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Abstract—We present a generic and programmable Processing-
in-SRAM (PSRAM) accelerator chip design based on an 8T-
SRAM array to accommodate a complete set of Boolean logic
operations (e.g., NOR/NAND/XOR, both 2- and 3-input), major-
ity, and full adder, for the first time, all in a single cycle. PSRAM
provides the programmability required for in-memory computing
platforms that could be used for various applications such as
parallel vector operation, neural networks, and data encryption.
The prototype design is implemented in a SRAM macro with
size of 16 kb, demonstrating one of the fastest programmable in-
memory computing system to date operating at 1.23 GHz. The
65nm prototype chip achieves system-level peak throughput of
1.2 TOPS, and energy-efficiency of 34.98 TOPS/W at 1.2V.

Index Terms—In-memory computing (IMC), SRAM, pro-
grammability.

I. INTRODUCTION

Traditional von-Neumann computing architectures, such as

CPUs and GPUs, demonstrate limitations in memory band-

width and energy efficiency. However, their high demand

lies in their programmability and flexible functionality. Such

platforms execute a wide spectrum of bit-wise logic and

arithmetic operations. In this regard, recent application-specific

processing-in-memory (PIM) designs suffer from the major

challenge that their performance is intrinsically limited to one

specific type of algorithm or application domain, which means

that such PIM platforms cannot keep pace with rapidly evolv-

ing software algorithms [1]. To overcome this limitation, state-

of-the-art generic and programmable PIM architectures (e.g.,

[2]) exploit alternatives to conventional bit-parallel algorithms.

For example, it is possible to realize arithmetic operations

using bit-serial algorithms. However, it comes at a cost of

high latency and more intermediate data write-back if multiple

computing cycles are needed for basic in-memory Boolean

logic functions [1]–[5].

To address this challenge, we propose a programmable

processing-in-SRAM accelerator (PSRAM) that combines the

PIM computation efficacy with the programmability. More

importantly, for the first time, PSRAM realizes a complete

set of Boolean operations (both 2- and 3-input), majority, and

full adder in only one single memory cycle, demonstrating one

of the fastest in-memory computing macros to date operating

at 1.23 GHz. Furthermore, our one-cycle in-memory Boolean

logic design also eliminates the redundant intermediate data

write-back operations for 3-input logic and full adder that

typically need multiple cycles with extra latency and energy

in prior multi-cycle in-memory logic designs [1]–[5]. We

demonstrate PSRAM for three applications: bulk bitwise vec-

tor operations, low-precision deep learning acceleration, and

the Advanced Encryption Standard (AES) computation.

II. PROPOSED PSRAM DESIGN

The proposed PSRAM leverages the charge-sharing feature

of the 8T SRAM cell on Read Bit-Line (RBL) and elevates it

to implement 2-input and 3-input Boolean logic between two

or three selected rows in a single memory read cycle. The key

idea comes from the observation that certain discharge rate of

the precharged RBL is determined by the data value stored

in the simultaneously selected memory cells attached to the

same bit-line. For instance, by activating three memory rows

via Read Word Lines (RWL), e.g., RWL0-RWL2 (Fig. 1), if

S0,0, S1,0, and S2,0 memory cells all store ‘0’s, then the read

access transistors (T8) remain OFF, and the RBL precharged

voltage does not discharge. On the other side, if all cells

store ‘1’s, the RBL voltage will rapidly discharge through

T8s. Similarly, based on different combinations of the values

stored in those memory cells, the discharged voltage value

will be different if sampled at a preset frequency and VDD,

which could be sensed by our follow up ‘logic-SA’ design to

implement different logic functions through selecting different

voltage references. Theoretically, there will be four different

voltage levels based on all possible combinations of three

memory cell data in the same bit-line. In our design, to yield

a sufficiently large sense margin, as shown in Monte Carlo

simulations (Fig. 5), the read path transistor (T7 and T8) size

is designed to be 3× as shown in Fig. 1.

To implement a programmable logic function, a new

re-configurable logic-SA is designed as in Fig. 1. It

consists of three sub-SAs with voltage references (i.e.,

VRef1<VRef2<VRef3), each dedicated to distinct logic func-

tions. In this way, by activating three memory rows (i.e., input

operand vectors) at the same time, each sub-SA performs a

neat voltage comparison between the reference voltage and

the discharged RBL voltages (w.r.t. different discharge rate

corresponding to stored memory cell data), which respectively

generates (N)OR3, (MAJ)MIN, and (N)AND3 logic output

(complementary SA), and more importantly, at the same time.

