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Abstract 
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are 

frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis 

is prone to get damaged and its regeneration in osteochondral defects is essential for 

complete healing. The current clinical techniques used in suturing procedures to reattach 

tendons to bones need much improvement for the generation of the native interface 

tissue, i.e., enthesis, for patients to regain their full functions. Recently, inspired by the 

composite native tissue, much effort has been made to fabricate composite scaffolds for 

enthesis tissue regeneration. The current review first focuses on the studies that used 

composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides 

for osteochondral tissue engineering is reviewed and their potential for enthesis 

regeneration is presented based on their supporting effects on osteo- and 

chondrogenesis. Gellan gum is selected and reviewed as a promising polysaccharide due 

to its unique osteogenic and chondrogenic activities that help avoid the inherent 

weakness of dissimilar materials in composite scaffolds. 
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Impact Statement 
Enthesis regeneration is essential for complete and functional healing of tendon and 

ligaments tissues. Current suturing techniques to reattach the tendon/ligament to bones 

have high failure rates. This review highlights the studies on biomimetic scaffolds aimed 

to regenerate enthesis. Additionally, the potential of using polysaccharides to regenerate 

enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan 

gum is presented as a promising biopolymer that can be modified to simultaneously 

support bone and cartilage regeneration by providing structural continuity for the scaffold. 

 
1. Introduction 
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are 

one of the most frequently injured musculoskeletal tissues. Over 250,000 rotator cuff 

tendon repairs and more than 100,000 ACL reconstructions are performed annually in the 

United States.1-3 In clinical settings, the suturing technique is applied to reattach the 

tendon/ligaments to bones but these tissues rarely regain their full function with a failure 

rate of 94%.4-6 The tissue-associated inherent limitations including low cellularity and 

vascularization are considered as the primary source for limited healing and 

functionality.5,7,8 Yet, in recent years, the prominent studies demonstrated that the lack of 

transition and integration at the soft-hard tissue interface are the important contributor for 

limited functionality.9-13  

The enthesis, a connective tissue between tendon or ligament and bone, transfers the 

mechanical loading from soft tissue to bone for locomotion. The enthesis provides a 

smooth stress transition from soft tissue to hard tissue (bone) through its four distinct but 

structurally continuous matrix zones including tendon, unmineralized fibrocartilage, 

mineralized fibrocartilage, and bone. The soft tissue connects to the hard tissue through 

a gradual transition from tendon/ligament to non-mineralized fibrocartilage tissue followed 

by mineralized fibrocartilage tissue that connects to bone (Figure 1).14 The structurally 

gradual transition in enthesis material composition is crucial in minimizing stress 

concentrations at the interface and allows forces to be dispersed properly from tendon to 

bone.15 Thus, mimicking the gradual matrix transition between the zones is essential for 

complete and functional healing of tendon and ligament tissues.  



Towards enthesis tissue regeneration, several prominent research groups have 

utilized single-phase scaffolds with or without cells and growth factors and demonstrated 

promising results to some degree in forming single-type tissue systems.16-19 However, the 

enthesis has a complex structure with longitudinal variations in mineral content, collagen 

alignment, and extracellular matrix composition, which presents gradual differences in 

functional and mechanical characteristics.20,21 Thus, inspired by the multiphasic inherent 

structure of native enthesis, multiphasic scaffolds, stratified or gradient, have been 

investigated to mimic the native variation in material composition of the enthesis 

matrix.4,22-29 Although promising, gradient scaffolds that mimic the gradual transition in 

mineralization still lack the ability to provide physiologically relevant transitional tissue 

thickness in the order of micro- or nanometers.21,24,30-33 The mineralization exponentially 

increases across the mineralized fibrocartilage region toward bone in bovine tibiofemoral 

ligament-bone insertion34, while the increase in mineralization is linear over a distance of 

120 μm in rat rotator-cuff tendon-bone insertion.21 The rapid increase in mineralization 

along the enthesis suggests that scaffold stratification is a promising method for enthesis 

regeneration. It has been suggested that stratified scaffold phases be fabricated from the 

same biomaterial to provide the structural continuity and avoid the inherent weakness of 

sharp transitions of dissimilar materials.35,36 It is critical that the base biomaterial can be 

modified such that it supports the formation of cartilage and bone for a regenerative  

enthesis healing. 

The polysaccharides and ECM proteins are attractive scaffold materials for enthesis 

repair because they are able to form a 3-D matrix containing water and facilitating 

transportation of nutrients/waste exchange and signaling molecules.37-47 Among many 

biomaterials, polysaccharides have been used as effective scaffolds for various purposes 

in tissue engineering.48-52 Polysaccharides are long carbohydrate molecules of 

monosaccharide units joined together by glycosidic bonds.53-55 In living organisms, 

polysaccharides such as pectin, cellulose, chitin, and agar support the tissue structure, 

while other polysaccharides including starch and glycogen serve as storage units. 

