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Abstract

The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are
frequently injured with limited healing capacity. At the soft-hard tissue interface, enthesis
is prone to get damaged and its regeneration in osteochondral defects is essential for
complete healing. The current clinical techniques used in suturing procedures to reattach
tendons to bones need much improvement for the generation of the native interface
tissue, i.e., enthesis, for patients to regain their full functions. Recently, inspired by the
composite native tissue, much effort has been made to fabricate composite scaffolds for
enthesis tissue regeneration. The current review first focuses on the studies that used
composite scaffolds for the regeneration of enthesis. Then, the use of polysaccharides
for osteochondral tissue engineering is reviewed and their potential for enthesis
regeneration is presented based on their supporting effects on osteo- and
chondrogenesis. Gellan gum is selected and reviewed as a promising polysaccharide due
to its unique osteogenic and chondrogenic activities that help avoid the inherent

weakness of dissimilar materials in composite scaffolds.

Keywords: tissue engineering, tendon-bone, enthesis, gellan gum, rhamnose,

polysaccharides



Impact Statement

Enthesis regeneration is essential for complete and functional healing of tendon and
ligaments tissues. Current suturing techniques to reattach the tendon/ligament to bones
have high failure rates. This review highlights the studies on biomimetic scaffolds aimed
to regenerate enthesis. Additionally, the potential of using polysaccharides to regenerate
enthesis is discussed based on their ability to regenerate osteochondral tissues. Gellan
gum is presented as a promising biopolymer that can be modified to simultaneously

support bone and cartilage regeneration by providing structural continuity for the scaffold.

1. Introduction
The rotator cuff and Achilles tendons along with the anterior cruciate ligament (ACL) are
one of the most frequently injured musculoskeletal tissues. Over 250,000 rotator cuff
tendon repairs and more than 100,000 ACL reconstructions are performed annually in the
United States.’ In clinical settings, the suturing technique is applied to reattach the
tendon/ligaments to bones but these tissues rarely regain their full function with a failure
rate of 94%.4% The tissue-associated inherent limitations including low cellularity and
vascularization are considered as the primary source for limited healing and
functionality.>"8 Yet, in recent years, the prominent studies demonstrated that the lack of
transition and integration at the soft-hard tissue interface are the important contributor for
limited functionality.®-13

The enthesis, a connective tissue between tendon or ligament and bone, transfers the
mechanical loading from soft tissue to bone for locomotion. The enthesis provides a
smooth stress transition from soft tissue to hard tissue (bone) through its four distinct but
structurally continuous matrix zones including tendon, unmineralized fibrocartilage,
mineralized fibrocartilage, and bone. The soft tissue connects to the hard tissue through
a gradual transition from tendon/ligament to non-mineralized fibrocartilage tissue followed
by mineralized fibrocartilage tissue that connects to bone (Figure 1).'* The structurally
gradual transition in enthesis material composition is crucial in minimizing stress
concentrations at the interface and allows forces to be dispersed properly from tendon to
bone.’ Thus, mimicking the gradual matrix transition between the zones is essential for

complete and functional healing of tendon and ligament tissues.



Towards enthesis tissue regeneration, several prominent research groups have
utilized single-phase scaffolds with or without cells and growth factors and demonstrated
promising results to some degree in forming single-type tissue systems.'6-'9 However, the
enthesis has a complex structure with longitudinal variations in mineral content, collagen
alignment, and extracellular matrix composition, which presents gradual differences in
functional and mechanical characteristics.?%2' Thus, inspired by the multiphasic inherent
structure of native enthesis, multiphasic scaffolds, stratified or gradient, have been
investigated to mimic the native variation in material composition of the enthesis
matrix.#22-2% Although promising, gradient scaffolds that mimic the gradual transition in
mineralization still lack the ability to provide physiologically relevant transitional tissue
thickness in the order of micro- or nanometers.2'.2430-33 The mineralization exponentially
increases across the mineralized fibrocartilage region toward bone in bovine tibiofemoral
ligament-bone insertion®*, while the increase in mineralization is linear over a distance of
120 um in rat rotator-cuff tendon-bone insertion.?! The rapid increase in mineralization
along the enthesis suggests that scaffold stratification is a promising method for enthesis
regeneration. It has been suggested that stratified scaffold phases be fabricated from the
same biomaterial to provide the structural continuity and avoid the inherent weakness of
sharp transitions of dissimilar materials.3> |t is critical that the base biomaterial can be
modified such that it supports the formation of cartilage and bone for a regenerative
enthesis healing.

