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XMA?Z?: A crossbar-aware
multi-task adaption framework
via 2-tier masks

Fan Zhang, Li Yang, Jian Meng, Jae-sun Seo, Yu Cao and
Deliang Fan*

School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ,
United States

Recently, ReRAM crossbar-based deep neural network (DNN) accelerator has
been widely investigated. However, most prior works focus on single-task
inference due to the high energy consumption of weight reprogramming
and ReRAM cells’ low endurance issue. Adapting the ReRAM crossbar-based
DNN accelerator for multiple tasks has not been fully explored. In this study, we
propose XMAZ2, a novel crossbar-aware learning method with a 2-tier masking
technique to efficiently adapt a DNN backbone model deployed in the ReRAM
crossbar for new task learning. During the XMA?-based multi-task adaption
(MTA), the tier-1 ReRAM crossbar-based processing-element- (PE-) wise mask
is first learned to identify the most critical PEs to be reprogrammed for essential
new features of the new task. Subsequently, the tier-2 crossbar column-wise
mask is applied within the rest of the weight-frozen PEs to learn a hardware-
friendly and column-wise scaling factor for new task learning without modifying
the weight values. With such crossbar-aware design innovations, we could
implement the required masking operation in an existing crossbar-based
convolution engine with minimal hardware/memory overhead to adapt to a
new task. The extensive experimental results show that compared with other
state-of-the-art multiple-task adaption methods, XMA? achieves the highest
accuracy on all popular multi-task learning datasets.

KEYWORDS

neural networks, in-memory computing, non-volatile memory, continual learning,
emerging architectures

1 Introduction

Deep neural networks (DNNs) have recently shown outstanding performance in
many applications. However, the single task’s high degree of specialization restrains its
potential development. Motivated by this, researchers began devising algorithms that
could sequentially adapt a DNN model to multiple tasks while still performing well on
past tasks. This process of gradually adapting the DNN model to learn from various tasks
is known as multi-task adaption (MTA) (Mallya et al., 2018; Yang et al.,, 2021). Fine-
tuning (Kornblith et al., 2019) is an intuitive way to adopt the knowledge from the current
model (i.e., backbone model) to a new task. Although it offers good accuracy on the new
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task, updating the weights of the backbone model means
forgetting old knowledge upon earlier tasks, thus resulting in
significant performance degradation on previous tasks. Such a
phenomenon is known as catastrophic forgetting (Parisi et al.,
2019; Yang et al.,, 2021; Kirkpatrick et al., 2017; Mallya et al,,
2018), which widely exists in MTA.

From the hardware side, DNNs require a considerable
amount of multiply and accumulate (MAC) operations and
data movement. In conventional hardware (e.g., CPU and
GPU), the massive data communication energy could be
almost two orders larger than data processing, known as
“memory wall” (Mittal, 2019). In-memory computing (IMC)
has attracted tremendous attention as an alternative approach
due to its capability to compute MAC directly within the memory
array. Such ability significantly alleviates the “memory wall” issue
(Eckert et al., 2018; Fan and Angizi, 2017; Chi et al., 2016; Song
etal., 2017; Cheng et al., 2019; Xue et al., 2019; Chen W.-H. et al,,
2018; Li et al., 2016; Shafiee et al., 2016; Cai et al., 2019; Ankit
et al., 2019; Chen and Li, 2018). Compared to other volatile or
non-volatile IMC designs, the ReRAM crossbar-based design is a
promising candidate for ultra-efficient DNN accelerator for
inference due to its simple structure, high on/off ratio, high
density, multi-bit per cell storage, and fabrication compatibility
with CMOS (Mittal, 2019; Hu et al., 2016; Xu et al., 2015; Chen,
2020; Akinaga and Shima, 2010; Cai et al., 2019). Based on such
benefits, many ReRAM crossbar-based designs have been
proposed to support DNN inference for a single specialized
task (Mittal, 2019; Song et al., 2017; Yin et al., 2020; Eckert
et al., 2018; Shafiee et al., 2016; Ankit et al., 2019; Chi et al., 2016;
Song et al., 2017).

A general practice to adapt a specialized DNN model
deployed in the ReRAM crossbar for a new task is to fine-
tune the weight parameters (ie., cell conductance) of the
backbone model using the data of the new task (Kornblith
et al, 2019). However, this procedure has to update the
conductance (i.e., reprogramming) of nearly all ReRAM cells
to represent the new fine-tuned weight parameters. Due to the
well-known non-volatile ReRAM device limitations, such as high
reprogramming energy and limited endurance, and catastrophic
forgetting for large-scale multi-task learning, the fine-tuning
(Kornblith et 2019) approach is
impracticable for multi-task learning in practice.