Polysaccharides also play critical roles in cell signaling and cell adhesion processes that 

modulate cell behavior.48,56 In tissue engineering, the most commonly used 

polysaccharides include hyaluronic acid, alginate, chitosan, starch, cellulose, dextran, 



and pullulan.57-69 The use of polysaccharides in drug delivery and tissue engineering has 

been reviewed and compared in previous works.70-78 It is noted that rhamnose-containing 

polysaccharides have shown to stimulate cell proliferation, collagen biosynthesis, and 

modulate matrix biosynthesis.79-86 The addition of rhamnose-containing polysaccharides 

to fibroblasts demonstrated stimulation of calcium-signaling pathway to induce increases 

in Ca2+ influx and intracellular free Ca2+ levels.87,88 

The current review first highlights the studies on composite scaffolds for enthesis 

regeneration. Then, the use of polysaccharides in osteochondral regeneration is reviewed 

and its potential for enthesis regeneration is presented. Gellan gum is focused due to its 

positive effects on osteochondral tissue engineering and suggested as a promising 

polysaccharide for enthesis scaffolds. 

 

2. Synthetic composite scaffolds for enthesis regeneration  
Soft tissues in musculoskeletal structures such as tendons that connect muscle to 

bone comprise of units of collagen bundles (150-1000 μm), which are assembled from 

collagen fibers (1-300 μm) that are made of collagen fibrils (10-500 nm).89,90 These 

collagen bundles populate the extracellular matrix of connective tissues. Upon injury, 

collagen fibers decrease in diameter, exhibit a disorganization in structure, and the total 

area of collagen fibrils becomes significantly smaller than healthy collagen fibers.91,92 

Consequently, scaffold fiber diameter is a critical design parameter that regulates the 

response of human tendon fibroblasts.92 Following the hypothesis that aligned nanofibers 

would guide deposition of aligned collagen fibers, Lipner et al. fabricated composite 

scaffolds using layers of poly-(lactic-co-glycolic acid) (PLGA) nanofibers (diameters of 

400–900 nm), and the layers are further added with fibrin hydrogel layers seeded with 

stromal cells transduced with an adenovirus that leads them to produce bone 

morphogenetic protein-2 (BMP-2).93 However, the composite scaffold showed a negative 

effect on rat supraspinatus enthesis restoration by exhibiting scar-mediated healing rather 

than regeneration. As mentioned by the authors, the rationale behind the negative effect 

of the PLGA nanofiber scaffold was attributed to low cell density seeded in the scaffold 

as well as the implantation of the scaffold as a patch over the repair site rather than at 

the interface of tendon and bone. Polyglycolic acid (PGA) nanofibers have been also used 



and combined with poly-L-lactide-co-ε-caprolactone (PLCL) to fabricate a biphasic 

scaffold for integrative repair of rotator cuff injuries on sheep infraspinatus tendon-to-bone 

insertion.94 In this work, the tendon was sharply transected and immediately reattached 

with the scaffold sutured between the tendon and the bone. Compared to the suture-only 

group, the scaffold group exhibited an increase in ultimate failure in load and in stress. 

Histologically, perforating collagen fibers were present and extended through a region of 

calcified fibrocartilage attaching to the humerus. Intense inflammatory response was also 

triggered in the scaffold group that was not observed in the suture-only group. The impact 

of this inflammatory response on the translation to human enthesis healing is not yet 

understood. 

Another research group used PLGA in microspheres to encapsulate connective tissue 

growth factor (CTGF), transforming growth factor beta 3 (TGFβ3) and BMP-2 in order to 

regenerate the fibrocartilaginous tissue in the tendon-to-bone interface.95 The 

encapsulating microspheres were embedded in polycaprolactone (PCL) micro-strands 

such a way that CTGF was on the top layer (tendon side), BMP-2 was on the bottom layer 

(bone side), and CTGF + TGFβ3 microspheres in the middle layer for a fibrocartilage 

interface layer between tendon and bone. The scaffold was implanted at the interface 

between the supraspinatus tendon and the humeral head in a rat rotator cuff repair model 

for 4 weeks. Enhanced healing of the enthesis was observed with greater 

fibrocartilaginous tissue formation and a higher bone volume compared to the scaffold 

without growth factors (control). PCL has been also investigated for enthesis regeneration 

in a rat patellar tendon avulsion model. Kim et al. designed asymmetrically porous 

membranes prepared by mixing PCL and Pluronic F127. Platelet-derived growth factor 

(PDGF) and BMP-2 were immobilized in the mixture to induce tenogenic differentiation 

and osteogenic differentiation, respectively.96 One side of the membrane has nano-size 

pores designed to prevent scar tissue infiltration into bone-tendon interface injury site, 

while the other side of membrane was designed to provide nutrient permeation through 

micron-size pores, which would enhance the adhesion of the membrane with the defect 

site and act as a scaffold to guide bone-tendon interface regeneration.97 The study 

demonstrated that PCL/Pluronic F127 accelerates the regeneration of the tendon-bone 

interface due to the continuous release of both growth factors and their complementary 



effects on creating a multiphasic structure. Although promising, the use of growth factors 

has several limitations including short effective half-life, low recombinant expression yield, 

suboptimal efficacy, and high cost of research and quality control.98-102 These limitations 

lead to multiple administrations or high doses to sustain an effective concentration of 

growth factors which often results in ectopic tissue formation, abnormal growth, 

inflammatory complications, and toxicity.103-106 Long term storage of growth factors is also 

challenging largely due to poor protein stability which can be affected by temperature, pH, 

hydrolysis or oxidation of amino acid side chains, and freeze-thawing and freeze-

drying.107-110 

Cai et al. developed a dual-layer aligned-random nanofibrous scaffold (ARS) using 

silk fibroin-blended poly(l-lactic acid-co--caprolactone) (PLLA-PCL) in a rabbit extra-

articular model.111 Autologous Achilles tendon was wrapped with the ARS and passed 

through a bone tunnel and sutured to the adjacent soft tissue. New bone formation was 

observed at 12 weeks along with a formation of fibrocartilage and collagen organization. 

