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ABSTRACT
Multilingual natural language understanding, which aims to com-

prehend multilingual documents, is an important task. Existing

efforts have been focusing on the analysis of centrally stored text

data, but in real practice, multilingual data is usually distributed.

Federated learning is a promising paradigm to solve this problem,

which trains local models with decentralized data on local clients

and aggregates local models on the central server to achieve a good

global model. However, existing federated learning methods as-

sume that data are independent and identically distributed (IID),

and cannot handle multilingual data, that are usually non-IID with

severely skewed distributions: First, multilingual data is stored on

local client devices such that there are only monolingual or bilin-

gual data stored on each client. This makes it difficult for local

models to know the information of documents in other languages.

Second, the distribution over different languages could be skewed.

High resource language data is much more abundant than low

resource language data. The model trained on such skewed data

may focus more on high resource languages but fail to consider

the key information of low resource languages. To solve the afore-

mentioned challenges of multilingual federated NLU, we propose a

plug-and-play knowledge composition (KC) module, called FedKC,

which exchanges knowledge among clients without sharing raw

data. Specifically, we propose an effective way to calculate a consis-

tency loss defined based on the shared knowledge across clients,

which enables models trained on different clients achieve similar

predictions on similar data. Leveraging this consistency loss, joint

training is thus conducted on distributed data respecting the pri-

vacy constraints. We also analyze the potential risk of FedKC and

provide theoretical bound to show that it is difficult to recover

data from the corrupted data. We conduct extensive experiments

on three public multilingual datasets for three typical NLU tasks,

including paraphrase identification, question answering matching,

and news classification. The experiment results show that the pro-

posed FedKC can outperform state-of-the-art baselines on the three

datasets significantly.
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1 INTRODUCTION
Natural language understanding (NLU) [39] is one of the fundamen-

tal tasks in natural language processing (NLP). Used as an umbrella

term, NLU refers to the efforts that make machines understand the

context and meaning of natural languages, and thus it covers a

variety of tasks including text classification, name entity recogni-

tion and sentiment analysis. Although NLU tasks have mainly been

studied for documents written in a single language, the joint analy-

sis of multilingual documents has attracted considerable attention

as well. With the increasing information shared over Internet and

mobile devices in a variety of languages, multilingual NLU is the

key to connect billions of people across the globe.

Existing work on multilingual NLU has been focusing on the

analysis of multilingual text data collected to a central server [34,

36]. In this paper, we study a practical and common scenario, in

which multilingual text data is stored in distributed devices (clients).

In many applications, it is difficult or even impossible to transmit

all the data to central server due to privacy concerns. The objective

is thus to comprehend multilingual documents without sharing raw

data among clients.

To conduct multilingual NLU on distributed data, federated learn-

ing [3, 19, 20, 32, 58] could be adopted as a learning paradigm. In

federated learning, a shared globalmodel is trained under the coordi-

nation of a central server while keeping the user data decentralized

on local clients. However, a straightforward adoption of federated

learning paradigm for multilingual NLU does not work. Existing

federated learning models assume that data are independent and

identically distributed (IID), but this does not hold true in multilin-

gual NLU. When data are non-IID, federated learning suffers from

training instability due to its training on distributed data. [26, 63].

Here we use an example to illustrate the non-IID issue faced

by many multilingual NLU tasks. Multilingual NLU is needed to

understand the text stored on users’ smart phones, and it is common

that smart phone applications support multiple languages. Apple

Siri and Amazon Alex support 21 and 8 languages respectively;
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Google search supports 149 languages; and Instagram supports 36

languages. Users set their preferred languages (usually just one or

two languages per user) for applications, and thus the data stored

on each user’s client is monolingual or bilingual. Therefore, the

data among different clients are very different not only in styles and

vocabularies but also in languages, leading to serious challenges

for federated learning. Furthermore, the amount of data in different

languages varies significantly. For example, the speakers of top

three widely used languages account for 20% global populations
1
.

Such a skewed distribution adds difficulty to the training of NLU

models in a federated learning framework.

Federated learning algorithms, including FedAvg [31], and Fed-

Prox [27], are proposed to train a global model based on distributed

data, but these methods cannot handle the aforementioned non-

IID challenges that are observed in multilingual NLU tasks. Using

FedAvg as an example, we explain how existing federated learn-

ing algorithm could fall short on non-IID data. In FedAvg, local

model parameters are aggregated by weighted sum as the global

model parameters, and weights are proportional to the amount of

training data on clients. Therefore, the global model may be dom-

inated by high resource languages and the information from low

resource languages could be ignored. Also, the distribution among

different languages could be skewed, and the distribution among

different classes could also be imbalanced. FedAvg may suffer from

poor performance on such non-IID data according to [27]. There

are some efforts toward solving the non-IID issues in federated

learning setting, which apply data augmentation via Mixup [60] or

knowledge distillation [15]. These approaches are applied on image

data. However, text data is a discrete sequence, which differs from

pixel data of images. Therefore, Mixup strategy [41, 59, 60] is not

suitable for the multilingual NLU task. As for knowledge distillation

methods used in federated learning framework [24, 29, 35, 44], they

usually need a shared auxiliary dataset. However, in multilingual

NLU tasks, low resource language data is already scarce, so the

requirement on extra auxiliary dataset cannot be met. All in all, ex-

isting federated learning algorithms may not address the challenges

faced by multilingual NLU tasks.

In light of these challenges, we propose a federated knowledge

compositionmechanism (FedKC) for multilingual NLU tasks. FedKC

takes advantage of federated learning framework to preserve users’

privacy, and leverages knowledge composition to exchange knowl-

edge (data embedding) among active clients. Specifically, we per-

form clustering on each client data to get the most representative

knowledge, i.e. clustered data centroids, then exchange the learned

data centroids among clients, breaking data island in federated

learning to overcome non-IID and data imbalance challenges. The

high-level learned knowledge is able to preserve data privacy, which

is examined by both theoretical analyses and empirical studies in

Section 5.6. The proposed consistency loss objective cannot be min-

imized directly because clients cannot access raw data in other

clients. To tackle this challenge, we propose to conduct cluster-

ing on each client’s data, use cluster centroids as the knowledge

extracted from each client, and exchange the knowledge among

clients. Because the centroids are the averaged data embeddings

1
https://en.wikipedia.org/wiki/List_of_languages_by_number_of_native_speakers

in each cluster, we name it knowledge composition (KC). The pro-

posed KC is a plug-and-play module, which can be easily applied

to multiple federated learning frameworks.

The contributions of the paper are summarized as following:

1) We propose a federated knowledge composition framework

which is able to mitigate the non-IID challenge and protect privacy

in multilingual natural language understanding tasks by exchang-

ing only high-level knowledge among clients; 2) We propose a

cluster-aware mechanism to reduce the approximation error in the

knowledge exchange process; 3) We provide theoretical analysis

for privacy guarantee in the knowledge transfer procedure; 4) We

conduct extensive experiments on three benchmark datasets on

multilingual natural language understanding, and the proposed

method outperforms baselines significantly.

