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Abstract

We study fluid-induced deformation and fracture of granular media, and apply photoporome-
chanics to uncover the underpinning grain-scale mechanics. We fabricate spherical photoelastic
particles of 2 mm diameter to form a monolayer granular pack in a circular Hele-Shaw cell that is
initially filled with a viscous fluid. The key distinct feature of our system is that, with spherical par-
ticles, the granular pack has a connected pore space, thus allowing for pore-pressure diffusion and
the study of effective stress in coupled poromechanical processes. We inject air into the fluid-filled
photoelastic granular pack, varying the initial packing density and confining weight. With our re-
cently developed experimental technique, photoporomechanics, we find two different modes of fluid
invasion: fracturing in fluid-filled elastic media (with strong photoelastic response), and viscous
fingering in frictional fluids (with weak or negligible photoelastic response). We directly visualize
the evolving effective stress field, and discover an effective stress shadow behind the propagating
fracture tips, where the granular pack exhibits undrained behavior. We conceptualize the system’s
behavior by means of a mechanistic model for a wedge of the granular pack bounded by two grow-
ing fractures. The model captures the pore pressure build-up inside the stress shadow region, and
the grain compaction in the annular region outside. Our model reveals that a jamming transition
determines the distinct rheological behavior of the wet granular pack, from a friction-dominated

to an elasticity-dominated response.



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

INTRODUCTION

Multiphase flow through granular and porous materials exhibits complex behavior, the
understanding of which is critical in many natural and industrial processes. Examples in-
clude infiltration of water into the vadose zone [1], growth and deformation of cells and
tissues [2], and geological carbon dioxide storage [3]. While fluid-fluid displacement in rigid
porous media has been studied in depth, the understanding of the interplay between multi-
phase flow and granular mechanics remains an ongoing challenge [4]. In many granular-fluid
systems, the powerful coupling among viscous, capillary, and frictional forces leads to a
wide range of patterns, including desiccation cracks [5, 6], fractures [7—13], labyrinth struc-
tures [14], granular fingers [15-17], corals, and stick-slip bubbles [18]. An in-depth study
of poromechanics behind these coupled solid-fluid processes is crucial to understanding a
wide range of phenomena, including methane migration in lake sediments [19], shale gas

production [20], and hillslope infiltration and erosion after forest fires [21].

While fracturing during gas invasion in fluid-saturated media has been studied extensively
in experiments [7, 8, 10-13, 16, 22] and simulations [9, 17, 23-29], the underlying grain-scale
mechanisms behind the morphodynamics and rheologies exhibited by deformable granu-
lar media remain poorly understood. To investigate the interplay between fluid and solid
mechanics of granular media, we adopt a recently developed experimental technique, pho-
toporomechanics [30], to directly visualize the evolving effective stress field in a fluid-filled
granular medium during the fracturing process. The key idea behind our photoporome-
chanics technique is the manufacturing of residual-stress-free photoelastic particles (such as
spheres or icosahedra) that allow for connectivity of the pore space, so that pore pressure
can diffuse and one fluid can displace another even without grain motion. In an earlier study
of root growth in photoelastic granular media, Barés et al. [31] manufactured cylindrical
photoelastic particles with a groove on the edge to allow for roots to grow between adjacent
grains and propagate deep inside the granular medium. This disc-with-groove geometry,
however, would likely experience strong adhesion/friction with the walls of the Hele-Shaw
cell, and it’s a less realistic representation of granular materials than spherical particles.
Given the importance of frictional forces on the morphological regimes of the granular pack
[18, 22], here we focus on the impact of confining weight on the fracture patterns. We

also adopt packing density as a control variable, which proves to be key to rheological and
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morphological transitions in granular-fluid systems [18, 28].

In this study, we uncover two modes of air invasion under different initial packing den-
sities and confining weights: fracturing in fluid-filled elastic media, and viscous fingering in
frictional fluids. We discover an effective stress shadow behind the propagating fracture tips,
where the intergranular stress is low and the granular pack exhibits undrained behavior. In
the annular region outside the fractured region, the mechanical response of the granular
medium transitions from friction-dominated to elasticity-dominated. To explain the ob-
served distinct rheological behavior, we propose a mechanistic model for a wedge between
two fractures. Finally, we rationalize the emergence of fracturing across our experiments as

a jamming transition.