However, as mentioned by the authors, this tendon-bone healing model was different 

from that used in humans, and the sample size of the study was too small with a short 

observation period. Additionally, the use of autologous grafts is known to be limited by 

donor site co-morbidity and can lead to postoperative chronic pain and poor muscle 

function.112,113  

In an effort to mimic mineralized and non-mineralized fibrocartilage of enthesis, Li et 

al. fabricated a dual-layer of flexible bipolar fibrous membrane with a gradient 

microstructure for enthesis regeneration using a poly-L-lactic acid (PLLA) fibrous 

membrane as the upper layer (fiber diameter = 1.64 ± 0.62 μm) and a 

nanohydroxyapatite- poly-L-lactic acid (nHA-PLLA) fibrous membrane as the lower layer 

(fiber diameter = 1.47 ± 0.51 μm), respectively.114 Using a rabbit rotator cuff tear model, 

they demonstrated an improved collagen organization, bone formation, and fibrillogenesis 

with the dual-layer membrane compared to the single-layer PLLA membrane. Load-of-

failure and stiffness measurements showed greater values in the dual-layer membrane 

compared to the single-layer one, but still inferior to the normal uninjured tendon. There 

was no significant difference between experimental and control groups in bone mineral 

density (BMD) and bone volume fraction (bone volume/total volume; BV/TV). The 



biodegradability and tailorable mechanical properties of PLLA make it advantageous to 

use in tissue engineering. It is noted that limitations of PLLA include low cell adhesion 

because of its hydrophobicity, acidic degradation by-products, and lack of cell 

differentiation properties.115-117 These shortcomings of PLLA may obstruct its application 

to osteochondral generation where specific interactions between cells and implants are 

necessary.118,119 

Table 1 summarizes the in vivo studies of composite scaffolds for enthesis 

regeneration. Although tissue formation is promising, it remains challenging to achieve 

biological healing of a multi-tissue transition at the tendon-to-bone interface. The use of 

big animal injury model and the repairing methods that are physiologically relevant to 

humans are needed for further evaluation. Additionally, creating a physiologically relevant 

scale of the mineral gradient is still technologically challenging for in vivo investigations. 

 

3. Polysaccharides in osteochondral tissue engineering 
Polysaccharides are natural materials that mimic the physiological structure of the 

ECM and provide glycosaminoglycan (GAG)-like environments with nontoxic degradation 

products. One of them is alginate that is a naturally occurring anionic disaccharide with 

repeating units of 1-4 linked D-mannuronic acid and L-guluronic acid. Alginate is one of 

the most widely used materials for tissue engineering because of its biocompatibility and 

biodegradability with tunable mechanical properties.120,121 Encapsulation of cells and 

growth factors in alginate gels has been demonstrated successfully in vitro.122 In vivo, 

bone marrow stromal cells (BMSCs) have been encapsulated in ultra-purified alginate 

gels and injected into full-thickness osteochondral defects of 5 mm in diameter and 3 mm 

in depth in the patella groove of rabbit knees.123 The alginate gels histologically and 

mechanically improved the repaired tissue in the 12-week study period. Additionally, 

alginate, alone or in combination with other materials such as hyaluronic acid124, 

chitosan125, and gellan gum126, was investigated with acellular approaches with promising 

results. For example, Chen et al. applied a combination of alginate and hyaluronic acid 

scaffold to osteochondral defects in the patella groove of rat knees.127 The results showed 

simultaneous regeneration of cartilage and subchondral bone in the 8-week study period. 



Hyaluronic acid is a disaccharide with glucuronic acid and N-acetylglucosamine 

repeating units linked via alternating β-1,4 and β-1,3 glycosidic bonds. In a human case 

report, umbilical cord blood-derived MSCs were encapsulated in hyaluronic acid hydrogel 

and applied to a large osteochondral defect (5 mm diameter and 5 mm deep) of the knee 

with a follow-up period of 5 years.128 The underlying bone was only partially restored as 

bony tissue, while the superficial portion near the articular cartilage was restored as 

cartilaginous tissue. It was concluded that the composite hydrogel is a viable therapeutic 

option that can be performed through a one-stage arthrotomy. Recently, Hwang et al. 

injected an acellular hyaluronic acid weekly for 3 weeks on osteochondral lesions of the 

talus after a failed microfracture surgery.129 On average, symptoms, pain, and quality of 

life were improved between the pre-injection and the last follow-up visit of patients. 

However, the treatment failed in one-third of the patients. The authors concluded that 

hyaluronic acid injections may possibly be a safe and effective alternative as a secondary 

operative treatment after a failed primary operative intervention. 

Another well-known polysaccharide used in osteochondral regeneration is chitosan. 