Table 1: The differences between FedKC and other federated
learning methods. "model/data buffer storing" means stor-
ing last round global or local model, or sharing an auxiliary
dataset. Both FedMD and FedED are knowledge distillation-
based methods; both FedMix and XorMixFL extend mixup
to federated learning frameworks.

Method

model/data

buffer storing

mixed raw data sharing

(w/o privacy guarantee)

avg. embedding sharing

(w/ privacy guarantee)

FedAvg [31] – - -

FedProx [27] ✓ - -

MOON [25] ✓ - -

FedMD [35]/FedED [44] ✓ - -

FedMix [59]/XorMixFL [41] - ✓ -

FedKC (ours) - - ✓

2 RELATEDWORK
2.1 Multilingual Natural Language

Understanding
Natural language understanding (NLU) contains several sub-tasks,

e.g. paraphrase identification [21, 56, 57], natural language infer-

ence [30, 33, 37, 51], question answering [2, 5, 7, 55], news clas-

sification [6, 18], sentiment classification [45, 46, 52] and so on.

With the increasing demand in multilingual environment, multi-

lingual NLU has garnered extensive attention. Previous research

on multilingual NLU is usually based on traditional deep learn-

ing models such as convolutional neural network (CNN) [23] and

long short-term memory network (LSTM) [16] to learn multilin-

gual word or sentence representation. For example, [47, 49, 50]

learn multilingual word embedding; [53] leverages CNN to learn

language-agnostic sentence representation; [54] applies a multi-

task learning framework to learn character-based representation

via CNN; [36] proposes hierarchical attention based on LSTM to

learn multilingual document representation. However, with the

development of NLP, recent works [1, 34, 38, 48] are mainly based

on pre-trained multilingual language models such as mBERT [10],

XLM [9], and XLM-RoBERTa [8]. They are pre-trained on large

scale multilingual corpora, and then fine-tuned with few epochs to

achieve outstanding performance in multiple NLU tasks. However,

both traditional models and pre-trained models need centered data,

which may raise data privacy issues in many real-world scenarios.

2.2 Federated Learning
To solve the potential privacy issues of machine learning models

in practical use, federated learning has achieved more and more
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Fffigure1:Thefframeworkoffknowfledgecomposffitffion.Theredbackgroundpartcflustersdata,andcomputesthecentroffidsand
averagedpredffictffions.Theorangebackgroundpartcomputesapproxffimateconsffistencyflosswffithdffistrffibutedcentroffidsand
averagedpredffictffions.Fflowchartattopflefftcornershowsthestepsoffupfloadffinganddffistrffibutffingthemodeflanddata.

attentffionrecentfly.Federatedflearnffingaffimstoflearnahffigh-quaflffity
gflobaflwffiththeaffidoffmufltffipfleflocaflcflffientswhffiflefforbffiddffingdata
sharffingamongcflffients.FedAvg[31]ffisoneoffthemostrepresenta-
tffiveffederatedflearnffingmethods.Itperfformsflocaflstochastfficgradffi-
entdescentonflocaflcflffientsandtheaggregatesmodeflparameters
onserver.However,FedAvgtraffinffingsometffimesffisnotstabfle[27].
Thereffore,FedProx[27]addsreguflarffizertopreventparametersup-
datffingtooffarawayffromparametersffinflastcommunfficatffionround.
TospeedupFedAvgconvergence,FedAdagrad[40],FedYogffi[40],
andFedAdam[40]areproposed.Tohandfletheheterogeneffityoff
flocafldatadffistrffibutffionffincflffients,thereffisaflotoffworkbasedon
contrastffiveflearnffing,dataaugmentatffionandknowfledgedffistffiflflatffion.
MOON[25]fleveragescontrastffiveflearnffingtofforceparametersto
becflosertogflobaflparametersffinflastroundthanflocaflparametersffin
flastround.FedMffix[59]andXorMffixFL[41]extendMffixup[60],one
popuflardataaugmentatffionmethod,toffederatedflearnffing.How-
ever,ffitffisdffifficuflttoappflymffixuptoachffievegoodperfformance
ontextdata[4].FEDDISTILL[64],FedMD[24],FedED[44]are
threemethodsbasedonknowfledgedffistffiflflatffion.However,FedMD
andFedEDneedanextrashareddatasettoperfformknowfledge
dffistffiflflatffion,whffichffisnotavaffiflabfleffinmanyreafl-worfldcases.For
FEDDISTILL,ffitneedstoflearnagenerator.Aflthoughffitffiseffectffive
onffimages,ffitffisnoteasytobeextendedtotextdata,whffichffisffin
adffiscretespaceandhardtogenerate.Comparedtotheseffeder-
atedflearnffingmethods,theproposedFedKCdoesnotneedtohofld
asharedauxffiflffiarydataset,anddoesnotneedtohofldflastround
gflobaflorflocaflmodeflbutonflyexchangesaveragedembeddffing.We
aflsosummarffizethedffifferencebetweentheproposedFedKCand
otherffederatedflearnffingmethodsffinTabfle1.

3 BACKGROUNDANDPRELIMINARIES

3.1 ProbflemFormuflatffion

Theffederatedflearnffingsettffingffincfludesacentraflserverand
N cflffients.ThedatasetoncflffientffiffisdenotedasDffi =

{(sffi1,y
ffi
1),...,(s

ffi
nffi,y

ffi
nffi)},wheres

ffi
jffisthetextcontent,y

ffi
jffisthefla-

befloffsffij,andnffiffisthenumberofftraffinffingffinstancesffinDffi.The

goafloffffederatedflearnffingffistoflearnagflobaflmodeflF(sffi) →yffi
wffithdecentraflffizeddatastorage.Inthffispaper,weffocusondevefl-
opffingffederatedflearnffingaflgorffithmsfformufltffiflffinguaflNLUtasks,
wheremufltffiflffinguafldatasetffisdenotedas{Dffi|ffi=1,2,...,N}wffith
kcflasses.

3.2 Preflffimffinarffies

FedAvg.Federatedaveragffing[31]ffisapopuflarandcflassfficaflgo-
rffithmfforffederatedflearnffing.Wffithffingffivencommunfficatffionroundt,
thereareKactffivecflffientsupdatffingparametersflocaflfly.Inffederated
flearnffing,thecentraflserverffirstdffistrffibutesgflobaflmodeflparame-
terswttothoseactffivecflffientsandthentheactffivecflffientsupfload
theffirupdatedparameterstothecentraflserver.Afftercenterserver
receffivedupdatedparameters,thecenterserveraggregatesparame-
terstoupdatethegflobaflmodeflparametersvffiawt+1= ffipffiw

t+1
ffi ,

wherecflffientweffightpffiffisproportffionafltotheamountofftraffinffing
datasampflesstoredonecflffientffi,ffi.e.pffi=

nffi
ffinffi
,andwt+1ffi ffisthe

updatedparametersoffcflffientffiffinthet-thround.

