 
successful smartphone ever produced, accounting 222 million 
units sold to date [33]. The experimental setup is depicted in 
Figure 2, with the smartphone and thermal FLIR A310 camera 
attached to the data processing computer, running the Microsoft 
Windows operating system. 

IV. RESULTS 

We conducted the k-mer processing tests on the smartphone 
by considering the k-mer spectrum of the publicly available 
Escherichia Coli genome (NCBI accession SRR14875861 / 
SRX11193265). All k-mers were encoded as 64-bits integers by 
transcoding the ASCII sequence into a string of 2-bits per 
nucleotide as described in Section 2. 

Due to the limitations of RAM and permanent storage 
allowed on the device, we limited the number of k-mers to fit the 
maximum allowed size each of the considered data structures, 
as managed by the operating system.  

In order to be able to record the temperature field without 
any interference, we developed an application in C++ and 
Objective-C in Apple Xcode IDE, allowing the user to tap on a 
button and starting the k-mer count with a delay sufficient for 
the operator to place a distance from the thermal camera and 
cause no thermal interference on the results.  

We recorded the execution and temperature field of the 
smartphone from the start of the execution up to 1,200 seconds 
from the beginning. The thermal plots of the experiments and 
the smartphone’s thermal field for each data structure are 
depicted in Figure 3. 

The last piece of information needed to compute the power 
dissipation of each data structure, is the thermal conductivity 
coefficient of the smartphone, being the power dissipation 
determined as P = cT ∆T, with cT being the thermal conductivity 
coefficient, while ∆T being the change in temperature. In order 
to retrieve cT we conducted an additional experiment in a 
controlled environment following the specifications from the 
manufacturer. The total battery energy is 6.55 Wh (cf. Apple, 
Inc. technical specifications), and we allowed the device to 
navigate the web uninterrupted for 2 hours, reaching a 
temperature of 37 °C, with an ambient temperature of 24 °C, 
identical to the initial temperature of the device at rest. With the 
energy data, time, and temperature increase we were able to 

 

Fig. 1 The Van Emde Boas binary tree recursive layout. 
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compute the thermal conductivity coefficient as cT = 0.25 W/°C. 
With the thermal coefficient determined we calculated the total 
power dissipation for the four data structures under scrutiny, and 
detailed in Table 1 (results are averaged over 10 independent 
replications).  

As one can see, of the four data structures, the most power 
efficient ones are the sorted vector and the Van Emde Boas tree, 
owing to their cache optimization, consuming on average 2.0 W 
and 1.7 W, respectively. When compared to the most commonly 
employed data structures, trees and hash tables that consume 2.3 
W, we can conclude that, by implementing a k-mer counter with 
a cache-oblivious data structure, the power dissipation can be 
reduced by 26%, and thus the strain on the battery. 

TABLE I.  EXPERIMENTAL RESULTS OVER 10 REPLICATIONS 

Data Structure 
Final Temperature °C 

mean (st.dev) 

Power Dissipation (W) 

mean (st.dev) 

Sorted vector 32.5 (2.3) 2.0 (0.5) 

Red-Black tree 33.3 (2.8) 2.3 (0.7) 

Hash table 33.5 (2.8) 2.3 (0.5) 

Van Emde Boas tree 31.2 (2.4) 1.7 (0.5) 

 

V. CONCLUSIONS 

We conducted an experimental survey aimed at determining 
the quantitative effects in terms of power dissipation for 
different data structures used commonly by bioinformatics 
analytics tools. Our tests were focused on k-mer-handling 
processes, which are common to many analytics procedures, 
from error correction, to genome assembly, to metagenomics 
classification. We implemented three commonly used data 

structures—a sorted vector, a tree, a hash map—and additionally 
developed a cache-oblivious data structure, the Van Emde Boas 
tree. The thermal camera recording allowed us to measure the 
power dissipation for the data structures, and showed how the 
cache-oblivious Van Emde Boas tree achieves a 26% reduction 
in power dissipation with respect to the state-of-the-art data 
structures, i.e., trees and hash tables.  

In conclusion, cache-oblivious data structures should be 
considered as an advantageous and realistic option for the 
development of mobile bioinformatics tools.  
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