A novel single-cycle in-SRAM XOR3 (full adder’s Sum)

logic is developed through an interesting observation as shown

in the bottom-right truth table of Fig. 1. When the majority

function (MAJ) output (green box in the truth table) is ‘0’,

the corresponding XOR3’s output is the same as the OR3’s

output. When the majority function output is ‘1’, XOR3’s

output can be achieved through AND3 as highlighted by the

purple box. Based on our last paragraph description, our logic-

SA could simultaneously get the OR3, MAJ and AND3 logic

outputs, then we propose to design the XOR3 logic through

a two-transistor 2:1 multiplexer (with MAJ output as the
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Fig. 1: PSRAM chip with 8T SRAM cell as the operand memory and the proposed single-cycle logic-SA design.

selector) circuit highlighted in the proposed reconfigurable

logic-SA. The Boolean logic of in-memory XOR3 can be

given as XOR3 = MAJ(Si, Sj , Sk).AND(Si, Sj , Sk)+
MIN(Si, Sj , Sk).OR(Si, Sj , Sk). In this way, assuming three

vector operands are pre-stored in the memory, parallel in-

memory full adder logic can be implemented for the first time

in a single memory cycle, where MAJ and XOR3 outputs

generate the carry-out and Sum signals, respectively. The

two-input bit-wise operations will be readily implemented by

initializing one row to ‘0’/‘1’. All in-memory logic simulations

are first shown in Fig. 2, showing corresponding functionality.

819mv 568mv 98mv

111 110 101 000001010011100

Fig. 2: In-memory logic simulation waveforms.

III. MEASUREMENT RESULTS

A. Performance Measurement

We prototyped the PSRAM macro (128×128) in TSMC

65nm CMOS (Fig. 3). The macro has a 16-kb capacity and

occupies 0.17 mm2 (with decoder) in the chip floorplan. The

Fig. 3: Die micrograph and core area breakdown.
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Fig. 4: (a) Frequency scaling over different VDDs, (b) Static

and dynamic power consumption, (c) VRef scaling over dif-

ferent VDDs, and (d) throughput scaling over different VDDs.

bit-cell has an area of 4.56 µm2 (1080 F 2 when scaled

according to feature size), which is designed using logic rules.

For efficient integration, the logic-SAs are pitch matched w.r.t.

the column and occupy 3.4% of the array size (0.082 mm2).

The complete core area breakdown is shown in Fig. 3. The

PSRAM macro consumes 36 pJ (includes power consumed by

all components on the die) and takes 813 ps to generate 512
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outputs of the complete 3 input logic set (AND3, XOR3, OR3,

MAJ). This represents a peak throughput of 2×128×4/813ps

= 1259.52 GOPs at 1.2V supply and a compute density of

583.12 GOPS/mm2. PSRAM achieves a significant speedup of

4-157× when compared to state-of-the-art in-memory comput-

ing works [1]–[4]. We report the maximum frequency, power

consumption and throughput w.r.t. different VDDs in Fig. 4.

Fig. 5: Monte-Carlo simulation.

TABLE I: Reference voltage ranges measured on chip.

VDD/VRef VRef1(V) VRef2(V) VRef3(V)

0.7V @ 0.42Ghz 509m-546m 603m-647m 658m-693m

0.8V @ 0.64Ghz 452m-616m 620m-733m 745m-780m

0.9V @ 0.84Ghz 414m-661m 669m-750m 829m-889m

1.0V @ 0.984Ghz 503m-711m 735m-902m 908m-995m

1.1V @ 1.1Ghz 550m-754m 760m-994m 999m-1.083

1.2V @ 1.23Ghz 554m-790m 815m-1.08 1.09-1.16

B. SA reference voltage(VRef ) analysis

The RBL sense margins are first tested through post-layout

Monte Carlo simulations in Cadence Spectre for the four

possible sensing voltages, as shown in Fig. 5, where the

sensing margin is reported considering both process (inter-

die) and mismatch variations (intra-die) for core VDD (1.0

V) at 1 GHz. During the chip measurements, off-chip voltage

references are provided (VRef ) to the SAs. To conduct the

VRef variation analysis on chip, we test all 128 bit-lines,

100 times, for all possible bit value combinations in memory.