4 METHODOLOGY

4.1 Overvffiew

Federatedflearnffingffincfludestwomaffinprocedures,whereoneffisto
updateparametersonflocaflcflffientsandanotherffistoaggregatecflffient
parametersfforgflobaflmodefl.Mostwffideflyadoptedweffightaggre-
gatffionoperatffion[31]ffisweffightedsumbyamountofftraffinffingdata
oneachcflffient,therebyeasffiflyfleadffingtomodeflbffiastowardsmore
emphasffisonhffighresourceflanguages.Toovercomethffisffissue,we
proposeaknowfledgecomposffitffionmodufletoexchangeknowfledge
amongcflffientsfforffederatedflearnffing.Theknowfledgecomposffitffion
ffinvoflvestwostepsffincfludffingknowfledgesharffingacrosscflffients(ffin
Subsectffion4.2)andupdatffingcflffientparametersvffiacfluster-aware
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parameterswffithcfluster-awareconsffistencyflossanddeffinedtask
floss.Intheend,weupfloadtheupdatedcflffientparametersffintocen-
terserverfforweffightaggregatffionvffiaweffightedaverage.Wffithour
proposedknowfledgecomposffitffionmodufle,weffightedaverageaggre-
gatffiondoesnotfleadtomodeflbffiassffinceeachactffivecflffientflearns
knowfledgeoffflowresourceflanguagesvffiacflffient-awareconsffistency
floss.OurfframeworkffisshownffinFffig.1.

4.2 KnowfledgeSharffingacrossCflffients

Foreachcflffient,thecorrespondffingtraffinffingdataffisusuaflflynot
enoughtocoverentffiretaskdffistrffibutffiontoachffieveagoodmodefl,
especffiaflflyffinthemufltffiflffinguaflscenarffio,whereflocaflcflffientsmay
onflyhavemonoflffinguafldata.Toaflflevffiatethffisprobflem,wepropose
toexchangeknowfledgetobrffidgedffifferentcflffients.Morespecffiffi-
caflfly,wedesffignconsffistencyflosstofforceconsffistentpredffictffions
ffromdffifferentcflffientsonrepresentatffivedatacentroffids.Formaflfly,
weoptffimffizetheffoflflowffingflossffunctffionfforcflffientffi

mffin
wtffi

−

nffi

j=1

k−1

m=0

yffijmflog(F(s
ffi
j;w
t
ffi)[m])

+α

m∈At\{ffi}

nm

k=1

CE(F(smk;w
t
m),F(s

m
k;w

t
ffi)),(1)

whereαffisthecoefficffientoffknowfledgedffistffiflflatffionandAtffistheac-
tffivecflffientsetatroundt.TheffirsttermoffEqn.1ffisthecflassffifficatffion
flossandthesecondtermoffEqn.1ffistheconsffistencyfloss.
However,thesecondtermoffEqn.1needstoaccessrawdata

ffromothercflffientsm(m∈At\{ffi}),whffichffisagaffinsttheprffivacy
constraffintffinffederatedflearnffing.Thereffore,Eqn.1cannotbeused
asouroptffimffizedobjectffiveffunctffion.Furthermore,theffinputffisa
sequenceconsffistffingoffdffiscretetokens,wherearffithmetfficoperatffions
aredffifficuflttoperfformfforffinfformatffionprffivacypreserve.Totarget
thoseffissues,ffinspffiredbyrecentdeveflopmentoffknowfledgetrans-
ffer[12,13],weproposetotransfferknowfledgeffromtheffintermedffiate
representatffionffinsteadofftheffuflflnetwork.Denoteffp(·;

pwtffi)asthe

flayersffincfludffingp-thffintermedffiateflayertotheflastflayerandpeffij
astheffinputembeddffingoffthep-thffintermedffiateflayerrespectffivefly.
Forconvenffience,weomffitnotatffionpffinffoflflowffingsectffions.Then
wehavetheffoflflowffingnewflossffunctffion

mffin
wtffi

−

nffi

j=1

k−1

m=0

yffijmflog(F(s
ffi
j;w
t
ffi)[m])

+α

m∈At\{ffi}

nm

k=1

CE(ff(emk;w
t
m),ff(e

m
k;w

t
ffi)),(2)

Accordffingto[42],ffinfformatffionmaybefleakedffromembeddffings
vffiaffinversffionattacksasweflfl.Thereffore,ffintermedffiateembeddffingsffin
Eqn.2stffiflflcannotprovffideprffivacyguarantee.Totransfferknowfledge
wffithoutdatafleakage,weproposeknowfledgecomposffitffionstrategy,
whffichusescorruptembeddffingsaflternatffiveflytorepresentorffigffinafl
embeddffingsapproxffimatefly.Formaflfly,wepresentthecrossentropy
wffithrespecttocflffientffiandcflffientmas

L=
1

nm

nm

k=1

CE(ff(emk;w
t
m),ff(e

m
k;w

t
ffi))=

1

nm

nm

k=1

ℓ(̂ymk,e
m
k;w

t
ffi)).

Thenweappflytheffirstordertayflorexpansffiontoapproxffimate
ℓ(̂ym
k
,em
k
;wtffi)),whffichcanberepresentedas

ℓ(̂y,emk;w
t
ffi))≈ℓ(̂y,e;w

t
ffi))+

∂ℓ

∂x
(emk−e)+

∂ℓ

∂y
(̂ymk−ŷ), (3)

where∂ℓ∂xand
∂ℓ
∂yffisevafluatedatx=eandy=ŷ.Thereffore,we

canrewrffitetheflossLffinanapproxffimatefform:

L=
1

nm

nm

k=1

(ℓ(̂y,e;wtffi))+
∂ℓ

∂x
(emk−e)+

∂ℓ

∂y
(̂ymk−ŷ))

=ℓ(̂y,e;wtffi))+
∂ℓ

∂x
(
1

nm

nm

k=1

emk−e)+
∂ℓ

∂y
(
1

nm

nm

k=1

ŷmk−ŷ).

(4)

Eqn.4ffindfficatesthatffitffisnotnecessarytosharethewhofleembed-
dffingsamongcflffientssffinceonflycorruptembeddffingandpredffictffions
areneeded.Thenthenextquestffionbecomeshowtodesffigneand
ŷ.Thechofficeoffeandŷwffiflfldetermffinetheapproxffimatffionerror
consffiderffingthatweusetheffirstordertayflorexpansffiontoapproxffi-
mateconsffistencyfloss.Thenweconsffiderhowtochooseeandŷto
reducetheapproxffimatffionerror.Basedontheerrorboundofftayflor
expansffion[43],wehave

∥ℓ(̂y,emk;w
t
ffi))−ℓ(̂y,e;w

t
ffi))+

∂ℓ

∂x
(emk−e)+

∂ℓ

∂y
(̂ymk−ŷ)∥

2
2

≤M(∥emk−e∥
2
2+∥̂y

m
k−ŷ∥

2
2), (5)

whereMffisaconstant.Thereffore,wegettheffoflflowffingoptffimffizatffion
probflem

mffin
e,̂y

1

nm

nm

k=1

(∥emk−e∥
2
2+∥̂y

m
k−ŷ∥

2
2). (6)

Eqn.6canbesoflvedtoobtaffine= 1
nm

nm
k=1
em
k
,̂y= 1

nm
nm
k=1
ŷm
k
.