al,, inefficient and

Recently, mask-based learning algorithms (Mallya et al,
2018; Yang et al, 2021; Zhang et al, 2022a,c,b) have been
proposed to perform MTA in a more efficient way. For
example, piggyback (Mallya et al., 2018), as a representative
work, learns a task-specific binary mask € {0, 1} with respect to all
weights in an element-wise manner for each new task while
freezing the backbone model. Kernel-wise Soft Mask (Yang et al.,
2021) extends the task-specific mask from binary to a hybrid
binary and real value to improve the adaption capacity.
Furthermore, our prior works—XBM (Zhang et al., 2022a)
and XMA (Zhang et al, 2022b)—propose the mask-based
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learning method in a crossbar column-wise pattern with the
consideration of deploying on the ReRAM crossbar hardware.
Specifically, each learned mask value controls the operations
(i.e., on/off and shift) of the entire crossbar column for the new
task inference without reprogramming ReRAM cells. Thus, these
methods lead to memory and energy reduction compared to the
element-wise piggyback. However, the adaption capability of
these works is limited, which has a clear accuracy gap
compared to fine-tuning-based methods. The main reason is
that these methods completely freeze the weights of the backbone
model and only apply the binary (Mallya et al., 2018; Zhang et al.,
2022a) or shift-value (Zhang et al., 2022b) masks, causing limited
optimization space for learning new tasks. Furthermore, the
performance of task adaption is highly dependent on the
relevance between the source task and the new task. For
example, if the data distribution of the new task (Saleh and
Elgammal, 2015) is very different from the source task [e.g.,
Image Net (Russakovsky et al., 2015)], the accuracy of these
methods is much worse than that of the fine-tuning-based
methods.

In contrast, as we discussed earlier, the fine-tuning method is
impractical and inefficient to be deployed on crossbar hardware
for MTA due to the high reprogramming energy of ReRAM cells.
Therefore, a new approach that could balance both benefits is
much needed.

To tackle these issues, in this work, we propose XMA?, a
novel ReRAM crossbar-aware learning framework via 2-tier
masks for MTA, which utilizes the hardware hierarchy of
ReRAM crossbar-based DNN accelerator architecture. In
XMA?, each ReRAM
associated with a tier-1 PE-wise mask and tier-2 column-

crossbar-based accelerator is

wise mask.

« Inorder tolearn a new task, the tier-1 PE-wise mask is used to
identify the most critical PEs in a small portion only, which
are reprogrammed for learning essential new features. To
achieve this, we compute the gradient of each PE-wise mask
with respect to the new task data, where the larger gradient
magnitude indicates a higher importance level of associated
PE with respect to the new task. Then, those top-ranked PEs
(e.g., 10%) will be disabled for the current new task to preserve
old knowledge but will be replaced with newly learned PEs
with task-specific weights. By doing so, each task-specific
model could perform inference without forgetting prior
knowledge through a combination of task-specific masks to
filter prior weights and a small portion of new task-specific
weights.

o In order to further improve the learning capability, with
the constraint that we cannot program the majority of
weight-frozen PEs (ak.a. the PEs with lower ranking
gradients), we adopt a tier-2 crossbar column-wise mask
from our prior work (Zhang et al., 2022b,a), which applies
a learnable and shift-based scaling factor to the output of
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1T1R Array

FIGURE 1
ReRAM 1T1R crossbar array (Zhang et al., 2022b).
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each crossbar column. It could also provide extra learning
capability to weight-frozen PEs.

The rest of this study is organized as follows: Section 2 covers
the background and related works. Section 3 details the
methodology of the proposed 2-tier mask learning method.
Section 4 demonstrates the hardware implementation. Section
5 gives the algorithm performance on different tasks and
hardware evaluation. In the end, Section 6 presents a conclusion.

2 Background
2.1 Multi-task adaption

MTA (Rebulffi et al., 2017; Rosenfeld and Tsotsos, 2018) aims
to train a versatile model to adapt multiple visual tasks and
domains using as few incremental parameters as possible.
Rosenfeld and Tsotsos (2018) recombined the filter channels
of the backbone model via controller modules. Liu et al. (2019)
proposed domain-specific attention modules for the backbone
model. Piggyback (Mallya et al., 2018) tackled the MTA problem
by learning the task-specific learnable binary masks while
freezing the backbone model except for the classifier head
(known as multi-head). The real-value learnable weight masks
m” were first binarized by function ® with threshold

) b n_ |1 ifmz27
Forward: m’ = ®(m") = { 0 otherwise (1)
Backward: Vm® = Vm® 2)

As the binarization function is non-differentiable during
the (STE)
(Hubara et al, 2016) is employed to estimate the mask

backpropagation, straight-through  estimator

gradient Vm®. Following the binary mask method, Mallya
et al. (2018), Mancini et al. (2018), and Yang et al. (2021)
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introduced an additional floating-point scaling factor to
improve the adaption capacity. However, it suffered increased
computation and memory cost during training. In this work, we
also leverage the popular task-specific mask-based learning
methodology to overcome the forgetting of prior knowledge.