MATERIALS AND METHODS

Following the fabrication process in [30], we produce photoelastic spherical particles with
a diameter d = 2 mm (with 3.5% standard deviation) and a volumetric modulus K, =
1.6 MPa. We inject air into a monolayer of photoelastic particles saturated with silicone oil
(n =9.71 Pa-s) in a circular Hele-Shaw cell [Fig. 1]. When particles are immersed in silicone
oil, the friction coefficient between particles is p, = 0.2 & 0.06, and the friction coefficient
between the particle and the glass plate is p,, = 0.05 £ 0.02. To observe the photoelastic
response of the particles, we construct a dark-field circular polariscope by means of a white
light panel together with left and right circular polarizers [32]. Vertical confinement is
supplied by a weight, W, adding up the weights from a confining weight, a light panel,
a polarizer, and a glass disk that rests on top of the particles. The free top plate with
prescribed confining weight is a natural representation of the conditions that prevail in
subsurface processes, where the vertical confining stress is constant and controlled by the
depth of the geologic stratum. To allow the fluids (but not the particles) to leave the cell,
the disk is made slightly smaller than the interior of the cell (inner diameter L = 21.2 c¢m),
resulting in a thin gap around the edge of the cell. A coaxial needle is inserted at the
center of the granular pack for saturation, fluid injection and pore pressure measurement.
We conduct experiments in which we fix the air injection rate (¢ = 100 mL/min) and the
syringe reservoir volume (Vy = 15 mL). We use three linear variable differential transformers

(LVDTSs) to monitor the vertical displacement of the top plate. We adopt a dual-camera

3
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system to record bright-field (camera A) and dark-field (camera B) videos. For the sample
preparation, the initial packing density (¢g) of the granular pack is controlled by the total
mass of particles (M), and is calculated in 2D through image analysis. Before the air
injection, we take a bright-field photo of the granular pack and create a binary mask with
an intensity threshold. We then calculate the initial 2D packing density (¢o) by dividing
the number of particle pixels by the total number of pixels in the circular Hele-Shaw cell.
To study the impact of packing density and frictional force, we vary ¢y from 0.78 to 0.84
(Mg = 37 to 40 g), and the confining weight W from 25 N to 85 N. The influence of the
confining weight (W) on ¢y is negligible (< 0.2%).

To gain additional insight into the rheological behavior of the granular pack, we record
the spatiotemporal evolution of the packing density and effective stress fields from the ex-
periments. To construct the 2D packing density field, we create a binary mask, then detect
particle positions by centroid finding in MATLAB, and compute the packing density at each
particle position within a sampling radius 3d [33] by dividing the number of particle pixels
by the total number of pixels within the sampling circle. We then construct the packing
density field for all the particles in the granular pack. To construct the effective stress
field, we retrieve the light intensity of the blue channel from dark-field images and convert
it into the effective stress value. To obtain the conversion factor between light intensity
and effective stress, we conduct a single-bead calibration that directly relates light intensity
to inter-particle force F' [30]. By computing the Cauchy stress tensor for the calibrated
particle under the diametrical loading condition, we obtain the expression that relates the
inter-particle force to the effective stress, o’ = 7?—52 [34]. After this conversion, we visualize

the time evolution of the effective stress field from the dark-field images.

RESULTS AND DISCUSSION

In Fig. 2, we show the invasion patterns resulting from air injection for experimental
conditions with the same confining weight (W = 25 N) and two different initial packing
fractions (¢o = 0.84, 0.78). The invasion patterns at breakthrough—when the invading fluid
first reaches the outer boundary—indicate two invasion regimes: (I) fracturing in fluid-filled
elastic media, with strong photoelastic response [Fig. 2(a)], and (II) viscous fingering in

frictional fluids, with weak or negligible photoelastic response [Fig. 2(b)]. A light intensity
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FIG. 1. Experimental setup: a monolayer of photoelastic particles (diameter d, initial packing
density ¢g) saturated by silicone oil is confined in a circular Hele-Shaw cell (internal diameter L).
Vertical confinement is supplied by a weight, W, adding up the weights from a confining weight,
a light panel, a polarizer, and a glass disk that rest on top of the particles. The disk is slightly
smaller than the cell to allow the fluids (but not particles) to leave the cell. Air is injected at a fixed
flow rate g at the center of the cell with a coaxial needle, with the injection pressure monitored
by a pore-pressure sensor. Three LVDTs are attached to the top of the light panel, capturing the
vertical displacement of the top plate during the fracturing process. A white light panel, right and
left circular polarizers form a dark-field circular polariscope. bright-field and dark-field videos are

captured by cameras placed underneath the cell.