Chitosan is a linear positively charged polysaccharide with repeating units of β-(1–4)-

linked D-glucosamine and N-acetyl-D-glucosamine. Chitosan is known to mimic the 

structure of the glycosaminoglycan.130 Chitosan-based materials have been extensively 

investigated in osteochondral tissue engineering.131 Rajagopal et al. encapsulated rabbit 

bone MSCs in a multi-layered aligned chitosan-gelatin scaffold that resembles the ECM 

and the native collagen architecture.132 The scaffold was applied to osteochondral defects 

(4 mm diameter and 3 mm deep) in the patella groove of rabbit knees. The scaffold 

supported the differentiation of MSCs to chondrocytes and the regenerated cartilage and 

subchondral bone were greater in volume in the aligned group compared to the randomly 

aligned group. In another study, chitosan in combination with icariin-conditioned serum 

was intraarticularly injected into osteochondral defects in rabbit knees.133 More cartilage 

and subchondral bone regeneration were observed in the chitosan-serum group than 

serum-only group. 

Long-term studies are needed to demonstrate the efficacy of polysaccharides on long-

lasting repair of osteochondral defects. Additionally, identifying the metabolic pathway 

underlying the activity of regeneration is critical for future clinical translation. The 



dependency of healing on the size of the defect also remains ambiguous. Table 2 

summarizes the in vivo studies of polysaccharide-based materials for osteochondral 

regeneration. 

 
4. Gellan gum in osteochondral tissue engineering 

Gellan gum is a naturally occurring polysaccharide with repeating units of D-glucose, 

D-glucuronic acid, and L-rhamnose [-(→3)-β-D-Glcp-(1,4)-β-D-GlcpA-(1,4)-β-D-Glc-

(1,4)-α-L- Rha-(1→)-], with two acyl substituents, L-glyceryl and acetyl, that are attached 

to the C-2 and C-6 positions of the O-3- linked 1,3-D-glucose residue142 (Figure 2). 

Deacylation in alkaline solution yields low acyl gellan gum.143,144 Since both substituents 

are bulky, the gellan polymer chains are unable to form close double-helix formation 

between them. Therefore, the native form of gellan gels are weak, soft, and elastic.145 

Low acyl gellan gum, on the other hand, is firm, non-elastic, and brittle.146 At high 

temperatures, low acyl gellan gum is present as a random coil conformation, which 

converts to an ordered, cross-linked double helix conformation upon cooling.147 As a 

result, controlled drug release can be achieved by varying the degree of cross-

linking.148,149 Due to its biocompatibility and biodegradability, gellan gum has been 

investigated in biomedical applications150-152, food processing153, pharmaceutics154, drug 

delivery155,156 and tissue engineering157-162. 

For bone regeneration purposes, gellan gum has been blended with various materials 

including bioglass, polydopamine, gold, hyaluronic acid, methacrylate, demineralized 

bone powder, silk fibroin, collagen, and hydroxyapatite, as well as physical modification 

by enzymatic or thermal hydrolysis as summarized in Table 3. Jung et al.163 prepared a 

gellan gum/tuna skin gelatin film to guide bone regeneration using -tricalcium phosphate 

as bone graft in an artificial bone defect on parietal bones of rabbits. The film had a 

positive effect on the formation of new bone, and degradation of the film was observed. 

Kim et al.164 used bone defects in a rat model to study the effects of gellan gum-

demineralized bone powder scaffold on bone regeneration. It was found that the scaffold 

was biocompatible, and it facilitated the cell adhesion and proliferation of BMSCs and 

regeneration of bone tissue. Similarly, investigations on cartilage regeneration have used 

gellan gum successfully to support chondrogenesis with or without cells.165,166 Acellular 



approaches have been performed using a rabbit model with articular cartilage defects 

that were treated with intra-articular injections of three different polysaccharides, gellan 

gum, alginate, and agarose.165 The results were compared with hyaluronic acid, which is 

frequently used in cartilage tissue engineering. Gellan gum and agarose groups were 

covered with regenerated tissues comparably to the hyaluronic acid group. In vitro, the 

expressions of NF-jB and Cox-2 decreased and those of IjBa, Sox-9, aggrecan, and type 

II collagen increased in gellan gum, alginate, and hyaluronic acid. It was concluded that 

gellan gum improves cartilage regeneration by suppressing inflammatory mediators and 

inducing cartilage formation and autophagy-related gene expression, indicating its 

potential for cartilage tissue engineering. Pereira et al.167 developed an acellular bi-

layered scaffold of gellan gum/gellan gum-hydroxyapatite to produce cartilage-like and 

bone-like layers, respectively. After soaking in a simulated body fluid solution up to 14 

days, it was found that the hydroxyapatite layer formation is limited to the bone-like layer 

of the bi-layered scaffold. This result indicates that gellan gum-based scaffolds can 

provide the mineral disparity between layers and may be used as a base biomaterial with 

the ability to support the regeneration of bone and cartilage simultaneously. Vuornos et 

al. co-cultured human adipose stem cells and human umbilical vein endothelial cells in 

gellan gum-collagen scaffold using two different media, endothelial growth medium-2 

(EGM-2) and bioactive glass extract-based endothelial and osteogenic medium (BaG EM-

OM).168 In both media, osteogenic and endothelial marker gene expression were 

supported as well as the formation of reticulated cellular structures. Hydroxyapatite 

mineralization was detected only in BaG EM-OM medium. This result indicates that gellan 

gum-based scaffolds support the proliferation and differentiation of multiple cell 

populations. Table 3 summarizes studies targeting bone and cartilage regeneration using 

gellan gum-based scaffolds.  