The polysaccharides and ECM proteins are attractive scaffold materials for enthesis
repair because they are able to form a 3-D matrix containing water and facilitating
transportation of nutrients/waste exchange and signaling molecules.®”*” Among many
biomaterials, polysaccharides have been used as effective scaffolds for various purposes
in tissue engineering.4¢%2 Polysaccharides are long carbohydrate molecules of
monosaccharide units joined together by glycosidic bonds.%3%% In living organisms,
polysaccharides such as pectin, cellulose, chitin, and agar support the tissue structure,
while other polysaccharides including starch and glycogen serve as storage units.
Polysaccharides also play critical roles in cell signaling and cell adhesion processes that
modulate cell behavior.#8%¢ In tissue engineering, the most commonly used

polysaccharides include hyaluronic acid, alginate, chitosan, starch, cellulose, dextran,



and pullulan.5”%° The use of polysaccharides in drug delivery and tissue engineering has
been reviewed and compared in previous works.”%-78 It is noted that rhamnose-containing
polysaccharides have shown to stimulate cell proliferation, collagen biosynthesis, and
modulate matrix biosynthesis.”®8 The addition of rhamnose-containing polysaccharides
to fibroblasts demonstrated stimulation of calcium-signaling pathway to induce increases
in Ca?* influx and intracellular free Ca?* levels.87-88

The current review first highlights the studies on composite scaffolds for enthesis
regeneration. Then, the use of polysaccharides in osteochondral regeneration is reviewed
and its potential for enthesis regeneration is presented. Gellan gum is focused due to its
positive effects on osteochondral tissue engineering and suggested as a promising

polysaccharide for enthesis scaffolds.

2. Synthetic composite scaffolds for enthesis regeneration

Soft tissues in musculoskeletal structures such as tendons that connect muscle to
bone comprise of units of collagen bundles (150-1000 um), which are assembled from
collagen fibers (1-300 ym) that are made of collagen fibrils (10-500 nm).8%%° These
collagen bundles populate the extracellular matrix of connective tissues. Upon injury,
collagen fibers decrease in diameter, exhibit a disorganization in structure, and the total
area of collagen fibrils becomes significantly smaller than healthy collagen fibers.%1.92
Consequently, scaffold fiber diameter is a critical design parameter that regulates the
response of human tendon fibroblasts.®? Following the hypothesis that aligned nanofibers
would guide deposition of aligned collagen fibers, Lipner et al. fabricated composite
scaffolds using layers of poly-(lactic-co-glycolic acid) (PLGA) nanofibers (diameters of
400-900 nm), and the layers are further added with fibrin hydrogel layers seeded with
stromal cells transduced with an adenovirus that leads them to produce bone
morphogenetic protein-2 (BMP-2).%3 However, the composite scaffold showed a negative
effect on rat supraspinatus enthesis restoration by exhibiting scar-mediated healing rather
than regeneration. As mentioned by the authors, the rationale behind the negative effect
of the PLGA nanofiber scaffold was attributed to low cell density seeded in the scaffold
as well as the implantation of the scaffold as a patch over the repair site rather than at

the interface of tendon and bone. Polyglycolic acid (PGA) nanofibers have been also used



and combined with poly-L-lactide-co-e-caprolactone (PLCL) to fabricate a biphasic
scaffold for integrative repair of rotator cuff injuries on sheep infraspinatus tendon-to-bone
insertion.®* In this work, the tendon was sharply transected and immediately reattached
with the scaffold sutured between the tendon and the bone. Compared to the suture-only
group, the scaffold group exhibited an increase in ultimate failure in load and in stress.
Histologically, perforating collagen fibers were present and extended through a region of
calcified fibrocartilage attaching to the humerus. Intense inflammatory response was also
triggered in the scaffold group that was not observed in the suture-only group. The impact
of this inflammatory response on the translation to human enthesis healing is not yet
understood.

