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ABSTRACT

Multilingual natural language understanding, which aims to com-
prehend multilingual documents, is an important task. Existing
efforts have been focusing on the analysis of centrally stored text
data, but in real practice, multilingual data is usually distributed.
Federated learning is a promising paradigm to solve this problem,
which trains local models with decentralized data on local clients
and aggregates local models on the central server to achieve a good
global model. However, existing federated learning methods as-
sume that data are independent and identically distributed (IID),
and cannot handle multilingual data, that are usually non-IID with
severely skewed distributions: First, multilingual data is stored on
local client devices such that there are only monolingual or bilin-
gual data stored on each client. This makes it difficult for local
models to know the information of documents in other languages.
Second, the distribution over different languages could be skewed.
High resource language data is much more abundant than low
resource language data. The model trained on such skewed data
may focus more on high resource languages but fail to consider
the key information of low resource languages. To solve the afore-
mentioned challenges of multilingual federated NLU, we propose a
plug-and-play knowledge composition (KC) module, called FedKC,
which exchanges knowledge among clients without sharing raw
data. Specifically, we propose an effective way to calculate a consis-
tency loss defined based on the shared knowledge across clients,
which enables models trained on different clients achieve similar
predictions on similar data. Leveraging this consistency loss, joint
training is thus conducted on distributed data respecting the pri-
vacy constraints. We also analyze the potential risk of FedKC and
provide theoretical bound to show that it is difficult to recover
data from the corrupted data. We conduct extensive experiments
on three public multilingual datasets for three typical NLU tasks,
including paraphrase identification, question answering matching,
and news classification. The experiment results show that the pro-
posed FedKC can outperform state-of-the-art baselines on the three
datasets significantly.
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1 INTRODUCTION

Natural language understanding (NLU) [39] is one of the fundamen-
tal tasks in natural language processing (NLP). Used as an umbrella
term, NLU refers to the efforts that make machines understand the
context and meaning of natural languages, and thus it covers a
variety of tasks including text classification, name entity recogni-
tion and sentiment analysis. Although NLU tasks have mainly been
studied for documents written in a single language, the joint analy-
sis of multilingual documents has attracted considerable attention
as well. With the increasing information shared over Internet and
mobile devices in a variety of languages, multilingual NLU is the
key to connect billions of people across the globe.

Existing work on multilingual NLU has been focusing on the
analysis of multilingual text data collected to a central server [34,
36]. In this paper, we study a practical and common scenario, in
which multilingual text data is stored in distributed devices (clients).
In many applications, it is difficult or even impossible to transmit
all the data to central server due to privacy concerns. The objective
is thus to comprehend multilingual documents without sharing raw
data among clients.

To conduct multilingual NLU on distributed data, federated learn-
ing [3, 19, 20, 32, 58] could be adopted as a learning paradigm. In
federated learning, a shared global model is trained under the coordi-
nation of a central server while keeping the user data decentralized
on local clients. However, a straightforward adoption of federated
learning paradigm for multilingual NLU does not work. Existing
federated learning models assume that data are independent and
identically distributed (IID), but this does not hold true in multilin-
gual NLU. When data are non-IID, federated learning suffers from
training instability due to its training on distributed data. [26, 63].

Here we use an example to illustrate the non-IID issue faced
by many multilingual NLU tasks. Multilingual NLU is needed to
understand the text stored on users’ smart phones, and it is common
that smart phone applications support multiple languages. Apple
Siri and Amazon Alex support 21 and 8 languages respectively;
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Google search supports 149 languages; and Instagram supports 36
languages. Users set their preferred languages (usually just one or
two languages per user) for applications, and thus the data stored
on each user’s client is monolingual or bilingual. Therefore, the
data among different clients are very different not only in styles and
vocabularies but also in languages, leading to serious challenges
for federated learning. Furthermore, the amount of data in different
languages varies significantly. For example, the speakers of top
three widely used languages account for 20% global populations!.
Such a skewed distribution adds difficulty to the training of NLU
models in a federated learning framework.

Federated learning algorithms, including FedAvg [31], and Fed-
Prox [27], are proposed to train a global model based on distributed
data, but these methods cannot handle the aforementioned non-
IID challenges that are observed in multilingual NLU tasks. Using
FedAvg as an example, we explain how existing federated learn-
ing algorithm could fall short on non-IID data. In FedAvg, local
model parameters are aggregated by weighted sum as the global
model parameters, and weights are proportional to the amount of
training data on clients. Therefore, the global model may be dom-
inated by high resource languages and the information from low
resource languages could be ignored. Also, the distribution among
different languages could be skewed, and the distribution among
different classes could also be imbalanced. FedAvg may suffer from
poor performance on such non-IID data according to [27]. There
are some efforts toward solving the non-IID issues in federated
learning setting, which apply data augmentation via Mixup [60] or
knowledge distillation [15]. These approaches are applied on image
data. However, text data is a discrete sequence, which differs from
pixel data of images. Therefore, Mixup strategy [41, 59, 60] is not
suitable for the multilingual NLU task. As for knowledge distillation
methods used in federated learning framework [24, 29, 35, 44], they
usually need a shared auxiliary dataset. However, in multilingual
NLU tasks, low resource language data is already scarce, so the
requirement on extra auxiliary dataset cannot be met. All in all, ex-
isting federated learning algorithms may not address the challenges
faced by multilingual NLU tasks.

In light of these challenges, we propose a federated knowledge
composition mechanism (FedKC) for multilingual NLU tasks. FedKC
takes advantage of federated learning framework to preserve users’
privacy, and leverages knowledge composition to exchange knowl-
edge (data embedding) among active clients. Specifically, we per-
form clustering on each client data to get the most representative
knowledge, i.e. clustered data centroids, then exchange the learned
data centroids among clients, breaking data island in federated
learning to overcome non-IID and data imbalance challenges. The
high-level learned knowledge is able to preserve data privacy, which
is examined by both theoretical analyses and empirical studies in
Section 5.6. The proposed consistency loss objective cannot be min-
imized directly because clients cannot access raw data in other
clients. To tackle this challenge, we propose to conduct cluster-
ing on each client’s data, use cluster centroids as the knowledge
extracted from each client, and exchange the knowledge among
clients. Because the centroids are the averaged data embeddings
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in each cluster, we name it knowledge composition (KC). The pro-
posed KC is a plug-and-play module, which can be easily applied
to multiple federated learning frameworks.