ThesoflutffiontoEqn.6showsthatthecorruptembeddffingandpre-
dffictffionaretheaverageoffdataembeddffingsandpredffictffions.We
presenttheoretfficprffivacyguaranteeregardffingtheproposedknowfl-
edgetransfferoptffionffinSectffion4.4.Affterappflyffingtheflearned
soflutffiontoEqn.3,wegetasuccffinctandeflegantapproxffimatffion
fformuflatffion:

L=ℓ(
1

nm

nm

k=1

ŷmk,
1

nm

nm

k=1

emk;w
t
ffi)). (7)

4.3 Cfluster-awareConsffistencyLoss

InSectffion4.2,weproposetoshareknowfledgeacrosscflffientsand
usetheconsffistencyflosstobrffidgedffifferentcflffients.However,sffimpfly
averagffingembeddffingsandpredffictffionsbutffignorffingdffiversepatterns
offembeedffingsfleadstoffinfformatffionflossandmayresufltffinhffigh
approxffimatffionerrors.Thus,ffitffisdesffiredtotransffermoreffine-
graffinedffinfformatffionandffurthermffinffimffizetheapproxffimatffionerror.
Tosoflvethffisprobflem,weproposeasffimpfleyeteffectffiveffine-

graffinedcfluster-awareconsffistencyflossbasedonKMeans[14,61],
nameflyknowfledgecomposffitffion(KC).WeappflyKMeanstoembed-
dffingsoneachactffivecflffienttogetqcflusters.Insteadoffusffingaverage
embeddffings,weproposetorepresentembeddffingsvffiaseveraflav-
erageembeddffingsoffcflusters(ffi.e.,thecentroffid).Theembeddffings
beflongffingtothesamecflusterusuaflflycarrysffimffiflarpatternsand
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severaflcentorffidsmaycapturemorepatternsandachffievesmaflflerap-
proxffimatffionerrorcomparedtooneaverageembeddffing[62].Such
astatementffisprovenffintheffoflflowffingproposffitffion.

Proposffitffion1.Forembeddffingsem
k
(k=1,...,nm),affterKMeans

cflusterffingwffithqcflusters,wehave

nm

k=1

(∥emk −e∥
2
2+∥̂y

m
k −ŷ∥

2
2)≤

q

ffi=1k∈Cffi

(∥emk −µffi∥
2
2+∥̂y

m
k −ŷffi∥

2
2),

whereµffiffistheffi-thcentroffid,and̂yffi=
1
|Cffi| k∈Cffiŷ

m
k
.

Theprooffffisprovffidedffinappendffix.
Intheffoflflowffing,weshowtheffine-graffinedknowfledgecomposffi-

tffionffindetaffifl.Formaflfly,weappflyKMeanscflusterffingtoembeddffings
ffincflffientm

mffin
µ

q

ffi=1

nm

k=1

wffik∥e
m
k−µffi∥

2
2,s.t.wffikffin{0,1},

andweachffieveqcflustersCffi(ffi=1,2,...,q).Forembeddffingsffin
eachcfluster,weappflytayflorexpansffionone= 1

|Cffi| k∈Cffie
m
k
,y=

ŷffi=
1
|Cffi| k∈Cffiŷ

m
k
toapproxffimateflossffunctffionffinthffiscfluster.

Inotherwords,wefleverageqflearnedffine-graffineddatapoffintsto
approxffimateflyrepresentaflfldatapoffintsffinsteadoffsffimpflyaveragffing
embeddffings.Thecfluster-awareconsffistencyflosscanbewrffittenas

L=
1

q

q

ffi=1

ℓ(
1

|Cffi|
k∈Cffi

emk,
1

|Cffi|
k∈Cffi

ŷmk;w
t
ffi)). (8)

KMeansffisusuaflflyusedtocflusterflowdffimensffionaflffeaturesand
mayffacesomechaflflengeswhffifleappflyffingffittohffighdffimensffionafl
embeddffings[11].Forpre-traffinedmufltffiflffinguaflflanguagemodeflsflffike

mBERT,ffitsffintermedffiateflayerffinputembeddffingem
k
∈Rs×dffisa

matrffix,wheresffisthenumberofftokensofftheffinputtext,anddffis
thedffimensffionofftokenembeddffing.Thereffore,whenweusetayflor

expansffion,weneedtovectorffizethematrffix,e.g.Vec(Em
k
)∈Rsd

ffirstflyandthenappflyKMeans(WeuseEm
k
andem

k
todffistffin-

guffishvectorsandmatrfficesffintheffoflflowffing.).Unffortunatefly,the
vectorffizedembeddffingffisffinextremeflyhffighdffimensffion.Forexam-
pfle,fforatextsequencewffith128tokens,thevectorffizedembed-
dffingffis98,304-dffimensffionaflusffingmufltffiflffinguaflBERT.Forsucha
hffighdffimensffion,ffitffisverytffimeconsumffingtoadoptKMeansdffi-
rectfly.Thereffore,weneedtoreducedffimensffionffirstflyandthen
useKMeans.However,whatmakestheprobflemthornffierffisthat
dffimensffionreductffionmethodsareaflsotffimeconsumffing,suchas
PCA,auto-encoder,andthuscannotaccefleratethffisprocedure.To
soflvethffisprobflem,weproposeasffimpflebuteffectffivemethod.The
methodffistoperfformKMeansbasedonflowdffimensffionembed-
dffingstoapproxffimateffintermedffiateflayerKMeans.Formaflfly,we
haveffintermedffiateflayerembeddffingsEm

k
,andthenetworkdeffines

amappffingM(Vec(Em
k
)) →em

k
,whereem

k
ffisaflowdffimensffionaflem-

beddffing(Forexampfle,thepooflffingflayeroutputoffmBERT).Then
weperfformKMeansfforem

k
andgetcflustersCffi(ffi=1,2,...,q).

Theqffine-graffinedrepresentatffivedatapoffintscanbefformuflated
ase= 1

|Cffi| k∈CffiVec(E
m
k
),y=ŷffi=

1
|Cffi| k∈Cffiŷ

m
k
.Bythffisway,

weavoffidperfformffingKMeansffinhffighdffimensffiondffirectfly.Weuse
proposffitffion2toshowthattheproposedmethodcanpreservecflus-
terffingaccuracyasweflfl.

Proposffitffion2.ThedffistancebetweenVec(Emffi)andVec(E
m
j)can

beboundedbythedffistancebetweenemffiande
m
j.

Theprooffffisprovffidedffinappendffix.