10 chips are tested and we report all the reference voltage

ranges at different VDDs and the corresponding maximum

frequencies with zero logic errors in Table I. It is found that

at lower voltages the maximum operating frequency is limited

by the reduction of VRef ranges. A higher VDD also yields a

larger sensing margin.

IV. APPLICATIONS

• Case Study I: Bulk Bitwise Boolean Vector Operations.

The PSRAM could be leveraged to implement bulk bitwise

Boolean logic operations efficiently between vectors stored in

the same memory sub-array. This can lead to efficient re-use of

the internal memory bandwidth. Table II compares the latency

for a set of vector operations of interest, implemented by

three generic PIM designs. We achieve the best performance

of each design, where input vectors A(a0a1...) B(b0b1...) and

C(c0c1...) are stored in separate rows of the memory. We draw

two conclusions from Table II. Firstly, our PSRAM is the

only design that supports a full-set of Boolean logic (both 2-

input and 3-input) and integer operations. Second, due to the

TABLE II: Latency comparison of vector Boolean logic oper-

ations supported by PSRAM and prior accelerators.

Parameters JSSC’18 [4] JSSC’20 [2] PSRAM

Capacity (KB) 8 16 2

Technology (nm) 40 28 65

Frequency (GHz) 0.029 0.475 1.23

NOT (ns / # of Cycle) 34.72 / 1 2.1 / 1 0.81 / 1

NAND2 (ns / # of Cycle) 34.72 / 1 2.1 / 1 0.81 / 1

NAND3 (ns / # of Cycle) 69.44 / 2 4.2 / 2 0.81 / 1

NOR2 (ns / # of Cycle) 34.72 / 1 2.1 / 1 0.81 / 1

NOR3 (ns / # of Cycle) 69.44 / 2 4.2 / 2 0.81 / 1

X(N)OR2 (ns / # of Cycle) 34.72 / 1 2.1 / 1 0.81 / 1

XOR3 (ns / # of Cycle) 69.44 / 2 4.2 / 2 0.81 / 1

Majority (ns / # of Cycle) n/a n/a 0.81 / 1

FULL-ADD (ns / # of Cycle) 69.44 / 2 4.2 / 2 0.81 / 1

FULL-SUB (ns / # of Cycle) 69.44 / 2 4.2 / 2 1.62 / 2

ADD-RCA (4-bit) (ns # of Cycle) n/a n/a 3.24 / 4

ADD-CSA (4-bit) (ns # of Cycle) n/a n/a 4.05 / 5

ADD-Serial∗ (4-bit) (ns) 173.6 10.5 4.05

SUB-Serial† (4-bit) (ns) 312.48 18.9 7.29

MULT-Serial‡ (4-bit) (ns) 1180.48 71.4 27.54

MULT-Serial (8-bit) (ns) 3541.44 214.2 82.62
∗N+1 cycles, †2N+1 cycles, ‡N2+ 5N-2 cycles

complexity of some operations (e.g., ADD/SUB/MULT), they

cannot be implemented in a time-efficient manner by the prior

designs [2], [4], while PSRAM outperforms all prior works in

latency.

• Case Study II: Binary-Weight Neural Networks. We

also implement the binary-weight neural network (BWNN)

with various weight configurations for AlexNet and report the

energy, latency and other performance metrics in Table III and

Fig. 7. The general HW/SW framework developed for BWNN

consists of image and kernel banks, and PSRAM sub-arrays.

Weights and activation are constantly quantized to 1-bit and

q-bit using the same method as [6], respectively, and then

mapped to the parallel PSRAM sub-arrays. The top-1 accuracy

after quantization on ImageNet dataset is reported in Fig. 7.

For hardware mapping, considering n-activated PSRAM chips

with the size of 128×128 (Fig. 6), each sub-array can handle

the parallel ADD/SUB (multiply-and-accumulate operations

are converted to ADD/SUB in BWNNs) of up to 128 elements

of m-bit (2m≤128) and so accelerator could process n×128
elements simultaneously within computational sub-arrays to

maximize the throughput. The memory sub-array data map-

ping for PSRAM is depicted in Fig. 6. We reserve four rows

for Carry results initialized by zero and up to 32 rows for

Sum results. Every pair of corresponding elements to be added

together is aligned in the same bit-line. Herein, channel 1

(Ch1) and Ch2 should be aligned in the same sub-array. With

m=32-bit, Ch1 elements occupy the first 32 rows of the sub-

array followed by Ch2 in the next 32 rows.
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Fig. 6: BWNN hardware mapping.