The contributions of the paper are summarized as following:
1) We propose a federated knowledge composition framework
which is able to mitigate the non-IID challenge and protect privacy
in multilingual natural language understanding tasks by exchang-
ing only high-level knowledge among clients; 2) We propose a
cluster-aware mechanism to reduce the approximation error in the
knowledge exchange process; 3) We provide theoretical analysis
for privacy guarantee in the knowledge transfer procedure; 4) We
conduct extensive experiments on three benchmark datasets on
multilingual natural language understanding, and the proposed
method outperforms baselines significantly.

Table 1: The differences between FedKC and other federated
learning methods. "model/data buffer storing" means stor-
ing last round global or local model, or sharing an auxiliary
dataset. Both FedMD and FedED are knowledge distillation-
based methods; both FedMix and XorMixFL extend mixup
to federated learning frameworks.

Method model/data  mixed raw data sharing avg. embedding sharing

buffer storing  (w/o privacy guarantee)  (w/ privacy guarantee)
FedAvg [31] -
FedProx [27] v
MOON [25] v
FedMD [35]/FedED [44] v -
FedMix [59]/XorMixFL [41] - v -
FedKC (ours) - - v

2 RELATED WORK

2.1 Multilingual Natural Language
Understanding

Natural language understanding (NLU) contains several sub-tasks,
e.g. paraphrase identification [21, 56, 57], natural language infer-
ence [30, 33, 37, 51], question answering [2, 5, 7, 55], news clas-
sification [6, 18], sentiment classification [45, 46, 52] and so on.
With the increasing demand in multilingual environment, multi-
lingual NLU has garnered extensive attention. Previous research
on multilingual NLU is usually based on traditional deep learn-
ing models such as convolutional neural network (CNN) [23] and
long short-term memory network (LSTM) [16] to learn multilin-
gual word or sentence representation. For example, [47, 49, 50]
learn multilingual word embedding; [53] leverages CNN to learn
language-agnostic sentence representation; [54] applies a multi-
task learning framework to learn character-based representation
via CNN; [36] proposes hierarchical attention based on LSTM to
learn multilingual document representation. However, with the
development of NLP, recent works [1, 34, 38, 48] are mainly based
on pre-trained multilingual language models such as mBERT [10],
XLM [9], and XLM-RoBERTa [8]. They are pre-trained on large
scale multilingual corpora, and then fine-tuned with few epochs to
achieve outstanding performance in multiple NLU tasks. However,
both traditional models and pre-trained models need centered data,
which may raise data privacy issues in many real-world scenarios.

2.2 Federated Learning

To solve the potential privacy issues of machine learning models
in practical use, federated learning has achieved more and more
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Figure 1: The framework of knowledge composition. The red background part clusters data, and computes the centroids and
averaged predictions. The orange background part computes approximate consistency loss with distributed centroids and
averaged predictions. Flow chart at top left corner shows the steps of uploading and distributing the model and data.

attention recently. Federated learning aims to learn a high-quality
global with the aid of multiple local clients while forbidding data
sharing among clients. FedAvg [31] is one of the most representa-
tive federated learning methods. It performs local stochastic gradi-
ent descent on local clients and the aggregates model parameters
on server. However, FedAvg training sometimes is not stable [27].
Therefore, FedProx [27] adds regularizer to prevent parameters up-
dating too far away from parameters in last communication round.
To speedup FedAvg convergence, FedAdagrad [40], FedYogi [40],
and FedAdam [40] are proposed. To handle the heterogeneity of
local data distribution in clients, there is a lot of work based on
contrastive learning, data augmentation and knowledge distillation.
MOON [25] leverages contrastive learning to force parameters to
be closer to global parameters in last round than local parameters in
last round. FedMix [59] and XorMixFL [41] extend Mixup [60], one
popular data augmentation method, to federated learning. How-
ever, it is difficult to apply mixup to achieve good performance
on text data [4]. FEDDISTILL [64], FedMD [24], FedED [44] are
three methods based on knowledge distillation. However, FedMD
and FedED need an extra shared dataset to perform knowledge
distillation, which is not available in many real-world cases. For
FEDDISTILL, it needs to learn a generator. Although it is effective
on images, it is not easy to be extended to text data, which is in
a discrete space and hard to generate. Compared to these feder-
ated learning methods, the proposed FedKC does not need to hold
a shared auxiliary dataset, and does not need to hold last round
global or local model but only exchanges averaged embedding. We
also summarize the difference between the proposed FedKC and
other federated learning methods in Table 1.

3 BACKGROUND AND PRELIMINARIES
3.1 Problem Formulation

The federated learning setting includes a central server and
N clients. The dataset on client i is denoted as D; =
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bel of si, and n; is the number of training instances in 9);. The

{sf:ll_, y;i)}, where s} is the text content, yj. is the la-

goal of federated learning is to learn a global model F(s;) — y;
with decentralized data storage. In this paper, we focus on devel-
oping federated learning algorithms for multilingual NLU tasks,
where multilingual dataset is denoted as {D;|i = 1,2, ..., N} with
k classes.

3.2 Preliminaries
FedAvg. Federated averaging [31] is a popular and classic algo-

rithm for federated learning. Within given communication round ¢,
there are K active clients updating parameters locally. In federated
learning, the central server first distributes global model parame-
ters w! to those active clients and then the active clients upload
their updated parameters to the central server. After center server
received updated parameters, the center server aggregates pa.rame—
ters to update the global model parameters via w'*! = 3; p; w

where client weight p; is proportional to the amount of tra.m.mg
data samples stored one client i, i.e. p; = Z?i"lf’ and wf +1 js the

updated parameters of client i in the #-th round.

