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Abstract—We present a generic and programmable Processing-
in-SRAM (PSRAM) accelerator chip design based on an 8T-
SRAM array to accommodate a complete set of Boolean logic
operations (e.g., NOR/NAND/XOR, both 2- and 3-input), major-
ity, and full adder, for the first time, all in a single cycle. PSRAM
provides the programmability required for in-memory computing
platforms that could be used for various applications such as
parallel vector operation, neural networks, and data encryption.
The prototype design is implemented in a SRAM macro with
size of 16 kb, demonstrating one of the fastest programmable in-
memory computing system to date operating at 1.23 GHz. The
65nm prototype chip achieves system-level peak throughput of
1.2 TOPS, and energy-efficiency of 34.98 TOPS/W at 1.2V.

Index Terms—In-memory computing (IMC), SRAM, pro-
grammability.

I. INTRODUCTION
Traditional von-Neumann computing architectures, such as

CPUs and GPUs, demonstrate limitations in memory band-
width and energy efficiency. However, their high demand
lies in their programmability and flexible functionality. Such
platforms execute a wide spectrum of bit-wise logic and
arithmetic operations. In this regard, recent application-specific
processing-in-memory (PIM) designs suffer from the major
challenge that their performance is intrinsically limited to one
specific type of algorithm or application domain, which means
that such PIM platforms cannot keep pace with rapidly evolv-
ing software algorithms [1]. To overcome this limitation, state-
of-the-art generic and programmable PIM architectures (e.g.,
[2]) exploit alternatives to conventional bit-parallel algorithms.
For example, it is possible to realize arithmetic operations
using bit-serial algorithms. However, it comes at a cost of
high latency and more intermediate data write-back if multiple
computing cycles are needed for basic in-memory Boolean
logic functions [1]-[5].

To address this challenge, we propose a programmable
processing-in-SRAM accelerator (PSRAM) that combines the
PIM computation efficacy with the programmability. More
importantly, for the first time, PSRAM realizes a complete
set of Boolean operations (both 2- and 3-input), majority, and
full adder in only one single memory cycle, demonstrating one
of the fastest in-memory computing macros to date operating
at 1.23 GHz. Furthermore, our one-cycle in-memory Boolean
logic design also eliminates the redundant intermediate data
write-back operations for 3-input logic and full adder that
typically need multiple cycles with extra latency and energy
in prior multi-cycle in-memory logic designs [1]-[5]. We
demonstrate PSRAM for three applications: bulk bitwise vec-
tor operations, low-precision deep learning acceleration, and
the Advanced Encryption Standard (AES) computation.

II. PROPOSED PSRAM DESIGN

The proposed PSRAM leverages the charge-sharing feature
of the 8T SRAM cell on Read Bit-Line (RBL) and elevates it
to implement 2-input and 3-input Boolean logic between two
or three selected rows in a single memory read cycle. The key
idea comes from the observation that certain discharge rate of
the precharged RBL is determined by the data value stored
in the simultaneously selected memory cells attached to the
same bit-line. For instance, by activating three memory rows
via Read Word Lines (RWL), e.g., RWLO-RWL2 (Fig. 1), if
S0,0, 51,0, and Sz o memory cells all store ‘0’s, then the read
access transistors (T8) remain OFF, and the RBL precharged
voltage does not discharge. On the other side, if all cells
store ‘1’s, the RBL voltage will rapidly discharge through
T8s. Similarly, based on different combinations of the values
stored in those memory cells, the discharged voltage value
will be different if sampled at a preset frequency and VDD,
which could be sensed by our follow up ‘logic-SA’ design to
implement different logic functions through selecting different
voltage references. Theoretically, there will be four different
voltage levels based on all possible combinations of three
memory cell data in the same bit-line. In our design, to yield
a sufficiently large sense margin, as shown in Monte Carlo
simulations (Fig. 5), the read path transistor (T7 and T8) size
is designed to be 3x as shown in Fig. 1.