The addition algorithm starts bit-by-bit from the LSBs of
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TABLE III: Comparison with state-of-the-art SRAM based PIM accelerators.

BWNN Accelerators Generic Accelerators

Reference PSRAM JSSC’19 [1] JSSC’19 [3] JSSC’20 [2] JSSC’18 [4]

Technology 65nm 65nm 65nm 28nm 40nm

Bit cell Density 8T 10T 8T 8T Transposable 10T

Supply Voltage 0.8-1.2V 0.8-1.2V 0.68-1.2V 0.6 – 1.1V 0.5-0.9V

Max Frequency 1230MHz (1.2V) 5MHz 100MHz 475MHz (1.1V) 28.8MHz (0.7V)

SRAM Macro Size 2KB 2KB 4.8KB 16 KB 8KB

Performance (GOPS) 1259.52 8 295 32.7 14.7

Performance per unit area (GOPS/mm2) 583.12 126 23.4 27.3 70

Energy-Efficiency (TOPS/W) 34.98 40.3 20.6
5.27 (add)
0.55 (mult.)

31.28

Reconfigurable Programmable N/A N/A Programmable N/A

1 We assume 2 operations (OPs) per NAND3/XOR3/X(N)OR3/NOR3 (cascaded logic), similar to MAC (1 mult. + 1 add).

the two words and continues towards MSBs. For evaluation, a

7-layer BWNN is adopted with distinct weight configurations

of <W:I>: <1:1>, <1:2>, <1:8>. Our evaluation result

reported in Fig. 7 shows that PSRAM can process AlexNet on

average with 35 mJ energy per inference and ∼0.5 ms latency.

The process energy and latency include the amount required

by multiple PSRAM chips working as a whole entity. More

detailed performance comparison with other recent SRAM

based PIM designs are reported in Table III.
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Fig. 7: (a) PSRAM energy consumption and (b) processing

time for running the AlexNet (ImageNet dataset).

• Case Study III: Data Encryption. We further take

the Advanced Encryption Standard (AES) data encryption

algorithm as the third case-study. To facilitate working with

input data (with a standard input length of 128 bits), each

input byte data is distributed into 8-bit such that eight PSRAM

sub-arrays are filled by 4×4 bit-matrices [7]. After mapping,

PSRAM supports the required AES bulk bit-wise operations

to accelerate each transformations inside the memory. As

shown in Fig. 8, all AES transformations are mainly based

on (N)AND and XOR operations that are fully supported

in PSRAM. In SubBytes, MixColumns, and AddRoundKey

stages, parallel in-memory XOR2 and (N)AND2 operations

contribute to more than 90% of the operations. In ShiftRows

stage, state matrix will undergo a cyclical shift operation by

Fig. 8: AES block diagram with the gate utilization.

a certain offset. We use the 128-bit AES software implemen-

tation as the baseline from [4], a 350nm ASIC [8], and a

40nm ASIC [4] designs for comparison. Table IV shows that

PSRAM achieves the highest speed-up over baseline. This

mainly comes from the massively-parallel and high throughput

XOR operation supported in PSRAM.

TABLE IV: 128-bit AES performance.

Platforms #Cycles
Freq.
(MHz)

Time (µS)
(Norm.)

Energy (nJ)
(Norm.)

Baseline [4] 6358 24 265 (1x) 64.2 (1x)

ASIC [8] 5429 0.847 6410 (24x) 10259 (160x)

Recryptor [4] 726 28.8 25.2 (0.1x) 7.05 (0.11x)

PSRAM 718 1230 0.58 (0.002x) 19.21(0.3x)

V. CONCLUSION

In this work, we present a programmable PSRAM chip

design in TSMC 65nm CMOS technology. For the first time,

the PSRAM could execute a complete set of Boolean logic

vector operations (i.e., NOR/NAND/XOR, both 2- and 3-

input), majority, and full adder, all in a single memory cycle.

We also demonstrate three case studies leveraging our PSRAM

design, including parallel vector operation, neural networks,

data encryption, etc. PSRAM paves a new path towards the

generic, programmable and fast in-SRAM computing.
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