Another research group used PLGA in microspheres to encapsulate connective tissue
growth factor (CTGF), transforming growth factor beta 3 (TGFB3) and BMP-2 in order to
regenerate the fibrocartilaginous tissue in the tendon-to-bone interface.®> The
encapsulating microspheres were embedded in polycaprolactone (PCL) micro-strands
such a way that CTGF was on the top layer (tendon side), BMP-2 was on the bottom layer
(bone side), and CTGF + TGFB3 microspheres in the middle layer for a fibrocartilage
interface layer between tendon and bone. The scaffold was implanted at the interface
between the supraspinatus tendon and the humeral head in a rat rotator cuff repair model
for 4 weeks. Enhanced healing of the enthesis was observed with greater
fibrocartilaginous tissue formation and a higher bone volume compared to the scaffold
without growth factors (control). PCL has been also investigated for enthesis regeneration
in a rat patellar tendon avulsion model. Kim et al. designed asymmetrically porous
membranes prepared by mixing PCL and Pluronic F127. Platelet-derived growth factor
(PDGF) and BMP-2 were immobilized in the mixture to induce tenogenic differentiation
and osteogenic differentiation, respectively.®® One side of the membrane has nano-size
pores designed to prevent scar tissue infiltration into bone-tendon interface injury site,
while the other side of membrane was designed to provide nutrient permeation through
micron-size pores, which would enhance the adhesion of the membrane with the defect
site and act as a scaffold to guide bone-tendon interface regeneration.®” The study
demonstrated that PCL/Pluronic F127 accelerates the regeneration of the tendon-bone

interface due to the continuous release of both growth factors and their complementary



effects on creating a multiphasic structure. Although promising, the use of growth factors
has several limitations including short effective half-life, low recombinant expression yield,
suboptimal efficacy, and high cost of research and quality control.?8-12 These limitations
lead to multiple administrations or high doses to sustain an effective concentration of
growth factors which often results in ectopic tissue formation, abnormal growth,
inflammatory complications, and toxicity.'9%-1% | ong term storage of growth factors is also
challenging largely due to poor protein stability which can be affected by temperature, pH,
hydrolysis or oxidation of amino acid side chains, and freeze-thawing and freeze-
drying.107-110

Cai et al. developed a dual-layer aligned-random nanofibrous scaffold (ARS) using
silk fibroin-blended poly(I-lactic acid-co-e-caprolactone) (PLLA-PCL) in a rabbit extra-
articular model.’" Autologous Achilles tendon was wrapped with the ARS and passed
through a bone tunnel and sutured to the adjacent soft tissue. New bone formation was
observed at 12 weeks along with a formation of fibrocartilage and collagen organization.
However, as mentioned by the authors, this tendon-bone healing model was different
from that used in humans, and the sample size of the study was too small with a short
observation period. Additionally, the use of autologous grafts is known to be limited by
donor site co-morbidity and can lead to postoperative chronic pain and poor muscle
function.12.113

In an effort to mimic mineralized and non-mineralized fibrocartilage of enthesis, Li et
al. fabricated a dual-layer of flexible bipolar fibrous membrane with a gradient
microstructure for enthesis regeneration using a poly-L-lactic acid (PLLA) fibrous
membrane as the upper layer (fiber diameter = 1.64 + 0.62 pm) and a
nanohydroxyapatite- poly-L-lactic acid (nHA-PLLA) fibrous membrane as the lower layer
(fiber diameter = 1.47 + 0.51 um), respectively.’* Using a rabbit rotator cuff tear model,
they demonstrated an improved collagen organization, bone formation, and fibrillogenesis
with the dual-layer membrane compared to the single-layer PLLA membrane. Load-of-
failure and stiffness measurements showed greater values in the dual-layer membrane
compared to the single-layer one, but still inferior to the normal uninjured tendon. There
was no significant difference between experimental and control groups in bone mineral