4.4 PrffivacyAnaflysffisandCommunfficatffionCost
offKnowfledgeComposffitffion

Inthffissectffion,weprovffideprffivacyanaflysffisoffknowfledgecomposffi-
tffion,presentprffivacyguaranteesfforknowfledgecomposffitffionand
anaflyzetheaddffitffionaflcommunfficatffioncostbroughtbyknowfledge
composffitffion.

4.4.1 PrffivacyIssuesoffKnowfledgeComposffitffion.Knowfledgecom-
posffitffiontransfferstheaverageoffrawdataembeddffingsandpre-
dffictffionsamongcflffients.Aflthoughffitonflysharesextremeflyflffimffited
ffinfformatffionoffdata,ffitstffiflflraffisessomeprffivacyconcerns.Toaddress
concerns,weprovffideaquantffitatffiverffiskmeasurementregardffing
theattackanddeffenseperspectffives,wheretechnffiquesarenotpre-
sentedffindetaffiflssffincethffisffisnotamaffinffocusoffthffispaper.
Accordffingto[42],embeddffingsmayfleakrawdataffinfformatffion

whenffacffingembeddffingffinversffionattack.However,ffin[42],thffis
attackmethodcanonflytargetsentenceembeddffingwhffichcanbe
consffideredastheaggregatffionofftokenembeddffing.Dffifferentwffith
thesettffingffin[42],wetransfferthecorruptdataembeddffing,mak-
ffingembeddffingffinversffionattackflesseffectffive.Tothebestoffour
knowfledge,thereffisnosuccessffuflattackcflaffimedffinthffischaflflengffing
settffing.Wetrytheattackmethodffin[42]wffithanecessaryGaussffian
dffistrffibutffionassumptffionfforembeddffingandshowProposffitffion3as
ffoflflowstoeflaboratethattheattackresufltswffiflflbeffarawayffrom
thegroundtruthtokens.

Proposffitffion3.Supposex1,x2,...,xn∼ N(µ,σ
2I),and̄x=

1
k
k
j=1xffij,whereffi1,ffi2,...,ffik∈{1,2,...,n},andffip ffiqfforp q.

Theoptffimaflsoflutffionofftheoptffimffizatffionprobflemmffin
Z
||ff(VTZ)−

xffi||
2
2ffisZ

∗
ffiandtheoptffimaflsoflutffionofftheoptffimffizatffionprobflem

mffin
Z
||ff(VTZ)−̄x||22ffis̄Z

∗.Andthesoflutffionsgottenvffiaprojected

gradffientdescentoffthetwooptffimffizatffionprobflemsareZffiandZ̄
respectffivefly.Theresffiduaflerrorsareϵffi=ff(V

TZ∗ffi)−xffiandϵ̄=

ff(VTZ̄∗)−x2.Thenwffithatfleastprobabffiflffity1−e
−δ,whereδ>0,

theffoflflowffingffinequaflffityhoflds:

||Z∗ffi−Z̄||F≥(d−2
√
dδ)

k−1

kL||V||F
σ2−

||ϵffi−ϵ̄||2
L||V||F

−||Z̄∗−Z̄||F.

Theprooffffisshownffinappendffix.Basedontheproposffitffion,we
canffindthedffistancebetweenrecovereddataZ̄andtruedataZ∗ffiffis

flargerthan 1
L||V||F

((d−2
√
dδ)(1−1k)σ

2−||ϵffi−ϵ̄||2)−||̄Z
∗−Z̄||F.

4.4.2 CommunfficatffionCostoffKnowfledgeComposffitffion.Knowfledge
composffitffioncanbepfluggedffintomostpopuflarffederatedflearnffing
fframeworksuchasFedAvg,FedProx,etc.wffithflffimffitedextracommu-
nfficatffioncosts.Theaddffitffionaflcommunfficatffioncostoffknowfledge
composffitffionffisffromthatthecorruptdatapoffintsneedtobeup-
floadedanddffistrffibuted.Wedenotethenumberoffactffivecflffientsas
na.Thenupfloadffingqnacorruptdatapoffintsffincurs2qna(d+k)
cost,wherekffisthenumberoffflabeflcategorffiesanddrepresents
theembeddffingdffimensffion.Consffiderasettffingwffith10cflusters,10
actffivatecflffientsand10flabeflcategorffies,ffitjustneedstoupfloadand
dffistrffibuteaddffitffionafl0.16M
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representation of mBERT. Compared to mBERT with 110M pa-

rameters, the additional communication cost is quite small (0.15%
additional cost).

5 EXPERIMENT
In this section, we evaluate the proposed knowledge composition

with the goal of answering the following questions.

RQ1 How does Knowledge Composition perform as compared to

state-of-the-art baselines?

RQ2 Is the proposed cluster-aware consistency loss effective to

improve model performance?

RQ3 How does the performance change with respect to different

parameters?

RQ4 Does Knowledge Composition reduce the data leakage risk?

5.1 Datasets and Experiment Settings
5.1.1 Datasets. We use three public benchmark datasets includ-

ing PAWS-X [17], QAM [28] and NC [28], which correspond to

paraphrase identification, question answering matching, and news

classification respectively. Because usually they are used for cross-

lingual tasks (training on English data and testing on other lan-

guages), they do not include training data for languages other than

English. Therefore, we combine English training data with other

languages validation data as the training set, and still use the Eng-

lish validation set as the validation dataset. We evaluate the final

global model on all language testing dataset, and report their perfor-

mance for each language respectively. We summarize the statistics

of all datasets in Table 2.

Table 2: Statistics of datasets.
Dataset # of languages Task |Train| |Dev| |Test|

PAWS-X 7 paraphrase identification 61,401 2,000 14,000

QAM 3 QA matching 120,000 10,000 30,000

NC 5 news classification 140,000 10,000 50,000

5.1.2 Baselines. We compare the proposed knowledge compo-

sition with following baselines: mBERT [10], FedAvg [31], Fed-

Prox [27], MOON [25], and FedMix [59]. Fine-tuning mBERT with

all languages provides the ceiling performance for federated mod-

els, and we denote it as mBERT (all languages). We also show

fine-tuning mBERT with only English data, which is denoted as

mBERT (only en). Details about baselines are shown in the appen-

dix.

5.1.3 Evaluation Metric and Implementation Details. Following
[10, 17, 28, 56], we use Accuracy and F1 to evaluate paraphrase

identification, use Accuracy to evaluate QA matching and news

classification. For both the accuracy and F1, the higher, the better.

We show the implementation details in the appendix.

5.2 Performance Comparison
In this section, we report the performance of baselines and the

proposed knowledge composition in Table 3 to answer RQ1. Based

on the table, we have following findings.

First, using multilingual training data provides more benefits for

the three tasks than using monolingual training data. In Table 3,

mBERT fine-tuned on multilingual data has much better perfor-

mance than mBERT fine-tuned on only English data, e.g. 7.0%, 4.8%

and 11.2% accuracy improvement corresponding to PI, QA and

NC tasks respectively. It shows for multilingual NLU tasks, it is

necessary for the model to learn from different languages. It also

verifies our motivation which takes advantage of federated learning

to learn multilingual model.