To implement a programmable logic function, a new
re-configurable logic-SA is designed as in Fig. 1. It
consists of three sub-SAs with voltage references (i.e.,
VRef1<VRer2<VRer3), each dedicated to distinct logic func-
tions. In this way, by activating three memory rows (i.e., input
operand vectors) at the same time, each sub-SA performs a
neat voltage comparison between the reference voltage and
the discharged RBL voltages (w.r.t. different discharge rate
corresponding to stored memory cell data), which respectively
generates (N)OR3, (MAJ)MIN, and (N)AND3 logic output
(complementary SA), and more importantly, at the same time.

A novel single-cycle in-SRAM XOR3 (full adder’s Sum)
logic is developed through an interesting observation as shown
in the bottom-right truth table of Fig. 1. When the majority
function (MAJ) output (green box in the truth table) is ‘0’,
the corresponding XOR3’s output is the same as the OR3’s
output. When the majority function output is ‘1’, XOR3’s
output can be achieved through AND3 as highlighted by the
purple box. Based on our last paragraph description, our logic-
SA could simultaneously get the OR3, MAJ and AND3 logic
outputs, then we propose to design the XOR3 logic through
a two-transistor 2:1 multiplexer (with MAJ output as the
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Fig. 1: PSRAM chip with 8T SRAM cell as the operand memory and the proposed single-cycle logic-SA design.
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Fig. 2: In-memory logic simulation waveforms.

III. MEASUREMENT RESULTS
A. Performance Measurement

We prototyped the PSRAM macro (128x128) in TSMC
65nm CMOS (Fig. 3). The macro has a 16-kb capacity and
occupies 0.17 mm? (with decoder) in the chip floorplan. The

Fig. 4: (a) Frequency scaling over different VDDs, (b) Static
and dynamic power consumption, (¢) Vg scaling over dif-
ferent VDDs, and (d) throughput scaling over different VDDs.

bit-cell has an area of 4.56 um? (1080 F? when scaled
according to feature size), which is designed using logic rules.
For efficient integration, the logic-SAs are pitch matched w.r.t.
the column and occupy 3.4% of the array size (0.082 mm?).
The complete core area breakdown is shown in Fig. 3. The
PSRAM macro consumes 36 pJ (includes power consumed by
all components on the die) and takes 813 ps to generate 512
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outputs of the complete 3 input logic set (AND3, XOR3, OR3,
MAJ). This represents a peak throughput of 2x128x4/813ps
= 1259.52 GOPs at 1.2V supply and a compute density of
583.12 GOPS/mm?. PSRAM achieves a significant speedup of
4-157x when compared to state-of-the-art in-memory comput-
ing works [1]-[4]. We report the maximum frequency, power
consumption and throughput w.r.t. different VDDs in Fig. 4.
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Fig. 5: Monte-Carlo simulation.

TABLE I: Reference voltage ranges measured on chip.

VDD/Vge s VRes1(V) VRer2(V) VRer3(V)
0.7V @ 0.42Ghz 509m-546m | 603m-647m | 658m-693m
0.8V @ 0.64Ghz 452m-616m | 620m-733m | 745m-780m
0.9V @ 0.84Ghz 414m-661m | 669m-750m | 829m-889m
1.0V @ 0.984Ghz | 503m-711m | 735m-902m | 908m-995m

1.1V @ 1.1Ghz 550m-754m | 760m-994m | 999m-1.083
1.2V @ 1.23Ghz 554m-790m 815m-1.08 1.09-1.16

B. SA reference voltage(Vgcy) analysis

The RBL sense margins are first tested through post-layout
Monte Carlo simulations in Cadence Spectre for the four
possible sensing voltages, as shown in Fig. 5, where the
sensing margin is reported considering both process (inter-
die) and mismatch variations (intra-die) for core VDD (1.0
V) at 1 GHz. During the chip measurements, off-chip voltage
references are provided (Vges) to the SAs. To conduct the
VRey variation analysis on chip, we test all 128 bit-lines,
100 times, for all possible bit value combinations in memory.
10 chips are tested and we report all the reference voltage
ranges at different VDDs and the corresponding maximum
frequencies with zero logic errors in Table I. It is found that
at lower voltages the maximum operating frequency is limited
by the reduction of Vg ranges. A higher VDD also yields a
larger sensing margin.