4 METHODOLOGY

4.1 Overview

Federated learning includes two main procedures, where one is to
update parameters on local clients and another is to aggregate client
parameters for global model. Most widely adopted weight aggre-
gation operation [31] is weighted sum by amount of training data
on each client, thereby easily leading to model bias towards more
emphasis on high resource languages. To overcome this issue, we
propose a knowledge composition module to exchange knowledge
among clients for federated learning. The knowledge composition
involves two steps including knowledge sharing across clients (in
Subsection 4.2) and updating client parameters via cluster-aware
consistency loss (in Subsection 4.3). Our FedKC framework first
conducts knowledge sharing across clients, then updates client
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parameters with cluster-aware consistency loss and defined task
loss. In the end, we upload the updated client parameters into cen-
ter server for weight aggregation via weighted average. With our
proposed knowledge composition module, weighted average aggre-
gation does not lead to model bias since each active client learns
knowledge of low resource languages via client-aware consistency
loss. Our framework is shown in Fig. 1.

4.2 Knowledge Sharing across Clients

For each client, the corresponding training data is usually not
enough to cover entire task distribution to achieve a good model,
especially in the multilingual scenario, where local clients may
only have monolingual data. To alleviate this problem, we propose
to exchange knowledge to bridge different clients. More specifi-
cally, we design consistency loss to force consistent predictions
from different clients on representative data centroids. Formally,
we optimize the following loss function for client i

Z Z o log(F(sks wH)m])

Jj=1m=0

ta Z ZCE{F(sgl;wfn},F{sgl;wgJ), (1)
meAN{i} k=1

where a is the coefficient of knowledge distillation and Ay is the ac-
tive client set at round t. The first term of Eqn. 1 is the classification
loss and the second term of Eqn. 1 is the consistency loss.

However, the second term of Eqn. 1 needs to access raw data
from other clients m (m € A \ {i}), which is against the privacy
constraint in federated learning. Therefore, Eqn. 1 cannot be used
as our optimized objective function. Furthermore, the input is a
sequence consisting of discrete tokens, where arithmetic operations
are difficult to perform for information privacy preserve. To target
those issues, inspired by recent development of knowledge trans-
fer [12,13], we propose to transfer knowledge from the intermediate
representation instead of the full network. Denote fp(- wi‘ ) as the
layers including p-th intermediate layer to the last layer and £ e}
as the input embedding of the p-th intermediate layer respectively.
For convenience, we omit notation p in following sections. Then
we have the fo].lowi.ng new loss function

Z 3" 4! log(Fiss whim)

j=1m=0

nm
+a Y CE(fleswh). flefsw))), ()

me A\ i} k=1
According to [42], information may be leaked from embeddings
via inversion attacks as well. Therefore, intermediate embeddings in
Eqn. 2 still cannot provide privacy guarantee. To transfer knowledge
without data leakage, we propose knowledge composition strategy,
which uses corrupt embeddings alternatively to represent original
embeddings approximately. Formally, we present the cross entropy

with respect to client i and client m as

ZCE(f(ek, win), f(eg's w)) =

n
m k=1

13
— > UG e W)
tm o
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Then we apply the first order taylor expansion to approximate
Uy e wf )), which can be represented as

Cm . ., . .
é’(y,ek;wf))zf(y,E;wf))+a—x(ek —€)+a—y(yk -9, (3

where 2 ?9_ and 2 ?9_ is evaluated at x = e and y = yJ. Therefore, we

can rewrite the loss £ in an approximate form:

LS g et D)+ e =)+ 5T ~9)

tm o
=ftg,e;w§n+—(—z P+ s i)
™ k=1

4

Eqn. 4 indicates that it is not necessary to share the whole embed-
dings among clients since only corrupt embedding and predictions
are needed. Then the next question becomes how to design e and
ij. The choice of e and {j will determine the approximation error
considering that we use the first order taylor expansion to approxi-
mate consistency loss. Then we consider how to choose e and g to
reduce the approximation error. Based on the error bound of taylor
expansion [43], we have

. . at ac . .
e, ex'; w))) — €(, e; w;)) + g(ef? —e)+ @(y}? - 97

- 913, (5)

where M is a constant. Therefore, we get the following optimization
problem

2 -
<M(lleg” — ell; + Ilg5"

min — Z(uek — el + 197" - 9113). (6)

ey 1

Eqn. 6 can be solved to obtain e = Lm z:’“l e, j= 1 Zk ; y

The solution to Eqn. 6 shows that the corrupt embedd.mg and pre-
diction are the average of data embeddings and predictions. We
present theoretic privacy guarantee regarding the proposed knowl-
edge transfer option in Section 4.4. After applying the learned

solution to Egn. 3, we get a succinct and elegant approximation

formulation: n n
_ 1 % 1T 1 . m, ., t
L—f(;};yk,agek,w}- (7)

4.3 Cluster-aware Consistency Loss

In Section 4.2, we propose to share knowledge across clients and
use the consistency loss to bridge different clients. However, simply
averaging embeddings and predictions but ignoring diverse patterns
of embeedings leads to information loss and may result in high
approximation errors. Thus, it is desired to transfer more fine-
grained information and further minimize the approximation error.

To solve this problem, we propose a simple yet effective fine-
grained cluster-aware consistency loss based on KMeans [14, 61],
namely knowledge composition (KC). We apply KMeans to embed-
dings on each active client to get g clusters. Instead of using average
embeddings, we propose to represent embeddings via several av-
erage embeddings of clusters (i.e., the centroid). The embeddings
belonging to the same cluster usually carry similar patterns and
are close to each other in term of Euclidean distance and thus using
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several centorids may capture more patterns and achieve smaller ap-
proximation error compared to one average embedding [62]. Such
a statement is proven in the following proposition.

ProprOSITION 1. For embeddings e}’C" (k =1, ...,np), after KMeans
clustering with q clusters, we have

Am q
Dllle —elZ+ 197 =915 < > > (lef - pally + 1977 - all),
k=1 i=1 keC;

where 1 is the i-th centroid, and J; = ﬁ Ykec; U

The proof is provided in appendix.
In the following, we show the fine-grained knowledge composi-
tion in detail. Formally, we apply KMeans clustering to embeddings

in client m
q ﬂ’ﬂ

. 2 .
min > > wikllef’ — il s.t-wik in {0,1},
i=1 k=1
and we achieve g clusters C; (i = 1,2, ..., q). For embeddings in
each cluster, we apply taylor expansion on e = ﬁ Ykec; e}:", y=
Ui = ﬁ Ykec; g;:‘ to approximate loss function in this cluster.
In other words, we leverage q learned fine-grained data points to
approximately represent all data points instead of simply averaging
embeddings. The cluster-aware consistency loss can be written as