I = 0.65 in the blue channel of the dark-field images is adopted here as the threshold to
differentiate between the two regimes. We analyze the time evolution of the air-oil interface
morphology from bright-field images, and the rheological behavior of the granular pack from
dark-field images (see supplemental videos corresponding to the conditions in Fig. 2 and see
Appendix A for the complete visual phase diagram for a range of values of ¢y and ). We
compute the ratio between viscous and capillary forces in the experiments as the modified
capillary number Ca* = ngR/(vhd?) [22], where oil viscosity n = 9.71 Pa:s, injection rate
g = 100 mL/min, cell radius R = 10.6 cm, interfacial tension v = 0.034 N/m, cell height
h = 2 mm, and particle diameter d = 2 mm, resulting in Ca* = 6.3 x 10%. Therefore the

effect of capillarity is negligible and viscous effects are dominant in our experiments.
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Regime I: Fracturing in fluid-filled elastic media. When particles have been densely
packed initially, air initially invades into the granular pack by expanding a small cavity at
the injection port, with the injection pressure P,,; ramping up during this period [Fig. 3(a)(d)
for ¢9 = 0.84]. The onset of fracturing in our cohesionless granular packs is determined by
the viscous force from injection overcoming the frictional resistance between particles in the
granular pack. Before fracturing, the injection pressure increases, and this pressure increase
leads to an increased viscous force and, simultaneously, a decreased interparticle frictional
force from the lifting of the top plate—a combination that results in the emergence and
growth of fractures. Higher W results in higher peak pressure [Fig. 3(a)], and thus the
fracture network becomes more vigorous with well-developed branches (see Appendix A).
In this regime, the effective stress field exhibits a surprising and heretofore unrecognized
phenomenon: behind the propagating fracture tips, an effective stress shadow, where the
intergranular stress is low and the granular pack exhibits undrained behavior, emerges and

evolves as fractures propagate [Fig. 2(a), right].

Regime II: Viscous fingering in frictional fluids. For granular packs with lower initial
packing density (¢ = 0.78), the system’s rheology is akin to a frictional fluid [18, 28],
as evidenced by the weak or negligible photoelastic response at breakthrough [Fig. 2(b),
right]. The high-viscosity defending fluid inhibits the injected air from infiltrating into pore
spaces [16]. The fluid-filled granular medium effectively behaves like a suspension [36], the
morphology of which is dominated by the Saffman-Taylor instability [18, 37, 38].

The temporal evolution of the injection pressure and the vertical displacement of the top
plate encode the information to help understand the interplay between particle movement
and fluid-fluid displacement. At a high injection rate, the dynamics is dominated by the
viscous response to the flow in the cell [22]. For all the confining weights, the injection
pressure exhibits a peak followed by a decay, and a sharp drop corresponding to breakthrough
of air at the cell boundary [Fig. 3(a)]. There are three ways to accommodate the injected
air volume: compressing particles, driving defending fluid out of the cell, and lifting the
confining weight to create extra vertical room. This last mechanism is favored under our
experimental conditions, with injection pressure values ~ 30 kPa. As shown in Fig. 3(b)
where we plot the temporal evolution of the top plate’s vertical displacement ¢k (normalized
by the grain size d), the top plate is indeed lifted noticeably during fracturing: dh/d =
5%, 6%, 8% under W =25 N, 65 N, 85 N, respectively. For the fracturing experiments at
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FIG. 2. Bright-field (left), dark-field (middle) images of the invading fluid morphology at break-
through, and histogram (right) of light intensity of the blue channel of the dark-field image before
air injection (in gray color), and at breakthrough (in black color), corresponding to two different
initial packing densities ¢, with confining weight W = 25 N. From the dark-field images that
visualize the effective stress field, the invading morphology and rheology of the granular packs are
classified as: (a) fracturing in fluid-filled elastic media, with strong photoelastic response (I > 0.65),
¢o = 0.84, or (b) viscous fingering in frictional fluids, with weak or negligible photoelastic response
(I < 0.65), ¢o = 0.78. Behind the propagating fracture tips, the effective stress field exhibits
an evolving “effective stress shadow”, where the intergranular stress is low and the granular pack
exhibits undrained behavior. See supplemental videos for the evolution of the morphology in each

regime.