IV. APPLICATIONS

e Case Study I: Bulk Bitwise Boolean Vector Operations.
The PSRAM could be leveraged to implement bulk bitwise
Boolean logic operations efficiently between vectors stored in
the same memory sub-array. This can lead to efficient re-use of
the internal memory bandwidth. Table IT compares the latency
for a set of vector operations of interest, implemented by
three generic PIM designs. We achieve the best performance
of each design, where input vectors A(aga;...) B(bgb;...) and
C(cpcy ...) are stored in separate rows of the memory. We draw
two conclusions from Table II. Firstly, our PSRAM is the
only design that supports a full-set of Boolean logic (both 2-
input and 3-input) and integer operations. Second, due to the

TABLE II: Latency comparison of vector Boolean logic oper-
ations supported by PSRAM and prior accelerators.

Parameters JSSC’18 [4] | JSSC’20 [2] | PSRAM
Capacity (KB) 8 16 2
Technology (nm) 40 28 65
Frequency (GH z) 0.029 0.475 1.23
NOT (ns / # of Cycle) 3472/ 1 21/1 081 /1
NAND?2 (ns / # of Cycle) 3472171 21/1 081/1
NAND?3 (ns / # of Cycle) 69.44 /2 42/2 081/1
NOR2 (ns / # of Cycle) 3472171 2171 0.81/1
NOR3 (ns / # of Cycle) 69.44 /2 42/2 081/1
X(N)OR2 (ns / # of Cycle) 3472/ 1 2171 081 /1
XOR3 (ns / # of Cycle) 69.44 /2 4272 081 /1
Majority (ns / # of Cycle) n/a n/a 0.81/1
FULL-ADD (ns / # of Cycle) 69.44 /2 42172 081 /1
FULL-SUB (ns / # of Cycle) 69.44 /2 42/2 1.62/2
ADD-RCA (4-bit) (ns # of Cycle) n/a n/a 324/4
ADD-CSA (4-bit) (ns # of Cycle) n/a n/a 4.05/5
ADD-Serial* (4-bit) (n.s) 173.6 10.5 4.05
SUB-Serial (4-bit) (ns) 312.48 18.9 7.29
MULT-Serial (4-bit) (ns) 1180.48 71.4 27.54
MULT-Serial (8-bit) (ns) 3541.44 2142 82.62

*N+1 cycles, T2N+1 cycles, N2+ 5N-2 cycles

complexity of some operations (e.g., ADD/SUB/MULT), they
cannot be implemented in a time-efficient manner by the prior
designs [2], [4], while PSRAM outperforms all prior works in
latency.

e Case Study II: Binary-Weight Neural Networks. We
also implement the binary-weight neural network (BWNN)
with various weight configurations for AlexNet and report the
energy, latency and other performance metrics in Table III and
Fig. 7. The general HW/SW framework developed for BWNN
consists of image and kernel banks, and PSRAM sub-arrays.
Weights and activation are constantly quantized to 1-bit and
g-bit using the same method as [6], respectively, and then
mapped to the parallel PSRAM sub-arrays. The top-1 accuracy
after quantization on ImageNet dataset is reported in Fig. 7.
For hardware mapping, considering n-activated PSRAM chips
with the size of 128x 128 (Fig. 6), each sub-array can handle
the parallel ADD/SUB (multiply-and-accumulate operations
are converted to ADD/SUB in BWNNs) of up to 128 elements
of m-bit (2m<128) and so accelerator could process nx128
elements simultaneously within computational sub-arrays to
maximize the throughput. The memory sub-array data map-
ping for PSRAM is depicted in Fig. 6. We reserve four rows
for Carry results initialized by zero and up to 32 rows for
Sum results. Every pair of corresponding elements to be added
together is aligned in the same bit-line. Herein, channel 1
(Ch1) and Ch2 should be aligned in the same sub-array. With
m=32-bit, Chl elements occupy the first 32 rows of the sub-
array followed by Ch2 in the next 32 rows.
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Fig. 6: BWNN hardware mapping.
The addition algorithm starts bit-by-bit from the LSBs of
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TABLE III: Comparison with state-of-the-art SRAM based PIM accelerators.