14 1 1
L= #— em — THERS) 8
) ﬁcaéi K ic] k;_”k o ®

KMeans is usually used to cluster low dimensional features and
may face some challenges while applying it to high dimensional
embeddings [11]. For pre-trained multilingual language models like
mBERT, its intermediate layer input embedding e;" € Rs*d j5 2
matrix, where s is the number of tokens of the input text, and d is
the dimension of token embedding. Therefore, when we use taylor
expansion, we need to vectorize the matrix, e.g.-Vec(E}") € Rsd
firstly and then apply KMeans (We use E;" and e;" to distin-
guish vectors and matrices in the following.). Unfortunately, the
vectorized embedding is in extremely high dimension. For exam-
ple, for a text sequence with 128 tokens, the vectorized embed-
ding is 98,304-dimensional using multilingual BERT. For such a
high dimension, it is very time consuming to adopt KMeans di-
rectly. Therefore, we need to reduce dimension firstly and then
use KMeans. However, what makes the problem thornier is that
dimension reduction methods are also time consuming, such as
PCA, auto-encoder, and thus cannot accelerate this procedure. To
solve this problem, we propose a simple but effective method. The
method is to perform KMeans based on low dimension embed-
dings to approximate intermediate layer KMeans. Formally, we
have intermediate layer embeddings E", and the network defines
a mapping M(Vec(E;"")) — e}, where ¢;" is a low dimensional em-
bedding (For example, the pooling layer output of mBERT). Then
we perform KMeans for e}:" and get clusters C; (i = 1,2,...,q).
The q fine-grained representative data points can be formulated
as e = 17 Skec, VeelEP).y = i = 17 Tkec, I By this way,
we avoid performing KMeans in high dimension directly. We use
proposition 2 to show that the proposed method can preserve clus-
tering accuracy as well.
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PRrOPOSITION 2. The distance between Veo(E[") and Vec{E}"} can
be bounded by the distance between e and e;.".

The proof is provided in appendix.
4.4 Privacy Analysis and Communication Cost
of Knowledge Composition

In this section, we provide privacy analysis of knowledge composi-
tion, present privacy guarantees for knowledge composition and
analyze the additional communication cost brought by knowledge
composition.

4.4.1 Privacy Issues of Knowledge Composition. Knowledge com-
position transfers the average of raw data embeddings and pre-
dictions among clients. Although it only shares extremely limited
information of data, it still raises some privacy concerns. To address
concerns, we provide a quantitative risk measurement regarding
the attack and defense perspectives, where techniques are not pre-
sented in details since this is not a main focus of this paper.

According to [42], embeddings may leak raw data information
when facing embedding inversion attack. However, in [42], this
attack method can only target sentence embedding which can be
considered as the aggregation of token embedding. Different with
the setting in [42], we transfer the corrupt data embedding, mak-
ing embedding inversion attack less effective. To the best of our
knowledge, there is no successful attack claimed in this challenging
setting. We try the attack method in [42] with a necessary Gaussian
distribution assumption for embedding and show Proposition 3 as
follows to elaborate that the attack results will be far away from
the ground truth tokens.

PROPOSITION 3. Suppose X1,Xz,....,xn ~ N(u,o’I), and X =
%z;le xi;, where iy, iz, ..., i € {1,2,....,n}, and ip # ig forp # g.
The optimal solution of the optimization problem ng.n F(vTZ) -

Ig||§ is Z; and the optimal solution of the optimization problem
mZ.in IF(VTZ) - x| |§ is Z*. And the solutions gotten via projected

gradient descent of the two optimization problems are Z; and Z
respectively. The residual errors are €; = f {VTZ;) —Xxjand € =
F(VTZ*) = x5. Then with at least probability 1 — e=%, where § > 0,
the following inequality holds:

Z;-Z||F = (d-2Vds k-1 .

) g2 llei—éll
KLTIV Tl

- ~1Z*=Z|lF-
LIV IIF

The proof is shown in appendix. Based on the proposition, we
can find the distance between recovered data Z and true data Z; is

larger than 7t ((d— 2Va8)(1 - £)o? - ||&; - éllo) ~ 12*  ZIl-

4.4.2 Communication Cost of Knowledge Composition. Knowledge
composition can be plugged into most popular federated learning
framework such as FedAvg, FedProx, etc. with limited extra commu-
nication costs. The additional communication cost of knowledge
composition is from that the corrupt data points need to be up-
loaded and distributed. We denote the number of active clients as
ng. Then uploading gng corrupt data points incurs 2gng(d + k)
cost, where k is the number of label categories and d represents
the embedding dimension. Consider a setting with 10 clusters, 10
activate clients and 10 label categories, it just needs to upload and
distribute additional 0.16M parameters when using pooling layer
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representation of mBERT. Compared to mBERT with 110M pa-
rameters, the additional communication cost is quite small (0.15%
additional cost).

5 EXPERIMENT

In this section, we evaluate the proposed knowledge composition
with the goal of answering the following questions.

RQ1 How does Knowledge Composition perform as compared to
state-of-the-art baselines?

RQ2 Is the proposed cluster-aware consistency loss effective to
improve model performance?

RQ3 How does the performance change with respect to different
parameters?

RQ4 Does Knowledge Composition reduce the data leakage risk?

5.1 Datasets and Experiment Settings

5.1.1 Datasets. We use three public benchmark datasets includ-
ing PAWS-X [17], QAM [28] and NC [28], which correspond to
paraphrase identification, question answering matching, and news
classification respectively. Because usually they are used for cross-
lingual tasks (training on English data and testing on other lan-
guages), they do not include training data for languages other than
English. Therefore, we combine English training data with other
languages validation data as the training set, and still use the Eng-
lish validation set as the validation dataset. We evaluate the final
global model on all language testing dataset, and report their perfor-
mance for each language respectively. We summarize the statistics
of all datasets in Table 2.
Table 2: Statistics of datasets.
Dataset  # of languages Task [Train| ~ [Dev|  |Test|

PAWS-X 7
QAM 3
NC 5

paraphrase identification 61,401 2,000 14,000
QA matching 120,000 10,000 30,000
news classification 140,000 10,000 50,000

5.1.2  Baselines. We compare the proposed knowledge compo-
sition with following baselines: mBERT [10], FedAvg [31], Fed-
Prox [27], MOON [25], and FedMix [59]. Fine-tuning mBERT with
all languages provides the ceiling performance for federated mod-
els, and we denote it as mBERT (all languages). We also show
fine-tuning mBERT with only English data, which is denoted as
mBERT (only en). Details about baselines are shown in the appen-
dix.