Second, baselines still have huge performance gap compared

with data centered training. Compared to mBERT trained on cen-

tered multilingual data, federated learning models including Fe-

dAvg, FedProx, MOON and FedMix all have significant drops of

accuracy. Because FedAvg simply weighted sums parameters of

local clients, it is difficult to learn from clients with different lan-

guages. And it is clear that FedAvg performs worst in most cases.

FedProx and MOON perform better than FedAvg in the three tasks.

Both of them add regularizers based on FedAvg to update parame-

ters smoothly to learn better representations. However, similar to

FedAvg, they do not transfer knowledge among different clients as

well. Therefore, it is still different for them to learn a good global

model. For FedMix, it applies Mixup to federated learning. Mixup is

a data augmentation method, which can exchange some knowledge

among clients. However, Mixup is difficult to work on text data as

good as on image data according to [4]. Therefore, it does not show

good performance on all datasets.

Third, the proposed knowledge composition outperforms feder-

ated learning baselines greatly. We apply knowledge composition

to two popular federated learning frameworks FedAvg and FedProx

respectively. In Table 3, we find FedAvg+FedKC (all layers) performs

better than FedAvg+FedKC (last layer). For FedAvg+FedKC (last

layer), it only updates fine-tuning layers when performing knowl-

edge composition, but for FedAvg+FedKC (all layers), it updates all

transformer layers and fine-tuning layers when performing knowl-

edge composition. Therefore, FedAvg+FedKC (all layers) can benefit

more from knowledge composition and has better performance.

Compared with FedProx+FedKC (all layers), FedAvg+FedKC (all

layers) has similar performance. Although FedProx outperforms

FedAvg, after using knowledge composition, the benefits brought

by knowledge composition compensate for the defects of FedAvg.

The regularizer used in FedProx just smooths the training process

instead of providing additional information. So simply applying

knowledge composition to FedAvg achieves good performance.

5.3 Cluster-aware Consistency Loss
In this section, we do the ablation study to answer RQ2. We report

the results of knowledge composition with and without KMeans

in Table 4. FedAvg+FedKC (last layer) and FedAvg+FedKC (all

layers) represent knowledge composition with KMeans, and Fe-

dAvg+FedKC (last layer)\K and FedAvg+FedKC (all layers)\K repre-

sent knowledge composition without KMeans in the table.

According to the table, we find that knowledge composition with

KMeans significantly outperforms knowledge composition with-

out KMeans. We conduct the experiment on all the three datasets.

FedAvg+FedKC (all layers) has averagely 2.0%, 2.9% improvement

compared with FedAvg+FedKC (all layers)\K on PI and NC task

respectively; FedAvg+FedKC (last layer) has averagely 2.6%, 2.6%

improvement compared with FedAvg+FedKC (last layer)\K on PI

and QA task respectively. It shows the effectiveness of leveraging

KMeans to learn fine-grained approximation. This design brings

significant improvements for both updating all transformer layers

and fine-tuning layers.
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Table 3: Comparison with baselines on the three datasets. "FedKC (last layer)" means performing knowledge composition for
layers after the pooling layer of mBERT. "FedKC (all layers)" means performing knowledge composition for layers after the
embedding layer of mBERT. The highest scores per category are bold.

Task Method en de es fr ru ja ko zh AVG

PI

(Acc)

mBERT(only en) 0.9395 0.8515 0.8755 0.8705 - 0.7210 0.7035 0.7715 0.8190

mBERT(all languages) 0.9515 0.9005 0.9025 0.9110 - 0.8165 0.8065 0.8435 0.8760

FedAvg 0.7743 0.7253 0.7352 0.7336 - 0.6665 0.6551 0.6871 0.7110

FedProx 0.8810 0.8191 0.8307 0.8306 - 0.7376 0.7253 0.7689 0.7990

MOON 0.8798 0.8155 0.8279 0.8284 - 0.7342 0.7208 0.7618 0.7955

FedMix 0.7836 0.7366 0.7501 0.7472 - 0.6772 0.6713 0.7032 0.7242

FedAvg+FedKC(last layer) 0.8837 0.8239 0.8326 0.8367 - 0.7423 0.7262 0.7730 0.8026

FedAvg+FedKC(all layers) 0.9032 0.8408 0.8550 0.8557 - 0.7614 0.7381 0.7890 0.8204
FedProx+FedKC(all layers) 0.9036 0.8416 0.8486 0.8483 - 0.7578 0.7457 0.7904 0.8194

PI

(F1)

mBERT(only en) 0.9341 0.8374 0.8610 0.8567 - 0.6437 0.5675 0.7326 0.7761

mBERT(all languages) 0.9475 0.8900 0.8943 0.9032 - 0.7998 0.7886 0.8294 0.8647

FedAvg 0.8026 0.7444 0.7640 0.7635 - 0.6825 0.6528 0.7175 0.7325

FedProx 0.8699 0.8088 0.8194 0.8186 - 0.7154 0.6940 0.7548 0.7830

MOON 0.8703 0.8036 0.8203 0.8193 - 0.7160 0.6954 0.7484 0.7819

FedMix 0.8141 0.7602 0.7786 0.7739 - 0.6875 0.6767 0.7192 0.7443

FedAvg+FedKC(last layer) 0.8704 0.8049 0.8177 0.8214 - 0.7295 0.6940 0.7608 0.7855

FedAvg+FedKC(all layers) 0.8932 0.8258 0.8403 0.8407 - 0.7269 0.6926 0.7690 0.7984

FedProx+FedKC(all layers) 0.8939 0.8269 0.8344 0.8341 - 0.7313 0.7013 0.7727 0.7992

QA

mBERT(only en) 0.6875 0.6436 - 0.6571 - - - - 0.6627

mBERT(all languages) 0.6929 0.6915 - 0.6992 - - - - 0.6945

FedAvg 0.6258 0.5649 - 0.6075 - - - - 0.5994

FedProx 0.6368 0.5611 - 0.6260 - - - - 0.6080

MOON 0.6307 0.6055 - 0.6461 - - - - 0.6274

FedMix 0.6374 0.6114 - 0.6464 - - - - 0.6317

FedAvg+FedKC(last layer) 0.6341 0.6154 - 0.6488 - - - - 0.6328

FedAvg+FedKC(all layers) 0.6420 0.6285 - 0.6360 - - - - 0.6355

FedProx+FedKC(all layers) 0.6401 0.6176 - 0.6542 - - - - 0.6373

NC

mBERT(only en) 0.9157 0.7532 0.7556 0.7171 0.7242 - - - 0.7732

mBERT(all languages) 0.9117 0.8698 0.8394 0.8128 0.8669 - - - 0.8601

FedAvg 0.8806 0.7774 0.7185 0.7289 0.7305 - - - 0.7672

FedProx 0.8788 0.7645 0.7216 0.7196 0.7391 - - - 0.7650

MOON 0.8710 0.7192 0.6868 0.6970 0.7346 - - - 0.7417

FedMix 0.8760 0.7111 0.6652 0.6900 0.7252 - - - 0.7335

FedAvg+FedKC(last layer) 0.8814 0.7818 0.7385 0.7437 0.7463 - - - 0.7783

FedAvg+FedKC(all layers) 0.8836 0.7939 0.7454 0.7420 0.7553 - - - 0.7840
FedProx+FedKC(all layers) 0.8824 0.7858 0.7451 0.7333 0.7511 - - - 0.7795

Table 4: Comparison with knowledge composition with or without KMeans. "\K" means knowledge composition without
KMeans. The highest scores per category are bold.