density (BMD) and bone volume fraction (bone volume/total volume; BV/TV). The



biodegradability and tailorable mechanical properties of PLLA make it advantageous to
use in tissue engineering. It is noted that limitations of PLLA include low cell adhesion
because of its hydrophobicity, acidic degradation by-products, and lack of cell
differentiation properties.'’®'"” These shortcomings of PLLA may obstruct its application
to osteochondral generation where specific interactions between cells and implants are
necessary.'18119

Table 1 summarizes the in vivo studies of composite scaffolds for enthesis
regeneration. Although tissue formation is promising, it remains challenging to achieve
biological healing of a multi-tissue transition at the tendon-to-bone interface. The use of
big animal injury model and the repairing methods that are physiologically relevant to
humans are needed for further evaluation. Additionally, creating a physiologically relevant

scale of the mineral gradient is still technologically challenging for in vivo investigations.

3. Polysaccharides in osteochondral tissue engineering

Polysaccharides are natural materials that mimic the physiological structure of the
ECM and provide glycosaminoglycan (GAG)-like environments with nontoxic degradation
products. One of them is alginate that is a naturally occurring anionic disaccharide with
repeating units of 1-4 linked D-mannuronic acid and L-guluronic acid. Alginate is one of
the most widely used materials for tissue engineering because of its biocompatibility and
biodegradability with tunable mechanical properties.'?%'2" Encapsulation of cells and
growth factors in alginate gels has been demonstrated successfully in vitro.'?? In vivo,
bone marrow stromal cells (BMSCs) have been encapsulated in ultra-purified alginate
gels and injected into full-thickness osteochondral defects of 5 mm in diameter and 3 mm
in depth in the patella groove of rabbit knees.'?®> The alginate gels histologically and
mechanically improved the repaired tissue in the 12-week study period. Additionally,
alginate, alone or in combination with other materials such as hyaluronic acid'?,
chitosan'?®, and gellan gum?%, was investigated with acellular approaches with promising
results. For example, Chen et al. applied a combination of alginate and hyaluronic acid
scaffold to osteochondral defects in the patella groove of rat knees.'?” The results showed

simultaneous regeneration of cartilage and subchondral bone in the 8-week study period.



Hyaluronic acid is a disaccharide with glucuronic acid and N-acetylglucosamine
repeating units linked via alternating $-1,4 and -1,3 glycosidic bonds. In a human case
report, umbilical cord blood-derived MSCs were encapsulated in hyaluronic acid hydrogel
and applied to a large osteochondral defect (5 mm diameter and 5 mm deep) of the knee
with a follow-up period of 5 years.'?® The underlying bone was only partially restored as
bony tissue, while the superficial portion near the articular cartilage was restored as
cartilaginous tissue. It was concluded that the composite hydrogel is a viable therapeutic
option that can be performed through a one-stage arthrotomy. Recently, Hwang et al.
injected an acellular hyaluronic acid weekly for 3 weeks on osteochondral lesions of the
talus after a failed microfracture surgery.'® On average, symptoms, pain, and quality of
life were improved between the pre-injection and the last follow-up visit of patients.
However, the treatment failed in one-third of the patients. The authors concluded that
hyaluronic acid injections may possibly be a safe and effective alternative as a secondary
operative treatment after a failed primary operative intervention.