2.2 ReRAM-based NN accelerator

With the high parallelism and dense storage, ReRAM-based
IMC has emerged as an attractive solution for DNN inference
(Mittal, 2019; Song et al., 2017; Yin et al., 2020; Eckert et al., 2018;
Zhang et al., 2022a,b; Shafiee et al., 2016; Ankit et al., 2019; Chi
et al, 2016; Song et al, 2017). Figure 1 depicts the basic
architecture of the ITIR crossbar array. The parallelly
performed analog computation along the column provides
high efficiency to the vector-matrix multiplication (VMM).
the pre-trained DNN model, the
programmed as the conductance G inside ReRAM cells. The

Given weights are
input vector is represented as the analog voltage pulses V;, (Hu
et al., 2016; Zhang and Hu, 2020; Chen, 2020), fed through the
horizontal source-line. The VMM output is the product current
between the incoming voltage V;, and programmed conductance
G along the bit line (BL).

Attracted by the high energy efficiency, various ReRAM-based
neural network accelerators have been proposed (Mittal, 2019; Song
etal., 2017; Yin et al., 2020; Eckert et al., 2018). However, most of the
existing ReRAM-based IMC accelerators focus on DNN inference
with a one-time deployed pre-trained model, which lacks the
flexibility to the changing tasks. Adapting the new tasks often
requires additional training and second-time deployment.
Recently, several ReRAM-crossbar-based accelerator designs have
been proposed to support continual learning. Efficient Multi-Task
Architecture for Transfer Learning (Chen and Li, 2018; Li et al,
2022) analyzed the data flow and made the hardware modification

to support backpropagation. It enabled on-device weight update and
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continual learning but demanded high endurance of the ReRAM
device. Moreover, frequent weight update consumes a lot of energy
and causes a loss of energy benefit. To avoid the expensive weight
update/reprogramming, XBM (Zhang et al., 2022a) first performed
the on-device mask-based multi-task adaptation in a column-wise
fashion. It learns the unforeseen tasks corresponding to unraveling
the column-wise masks while keeping the backbone model fixed.
Compared to the prior works, enabling the columns for the new
tasks eliminates the programming/fine-tuning cost, leading to the
high energy efficiency of MTA. Motivated by XBM, XMA (Zhang
et al., 2022b) introduced the shifted mask to enrich the learning
space of multi-task adaptation, elevating the accuracy with negligible
hardware overhead. Under the context of MTA, naive fine-tuning
provides the best accuracy with the highest hardware cost.
Embracing fine-tuning in a hardware-friendly manner remains
unexplored. Different from the prior works (Zhang et al,
2022a,b), where the MTA completely relies on the on-device
adjustment while leaving the weight untouched, this work
balances the ReRAM crossbar deployment cost and the accuracy-
driven model fine-tuning.

2.3 Neural network quantization and
pruning

Quantization has been widely studied as an effective way to
compress the DNN model and elevate the energy efficiency of
computation while maintaining accuracy by compressing the data
precision (e.g., weight and activation) (Zhou et al., 2016; Choi et al.,,
2019; Park and Yoo, 2020). The stringent resource constraint of the
hardware accelerator necessitates efficient quantization algorithms.
Early research works (Zhou et al., 2016) demonstrated the feasibility
of discretizing the full precision weights between the fixed
boundaries [-1, 1]. However, the deterministic quantization
range failed to fit the layer-wise distributions adaptively. It leads
to sub-optimal model performance. Various studies have
introduced layer-wise learnable clipping parameters to minimize
quantization error during training. Under this context, PACT (Choi
et al, 2018) dynamically clipped the activation based on the
trainable quantization boundary. However, PACT (Choi et al,
2019) only utilized the gradient inside the truncation range,
leading to insufficient learning. To avoid this issue, we adopt the
quantization algorithm from PROFIT (Park and Yoo, 2020) to train
the DNN model.

Orthogonal to quantization, the model size reduction obtained
from the sparse neural network also leads to practical hardware
benefits (e.g., energy and latency reduction). The pioneering
research works (Han et al,, 2015) have shown that DNNs can
still retain performance with high element-wise weight sparsity.
However, the high fine-grained sparsity introduces a large amount
of index memory storage and irregular memory access for
hardware computation. This promotes the structured pruning
scheme as a hardware-friendly solution (Meng et al., 2021). For
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structured and unstructured pruning, selecting an appropriate
importance metric is essential to localize the unimportant
The the
redundancy based on magnitude (Han et al, 2015) or
normalized impact score (Lee et al., 2020) and then applies the
binary mask to the forward pass. However, the score-based

weights. score-based pruning justifies weight

sparsification ignores the model’s vulnerability with respect to
pruning. Motivated by this, SNIP (Lee et al., 2018) determined the
connection sensitivity based on gradient rather than weight
magnitude. Removing the Top-K connections with the least
sensitivity mitigates the impact of pruning and further
optimizes the overall sparse model architecture.