Based on these promising results in osteochondral applications, gellan gum-based 

materials targeting enthesis may overcome the limitations of synthetic polymers and the 

problems of their toxic degradation products. They would make it possible to avoid the 

use of growth factors and thereby prevent abnormal and ectopic tissue formation. 

Moreover, polysaccharides may help the mineralization be restricted to certain layers of 

the composite while the other layers can stay unmineralized, which is critical for the 



regeneration of enthesis. Supporting proliferation of multiple cell populations is also 

advantageous in creating cartilaginous and osseous tissues simultaneously. 

In our preliminary investigations, low acyl gellan gum (KELCOGEL® F, CP Kelco, 

USA) gels with different molecular weights were prepared at 1% (w/v) and placed in a 24-

well plate. LA-GAGR refers to low acyl gellan gum (MW= 200-300 kDa) and mini-GAGR 

(MWv= 25 kDa) is an enzymatic hydrolysis product of LA-GAGR.190 Pre-osteoblast cells 

(MC3T3-E1, ATCC, USA) were seeded on top of the gels and a complete α-MEM medium 

containing 10% fetal bovine serum, ascorbic acid (50 μg/mL), and 1% penicillin 

streptomycin was used for cell culture. The control consisted of wells without gels. After 

3 days of culture, extracellular collagen type I concentration was measured using an 

Enzyme Linked Immunosorbent Assay (ELISA) kit (MyBioSource, USA) according to the 

manufacturer’s instructions. Figure 3 shows that both LA-GAGR and mini-GAGR 

supported the synthesis of extracellular collagen I which supports previous findings that 

gellan gum enhances extracellular matrix production by the cells. After 7 days of culture, 

total RNA was extracted using miRNeasy Mini extraction kit (Qiagen, USA) according to 

the manufacturer’s instructions. RT2 First Strand kit (Qiagen, USA) was used for cDNA 

synthesis and genomic DNA elimination. The relative expression levels of osteogenic 

marker genes were investigated by real-time quantitative reverse transcription 

polymerase chain reaction (qRT-PCR) using the human osteogenesis RT2 Profiler™ PCR 

array (Qiagen, USA). Figure 4 shows the relative expression levels of osteogenic marker 

genes. It is noted TGFB3 and SP7 show a 3 ± 0.1-fold and 12 ± 0.1-fold increase, 

respectively, for the LA-GAGR group. Also, the TGFB3 and SP7 gene markers show a 

1.3 ± 0.1-fold and 20 ± 0.1-fold increase, respectively, for the mini-GAGR group. These 

results suggest a positive initiation of bone osteogenesis since it has been shown that 

SP7 acts as a master regulator of bone formation during both embryonic development 

and the homeostatic maintenance of bone in adults.191 Transforming growth factor-beta 

(TGFB), also, is well known for its many functions in skeletogenesis and osteogenesis, 

including skeletal morphogenesis, growth plate development, and osteoblast 

differentiation.192 In addition, TGFBs play an important role in bone remodelling by 

regulating osteoblast and osteoclast differentiation. 



Several studies have shown that two main pathways cause the induction of the SP7 

transforming growth factor, one of them is through DLX5 gene regulation.193 Figure 4 

shows an upregulation of DLX5 of almost 3.5 ± 0.1-fold and a 1.5 ± 0.1-fold increase for 

the LA-GAGR and mini-GAGR group, respectively. Once the expression of SP7 is 

triggered, a slew of mature osteoblast genes is induced such as collagen type-I and 

osteonectin which are necessary for productive osteoblasts during bone ossification.191 

The osteogenic markers, CDH11 and SOX9 were upregulated for the both groups. The 

transcription factor SOX9, which plays a central role in chondrocyte differentiation, and 

the CDH11 are key transcription factors for BMSCs. Several studies have shown that 

SOX9 enhanced the chondrogenesis of BMSCs, playing an important role during 

inhibition of chondrocyte proliferation thus enhancing osteogenesis, and preventing 

chondrocyte differentiation.194 CDH11 is a pro-osteogenic and anti-adipogenic marker 

that promotes the osteogenic differentiation of BMSCs. Granulocyte colony-stimulating 

factor (G-CSF) has many functions including induction of proliferation, viability, and 

differentiation of osteoblasts, as well as mobilization of bone marrow cells.195 As shown 

in Figure 4, CSF2 and CSF3 were upregulated showing an increase of almost 10 ± 0.1-

fold and 19 ± 0.1-fold for the LA-GAGR group, respectively. The expression of both CSF2 

and CSF3 was also upregulated for the mini-GAGR group with a 6 ± 0.1-fold and 8 ± 0.1-

fold increase, respectively. 