5.1.3  Evaluation Metric and Implementation Details. Following
[10, 17, 28, 56], we use Accuracy and F1 to evaluate paraphrase
identification, use Accuracy to evaluate QA matching and news
classification. For both the accuracy and F1, the higher, the better.
We show the implementation details in the appendix.

5.2 Performance Comparison

In this section, we report the performance of baselines and the
proposed knowledge composition in Table 3 to answer RQ1. Based
on the table, we have following findings.

First, using multilingual training data provides more benefits for
the three tasks than using monolingual training data. In Table 3,
mBERT fine-tuned on multilingual data has much better perfor-
mance than mBERT fine-tuned on only English data, e.g. 7.0%, 4.8%
and 11.2% accuracy improvement corresponding to PI, QA and
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NC tasks respectively. It shows for multilingual NLU tasks, it is
necessary for the model to learn from different languages. It also
verifies our motivation which takes advantage of federated learning
to learn multilingual model.

Second, baselines still have huge performance gap compared
with data centered training. Compared to mBERT trained on cen-
tered multilingual data, federated learning models including Fe-
dAvg, FedProx, MOON and FedMix all have significant drops of
accuracy. Because FedAvg simply weighted sums parameters of
local clients, it is difficult to learn from clients with different lan-
guages. And it is clear that FedAvg performs worst in most cases.
FedProx and MOON perform better than FedAvg in the three tasks.
Both of them add regularizers based on FedAvg to update parame-
ters smoothly to learn better representations. However, similar to
FedAvg, they do not transfer knowledge among different clients as
well. Therefore, it is still different for them to learn a good global
model. For FedMix, it applies Mixup to federated learning. Mixup is
a data augmentation method, which can exchange some knowledge
among clients. However, Mixup is difficult to work on text data as
good as on image data according to [4]. Therefore, it does not show
good performance on all datasets.

Third, the proposed knowledge composition outperforms feder-
ated learning baselines greatly. We apply knowledge composition
to two popular federated learning frameworks FedAvg and FedProx
respectively. In Table 3, we find FedAvg+FedKC (all layers) performs
better than FedAvg+FedKC (last layer). For FedAvg+FedKC (last
layer), it only updates fine-tuning layers when performing knowl-
edge composition, but for FedAvg+FedKC (all layers), it updates all
transformer layers and fine-tuning layers when performing knowl-
edge composition. Therefore, Fed Avg+FedKC (all layers) can benefit
more from knowledge composition and has better performance.
Compared with FedProx+FedKC (all layers), FedAvg+FedKC (all
layers) has similar performance. Although FedProx outperforms
FedAvg, after using knowledge composition, the benefits brought
by knowledge composition compensate for the defects of FedAvg.
The regularizer used in FedProx just smooths the training process
instead of providing additional information. So simply applying
knowledge composition to FedAvg achieves good performance.

5.3 Cluster-aware Consistency Loss

In this section, we do the ablation study to answer RQ2. We report
the results of knowledge composition with and without KMeans
in Table 4. FedAvg+FedKC (last layer) and FedAvg+FedKC (all
layers) represent knowledge composition with KMeans, and Fe-
dAvg+FedKC (last layer)\K and FedAvg+FedKC (all layers)\K repre-
sent knowledge composition without KMeans in the table.

According to the table, we find that knowledge composition with
KMeans significantly outperforms knowledge composition with-
out KMeans. We conduct the experiment on all the three datasets.
FedAvg+FedKC (all layers) has averagely 2.0%, 2.9% improvement
compared with FedAvg+FedKC (all layers)\K on PI and NC task
respectively; FedAvg+FedKC (last layer) has averagely 2.6%, 2.6%
improvement compared with FedAvg+FedKC (last layer)\K on PI
and QA task respectively. It shows the effectiveness of leveraging
KMeans to learn fine-grained approximation. This design brings
significant improvements for both updating all transformer layers
and fine-tuning layers.
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Table 3: Comparison with baselines on the three datasets. "FedKC (last layer)" means performing knowledge composition for
layers after the pooling layer of mBERT. "FedKC (all layers)" means performing knowledge composition for layers after the
embedding layer of mBERT. The highest scores per category are bold.

Task Method en de es fr ru ja ko zh AVG
mBERT(only en) 0.9395 0.8515 0.8755 0.8705 - 0.7210  0.7035 0.7715 0.8190
mBERT (all languages) 0.9515 0.9005 0.9025 0.9110 - 0.8165 0.8065 0.8435 0.8760

T FedAvg 0.7743 07253 07352 07336 -  0.6665 0.6551 0.6871 0.7110
PI FedProx 0.8810 0.8191 0.8307 0.8306 - 0.7376  0.7253  0.7689  0.7990
(Acc) MOON 0.8798  0.8155 0.8279  0.8284 - 0.7342  0.7208 0.7618  0.7955
FedMix 0.7836  0.7366  0.7501  0.7472 - 0.6772  0.6713  0.7032  0.7242

" FedAvg+FedKC(last layer) 0.8837  0.8239 0.8326 0.8367 - 07423 07262 0.7730 0.8026
FedAvg+FedKC(all layers) 0.9032  0.8408 0.8550 0.8557 - 0.7614 0.7381 0.7890 0.8204
FedProx+FedKC(all layers) 0.9036 0.8416 0.8486  0.8483 - 0.7578 0.7457 0.7904 0.8194
mBERT (only en) 0.9341 0.8374 0.8610 0.8567 - 0.6437 0.5675 0.7326  0.7761
mBERT (all languages) 0.9475  0.8900  0.8943  0.9032 - 0.7998 0.7886  0.8294  0.8647

" FedAvg 0.8026 0.7444 07640 07635 - 06825 0.6528 0.7175 0.7325
PI FedProx 0.8699 0.8088 0.8194 0.8186 - 0.7154  0.6940  0.7548  0.7830
(F1) MOON 0.8703  0.8036  0.8203  0.8193 - 0.7160  0.6954 0.7484  0.7819
FedMix 0.8141 0.7602  0.7786  0.7739 - 0.6875  0.6767 0.7192  0.7443