3 Methodology
3.1 Overview

In this section, we introduce our 2-tier mask-based
learning method for crossbar-aware MTA. The processing
element (PE) typically consists of one or more ReRAM
crossbar arrays that share the peripheral circuits and
buffers. For simplicity, we use one crossbar per PE as an
example, where each PE is associated with one tier-1 PE-wise
mask. As shown in Figure 2, during the offline training for one
new task, the gradient of such tier-1 PE-wise mask will be first
computed based on the new task data, where the larger
magnitude of such PE-wise mask gradient indicates the
higher importance level of associated PE with respect to the
new task (Lee et al., 2018). Based on such theory, we pick the
top-P-ranked (“P” is a parameter with a small value, e.g., 10%)
PEs as our candidate weights to be reprogrammed for learning
the new task, defined as adaptable weights. In comparison, we
define the frozen weights in the remaining PEs as non-
the
knowledge without forgetting, we choose to disable and

adaptable weights. However, to preserve prior
retain the top-P-ranked PEs for old tasks. Meanwhile, we
replace those PEs with the same number of new PEs with
newly learned adaptable weights for the new task. Thus, each
task-specific model could perform inference without
forgetting prior knowledge through a combination of task-
specific masks to filter prior weights and new task-specific
adaptable weights. To further improve the learning capability,
in this work, with a constraint that we cannot program the
frozen weights (a.k.a non-adaptable weight in the PEs with
lower gradient ranking), we adopt a tier-2 crossbar column-
wise mask inherited from Zhang et al. (2022a,b). It is a
learnable mask that could apply a learnable and shift-based
scaling factor to the output of each corresponding crossbar
column. It could also provide extra learning capability to the
non-adaptable weight kernels in the weight-frozen PEs. The
following subsections will present the detailed 2-tier mask for

the multi-task learning procedure.
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Overview of the crossbar-aware multi-task adaption framework, including PE-wise masking for retraining and col-wise masking for activation

adjustment.

3.2 Tier-1 PE-wise mask learning

In the ReRAM crossbar-based DNN accelerator design, the
whole structure consists of multiple PEs, the basic computing units
to perform VMM to support convolution operations. Based on
this, we define the PE-wise binary mask m" € {0, 1} to identify and
re-learn the adaptable weight in the corresponding small portion
of PEs for the new task while freezing the weights in the remaining
PEs. The “1” and “0” values of the PE-wise mask indicate the
adaptable weights and the rest of the non-adaptive weights,
respectively, which are learned by the gradient ranking method.

3.2.1 Gradient ranking to identify PE-wise
adaptable weights

Inspired by the pruning work (Lee et al., 2018), which removed
the unimportant weights before the single-task training, we
propose to identify the task-adaptable weights based on their
importance the of the task.
Mathematically, given a new task D, the optimization objective

in loss new

changing

of the PE-wise mask learning can be formulated as follows:

min £ (w’ @ m"E, D) st ||mpE||O<P
mPE ’ o N

3

where L () is the loss function, w'* are weights distributed
into PEs, N is the total number of PEs, and P is the pre-defined
ratio of the adaptable weights. From the perspective of the
changing loss, the impact of removing partial weights w;’E

can be formulated as follows:

AL (w,‘PE, D) = E(m,‘PE = I,D) - E(m,»PE = 0, D) (4)
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According to Lee et al. (2018), the changed loss can be
approximated as follows:

oL

om,PE

oL
o (w;"* © m;**, D)

AL (wE, D) ~ (w,"F © m) = (5)

Equation 5 shows that the gradient of the PE-wise mask can
approximate the loss change for the new task optimization.
Therefore, we use the gradient magnitude of the PE-wise mask
to indicate the adaptable weights. The large value of the unsigned
gradient magnitude represents the corresponding PE-wise weights
sensitive to the changing loss, which has to be re-learned. Based on
this, we perform the gradient ranking to generate the sensitivity
score computed by normalizing the gradient magnitude of the PE-
wise masks, as shown in Algorithm 1. Subsequently, the top-P
largest values are selected as “1” in PE-wise masks, and the rest of
the PEs are flagged as “0” values. Here, “P” is a hyperparameter
that could be tuned based on the specific dataset and hardware
availability. Aligning with prior works, using only one mini-batch
data to calculate the gradient is precise enough. It is worth noting
that the computation cost is negligible compared to the whole
training procedure.

Require: PE sizes, training dataset D, adaptive PE threshold PP model size k

- Dy = {z, yz}?zl cD > Sample a mini-batch from D
. sPE — k\ﬁ] (wiDy)|

T i lei(wiD)|
3. 3PP = Sort Descending(s
& mPE=1[sPF > S',,PE]

> PE sensitive score
PEy > PE-wise gradient ranking
> Top-P selection

Algorithm 1. PE-wise mask learning.
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3.3 Tier-2 column-wise mask for weight-
frozen PEs

3.3.1 The offline shift-based mask learning

As explained in the previous section, the main purpose
of the tier-1 PE-wise mask is to select the new task-specific
PEs and reprogram the corresponding weights to learn
new features of the new task. To reduce the ReRAM
cell programming energy, the portion of the new task-specific
PEs needs to be small (e.g., 10%). Thus, it leaves the majority
of PEs non-adaptable or frozen. To further incorporate
learning capability into those frozen PEs, in this work, we
adopt the column-wise shift mask for each crossbar column
in the frozen PEs motivated by our prior work (Zhang et al,,
2022b).