¢o = 0.84, the initial cell height (hg) is 0.98d,0.96d,0.95d under W =25 N, 65 N, 85 N,
respectively (see Appendix B for detailed calculations). As W increases, a higher injection
pressure is reached before the top plate is lifted [Fig. 3(a)], which stores a larger amount
of air for fracturing. The invasion morphology at breakthrough [Fig. ??]| shows that, for
larger W, a larger volume of air is injected into the cell by either fracture branches or pore

invasion, both of which contribute to lifting the top plate. During air injection, while all
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the particles are in contact with both the top and bottom plates (h(t) < d), the confining
weight is balanced by contact forces between particles and plates and the integrated pore
pressure force across the Hele-Shaw cell. When the top plate is lifted to h(t) > d, the vertical
component of the interparticle force is negligible and the confining weight is balanced by the

integrated pore pressure force only.

We determine the spatiotemporal evolution of the packing density and effective stress
fields as described in the Materials and Methods section [Fig. 3(e)(f)]. As fractures propa-
gate, the pack is compacted ahead of the fracture tips, but exhibits a lower packing density
around the fractures, reflecting the moving-average procedure that we use to determine it.
In the fracturing experiments [Fig. 77|, we observe an asymmetric fracturing morphology
with four to six fracture branches in total, and with one or two of them propagating faster
and soon reaching the boundary. In an effort to characterize the rheological heterogeneity of
the granular pack robustly and consistently across all the fracturing experiments, we define
the fracture radius (rgac) as the average distance from three representative fracture tips to
the injection port, including both the long fractures that first reach the boundary and one
or two shorter fractures near the injection port. As fractures propagate, the fracture radius
increases, and the effective stress field exhibits marked rheological heterogeneity [Fig. 3(f)].
Behind the fracture tips (r < rgac(t)), we discover an effective stress shadow, where the
intergranular stress is low and the granular pack exhibits undrained behavior. Ahead of
the fracture tips (r > rgac(t)), particles in the annular region are compacted and behave
elastically. For the annular region, this distinct rheological behavior from a frictional to
an elastic response can be understood as a jamming transition [39, 40]. This is further
evidenced by the temporal evolution of the averaged packing density and effective stress in
the annular region outside fractures, ¢y and ol , [Fig. 3(c)], both of which rise above a
background value at the critical point of mechanical stability (¢., o) [28, 39-41]. To show
that fracturing is indeed the result of the transition to a solid-like rheological behavior, we
analyzed the evolution of the packing fraction as a function of radial distance, ¢(r), at dif-
ferent times, alongside the position of the fracture tip, for one of the fracturing experiments
(¢po = 0.84,W = 25 N; Fig. 4). The initial packing fraction is sufficiently close to the crit-
ical packing fraction ¢, that a relatively minor compaction elicits the formation and initial
propagation of a fracture. The granular pack jams sometime between t;; ~ t;;;, after which

the fracture tip travels across the outer annular region, which is all above ¢..
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FIG. 3. Time evolution of (a) injection pressure Piyj, (b) normalized vertical displacement of the
top plate dh/d, and (c) the averaged packing density ¢oyt in the annular region outside fractures
for experiments with initial packing density ¢o = 0.84, and W = 25 N, 65 N, 85 N. Insets of (b), (c)
show the time evolution of the normalized fracture radius rg,./R, and the averaged effective stress
ol . in the annular region outside fractures. The modeling results are plotted in dashed lines. For
the experiment with ¢g = 0.84 and W = 25 N, a sequence of snapshots shows the time evolution of
(d) interface morphology, (e) packing density field, and (f) effective stress field, where the radius
of the blue circle represents the fracture radius (rgac) averaged from three representative fracture

tips.