Task Method en de es fr ru ja ko zh AVG

PI

(Acc)

FedAvg+FedKC(last layer)\K 0.8671 0.8007 0.8124 0.8082 - 0.7243 0.7121 0.7489 0.7820

FedAvg+FedKC(all layers)\K 0.8882 0.8258 0.8370 0.8390 - 0.7400 0.7274 0.7753 0.8047

FedAvg+FedKC(last layer) 0.8837 0.8239 0.8326 0.8367 - 0.7423 0.7263 0.7730 0.8026

FedAvg+FedKC(all layers) 0.9032 0.8408 0.8550 0.8557 - 0.7614 0.7381 0.7890 0.8204

QA

FedAvg+FedKC(last layer)\K 0.6238 0.5907 - 0.6350 - - - - 0.6165

FedAvg+FedKC(all layers)\K 0.6381 0.6184 - 0.6443 - - - - 0.6336

FedAvg+FedKC(last layer) 0.6341 0.6154 - 0.6488 - - - - 0.6328

FedAvg+FedKC(all layers) 0.6401 0.6176 - 0.6542 - - - - 0.6373

NC

FedAvg+FedKC(last layer)\K 0.8848 0.7760 0.7267 0.7276 0.7384 - - - 0.7707

FedAvg+FedKC(all layers)\K 0.8815 0.7738 0.7037 0.7097 0.7401 - - - 0.7618

FedAvg+FedKC(last layer) 0.8814 0.7818 0.7385 0.7437 0.7463 - - - 0.7783

FedAvg+FedKC(all layers) 0.8836 0.7939 0.7454 0.7420 0.7553 - - - 0.7840
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5.4 Sensitivity w.r.t. The Number of Epochs
In this section, we study how the local updating epochs, an impor-

tant hyper-parameter in federated learning, influences the perfor-

mance of FedAvg+FedKC (all layers). We conduct the experiment

on NC datasets with three different epoch number 1,2, and 4, and

show the results in Fig. 2.

According to Fig. 2, we find that locally updating 1 epoch can not

achieve performance as good as 2 epochs and 4 epochs. When local

parameters are updated in 1 epoch each round, FedAvg degenerates

into FedSGD [31], and model is more likely to be underfitting.

Compared with locally updating 4 epochs, locally updating 2 epochs

performs better in most languages because updating 4 epochs may

suffer from overfitting. This phenomenon is consistent with fine-

tuning pre-trained language models with centered data.
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Figure 2: The results of FedAvg+FedKC (all layers) with dif-
ferent numbers of epochs in the local updating.

5.5 Sensitivity w.r.t. Active Clients
In this section, we study how the ratio of active clients influences

the the performance of FedAvg+FedKC (all layers). We evaluate the

performance of FedAvg+FedKC (all layers) with 2, 5, and 7 active

clients each round on the NC dataset, and report results in Fig. 3.

From Fig. 3, we find that when the number of active clients is 2,

it performs worse than 5 active clients and 7 active clients. Fewer

active clients, less knowledge can be used to achieve a good global

model. If the number of active clients is small and data distributions

of these active clients are diverse, even though knowledge compo-

sition can exchange some knowledge among them, it is still very

challenging to achieve high accuracy. However, when the number

of active clients increases to 5 and 7, their performance is much

better than that of 2 active clients, i.e. 11.9% and 15.0% improvement

respectively. And we can find the global model will achieve better

performance when there are more active clients, which is consistent

with the phenomenon in FedAvg according to [31].
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Figure 3: The results of FedAvg+FedKC (all layers) with dif-
ferent ratios of active clients.
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Figure 4: The hit ratio of recovered data. N represents the
number of candidates and Hits means the hit ratio.

5.6 Qualitative and Quantitive Analysis of
Privacy

In this section, we study the potential privacy risk of knowledge

composition qualitatively and quantitively. We conduct the experi-

ment on a subset of NC. Sentences used as the data in one cluster

are shown in appendix due to limited space. We use the similar

method in [42] to recover the raw text via averaged embedding.

Inspired by the evaluation in information retrieval systems, we use

Hits@N to evaluate the recovery accuracy. We set the max length

of text as 128. For each token, we choose top-N possible candidates.

Then the proportion of tokens who has candidates contained in the

10 raw text is the hit ratio, i.e., Hits. We show the result in Fig. 4.

According to Fig. 4, we find recovering data from averaged em-

beddings of both FedAvg+FedKC (last layer) and FedAvg+FedKC (all

layers) can not achieve high accuracy. We show the Hits@N with

varied N from 1 to 90. We can find the Hits@N value increases with

the value of N . When the value of N is small, the recovered data is

almost incorrect. And the Hits@90 of FedAvg+FedKC (last layer)

is around 46.1% and the Hits@90 of FedAvg+FedKC (all layers) is

only 15.6%. Therefore, recovering data from FedAvg+FedKC‘(all

layers) is more difficult than FedAvg+FedKC (last layer). The possi-

ble reason is the dimension of the vectorized representation of Fe-

dAvg+FedKC (all layers) is much higher than that of FedAvg+FedKC

(last layer). Then we show the concrete cases of recovered to-

kens of FedAvg+FedKC (all layers). The recovered tokens include

"into", "trip", "Russian", and "more". Except "Russian", it is difficult

to achieve the useful information about the raw text from these

recovered tokens. Therefore, it shows it is difficult to recover data

from knowledge composition empirically.

6 CONCLUSION
In this paper, we propose a knowledge composition module which

exchanges knowledge among clients to effectively handle non-IID

challenges with privacy guarantee for multilingual NLU. Specifi-

cally, we perform clustering on each client’s data to get the most rep-

resentative knowledge, i.e. clustered data centroids, and exchange

the learned data centroids among clients, breaking data island in

federated learning to overcome non-IID and data imbalance chal-

lenges. The high-level knowledge can preserve data privacy, which

is examined by both theoretical analyses and empirical studies. We

conduct extensive experiments on three public multilingual NLU

datasets including paraphrase identification, question answering

matching, and news classification tasks. Experimental results show

that the proposed knowledge composition outperforms state-of-

the-art baselines on all three datasets.
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[19] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016.