As in the piggyback method (Mallya et al., 2018), the
adopted binary mask is generated by binarizing the trainable
real-valued masks m’, as presented in Eq. 1. Such real-valued
the of the
corresponding weight of the backbone model. Inspired by

masks’ magnitudes represent importance

this, the real-valued masks could help improve the adaption
the
multiplying a mask (i.e., 32-bit floating-point number) for

capability. However, from hardware perspective,
every weight/partial sum is a tremendous overhead in both
latency and energy. The learnable shift-based mask m® is a
hardware-friendly trade-off that keeps the “1” in the binary
mask but introduces additional shift factors a’, a replacement of
the zero elements in the binary mask counterpart to improve
the adaption capacity with the hardware-friendly operation and
negligible overhead. The shift-based mask can be expressed as

follows:

s _ b s
m = [mmhzl’ambzo]

(6)

where m?, | means the shift-based mask with all “1”s
and a’,_, denotes that the “0” in the binary mask replaced
by the shift factor. It can be understood as we fix the important
kernels (“1” in the binary mask) and scale the unimportant
kernels (“0” in the binary mask) as different shift levels for the
new task.

3.3.1.1 Learn the shift factor a°

In practice, we first normalize the real-valued mask
under the range [0,1], serving as a scaling factor to represent
the weight importance for MTA. Then, the normalized real-
valued mask is quantized to the nearest power-of-two values
(i.e., 1/2, 1/4, and 1/8) or zero. Accordingly, the shift-based
mask m° could maximally include three different shift
levels (i.e., 1/8, 1/4, and 1/2) and two non-shift levels
(i.e., 0 and 1). By doing so, the computing/memory-hungry
multiplication operation between the real-valued mask and
fixed weight can be replaced by the shift operation, resulting
in computation and energy reduction. Moreover, such shift
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operation can be implemented by reusing the existing shift
adder (SA) in most ReRAM-based IMC platforms without
increasing hardware overhead. In addition, selecting the
number of shift levels “N” in shift-based mask is flexible that
could be adjusted to achieve different trade-offs between
accuracy and mask overhead. For example, if N = 3, it
supports maximally three different shift levels and two non-
shift levels (i.e., 0, 1/8, 1/4, 1/2, and 1), achieving the best
accuracy. Notably, mask value “1” means no shift, and mask
value “0” means turning off the current column. If N = 0, the
shift-based mask is equivalent to the binary mask with the
smallest mask memory overhead.

3.3.1.2 Learn the binary mask m®

To learn the binary mask, we leverage the Gumbel-Sigmoid
trick, inspired by Gumbel-Softmax (Jang et al, 2016),
which performs a differential sampling to approximate a
categorical random variable. As the Sigmoid function o() can
be viewed as a special two-class case of softmax, it can be
defined as follows:

1
" 1+exp(-(logmo + go— g1)/T)

p(m’) @)
where m, represents o(m’). g, and g; are samples from the
Gumbel distribution. The temperature T is a hyperparameter
to adjust the range of input values. Benefiting from the
differential property of Eq. 7, the real-value mask m” can be
embedded with existing gradient-based backpropagation
training. To represent p (m’) as binary format m’, we use a
hard threshold (i.e., 0.5) during the forward propagation
of training. Because most values in the distribution of p (m")
will move toward 0 or 1 during training, generating the
binary mask by p (m’) (instead of the real-value mask m"
directly) could have a more accurate decision, resulting in
better accuracy.

3.3.2 Column-wise mask

From the system hierarchy perspective, applying an
element-wise mask to a ITIR array is challenging
every ReRAM

independently and store the same sized mask as the 1T1R

because it needs to manipulate cell
array. Inspired by the 1TIR crossbar array parallelism, the
entire row or column share the same input, and the transistors’
gates are connected horizontally or vertically. Such row-/
the

control for the existing crossbar design. In order to leverage

column-wise parallelism allows row-/column-wise
the row/column-wise parallelism, the mask size is defined
as G x kh x kw to make it consistent with the size of a
crossbar column, namely a column-wise mask, where
the group G € {1, Ci,}. G, is the input channel dimension.
This way, a single mask value can control the entire column
of a crossbar array, which improves the computation

efficiency significantly compared to the element-wise mask.
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FIGURE 3
Hardware structure and implementation.

In our design, the size of the crossbar column is set as 72 x 1.
Equivalently, we define the group size of the kernel-wise mask
as 8 x 3 x 3 with the group G = 8 in the algorithm.