Where does the effective stress shadow come from? And how does the rheology of a gran-
ular medium evolve during the fracturing process? To answer these questions, we hypoth-
esize that the evolving effective stress shadow—the exhibited undrained behavior—stems
from the buildup of pore pressure within the wedges of granular media between propagat-
ing fractures. The hypothesis emphasizes the strong coupling between fluid flow and solid

mechanics underpinning the fracturing process.

To analyze the spatiotemporal evolution of the pore pressure, we develop a mechanis-

tic model for a representative fracture wedge with an angle #—a sector of the fluid-filled
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FIG. 4. Radial distribution of the packing fraction (¢(r)) for the fracturing experiment with
¢o = 0.84, W = 25 N. The temporal evolution of ¢(r) is plotted at six time instances, to at t = 0,
and t; ~ t, in Fig. 3. The location of the fracture tip is indicated with the cross marker. The
packing fraction distribution behind the fracture tip is plotted in dashed lines, and ahead of the
fracture tip in solid lines. The red dashed line shows the packing fraction at the jamming transition,

¢ = ¢o = 0.85.

granular medium delineated by two fractures originating from the cell center [Fig. 5(a)].
We assume Hertz—Mindlin contacts [42] between particles and the plates, and calculate the
initial vertical compression of the granular pack under the confining weight (hg < d). We
model the fracturing process until breakthrough. The proposed model for a representa-
tive fracture wedge with an angle € solves the time evolution of four unknowns: (1) the
injection pressure Pp;(t); (2) the height of the granular pack h(t); (3) the length of the
fracture rgac(t); and (4) the azimuthally dependent pore pressure field p(r,6,t). The set
of governing equations, along with their derivation and working modeling assumptions, is

included in Appendix B.

The modeling results of P, h and 74, for different confining weights show good agree-
ment with the experimental data [Fig. 3(a)(b)]. The time evolution of the pore pressure field
during fracturing provides important clues to decipher the system’s behavior [Fig. 5(c)]. The
flow velocity field demonstrates a highly inhomogeneous distribution of the pore pressure

gradient, which concentrates near the fracture tips [Fig. 5(b)]. The model captures the
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pressure build-up inside the fracture radius, resulting in the aforementioned “effective stress
shadow”, a region in which the granular pack is under near-undrained conditions. These flu-
idized particles in the stress shadow lead to grain compaction in the annular region outside,
which helps explain the distinct rheological behavior from a frictional to an elastic response
[Fig. 5(a)].

With the insights from the pore pressure model, we expect a different fluid-flow behavior
in the loose and dense regions of the granular pack: a granular—fluid mixture behind the
fracture tips, and an elastic medium ahead of the fracture tips. The homogeneous granular
pack assumption in the pressure model (Appendix B) does not reflect the disparate rheology.
For the rheology model, we take an effective permeability &’ [43] and viscosity 7' [36] for
the granular-fluid mixture within the fracture radius and approximate the number of parti-
cles Ny entering the annular region within a timestep as Ng; = (v,0t/d) - [gac(t)8/d], with
vy, = —(K' /1 )(Op/O7)|r=rgae(t), Where v, is the particle flow velocity at the fracture radius.
We update the two-dimensional packing density in the annular region as

Ny =&
%(RQ — (Thac(1))?)0
To infer the effective stress from the packing density, we adopt the power-law constitutive

P
relationship o' — 0., = K <%> (39, 40, 44-46]. The modeling results of (¢(t), o'(t))

ot +0t) = ¢(t) + (1)

in the annular region agree well with the experiments [Fig. 3(c)], capturing both the pore
pressure evolution and rheology of the granular medium. A detailed account of the modeling
parameters is included in Appendix B.