Another well-known polysaccharide used in osteochondral regeneration is chitosan.
Chitosan is a linear positively charged polysaccharide with repeating units of 3-(1—4)-
linked D-glucosamine and N-acetyl-D-glucosamine. Chitosan is known to mimic the
structure of the glycosaminoglycan.'3? Chitosan-based materials have been extensively
investigated in osteochondral tissue engineering.'3! Rajagopal et al. encapsulated rabbit
bone MSCs in a multi-layered aligned chitosan-gelatin scaffold that resembles the ECM
and the native collagen architecture.’3? The scaffold was applied to osteochondral defects
(4 mm diameter and 3 mm deep) in the patella groove of rabbit knees. The scaffold
supported the differentiation of MSCs to chondrocytes and the regenerated cartilage and
subchondral bone were greater in volume in the aligned group compared to the randomly
aligned group. In another study, chitosan in combination with icariin-conditioned serum
was intraarticularly injected into osteochondral defects in rabbit knees.'33 More cartilage
and subchondral bone regeneration were observed in the chitosan-serum group than
serum-only group.

Long-term studies are needed to demonstrate the efficacy of polysaccharides on long-
lasting repair of osteochondral defects. Additionally, identifying the metabolic pathway

underlying the activity of regeneration is critical for future clinical translation. The



dependency of healing on the size of the defect also remains ambiguous. Table 2
summarizes the in vivo studies of polysaccharide-based materials for osteochondral

regeneration.

4. Gellan gum in osteochondral tissue engineering

Gellan gum is a naturally occurring polysaccharide with repeating units of D-glucose,
D-glucuronic acid, and L-rhamnose [-(—3)-B-D-Glcp-(1,4)-B-D-GlcpA-(1,4)--D-Glc-
(1,4)-a-L- Rha-(1—)-], with two acyl substituents, L-glyceryl and acetyl, that are attached
to the C-2 and C-6 positions of the O-3- linked 1,3-D-glucose residue'? (Figure 2).
Deacylation in alkaline solution yields low acyl gellan gum.'43.144 Since both substituents
are bulky, the gellan polymer chains are unable to form close double-helix formation
between them. Therefore, the native form of gellan gels are weak, soft, and elastic.'#®
Low acyl gellan gum, on the other hand, is firm, non-elastic, and brittle.’#® At high
temperatures, low acyl gellan gum is present as a random coil conformation, which
converts to an ordered, cross-linked double helix conformation upon cooling.’” As a
result, controlled drug release can be achieved by varying the degree of cross-
linking.148.149 Due to its biocompatibility and biodegradability, gellan gum has been
investigated in biomedical applications®%-%2, food processing’®?, pharmaceutics'®*, drug
delivery'95.1%6 and tissue engineering'57-162,

For bone regeneration purposes, gellan gum has been blended with various materials
including bioglass, polydopamine, gold, hyaluronic acid, methacrylate, demineralized
bone powder, silk fibroin, collagen, and hydroxyapatite, as well as physical modification
by enzymatic or thermal hydrolysis as summarized in Table 3. Jung et al.'3 prepared a
gellan gum/tuna skin gelatin film to guide bone regeneration using p-tricalcium phosphate
as bone graft in an artificial bone defect on parietal bones of rabbits. The film had a
positive effect on the formation of new bone, and degradation of the film was observed.
Kim et al.’® used bone defects in a rat model to study the effects of gellan gum-
demineralized bone powder scaffold on bone regeneration. It was found that the scaffold
was biocompatible, and it facilitated the cell adhesion and proliferation of BMSCs and
regeneration of bone tissue. Similarly, investigations on cartilage regeneration have used

gellan gum successfully to support chondrogenesis with or without cells.6%16¢ Acellular