4 Hardware implementation

Figure 3 shows the overview of ReRAM crossbar
architecture to support the proposed 2-tier mask method. It
consists of an I/O interface for data exchange, multiple
processing elements (PEs) grouped as banks for computing,
and the interface controller to decode the instruction. Inside
the bank, PEs have been divided into two groups. Most of the
PEs are used to map the backbone model. Besides, some PEs
are left as spare to reserve for new task adaption as adaptable
weights. Note, for XMA and XBM, the spare PEs are not used
for adaptable weights because they do not have the tire-1 PE-
wise mask. Each PE includes ReRAM crossbar sub-arrays for
the convolution operation; global ReLU and adder tree are
used to post-process the partial sum from the sub-arrays.
Inside the ReRAM sub-array, convolution kernels are mapped
on ReRAM cells as conductance. According to the ReRAM
device and the kernel size, it may need multiple ReRAM cells
to represent one convolution kernel. For example, suppose
each ReRAM cell can represent four different statuses equal to
2-bit information. Moreover, the convolution kernel is
quantized to 4 bits. Then, each convolution weight requires
two adjacent cells to map its higher and lower bits. In
(CNNGs),
kernel usually exists as a 4D tensor with dimensions H X
W x In. x Out,.

convolutional neural networks a convolution

Traditionally, the convolution kernel is
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unrolled along the Out. dimension to minimize the data
movement because the inputs are identical for each Out,
dimension, although the H x W x In. weights are unique.
Analogous to the ReRAM crossbar, input is fed through the
horizontal SL and shared with the entire row. Therefore,
different H x W x In, weights are unrolled to different 1D
vectors and mapped to ReRAM columns to share the same
inputs. Due to the precision mismatch between the quantized
weight and the ReRAM cell, the weight may be divided into
multiple columns. Each column only carries a partial
accumulation which ADC reads as partial activation. The
SA manipulates the partial activation to reconstruct the
actual activation. On top of each column, we add a mask
buffer that stores the column-wise mask and controls how to
shift the activation. The processed activation is then sent to
the global adder tree and ReLU, which subsequently is
conveyed to the next layer as the input.

After the offline new task adaption learning, the tier-1 PE-
wise mask indicates which PE needs to be disabled and
replaced with newly learned PE (implemented through
programming the spare PEs in the system). In contrast, the
rest of PE will still need to be used in the new task-specific
model. For the rest of the weight-frozen PEs, the tier-2
column-wise mask values are stored in the mask buffers.
With the input voltage, V applied on each row-wise SL, the
current through each ReRAM cell with conductance G is
calculated by the multiplication operation I = V x G. The
current is then accumulated on the column-wise BL as ) I and
converted to bit series by ADC as the MAC result. As
explained earlier, each column’s ADC output is just a
partial result and needs the SA to construct the final result.
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TABLE 1 Datasets examined in experiments.

Dataset

Stanford Cars (

Flowers (

10.3389/felec.2022.1032485

WikiArt ( Sketch (

TABLE 2 The impact of different shift levels.

Column-wise mask

Dataset Shift mask  Shift mask | Shift mask | Binary mask
Shift levels 3 2 1 0
Mask levels [0,%, %, %,l] [0,%, %,l] [0,%,1] [0,1]

CUBS 80.07 79.67 79.38 77.86
Stanford Cars 88.32 88.12 88.02 87.48

Flowers 95.59 95.14 95.04 95.02

WikiArt 72.6 72.51 2.56 71.18

Sketches 79.62 79.92 79.92 78.8

Mask overhead 0.87% 0.69% 0.52% 0.35%

The bold value means the best accuracy among different methods.

During this step, the SA also reads the column-wise shift mask
from the mask buffer. Thus, the SA shifts the partial sum result
based on its significance and the corresponding col-wise shift
mask values. Afterward, the ReLU unit and local storage buffer
process the data the same as the backbone model.

5 Experiment result
5.1 Algorithm performance

In this section, we evaluate the proposed 2-tier masking
performance. For a fair comparison and following the setup
of prior works, we choose the popular ResNet-50 (He et al.,
2015) as our backbone model, which is pre-trained on the
ImageNet dataset (Russakovsky et al., 2015). Five fine-
grained object classification datasets are utilized as the new
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Description | It is an extended version | Each class has been split The flowers are commonly The WikiArt dataset This dataset contains
of the CUB-200 dataset.  roughly in a 50-50 split. Classes | occurring in the contains painting from | 20,000 unique sketches
This dataset is are typically at the level of United Kingdom. Each class 195 different artists evenly distributed over
overlapped with make, model, year, efc. consists of 40-258 images 250 object categories
ImageNet.
# of classes 200 196 102 195 250
Train size (# 5,994 8,144 2,040 42,129 16,000
of img.)
Test size (# 5,794 8,041 6,149 10,628 4,000
of img.)
Accuracy Top-1 Top-1 Top-1 Top-1 Top-1
Metric

08

tasks to perform the MTA, including CUBS (Wah et al,
2011), Stanford Cars (Krause et al., 2013), Flowers
(Nilsback and Zisserman, 2008), WikiArt (Saleh and
Elgammal, 2015), and Sketch (Eitz et al, 2012). These
datasets are summarized in Table 1.