" FedAvg+FedKC(last layer) 0.8704  0.8049 0.8177 08214 - 07295 0.6940 0.7608 0.7855
FedAvg+FedKC(all layers)  0.8932  0.8258 0.8403 0.8407 - 0.7269  0.6926  0.7690  0.7984
FedProx+FedKC(all layers) 0.8939 0.8269 0.8344  0.8341 - 0.7313 0.7013 0.7727 0.7992
mBERT(only en) 0.6875  0.6436 - 0.6571 - - - - 0.6627
mBERT (all languages) 0.6929  0.6915 - 0.6992 - - - - 0.6945

" FedAvg 0.6258 05649 - 06075 - - - - 705994
FedProx 0.6368  0.5611 - 0.6260 - - - - 0.6080
QA MOON 0.6307  0.6055 - 0.6461 - - - - 0.6274
FedMix 0.6374 0.6114 - 0.6464 - - - - 0.6317

" FedAvg+FedKC(last layer) 06341 0.6154 - 06488 - - - - 06328
FedAvg+FedKC(all layers) 0.6420 0.6285 - 0.6360 - - - - 0.6355
FedProx+FedKC(all layers) 0.6401  0.6176 - 0.6542 - - - - 0.6373
mBERT(only en) 0.9157  0.7532  0.7556  0.7171  0.7242 - - - 0.7732
mBERT (all languages) 0.9117 0.8698 0.8394 0.8128  0.8669 - - - 0.8601

" FedAvg 0.8806 0.7774 07185 0.7289  0.7305 - - - 07672
FedProx 0.8788 0.7645 0.7216  0.7196  0.7391 - - - 0.7650
NC MOON 0.8710  0.7192  0.6868 0.6970  0.7346 - - - 0.7417
FedMix 0.8760  0.7111  0.6652  0.6900  0.7252 - - - 0.7335

" FedAvg+FedKC(last layer) 0.8814 0.7818 0.7385 0.7437 07463 - - - 07783
FedAvg+FedKC(all layers) 0.8836 0.7939 0.7454 0.7420 0.7553 - - - 0.7840
FedProx+FedKC(all layers) 0.8824 0.7858  0.7451 0.7333  0.7511 - - - 0.7795

Table 4: Comparison with knowledge composition with or without KMeans. "\K" means knowledge composition without
KMeans. The highest scores per category are bold.

Task Method en de es fr ru ja ko zh AVG

FedAvg+FedKC(last layer)\K  0.8671  0.8007  0.8124  0.8082 - 0.7243  0.7121  0.7489  0.7820

PL FedAvgiFedKClall layersK_ 08882 08258 08370 08390 - 07400 07274 07753 0.8047
(Acc)  FedAvg+FedKC(last layer) 0.8837 0.8239 0.8326  0.8367 - 0.7423  0.7263  0.7730  0.8026
FedAvg+FedKC(all layers) 0.9032 0.8408 0.8550 0.8557 - 0.7614 0.7381 0.7890 0.8204
FedAvg+FedKC(last layer)\K ~ 0.6238  0.5907 - 0.6350 - - - - 0.6165

oa - fedAvg+FedKClall layers)K_ 06381 0.6184 - 06443 - - - - 06336
FedAvg+FedKC(last layer)  0.6341  0.6154 - 0.6488 - - - - 0.6328
FedAvg+FedKC(all layers)  0.6401 0.6176 - 0.6542 - - - - 0.6373
FedAvg+FedKC(last layer)\K  0.8848 0.7760 0.7267  0.7276  0.7384 - - - 0.7707

nc  FedAvg+FedKClall layers)K  0.8815 07738 07037 07097 07401 - - - _ 07618
FedAvg+FedKC(last layer) 0.8814 0.7818 0.7385 0.7437 0.7463 - - - 0.7783
FedAvg+FedKC(all layers) 0.8836 0.7939 0.7454 0.7420 0.7553 - - - 0.7840
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5.4 Sensitivity w.r.t. The Number of Epochs

In this section, we study how the local updating epochs, an impor-
tant hyper-parameter in federated learning, influences the perfor-
mance of FedAvg+FedKC (all layers). We conduct the experiment
on NC datasets with three different epoch number 1,2, and 4, and
show the results in Fig. 2.

According to Fig. 2, we find that locally updating 1 epoch can not
achieve performance as good as 2 epochs and 4 epochs. When local
parameters are updated in 1 epoch each round, FedAvg degenerates
into FedSGD [31], and model is more likely to be underfitting.
Compared with locally updating 4 epochs, locally updating 2 epochs
performs better in most languages because updating 4 epochs may
suffer from overfitting. This phenomenon is consistent with fine-
tuning pre-trained language models with centered data.

Accuracy
oo

Figure 2: The results of FedAvg+FedKC (all layers) with dif-
ferent numbers of epochs in the local updating.

5.5 Sensitivity w.r.t. Active Clients

In this section, we study how the ratio of active clients influences
the the performance of FedAvg+FedKC (all layers). We evaluate the
performance of FedAvg+FedKC (all layers) with 2, 5, and 7 active
clients each round on the NC dataset, and report results in Fig. 3.

From Fig. 3, we find that when the number of active clients is 2,
it performs worse than 5 active clients and 7 active clients. Fewer
active clients, less knowledge can be used to achieve a good global
model. If the number of active clients is small and data distributions
of these active clients are diverse, even though knowledge compo-
sition can exchange some knowledge among them, it is still very
challenging to achieve high accuracy. However, when the number
of active clients increases to 5 and 7, their performance is much
better than that of 2 active clients, i.e. 11.9% and 15.0% improvement
respectively. And we can find the global model will achieve better
performance when there are more active clients, which is consistent
with the phenomenon in FedAvg according to [31].

o

Accuracy
14

Figure 3: The results of FedAvg+FedKC (all layers) with dif-
ferent ratios of active clients.
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Figure 4: The hit ratio of recovered data. N represents the
number of candidates and Hits means the hit ratio.