Fibroblast growth factor (FGF) and insulin growth factors (IGF) are molecules 

associated with bone regeneration. In our study, FGFR1 and IGF1R markers were 

upregulated for both experimental groups. The increase of FGFR1 of almost 10 ± 0.1-fold 

and 13 ± 0.1-fold and the increase of IGF1R of almost 3 ± 0.1-fold and 1.5 ± 0.1-fold for 

the LA-GAGR and mini-GAGR group respectively demonstrated the effective conditions 

the study had on the cells for the initiation of bone healing and regeneration. Many of 

these growth factors and osteogenic markers play important roles in natural bone 

formation and regeneration. 

Polysaccharides have attracted attention not only as scaffolds but also as bioactive 

natural macromolecules. The bioactivity of polysaccharides has been studied in 

antioxidant activity190, neuroprotective activity151, immunoregulatory and anti-

inflammatory activities.196-199 The bioactivity of polysaccharides has been shown to 



depend on the structure of the polysaccharides including the monosaccharide repeating 

unit, molecular weight, functional groups, and the types of linkages.200 Several research 

results demonstrated that rhamnose-containing polysaccharides like gellan gum induce 

apoptosis in osteosarcoma cells and exhibit anti-osteoporosis activity by inhibiting the 

formation of osteoclasts, decrease osteoclast differentiation, and increase osteoblast 

activity.87,201 The bioactivity and cell-signaling pathways of rhamnose-containing 

polysaccharides on bone and cartilage formation remains to be investigated. It is 

necessary to better understand the underlying mechanisms of rhamnose-containing 

polysaccharides in enhancing bone and cartilage formation. 

 

5. Conclusion and future directions    
Efforts to regenerate tendon-bone interface tissue are ongoing, with limited success. 

The current approaches to regeneration of enthesis still lack the recovery of comparable 

tissue as the native enthesis in terms of biological and biomechanical properties. The 

gradual changes in mineral content, collagen alignment, and ECM inspired the use of 

composite scaffolds to mimic these unique structural and compositional variations in the 

enthesis matrix. Such composites should be fabricated from one base biomaterial which 

supports the regeneration of bone and cartilage simultaneously. 

Rhamnose-containing polysaccharides such as gellan gum fulfil several main roles in 

osteochondral tissue engineering, especially after modification and blending with other 

materials. Fabricating biomimetic composite scaffolds for enthesis regeneration with 

gellan gum may possibly provide the needed structure with longitudinal disparity in 

mineral content and collagen alignment to support multiple cell populations and specific 

tissue formation. Further research is needed to better understand the underlying 

mechanisms by which gellan gum regulates cellular response and differentiation, and 

tissue regeneration. Currently, in vivo studies on gellan gum are scarce for tissue 

engineering and are limited to small animal models. The use of appropriate animal and 

injury models need to be considered to ensure that the evaluations are justified in 

physiologically relevant environments to humans. Currently mimicking the mineral 

gradient of enthesis for small animals is technologically challenging to realize in fabricated 

scaffolds. Big animal models can potentially overcome this limitation although the costs 



for investigation may be an obstacle. Establishing a standard animal injury model for 

enthesis regeneration is necessary for fair evaluations of various scaffolds for potential 

clinical translation. The review is summarized as follows: 

• Enthesis regeneration efforts are ongoing with limited success. 

• Fabricating biomimetic scaffolds using polysaccharide-based materials offer 

promising results. 

• The underlying mechanisms of bioactivity of rhamnose-containing polysaccharides 

for osteochondral tissue regeneration should be further investigated. 

• Elucidation of a standard animal and injury model for enthesis regeneration is yet 

to be attained. 
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PGA: polyglycolic acid 

PLCL: poly-L-lactide-co-ε-caprolactone 
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GAG: glycosaminoglycan 

BMSCs: bone marrow stromal cells 

BER: berberine 

-TCP: beta-tricalcium phosphate 

HPMC: hydroxypropylmethylcellulose 

ICS: icariin-conditioned serum 

EGM-2: endothelial growth medium-2 

BaG: bioactive glass 

EM-OM: endothelial and osteogenic medium 

GG: gellan gum 

MSCs: mesenchymal stem cells 

ALP: alkaline phosphatase 

PDA: polydopamine 

ASCs: adipose-derived stem cells 

MA: methacrylated 

CHX: chlorhexidine 

GBR: guided bone regeneration 



SBF: simulated body fluid 

PL: pullulan 

Ty: tyramine 

LGNF: lignocellulose nanofibrils 

FS: forsterite 

MEL: melatonin 

PEGDA: polyethylene glycol diacrylate. 
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Table 1. In vivo studies utilizing composite scaffolds for enthesis (tendon-bone) 

regeneration.  

Note: PGA: polyglycolic acid; PLCL: poly-L-lactide-co-ε-caprolactone; PLGA: poly-(lactic-co-glycolic acid); PCL: 

polycaprolactone; nHA-PLLA: nanohydroxyapatite-poly-L-lactic acid; F127: Pluronic F127; PDGF: Platelet-derived 

growth factor; BMP-2: bone morphogenetic protein-2; CTGF: connective tissue growth factor; TGF β3: transforming 

growth factor beta 3. 
 