To explore the rheological properties of the granular medium in the annulus, we conduct
the jamming transition analysis for the fracturing experiments. We determine the jamming
transition ¢. from the time evolution of the effective stress ¢’ as the intersection of two
straight lines: one fitting the response of the background state, and one fitting the asymptotic
behavior in the highly compacted state [28, 40, 47] [Fig. 6(a)]. We find that ¢, lies in the
range 0.83-0.85 for the fracturing experiments [Fig. 2(a), and regime I in Appendix A], with
higher ¢. corresponding to denser granular packs. The experimental value of ¢, is consistent
with the theoretical prediction that the system jams at the random close packing density
Ge = Grep ~ 0.84 [28, 48-50]. We synthesize the elastic response of the system by plotting
the effective stress against the packing density, showing that, above ¢., o’ follows a power-

law increase, o' — o’ ~ (¢ — ¢.)?, with the exponent ¢ in the range 1.1-1.5 [Fig. 6(b)]. As

11
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FIG. 5. A mechanistic model on fracturing that explains the effective stress shadow observed

p (kPa)

in experiments. (a) Schematic of the model setup for a fracture wedge with an angle 6 = 60°.
The granular flow driven by the concentrated pore pressure gradient within fracture tips keeps
compacting particles in the annular region outside, leading to its increase in packing density and a
rheological transition from frictional flow to elastic medium. (b) Modeled flow velocity field at time
instance (iii) in Fig. 3(a). (c) Sequence of snapshots showing the time evolution of the modeling
pore pressure field. Modeling conditions: ¢ = 0.84, W = 25 N, ¢ = 100 mL/min, and Vj = 15
mL.

confirmed in previous studies [28, 39, 40, 44, 45], the value of ¢ lies between the value for
linear (¢» = 1.0) and Hertzian contacts (¢» = 1.5). In our stress—strain diagram [Fig. 6(b)],
the elastic response in the annular region indicates a value of K ~ 200 to 300 kPa, which
is close to the value measured in separate experiments [30]. Ideally, the parameters in
the constitutive relation (K1) would be the same for all the experiments, reflecting the
material’s elastic behavior after the jamming transition. In the experiments, though, this is
not the case, and the coefficients in the power law exhibit some variability in part at least due
to the asymmetric fracturing morphology and the inhomogeneous distribution of the packing
fraction and effective stress fields ahead of the fracture tips. In an effort to characterize the
rheological heterogeneity of the granular pack more robustly, in our mathematical model we

define the fracture radius (rp..) as the averaged distance from three representative fracture
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tips to the injection port.

CONCLUSIONS

In summary, we have studied the morphology and rheology of injection-induced fracturing
in wet granular packs via a recently developed experimental technique, photoporomechanics,
which extends photoelasticity to granular systems with a fluid-filled connected pore space
[30]. Experiments of air injection into photoelastic granular packs with different initial pack-
ing densities and confining weights have led us to uncover two invasion regimes: fracturing
in fluid-filled elastic media, and viscous fingering in frictional fluids. Visualizing the evolving
effective stress field using photoporomechanics, we discover that behind the fracture tips,
an effective stress shadow—where the intergranular stress is low and the granular pack ex-
hibits undrained behavior—evolves as fractures propagate. With a mechanistic model for
a fracture wedge, we capture the fluid pressure build-up inside the shadow region. We de-
velop a rheology model that explains both the effective stress shadow behind the fracture
tips, and the distinct rheological behavior from a frictional to an elastic response for the
granular medium outside the fractures. Finally, we rationalize the emergence of fracturing
across our experiments as a jamming transition initially proposed in the context of coupled

pore-network /discrete-element models [28].

Our study paves the way for understanding the mechanical and fracture properties of
porous media that are of interest for many field applications, including plant root growth in
granular material [31, 51], powder aggregation [52], rock mechanics [53], soil rheology [54],
and geoengineering [55]. We demonstrate that photoporomechanics serves as a promising
technique to study coupled fluid-solid processes in granular media [4] and may provide
fundamental insights on specific applications, including energy recovery [56], gas venting

[57], and geohazards [58].

Y.M. and W.L. contributed equally to this work. This work was supported by the U.S.
Department of Energy (Grant No. DE-SC0018357) and the U.S. National Science Founda-
tion (Grant No. CMMI-1933416).
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Appendix A: The Complete Visual Phase Diagram of Invading Fluid Morphology

at Breakthrough

Figure 7 shows the complete visual phase diagram of invading fluid morphology for a

range of values of ¢g and W.