Federated optimization: Distributed machine learning for on-device intelligence.

arXiv preprint arXiv:1610.02527 (2016).
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A BASELINES

Wecomparetheproposedknowfledgecomposffitffionwffithffoflflowffing
baseflffines:
•mBERT[10],whffichffisamufltffiflffinguaflversffionoffBERT,ffisastate-
off-the-artmodeflfformufltffipflemufltffiflffinguaflNLPtasks.Itffistraffined
ontop104flanguagesoffWffikffipedffiacorpora.Fffine-tunffingmBERT
wffithaflflflanguagesprovffidestheceffiflffingperfformancefforffederated
modefls,andwedenoteffitasmBERT(aflflflanguages).Weaflsoshow
ffine-tunffingmBERTwffithonflyEngflffishdata,whffichffisdenotedas
mBERT(onflyen).
•FedAvg[31]ffisoneoffthemostpopuflarffederatedflearnffingmethods.
•FedProx[27],anffimprovedversffionoffFedAvg,addsareguflarffizerto
preventflocaflparametersupdatffingtoomuch.
•MOON[25]ffintroducescontrastffiveflearnffingtofforcecurrentflocafl
representatffiontobecflosertogflobaflrepresentatffionthanflastround
flocaflrepresentatffion.
•FedMffix[59]extendsthedataaugmentatffionmethodMffixuptoffed-
eratedflearnffing.Itshowsgreatperfformanceonffimagedata.

B IMPLEMENTATIONDETAILS

ForPAWS-X,thereare22cflffients;fforQAM,thereare20cflffients;ffor
NC,thereare70cflffients.Foreachcommunfficatffionround,weset
random10%offcflffientsasactffivecflffients,andflocaflmodeflupdates
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andQAM,wesetthenumberoffcflustersffinKMeansas10andffor
NC,thenumberoffcflustersffisset5.Weusethedeffaufltsettffingoff
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experffiments,weruntentffimesandreporttheaverageresuflts.
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k−ŷ∥

2
2)≤

q

ffi=1k∈Cffi

(∥emk−µffi∥
2
2+∥̂y

m
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k−ŷffi∥

2
2)

hoflds. □

D PROOFOFPROPOSITION2
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Lemma2.Supposex1,x2,...,xn ∼ N(µ,σ2I),andx̄ =
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2||2+||ϵ1−ϵ2||2

≤L||V||F||(||Z
∗
1−Z2||F+||Z2−Z

∗
2||F)

+||ϵ1−ϵ2||2 (28)

Transposeandwecanget

||Z∗1−Z2||2≥
1

||V||F
(||x1−x2||2−||ϵ1−ϵ2||2)−||Z

∗
2−Z2||2.

Here,||Z∗2−Z2||2canbeboundedbytheuppererrorboundsoffthe
twooptffimffizatffionprobflemvffiaprojectedgradffientdescent. □

Proposffitffion3.Supposex1,x2,...,xn∼ N(µ,σ
2I),and̄x=

1
k
k
j=1xffij,whereffi1,ffi2,...,ffik∈{1,2,...,n},andffip ffiqfforp q.

Theoptffimaflsoflutffionofftheoptffimffizatffionprobflemmffin
Z
||ff(VTZ)−

xffi||
2
2ffisZ

∗
ffiandtheoptffimaflsoflutffionofftheoptffimffizatffionprobflem

mffin
Z
||ff(VTZ)−̄x||22ffis̄Z

∗.Andthesoflutffionsgottenvffiaprojected

gradffientdescentoffthetwooptffimffizatffionprobflemsareZffiandZ̄
respectffivefly.Theresffiduaflerrorsareϵffi=ff(V

TZ∗ffi)−xffiandϵ̄=

ff(VTZ̄∗)−x2.Thenwffithatfleastprobabffiflffity1−e
−δ,whereδ>0,

theffoflflowffingffinequaflffityhoflds:

||Z∗ffi−Z̄||F≥
1

L||V||F
((d−2

√
dδ)(1−

1

k
)σ2−||ϵffi−ϵ̄||2)

−||Z̄∗−Z̄||F. (29)

Prooff.AccordffingtoLemma3,wehave

||Z∗ffi−Z̄||F≥
1

L||V||F
(||xffi−x̄||2−||ϵffi−ϵ̄||2)

−||Z̄∗−Z̄||F. (30)

ThenbasedonLemma2,wffithatfleastprobabffiflffity1−e−δ,where
δ>0,theffoflflowffingffinequaflffityhoflds:

||Z∗ffi−Z̄||F≥
1

L||V||F
((d−2

√
dδ)(1−

1

k
)σ2−||ϵffi−ϵ̄||2)

−||Z̄∗−Z̄||F. (31)

□

F TEXTUSEDINSECTION5.6

1)KffimKardashffian’sbabybumpffisstartffingtomakeanappearance
andthereaflffitystarffisshowffingffitoffffintffight,sexy,pflungffingoutffits.
2)SophffiaTabersexpflaffinsherstrokeoffgoodfluck.
3)There’snoonemoresynonymouswffithOfldHoflflywoodgflamour
thanLffizTayflor,butthere’ssomethffingspecffiaflaboutseeffingthefficon
whenaflflthegflffitzanddffiamondsarestrffippedaway.
4)Hundredsoffpeopflearemffissffingandanunknownnumberbeflffieved
deadaffterapartfly-constructedhydropowerdamffinsoutheastLaos
coflflapsed,sendffingflashfloodssurgffingthroughsffixvffiflflages.
5)ItflooksflffiketheKardashffianswffiflflbeattendffingCoacheflflaffinfluxury
thffisyear.TheffamousreaflffityTVffamffiflyjustpurchaseda$12mffiflflffion
mansffionflocatedffinLaQuffinta’sMadffisonCflubnearthepopuflarmusffic
ffestffivafl.
6)AFflorffidawomanwasarrestedffordrffivffingundertheffinfluenceoff
aflcohoflaffterusersontheflffivevffideostreamffingapp’Perffiscope’caflfled
poflfficewarnffingshewasffintoxfficated.(Oct.13)
7)ArecentGaflfluppoflflaskedAmerfficanswhattheyconsffideredthe
greatestthreatstotheU.S.Dothosenumbersaflffignwffiththegovern-
ment’sperceptffion?
8)"""Federaflprosecutorsareaccusffinga29-year-ofldwomanoffbeffinga
Russffianspy.TheysayMarffiaButffinaaflflegedfly""""tookstepstodeveflop
reflatffionshffipswffithAmerfficanpoflffitfficffians.""""CBSNewsWashffington
correspondentPauflaReffidreports."""
9)AttheDemocratfficdebate,candffidateswereaskedwhffichenemffies
they’remostproudoffmakffing.
10)TheowneroffBarMarcoffinPffittsburgputanendtotffippffinghffis
waffitersffinffavoroffpayffinghffisempfloyeesa’flffivffingwage.’Notonflyare
theygettffingmoremoney,theyareaflsogettffing:heaflthffinsurance,paffid
tffimeoff,andequffityffinthecompany.KerffiLumm(@thekerffiflumm)
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