approaches have been performed using a rabbit model with articular cartilage defects
that were treated with intra-articular injections of three different polysaccharides, gellan
gum, alginate, and agarose.'®® The results were compared with hyaluronic acid, which is
frequently used in cartilage tissue engineering. Gellan gum and agarose groups were
covered with regenerated tissues comparably to the hyaluronic acid group. In vitro, the
expressions of NF-jB and Cox-2 decreased and those of |jBa, Sox-9, aggrecan, and type
Il collagen increased in gellan gum, alginate, and hyaluronic acid. It was concluded that
gellan gum improves cartilage regeneration by suppressing inflammatory mediators and
inducing cartilage formation and autophagy-related gene expression, indicating its
potential for cartilage tissue engineering. Pereira et al.’®” developed an acellular bi-
layered scaffold of gellan gum/gellan gum-hydroxyapatite to produce cartilage-like and
bone-like layers, respectively. After soaking in a simulated body fluid solution up to 14
days, it was found that the hydroxyapatite layer formation is limited to the bone-like layer
of the bi-layered scaffold. This result indicates that gellan gum-based scaffolds can
provide the mineral disparity between layers and may be used as a base biomaterial with
the ability to support the regeneration of bone and cartilage simultaneously. Vuornos et
al. co-cultured human adipose stem cells and human umbilical vein endothelial cells in
gellan gum-collagen scaffold using two different media, endothelial growth medium-2
(EGM-2) and bioactive glass extract-based endothelial and osteogenic medium (BaG EM-
OM)."88 In both media, osteogenic and endothelial marker gene expression were
supported as well as the formation of reticulated cellular structures. Hydroxyapatite
mineralization was detected only in BaG EM-OM medium. This result indicates that gellan
gum-based scaffolds support the proliferation and differentiation of multiple cell
populations. Table 3 summarizes studies targeting bone and cartilage regeneration using
gellan gum-based scaffolds.

Based on these promising results in osteochondral applications, gellan gum-based
materials targeting enthesis may overcome the limitations of synthetic polymers and the
problems of their toxic degradation products. They would make it possible to avoid the
use of growth factors and thereby prevent abnormal and ectopic tissue formation.
Moreover, polysaccharides may help the mineralization be restricted to certain layers of

the composite while the other layers can stay unmineralized, which is critical for the



regeneration of enthesis. Supporting proliferation of multiple cell populations is also
advantageous in creating cartilaginous and osseous tissues simultaneously.

In our preliminary investigations, low acyl gellan gum (KELCOGEL® F, CP Kelco,
USA) gels with different molecular weights were prepared at 1% (w/v) and placed in a 24-
well plate. LA-GAGR refers to low acyl gellan gum (MW= 200-300 kDa) and mini-GAGR
(MW,= 25 kDa) is an enzymatic hydrolysis product of LA-GAGR.'® Pre-osteoblast cells
(MC3T3-E1, ATCC, USA) were seeded on top of the gels and a complete a-MEM medium
containing 10% fetal bovine serum, ascorbic acid (50 pg/mL), and 1% penicillin
streptomycin was used for cell culture. The control consisted of wells without gels. After
3 days of culture, extracellular collagen type | concentration was measured using an
Enzyme Linked Immunosorbent Assay (ELISA) kit (MyBioSource, USA) according to the
manufacturer’s instructions. Figure 3 shows that both LA-GAGR and mini-GAGR
supported the synthesis of extracellular collagen | which supports previous findings that
gellan gum enhances extracellular matrix production by the cells. After 7 days of culture,
total RNA was extracted using miRNeasy Mini extraction kit (Qiagen, USA) according to
the manufacturer’s instructions. RT? First Strand kit (Qiagen, USA) was used for cDNA
synthesis and genomic DNA elimination. The relative expression levels of osteogenic
marker genes were investigated by real-time quantitative reverse transcription
polymerase chain reaction (QRT-PCR) using the human osteogenesis RT? Profiler™ PCR
array (Qiagen, USA). Figure 4 shows the relative expression levels of osteogenic marker
genes. It is noted TGFB3 and SP7 show a 3 + 0.1-fold and 12 £+ 0.1-fold increase,
respectively, for the LA-GAGR group. Also, the TGFB3 and SP7 gene markers show a
1.3 £ 0.1-fold and 20 + 0.1-fold increase, respectively, for the mini-GAGR group. These
results suggest a positive initiation of bone osteogenesis since it has been shown that
SP7 acts as a master regulator of bone formation during both embryonic development
and the homeostatic maintenance of bone in adults.'®' Transforming growth factor-beta
(TGFB), also, is well known for its many functions in skeletogenesis and osteogenesis,
including skeletal morphogenesis, growth plate development, and osteoblast
differentiation.’®? In addition, TGFBs play an important role in bone remodelling by

regulating osteoblast and osteoclast differentiation.