Appendix B: Mathematical Model of Coupled Fluid Pressure and Granular Me-

chanics

We develop a mechanistic model for a representative fracture wedge with an angle 6.
We assume Hertz—Mindlin contacts [42] between particles and the plates, and calculate the
initial vertical compression of the granular pack under the confining weight (hy < d). We
model the fracturing process until breakthrough of the injected fluid. The model solves the
time evolution of four unknowns: (1) the injection pressure P;(t); (2) the height of the
granular pack h(t); (3) the length of the fracture re..(t); and (4) the azimuthally dependent
pore pressure field during fracturing, p(r,0,t).

Governing equations

1. We assume fluid flowing in a homogeneous porous medium of uniform packing den-
sity (¢3q), and time dependent uniform thickness (h(t)), in an azimuthally dependent
manner. We perform a mass balance on an annulus sector between r and r + or, 0

and 0 + 60 (Fig. 8) for the incompressible defending fluid (silicone oil):

9(pyrorddh(l — dsa))

o (B. 1)

p(vr00h — v,y 5. (r + 07)00h 4 vedrh — Vo 590Th) =

where ¢34 is the three-dimensional packing density of the granular pack, which is

computed as the ratio between the volume of particles, and the cell volume saturated

& . MS/pS
Vi = wR2hgy’

with the defending silicone oil. Before the air injection, ¢34 = where
M, and ps are the mass and density of photoelastic particles in a granular pack,
respectively. The initial cell height, hg, is calculated from the confining weight by
assuming Hertzian contacts between the particles and the glass plate. We estimate
the 3D packing density before air injection and also at breakthrough, a calculation

that shows a negligible difference between the two values. Therefore, in the model, we
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take the 3D packing fraction as a constant calculated with the initial cell height, ¢34.
Dividing the equation by p;6rdf, and letting or — 0, 660 — O:

d(verh)  O(vgh)  O(rh(1 — ¢34))

_ — — B. 2
or 00 ot ’ ( )
Combining with Darcy’s law for the fluid velocity, we obtain:
A(rhkoe O(Lkop Wl —
( 1781") + <rn89> _ a(T ( ¢3d))7 (B 3)

where k is the permeability of the granular pack and 7 is the viscosity of the defending
fluid. We assume ¢34, k, n to be constant in space and time. We then obtain the pres-

sure diffusion equation for the defending fluid (silicone oil) in cylindrical coordinates

as follows:
kh (0%p 10p 1 0%p oh
— =+ -+ === =1—¢3q9)— B. 4
n (87“2 T TR 862) (1= ¢sa) ot’ (B-4)
. Conservation of mass for the total air in the system:

Puj(t)(Vo — gt + Vi (1)) = Po(Vo + mrgha), (B. 5)
Vair(t) = 7rgh(t) + Virac(t), (B. 6)

27
‘/frac(t) = Q_(Tfrac(t) - Tg)wh<t), (B 7)

0

where V{ is the syringe volume before air injection, ry is the injection port radius,
Viair (t) is the air volume in the cell that consists of the air volume at the injection port
and the volume of fractures Viac(t), w is the fracture width, and Py is the atmospheric

pressure.

. Assuming incompressible solid grains, conservation of mass for the solid grains states

that
Vs I(Vi(t) = Vaie (t)) P3d]
ot 0= ot

—0, (B. 8)

where Vi(t) is the total cell volume. As ¢34 is a constant with time, the equation

becomes:

Vair(t) = 7TR2<h<t> — ho) + 7T7“(2]h0, (B 9)
where R is the radius of the cell.
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4. We establish the quasi-static force balance for the top plate assuming Hertzian contacts

for the granular pack. When all the particles are in contact with both the top and

bottom plates (h(t) < d), the confining weight is balanced by contact forces between

particles and plates and the integrated pore pressure force. When the top plate is

lifted to h(t) > d, particles have contacts with either the top or bottom plate, and the

vertical component (F},) of the interparticle force (£),) is negligible from the geometric
Py h—d

configuration, o= g < 0.03, and thus the confining weight is balanced by the

integrated pore pressure force only:

3 R 970
Kn<(d - h(t))>2 + Pos(t)mrd + 29—:/ /OO p(r,0,t)r dodr =W, (B. 10)
ro J—5

where K, is the contact normal stiffness of the granular pack under the confining

weight.