5.1.1 Performance of col-wise mask

Table 2 shows the inference accuracy of the column-wise
mask on different datasets. In this setup, there is no PE-wise
mask. We assume no weight reprogramming/updating for all
tasks, and the column-wise mask applies to all PEs. We quantize
the backbone model to 4-bit precision (4-bit weight and 4-bit
activation) to simulate the crossbar inference behavior. The
quantization method is adopted from PROFIT (Park and Yoo,
2020). We choose the group size G = 8 in the experiment. The
group concept also helps cut down the training parameters,
which boosts the training convergence speed. Moreover,
sharing the mask value among the entire column significantly
saves the memory overhead for mask storage.

Different shift levels determine the mask storage overhead
and affect the accuracy. Table 2 also shows the accuracy and
mask overhead for different shift levels. More shift levels show
better accuracy in the cost of more mask overhead, where the
mask overhead is defined as the complete storage required by the
mask over the storage required by all the weights in the backbone
model. As the shift level goes down, one extreme example is when
no shift level is available in the range of [0,1], which means the
mask only has binary values. In that case, our shift-based mask
method (XMA) is equivalent to the column-wise binary mask
(XBM). Due to the group mask sharing, binary group mask size is
only & of piggyback. For the ResNet-50 backbone model,
piggyback’s element-wise binary mask requires 23M/8 =
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TABLE 3 Multi-task adaption accuracy (%).

Precision  4-bit weight and 4-bit activation quantization (%) Floating
(%)
Datasets Shift mask  Shift mask Shift mask | Shift mask | Shift mask | Shift mask | Piggyback (%) Shift-mask-only (%) fine-tuning
(%) + 5% (%) + 10% (%) + 15% (%) + 20% (%) + 30% (%) + 40% (Mallya (Zhanget al., 2022b)
fine-tuning  fine-tuning fine-tuning fine-tuning fine-tuning fine-tuning et al., 2018)
CUBS 0.00% 80.32 79.57 79.77 79.55 79.72 74.47 80.07 82.8%
Stanford Cars = 88.40% 89.07 89.07 89.19 89.42 89.43 86.85 88.32 91.8%
Flowers 95.10% 95.61% 95.17% 95.43% 95.14% 95.15% 91.09% 95.59% 96.56%
WikiArt 73.81% 74.72% 73.88% 74.39% 74.68% 74.48% 68.97% 72.6% 75.6%
Sketches 80.17% 80.70% 79.97% 79.88% 79.97% 79.22% 78.88% 79.6% 80.78%

The bold value means the accuracy with 10% weight fine-tuning which is a sweet point. As we mentioned in the manuscript: with 10% weight fine-tuning the accuracy is higher than

Piggyback and shift-mask-only method for all datasets.

2.88 MB, whereas the binary mask only consumes around 40 KB.
Although the binary mask claims the least mask overhead, it
achieves the worst accuracy than other shift-based methods. For

the best accuracy, three shift levels only require less than 100 KB Components Area (yum?) Energy (p])
storage for the mask, which is only 3.4% of that in piggyback Memory array (72 x 72) 84.93
(i.e., 29.4x reduction). Despite this reduction, on average, the
. . . Switch matrix (WL and SL) 457.3 1.1
accuracy is 3.2% higher than that of piggyback.
SAR ADC (5 bits) 8,409.3 83
. » Shift-add-input 1,412.9 6.8
5.1.2 Performance of 2-tier XMA
Shift-add-weight (2 col., use 1) 825.8 1.0
Table 3 shows the performance of the 2-tier mask-based Mask buffer (72 x 1) 190.4 0.003/bit/access
XMA? method on the aforementioned datasets with different Total 11,3802 172
methods and configurations. It shows fine-tuned results based on . o
the floating-point number representation to demonstrate the Peripheral circuits
theoretical performance baseline. With the help of the 1-stage AdderTree (128 units) 2,510.3 44
floating-point number’s high precision, the fine-tuned-based 2-stage AdderTree (128 units) 77401 137
method has the highest flexibility to change any weight to any
level. Therefore, fine-tuning the backbone model with a floating- 3-stage AdderTree (128 units) 18:408.8 26
point number achieves the best accuracy in all datasets. Global buffer (64 x 112 x 112 x 4) 8,490,034 0.003/bit/access
For the other methods, we adopt quantization-aware training ReLU (128 units) 9395 0.9

(QAT) to simulate the performance on the actual hardware
environment. PROFIT (Park and Yoo, 2020) is used to quantize
both weight and activation to 4 bits. The piggyback scheme adopts
the binary element-wise mask, where the binary precision of the
mask limits the flexibility of the backbone model. Thus, piggyback
shows slightly worse accuracy than fine-tuning. The shift-mask-only
(XMA) method adopts the column-wise shift mask with five
different mask levels (three shift levels: 1/8, 1/4, 1/2; and two
non-shift levels: 0, 1). We assume the ReRAM crossbar array
size is 72 x 72, which means each array can map a 3 x 3 x 8 x
72 convolution kernel. Thus, the group size sharing the same mask
value in each column is 3 x 3 x 8. As ImageNet is much larger and
more complex than other datasets, the shift-mask-only performance
is already near fine-tuning for most datasets. However, there is still a
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TABLE 4 Specification of ReRAM hardware and peripheral circuits.