BWNN Accelerators Generic Accelerators
Reference PSRAM JSSC’19 [1] | JSSC’19 [3] JSSC’20 [2] JSSC’18 [4]
Technology 65nm 65nm 65nm 28nm 40nm
Bit cell Density 8T 10T 8T 8T Transposable 10T
Supply Voltage 0.8-1.2V 0.83-1.2V 0.68-1.2V 0.6 - 1.1V 0.5-0.9V
Max Frequency 1230MHz (1.2V) SMHz 100MHz 475MHz (1.1V) | 28.8MHz (0.7V)
SRAM Macro Size 2KB 2KB 4.8KB 16 KB 8KB
Performance (GOPS) 1259.52 8 295 32.7 14.7
Performance per unit area (GOPS/mm?) 583.12 126 234 27.3 70
Energy-Efficiency (TOPS/W) 34.98 40.3 20.6 3§Z E?:li)t) 31.28
Reconfigurable Programmable N/A N/A Programmable N/A

I We assume 2 operations (OPs) per NAND3/XOR3/X(N)OR3/NOR3 (cascaded logic), similar to MAC (1 mult. + 1 add).

the two words and continues towards MSBs. For evaluation, a
7-layer BWNN is adopted with distinct weight configurations
of <W:iI>: <I:1>, <1:2>, <1:8>. Our evaluation result
reported in Fig. 7 shows that PSRAM can process AlexNet on
average with 35 mJ energy per inference and ~0.5 ms latency.
The process energy and latency include the amount required
by multiple PSRAM chips working as a whole entity. More
detailed performance comparison with other recent SRAM
based PIM designs are reported in Table III.
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Fig. 7: (a) PSRAM energy consumption and (b) processing
time for running the AlexNet (ImageNet dataset).

e Case Study III: Data Encryption. We further take
the Advanced Encryption Standard (AES) data encryption
algorithm as the third case-study. To facilitate working with
input data (with a standard input length of 128 bits), each
input byte data is distributed into 8-bit such that eight PSRAM
sub-arrays are filled by 4x4 bit-matrices [7]. After mapping,
PSRAM supports the required AES bulk bit-wise operations
to accelerate each transformations inside the memory. As
shown in Fig. 8, all AES transformations are mainly based
on (N)AND and XOR operations that are fully supported
in PSRAM. In SubBytes, MixColumns, and AddRoundKey
stages, parallel in-memory XOR2 and (N)AND2 operations
contribute to more than 90% of the operations. In ShiftRows
stage, state matrix will undergo a cyclical shift operation by
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. 8: AES block diagram with the gate utilization.

a certain offset. We use the 128-bit AES software implemen-
tation as the baseline from [4], a 350nm ASIC [8], and a
40nm ASIC [4] designs for comparison. Table IV shows that
PSRAM achieves the highest speed-up over baseline. This
mainly comes from the massively-parallel and high throughput
XOR operation supported in PSRAM.

TABLE IV: 128-bit AES performance.

Freq. Time (1S5) Energy (nJ)
Platforms #Cycles (MHz) (Norr::.) (Norm.)
Baseline [4] 6358 24 265 (1x) 64.2 (1x)
ASIC [8] 5429 0.847 6410 (24x) 10259 (160x)
Recryptor [4] 726 28.8 25.2 (0.1x) 7.05 (0.11x)
PSRAM 718 1230 0.58 (0.002x) 19.21(0.3x)

V. CONCLUSION

In this work, we present a programmable PSRAM chip
design in TSMC 65nm CMOS technology. For the first time,
the PSRAM could execute a complete set of Boolean logic
vector operations (i.e., NOR/NAND/XOR, both 2- and 3-
input), majority, and full adder, all in a single memory cycle.
We also demonstrate three case studies leveraging our PSRAM
design, including parallel vector operation, neural networks,
data encryption, etc. PSRAM paves a new path towards the
generic, programmable and fast in-SRAM computing.
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