5.6 Qualitative and Quantitive Analysis of
Privacy

In this section, we study the potential privacy risk of knowledge
composition qualitatively and quantitively. We conduct the experi-
ment on a subset of NC. Sentences used as the data in one cluster
are shown in appendix due to limited space. We use the similar
method in [42] to recover the raw text via averaged embedding.
Inspired by the evaluation in information retrieval systems, we use
Hits@N to evaluate the recovery accuracy. We set the max length
of text as 128. For each token, we choose top-N possible candidates.
Then the proportion of tokens who has candidates contained in the
10 raw text is the hit ratio, i.e., Hits. We show the result in Fig. 4.

According to Fig. 4, we find recovering data from averaged em-
beddings of both FedAvg+FedKC (last layer) and Fed Avg+FedKC (all
layers) can not achieve high accuracy. We show the Hits@N with
varied N from 1 to 90. We can find the Hits@N value increases with
the value of N. When the value of N is small, the recovered data is
almost incorrect. And the Hits@90 of FedAvg+FedKC (last layer)
is around 46.1% and the Hits@90 of FedAvg+FedKC (all layers) is
only 15.6%. Therefore, recovering data from FedAvg+FedKC'(all
layers) is more difficult than FedAvg+FedKC (last layer). The possi-
ble reason is the dimension of the vectorized representation of Fe-
dAvg+FedKC (all layers) is much higher than that of Fed Avg+FedKC
(last layer). Then we show the concrete cases of recovered to-
kens of FedAvg+FedKC (all layers). The recovered tokens include
"into", "trip", "Russian", and "more". Except "Russian’", it is difficult
to achieve the useful information about the raw text from these
recovered tokens. Therefore, it shows it is difficult to recover data
from knowledge composition empirically.

6 CONCLUSION

In this paper, we propose a knowledge composition module which
exchanges knowledge among clients to effectively handle non-IID
challenges with privacy guarantee for multilingual NLU. Specifi-
cally, we perform clustering on each client’s data to get the most rep-
resentative knowledge, i.e. clustered data centroids, and exchange
the learned data centroids among clients, breaking data island in
federated learning to overcome non-IID and data imbalance chal-
lenges. The high-level knowledge can preserve data privacy, which
is examined by both theoretical analyses and empirical studies. We
conduct extensive experiments on three public multilingual NLU
datasets including paraphrase identification, question answering
matching, and news classification tasks. Experimental results show
that the proposed knowledge composition outperforms state-of-
the-art baselines on all three datasets.
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FedKC: Federated Knowledge Composition for Multilingual Natural Language Understanding

A BASELINES

We compare the proposed knowledge composition with following
baselines:
mBERT [10], which is a multilingual version of BERT, is a state-

of-the-art model for multiple multilingual NLP tasks. It is trained
on top 104 languages of Wikipedia corpora. Fine-tuning mBERT
with all languages provides the ceiling performance for federated
models, and we denote it as mBERT (all languages). We also show
fine-tuning mBERT with only English data, which is denoted as
mBERT (only en).

FedAvg [31] is one of the most popular federated learning methods.
FedProx [27], an improved version of FedAvg, adds a regularizer to
prevent local parameters updating too much.

MOON [25] introduces contrastive learning to force current local
representation to be closer to global representation than last round
local representation.

FedMix [59] extends the data augmentation method Mixup to fed-
erated learning. It shows great performance on image data.

B IMPLEMENTATION DETAILS

For PAWS-X, there are 22 clients; for QAM, there are 20 clients; for
NC, there are 70 clients. For each communication round, we set
random 10% of clients as active clients, and local model updates
2 epochs. We set the whole communication T as 35. For PAWS-X
and QAM, we set the number of clusters in KMeans as 10 and for
NC, the number of clusters is set 5. We use the default setting of
baselines for other parameters following [25, 27, 31, 59]. For all
experiments, we run ten times and report the average results.

C PROOF OF PROPOSITION 1

PROPOSITION 1. For embeddings e (k =
KMeans clustering with q clusters, we have

1,2,...,nm), after

nm q
D ey —ell3 + gy =15 < > > (lley” — milly + gy - dil3),
k=1

i=1 keC;
)
where 1 is the i-th centroid, and 1j; = ﬁ Ykec; gj}‘?
PrROOF. We can rewrite the left of the inequality as
nm q
D llegt—elf =2 > llef" el (10)
k=1 i=1 keC;

Because KMeans is to learn the optimal centroids to minimize the
reconstruction error, we have

D llei el < > llef” — plly (11)
kEC,' kECi
Therefore, we can get the following inequality
nm q
D lleg —elf <> > lleg = il (12)
k=1 i=1keC;
Similarly, we also have
Nm q
D lgE =gz =" > gy - gl (13)
k=1 i=1keC;
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. - - 2 1 -
Because arg ming Skec, 195" — 9112 = &1 Lkec, 9, we have

n!.l'l q
DlgE -l < > > IgE - il (14)
k=1 i=1keC;
Therefore,
Mm q
D (lleg = el + g =11 < > > e - mill} + gy — dill)
k=1 i=1 keC;
holds. O

D PROOF OF PROPOSITION 2
ProposITION 2. The distance between Vec(ET") and Vec{E}"} can
be bounded by the distance between e]" and e;.".

PrOOF. The network defines a mapping M(Vec{E}’C"}) — e}:“.

Therefore, using one order Taylor expansion, we have e}‘:‘ = M(0)+
(v Vee(x)=0) Vee(Ef?) = b + W Vec(Vec(E]")). Therefore,
we have
llef” - ef"ll2 ~ W (Vec(E]") — Vec(E}"))IIZ
= (Vec(E]") - Vec(E]")TWW T (Vec(E]") — Vec(E]")).
(15)

Therefore, we have

1 m my 2 m myp2
mlleg —€; ||y =|[Vec(E;") — Vec(E;")|I;
1
ﬂm"ei‘m - e_;n"%, (16)
where Amax(WWT) and A,in(W W T) mean the largest and small-
g
est eigenvalues of WW T respectively. m}

E PROOF OF PROPOSITION 3
LEmMA 1. Letx ~ xﬁ., then for all 6 > 0,

P(x>d+2Vds +28) < e?, (17)
P(x <d-2Vds) < e®. (18)

LEMMA 2. Suppose X1,Xz,...Xn ~ N(u,o?I), and ¥ =
%z;le Xij, where iy, iz, ....i;. € {1,2,...,n}, and ip # ig forp # q.
Then with at least probability 1 — e=9, where & > 0, the following
inequality holds:

1
[1% —x;|2 > (d - 2Vd5)(1 - ;)az. (19)
PROOF. case 1: x; & {Xi,, ..., Xi; }.
Consider random variable y = X — x;. We have E[y] = 0, and
Varly] = (1 + %)o’zl. Therefore, we have y ~ N(0,(1 + %){TZI).