Initial and boundary conditions

The initial conditions for the four unknowns (Py(t), h(t), Trac(t), and p(r,8,t)) are as

follows:
Pyi(t = 0) =0, (B. 11)
h(t=0)=hy=d— (K)Q/?), (B. 12)
K,
/rfrac(t - 0) =To, (B 13)
b0 )

p(?“oﬁrSR,—§§9§§,t:0)=0, (B. 14)

The boundary conditions are:
p(R,0,0) =0, (B. 15)
p(TO S r S rfrac(t>a i90/27 t) = p<T07 07t) = Pinj(t)7 (B 16)

0

b =0, (B. 17)

99 (Trac(t) Sr<R,£00/2,t)

Modeling parameters

A summary of the modeling parameters is shown in Table I. There is no fitting parame-

0 ter in this model. The Hertzian-contact normal stiffness, K,,, is measured from a separate
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TABLE I. Modeling parameters for a mechanistic model of a representative fracture wedge

Symbol Value Unit Variable

70 2 mm Injection port radius

R 10.6 cm Hele-Shaw cell radius

M, 40 g Mass of the photoelastic particles

Ps 1 g/cm? Density of the photoelastic particles

®3d 0.58,0.59,0.60 3D packing density under W = 25,65,85 N
W 25,65,85 N Confining weight acting on the the granular pack
d 2 mm Diameter of the photoelastic particles

K, 9.4e7 Nm~—3/2  Hertzian contact normal stiffness of the granular pack
q 100 mL/min Air injection rate

Vo 15 mL Air reservoir volume

Py 101 kPa Atmospheric pressure

0 /3 Angle of a representative fracture wedge

w 3d mm Fracture width

ho 0.98d,0.96d,0.95d mm Initial height of the granular pack under W = 25,65,85 N

k (0.08d)? mm? Permeability of the granular pack

K d%/12 mm? Effective permeability of the granular-fluid mixture
i 9.71 Pa-s Defending fluid viscosity

n 9.8n Pa-s Effective viscosity of the granular-fluid mixture [36]

experiment where we track the vertical displacement of the top plate as the confining weight
increases from 10 N to 110 N, the permeability of the granular pack, k, is measured in consol-
idation experiments [30]. Other parameters are either calculated from the experimental set
up (ro, R, My, ps, ¢3a, W, d, q, Vo, Po, ho, k', 1,1), or directly measured during the fracturing

experiments (w, ).
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Numerical implementation

We use a finite difference numerical scheme to solve the four coupled governing equations

[B. 4, 5, 9 and 10]. The numerical implementation scheme for the mathematical model is
shown in Fig. 9. The fluid pressure is fully coupled with granular mechanics by solving the

unknown variables, h(t) and 7g..(t), iteratively until convergence at each time step.
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FIG. 6. Jamming transition analysis for the fracturing experiments (¢¢ =0.84, 0.82, 0.80, W = 25
N, 65 N, 85 N). (a) Determination of the critical packing density and effective stress at jamming
for the experiment W = 25 N, ¢9 = 0.84. (b) o/ — ol plotted against ¢ — ¢, for the fracturing
experiments, which follows the power-law constitutive relationship o’ —ol, = K <¢;—Z§C>w [39, 40, 44—
46).
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1. fracturing in elastic media

Il. viscous fingering in frictional fluids

W=25N W=65N W=85N

FIG. 7. Visual phase diagram of the bright-field (left) and dark-field (right) invading fluid morphol-
ogy at breakthrough corresponding to different confining weights W and initial packing densities
¢o. From dark-field images that visualize the effective stress field, the invading morphology and
rheology of the granular packs is classified as fracturing in fluid-filled elastic media (with strong
photoelastic response, ¢o = 0.84,0.82,0.80), or viscous fingering in frictional fluids (with weak or
negligible photoelastic response, ¢9 = 0.78). Behind the propagating fracture tips, the effective
stress field exhibits an evolving “effective stress shadow”, where the intergranular stress is low and

the granular pack exhibits undrained behavior.
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FIG. 8. An annulus sector used to derive the pressure diffusion equation in radial coordinates.
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FIG. 9. Numerical implementation scheme for the mathematical model. The fluid pressure is fully

coupled with granular mechanics by solving the unknown variables, h(t) and 7gac(t), iteratively

until convergence at each time step.
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