 

 

 

 

 

 

 

 

Scaffold 
materials  

Induction 
factor 

Cell source Animal model Outcome Reference 

PGA and PLCL 

nanofibers 

- - 
 

- Sheep 

(infraspinatus)  

Fibrocartilage 94 

PLGA nanofibers 

with fibrin layers 

BMP-2 Rat ADSCs Rat 

(supraspinatus) 

Fibrovascular scar 93 

PLLA and nHA-

PLLA layers 

- - Rabbit 

(supraspinatus) 

Fibrocartilage 114 

Asymmetrically 

porous PCL/F127 

membranes 

PDGF + 

BMP-2 

- Rat (patellar) Fibrocartilage, 

mineralized 

fibrocartilage, bone 

96 

Aligned-random 

dual layers of 

PLLA/PCL/silk 

fibroin 

Autologous 

Achilles 

tendon 

- Rabbit (patellar) Fibrocartilage, bone 111 

PLGA 

microspheres 

embedded in PCL 

microstrands 

CTGF + TGF 

β3 + BMP-2 

Endogenous 

stem cells 

Rat 

(supraspinatus) 

Fibrocartilage, bone 95 



Table 2. In vivo studies utilizing polysaccharide-based materials for osteochondral 

regeneration. 
Scaffold materials Animal model Impact Ref 

Ultra-purified alginate gel Rabbit 
(patellar) 

The purification of alginate significantly 
enhanced the cellular proliferation and 
chondrogenic differentiation of BMSCs and 
improved the reparative tissue of osteochondral 
defects. 

123 

Hyaluronic acid-alginate + 
BER 

Rat (patellar) The scaffold promoted the regeneration of 
cartilage and bone tissues. 

127 

Hyaluronic acid-alginate layer 
and HA-alginate layer 

Sheep 
(patellar) 

Incomplete bone formation due to slow 
resorption rate of the scaffold. Cartilage repair 
and integration with the scaffold was observed. 

124 

Ultra-purified alginate gel Canine 
(patellar) 

Hyaline-like cartilage and fibrocartilage tissue 
formation were observed. Compared to 
untreated defects, gel implantation significantly 
enhanced osteochondral repair. 

134 

Silk fibroin-chitosan layer and 
silk fibroin-chitosan-nHA layer 

Rabbit 
(patellar) 

Cartilage and subchondral bone tissues formed 
with complete filling of the lesion site. 

135 

-TCP layer, high-
concentration chitosan-gelatin 
layer, and low-concentration 

chitosan-gelatin layer 

Goat (femoral 
condyle) 

The tri-layered scaffold prevented cartilage 
infiltration into bone with better cartilage repair 
than bi-layered scaffold. 

136 

Calcium phosphate granules 
layer and chitosan-HPMC 

layer 

Sheep 
(femoral 
condyle) 

Hyaline cartilage and subchondral bone 
regeneration were observed but achieved 
incomplete restoration of articular cartilage. 

137 

Tri-layered chitosan-gelatin 
scaffold 

Rabbit 
(patellar) 

The scaffold supported glycosaminoglycan 
(GAG) deposition and facilitated the articular 
cartilage repair. 

132 

Injectable ICS combined with 
chitosan 

Rabbit 
(femoral 
condyle) 

Cartilage and subchondral bone formation were 
enhanced by the addition of chitosan to ICS. 

133 

Magnesium-encapsulated 
chitosan/ Pluronic F127 

composite 

Rabbit (rotator 
cuff) 

The composite enhanced BMSCs adhesion 
and chondrogenic differentiation in vitro. The 
composite significantly increased the 
fibrocartilage interface regeneration in vivo.  

138 



Hyaluronic acid scaffold in 
combination with an 

autologous bone marrow 
aspirate 

Human 
(osteochondral 
lesions of the 

talus) 

Effective pain relief and good clinical results. A 
hyaline-like chondral tissue and integration of 
the regenerated tissue was complete in 82% of 
the cases. Well organized regenerated tissue 
but relatively non-homogeneous and minimally 
edematous.  

139 

Hyaluronic acid hydrogel Human (knee 
joint) 

Effective pain relief and function of the knee 
joint. A hyaline-like cartilage filled the defect 
and was integrated with the 
surrounding normal cartilage. 

128 

Hyaluronic acid hydrogel Human 
(osteochondral 
lesions of the 

talus) 

No postoperative complications including nerve 
injury, infection, and delayed wound healing. 
The overall patient satisfaction rate was 90%. 

140 

Injectable hyaluronic acid Human 
(osteochondral 
lesions of the 

talus) 

Symptom, pain, activities of daily living, and 
quality of life were improved over a mean 
follow-up period of 2 years. No adverse effects 
related to the injections were reported. 

129 

Hyaluronic acid scaffold Rabbit 
(femoral 

condyles) 

Stable and organized cartilage formation.  The 
surface was smooth and integrated with the 
surrounding cartilage. 

141 

Note: BER: berberine; nHA: nano-hydroxyapatite; -TCP: beta-tricalcium phosphate; HPMC: 

Hydroxypropyl methylcellulose; ICS: icariin-conditioned serum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. In vitro and in vivo studies utilizing gellan gum for bone and cartilage tissue 

engineering  
Materials/modification Cell source Animal 

model 
Target tissue Impact Reference 

Injectable GG-Bioglass  Rat MSCs - Bone Addition of bioglass 
increased mechanical 

strength and mineralization 
of the scaffold. Cell 

behavior and antibacterial 
activity were influenced by 

the type of bioglass. 