Then define a random variable z = 1

y, and we have z ~
1+,1Ecr

N(0,I). Therefore, we have ||z||§ ~ xﬁ, where d is the dimension

of z. According to [22], for § > 0, we have

P(||2]|2 - d < —2Vdd) < 7°. (20)
Therefore,
P(||2]|? > d - 2Vdd) > 1 - €7°. (21)
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Then we have
1
P(||z])? > (d—2\/¢§}(1+;}02}2 1-e9. (22)
case 2: Xj € {Xj,, ..., Xi, }-

Consider random variable y = X — x;. Without loss of generality,
let x; be x;, here. Therefore, y = {i; —Dx;, + i;x,-z +..+ i;xg,c. We
have E[y] = 0, and Var[y] = ((% —-1)%+ (%)zk)czl =(1- %)021.
Therefore, we have y ~ N(0,(1- L}GZI ). Then define a random

variable z = y, and we have z ~ N(0,I). Therefore, we

I—Icr

have ||z||§ ~ xa.. Similar to case 1, we have

P(||2][? > (d - 2Vd5)(1 - %}az} >1-¢9. (23)

Because (d — 2Vd8)(1 — §)o? < (d — 2Vdd)(1 + 1)o?, with at
least probability 1 — e~ where § > 0, the following inequality
holds:

1% — x| |2 > (d — 2Vd8)(1 - %)52. (24)
O

LeMMA 3. The optimal solution with softmax of the optimization
problem

mZ.i.n IF(VTSoftmax(Z))- x| |§ +A||Z||y isZ] and the optimal solu-
tion of the optimization problem ng.n IF (VT Softmax(Z)) — ch||:za +

A||Z||y is Z. And the solutions after softmax gotten via SGD of the
two optimization problems are Z1 and Z respectively, where f(-) is
a encoding function and f(-) is L-Lipschitz continuous. The residual
errors are €, = f(VTZ*) —xy and ez = f{VTZE) — Xx3. We have

I1Z1 ~ Z2||F > _L||V|| o Ul = x2llz — ||e1 — ez][2)
-1Z3 - Zz||F. (25)
PrOOF. We can rewrite x; and x3 as
x1=f(VIz})-e, (26)
x2= fVTZ)) - &. (27)

Therefore, we have
llx1 = xallz =l f(VTZ3) - e1 - F(VTZ3) + e2]l2
<L|IVIIFIIZT = Z;lIF + lle1 — €2l
=L|\VIIFIIZ] = Zz + Zz — Z3 ||z + | le1 — 2]z
<LIVIIFIIZT - ZzlIF +11Z2 - Z;11F)
+|le1 - e2ll2 (28)

Transpose and we can get
1
125 - Zz||2 > W{“Il - xzllz - |le1 — ezll2) - 125 — Zz||z-

Here, ||Z; — Z>||z can be bounded by the upper error bounds of the
two optimization problem via projected gradient descent. m}

PROPOSITION 3. Suppose Xq,Xz,....Xn ~ N(u,02I), and X =
ir € {1,2,...,n}, and ip # iq forp # q.
The optimal solution of the optimization problem mzm IF(vTZ) -

1 k . .
* Zj:l Xi;, where i1, iz, ...,
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Jc;||2 is Z! and the opttmai’ solution of the optimization problem
m.m f {VITZ ) — Jc||2 is Z*. And the solutions gotten via projected

g?'adwnt descent of the two optimization problems are Z; and Z
respectively. The residual errors are €; = f {VTZ;) —Xxjand € =
F(VTZ*) = x2. Then with at least probability 1 — e~%, where§ > 0,
the following inequafity holds:

1Z; — Z||F 2+ ((d — 2‘/_}(1——}6 —llei — €llz)

LIIVII
-l1Z* - Z|IF. (29)

ProOOF. According to Lemma 3, we have

11Z] ~Z|IF 2 ———(llxi — X[l2
LIIVII :

~IZ* - Z||F. (30)

Then based on Lemma 2, with at least probability 1 — e’
6 > 0, the following inequa.lity holds:

I1Z; - ZllF 2

[lei — €llz)

, Where

2 g (@~ V81 - ) — llei = ll)

-l1Z* - Z|IF. (1)
o
F TEXT USED IN SECTION 5.6

1) Kim Kardashian’s baby bump is starting to make an appearance
and the reality star is showing it off in tight, sexy, plunging outfits.
2) Sophia Tabers explains her stroke of good luck.

3) There’s no one more synonymous with Old Hollywood glamour
than Liz Taylor, but there’s something special about seeing the icon
when all the glitz and diamonds are stripped away.

4) Hundreds of people are missing and an unknown number believed
dead after a partly-constructed hydropower dam in southeast Laos
collapsed, sending flash floods surging through six villages.

5) It looks like the Kardashians will be attending Coachella in luxury
this year. The famous reality TV family just purchased a $12 million
mansion located in La Quinta’s Madison Club near the popular music
festival.

6) A Florida woman was arrested for driving under the influence of
alcohol after users on the live video streaming app "Periscope’ called
police warning she was intoxicated. (Oct. 13)

7) A recent Gallup poll asked Americans what they considered the
greatest threats to the U.S. Do those numbers align with the govern-
ment’s perception?

8) """Federal prosecutors are accusing a 29-year-old woman of being a
Russian spy. They say Maria Butina allegedly """"took steps to develop
relationships with American politicians."""" CBS News Washington
correspondent Paula Reid reports."""

9) At the Democratic debate, candidates were asked which enemies
they’re most proud of making.

10) The owner of Bar Marco in Pittsburg put an end to tipping his
waiters in favor of paying his employees a ‘living wage.’ Not only are
they getting more money, they are also getting: health insurance, paid
time off, and equity in the company. Keri Lumm (@thekerilumm)
reports.
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