RRAM sub-array

considerable gap between fine-tuning and shift-mask-only methods.
Especially on the WikiArt dataset, the shift-mask-only
method shows almost a 5% accuracy drop compared to
fine-tuning. Our proposed 2-tier mask is marked as shift-
mask + fine-tuning because the two different masks are
associated with weight fine-tuning and activation shift,
respectively. We conduct a series of experiments with 5%
PE-wise weight fine-tuning to 40% PE-wise weight fine-tuning
to explore how much weight fine-tuning is necessary to
achieve a considerable accuracy improvement. The result
shows that the accuracy improved significantly even with
the help of 10% weight fine-tuning. It achieves higher
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Area breakdown of 4-bit ResNet-50 backbone model hardware deployment. The peripheral circuits, including the ReLU module, adder tree,

and mask buffer.
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Stanford Cars

FIGURE 5

Flowers
Dataset

I This work

[ PiggyBack
Finetune

17.66

Wikiart Sketches

Total energy (reprogramming + inference)/inference energy for different learning tasks and methods.

accuracy than those of the piggyback and shift-mask-only
methods for all datasets. This is especially true for the WikiArt
dataset, where the piggyback and shift-mask-only methods
show the most degraded accuracy. Note that the accuracy does
not increase monotonically with increasing tunable
parameters. This is because fine-tuning is not element-wise.
We fine-tune the weights in a PE-wise fashion. We first rank
the PEs based on the sensitivity score. Therefore, when we
fine-tune more weights (more PEs), the extra weights (PEs)
are less sensitive to the target dataset (minor sensitivity score).
Thus, fine-tuning those weights (PEs) will have less benefit.
On the contrary, the less sensitive PEs extract more general

features. As the new task is usually way smaller than the
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ImageNet dataset (some dataset even has more test images
than training images), fine-tuning those less sensitive PEs will
lose more general features. More tunable parameters make the
NN harder to train.

5.2 Hardware evaluation

We implement the proposed 2-tier mask algorithm on
hardware, as shown in Figure 3. The hardware performance
of different algorithms is evaluated based on NeuroSim (Peng
et al, 2019). The 4-bit quantized DNN weights are programmed
to the RRAM array with an HfO,-based 2-bit per cell device,
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characterized by Wu et al. (2018) with a 32 nm CMOS node. The
ReRAM array characteristics and the total area usage are
summarized in Table 4 and Figure 4. Each ReRAM column is
connected to a 5-bit successive approximation register (SAR)
analog-to-digital converter (ADC). The global buffer is
designated to hold the largest activation feature map of the
model. Figure 5 shows the overhead of different sub-tasks
with different algorithms. The total inference energy of each
sub-task is the summation of inference energy and the
reprogramming energy. For each updated weight element, the
reprogramming energy can be computed based on the write
voltage, write pulses, and conductance level changes (Wu et al.,
2018; Chen P.-Y. et al., 2018). Task-specific fine-tuning generates
the highest accuracy but requires universal reprogramming or
even second-time deployment. The high energy consumption of
reprogramming hinders the pragmatic benefits of continual
learning. Piggyback (Mallya et al., 2018) partially programs
the weights to zero for different tasks. Compared to the
inference energy, reprogramming the element-wise sparsity
elevates the total energy up to 8.16x. Furthermore, the
element-wise sparsity requires additional fine-grained sparse
indexes, leading to intricate hardware design and storage
overhead.

Different from the naive fine-tuning or piggyback (Mallya
et al, 2018) learning, the proposed algorithm updates the model
in a structured manner. The marginal 10% reprogramming
ReRAM columns for different sub-tasks updates the model
without fine-grained indexes. Compared to the fine-tuning
and piggyback (Mallya et al, 2018) methods, this work
reduces the total energy consumption to 13.72x and 4.38x,
respectively, as shown in Figure 4. Such significant energy
reduction of the proposed XMA® algorithm unleashes the
practical advantage of continual learning.

6 Conclusion

In summary, we proposed XMA?, a 2-tier mask-based learning
framework, to efficiently and accurately deploy the MTA to a
crossbar-based DNN accelerator. The main contribution of XMA?
is that it consists of two different levels of masks that work on new
knowledge learning and old knowledge recombination. It can keep
the neural network structure and the data flow for new task
learning. Furthermore, it is flexible to make the trade-off
between weight reprogramming overhead and the new task
performance. Moreover, the XMA®* reuses the existing SA to
apply the shift-based mask onto a fixed weight and minimize
the hardware overhead. XM A’ significantly saves inference energy
compared to other mask-based methods while achieving higher
accuracy.
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