169 

GG-ALP + PDA Osteoblastic 
cell line 

MC3T3-E1 

- Bone Addition of ALP induced 
apatite-like mineral 

formation and increased 
scaffold stiffness. Cell 

attachment and proliferation 
increased by incorporating 

PDA. 

170 

GG-Coated gold 
nanorods 

Human 
osteoblast-
like cell line 

SaOS-2 

- Bone Increased mineralization  171 

GG-Bioglass Human 
ASCs 

- Bone Addition of bioglass 
improved microstructure 

and the mechanical 
properties. Cells adhered 

and spread. 

172 

GG-Hyaluronic acid-
CaCl2 

Human 
primary 

osteoblasts 

- Osteochondral Promoted cell survival and 
osteoblastic progression 

and produced mineralized 
nodules 

158 

Injectable GG-MA Human 
ASCs 

- Bone Cells were able to 
osteodifferentiated.  

173 

GG-Demineralized 
bone powder 

- Rat calvarial 
bone 

Bone Bone tissue formed 164 

GG-Silk fibroin-CaCl2 Human 
ASCs 

- Bone Increased mineralization 174 

GG-Collagen Human 
ASCs 

- Bone Cells were able to 
osteodifferentiate. 

Microvessel-like network 
formation was observed. 

168 

GG-nHA-CHX BMSCs - Bone Addition of nHA improved 
mechanical, biodegradable, 
and osteogenic properties. 
Incorporating CHX inhibited 

E. faecalis. 

175 

TCP bone graft with 
GG-Tuna skin gelatin 

film for GBR 

- Rabbit 
calvarial bone 

Bone The film protected the bone 
defects from soft tissue 

invasion, and bone 
regeneration was observed. 

163 



GG molecular weight 
reduction 

Porcine 
articular 
cartilage 

chondrocytes 

- Cartilage Controlled gelation 
temperature, cell 

proliferation and specific 
matrix formation 

174 

Oxidized GG-
Carboxymethyl 

chitosan 

Rabbit 
articular 
cartilage 

chondrocytes 

- Cartilage Enhanced the viability and 
proliferation of cells. 

176 

Bilayered GG/GG-HAp      
soaked in SBF     

- - Osteochondral Distinct cartilage-like and 
bone-like layers 

167 

GG-Gelatine 
methacrylamide 

Equine joints 
chondrocytes 

- Cartilage Addition of GG increased 
stiffness of constructed and 
supported matrix production 

by cells. 

178 

GG-Manuka honey 
composite 

hMSCs - Cartilage Suitable mechanical 
properties, antibacterial 

activity, high synthesis of 
collagen II, GAGs and 

proteoglycans 

179, 180 

GG-Glycol chitosan Rabbit leg 
cartilage 

chondrocytes 

- Cartilage GAG synthesis and mRNA 
expression of cartilage-

specific genes. 

181 

GG/PL hydrogel Rabbit 
BMSCs  

- Cartilage Chondrogenesis promotion  
of BMSC 

182 

Betamethasone-loaded 
Ty-GG hydrogels 

Rabbit 
chondrogenic 
primary cells 

- Cartilage Healthy proliferation and 
survival of chondrogenic 

primary cells 

183 

Injectable GG/LGNF/FS-
MEL 

Human 
articular 

chondrocytes 

- Cartilage Cell adhesion, proliferation 
and gene expression of 
cartilage-specific genes 

184 

Dopamine-modified GG Human nasal 
cartilage 

- Cartilage Up-regulation of cartilage-
specific genes 

185 

GG-encapsulated cells Rabbit ASCs Rabbit 
articular 
cartilage 
defects 

Cartilage Hyaline-like cartilage tissue 
formation 

186, 187 

GG-MA Autologous 
rabbit ASCs 

Rabbit with 
induced 
chondral 
lesions 

Cartilage Regeneration of critical size 
lesions with good 

integration with native 
cartilage 

166 

Injectable GG - Rabbit medial 
parapatellar 
arthrotomy 

Cartilage Suppressed inflammatory 
mediators, induced cartilage 
formation and autophagy-
related gene expression 

165 

GG-PEGDA  BMSCs Mouse 
subcutaneous 

Cartilage Chondrogenic differentiation 
of BMSCs 

188 

Injectable 
GG/dexamethasone-
cyclodextrin hydrogel 

Rabbit 
chondrocytes 

Rabbit 
cartilage 
defect 

Cartilage Enhanced expression levels 
of cartilage-related genes, 

and improved anti-
inflammatory response 

189 

Note: GG: gellan gum; MSCs: mesenchymal stem cells; ALP: alkaline phosphatase; PDA: polydopamine; ASCs:  



adipose-derived stem cells; MA: methacrylated; nHA: nano-hydroxyapatite; CHX: chlorhexidine; BMSCs: bone 

marrow mesenchymal stem cells; GBR: guided bone regeneration; SBF: simulated body fluid; PL: pullulan; Ty: 

tyramine; LGNF: lignocellulose nanofibrils; FS: forsterite; MEL: melatonin; PEGDA: polyethylene glycol diacrylate. 
 