Several studies have shown that two main pathways cause the induction of the SP7
transforming growth factor, one of them is through DLX5 gene regulation.'®® Figure 4
shows an upregulation of DLX5 of almost 3.5 + 0.1-fold and a 1.5 + 0.1-fold increase for
the LA-GAGR and mini-GAGR group, respectively. Once the expression of SP7 is
triggered, a slew of mature osteoblast genes is induced such as collagen type-l and
osteonectin which are necessary for productive osteoblasts during bone ossification.®’
The osteogenic markers, CDH11 and SOX9 were upregulated for the both groups. The
transcription factor SOX9, which plays a central role in chondrocyte differentiation, and
the CDH11 are key transcription factors for BMSCs. Several studies have shown that
SOX9 enhanced the chondrogenesis of BMSCs, playing an important role during
inhibition of chondrocyte proliferation thus enhancing osteogenesis, and preventing
chondrocyte differentiation.’® CDH11 is a pro-osteogenic and anti-adipogenic marker
that promotes the osteogenic differentiation of BMSCs. Granulocyte colony-stimulating
factor (G-CSF) has many functions including induction of proliferation, viability, and
differentiation of osteoblasts, as well as mobilization of bone marrow cells.’®® As shown
in Figure 4, CSF2 and CSF3 were upregulated showing an increase of almost 10 + 0.1-
fold and 19 £ 0.1-fold for the LA-GAGR group, respectively. The expression of both CSF2
and CSF3 was also upregulated for the mini-GAGR group with a 6 £ 0.1-fold and 8 £ 0.1-
fold increase, respectively.

Fibroblast growth factor (FGF) and insulin growth factors (IGF) are molecules
associated with bone regeneration. In our study, FGFR1 and IGF1R markers were
upregulated for both experimental groups. The increase of FGFR1 of almost 10 + 0.1-fold
and 13 £ 0.1-fold and the increase of IGF1R of almost 3 + 0.1-fold and 1.5 + 0.1-fold for
the LA-GAGR and mini-GAGR group respectively demonstrated the effective conditions
the study had on the cells for the initiation of bone healing and regeneration. Many of
these growth factors and osteogenic markers play important roles in natural bone
formation and regeneration.

Polysaccharides have attracted attention not only as scaffolds but also as bioactive
natural macromolecules. The bioactivity of polysaccharides has been studied in
antioxidant activity’®, neuroprotective activity’®!, immunoregulatory and anti-

inflammatory activities.'®6-19 The bioactivity of polysaccharides has been shown to



depend on the structure of the polysaccharides including the monosaccharide repeating
unit, molecular weight, functional groups, and the types of linkages.?® Several research
results demonstrated that rhamnose-containing polysaccharides like gellan gum induce
apoptosis in osteosarcoma cells and exhibit anti-osteoporosis activity by inhibiting the
formation of osteoclasts, decrease osteoclast differentiation, and increase osteoblast
activity.820" The bioactivity and cell-signaling pathways of rhamnose-containing
polysaccharides on bone and cartilage formation remains to be investigated. It is
necessary to better understand the underlying mechanisms of rhamnose-containing

polysaccharides in enhancing bone and cartilage formation.

5. Conclusion and future directions

Efforts to regenerate tendon-bone interface tissue are ongoing, with limited success.
The current approaches to regeneration of enthesis still lack the recovery of comparable
tissue as the native enthesis in terms of biological and biomechanical properties. The
gradual changes in mineral content, collagen alignment, and ECM inspired the use of
composite scaffolds to mimic these unique structural and compositional variations in the
enthesis matrix. Such composites should be fabricated from one base biomaterial which
supports the regeneration of bone and cartilage simultaneously.

Rhamnose-containing polysaccharides such as gellan gum fulfil several main roles in
osteochondral tissue engineering, especially after modification and blending with other
materials. Fabricating biomimetic composite scaffolds for enthesis regeneration with
gellan gum may possibly provide the needed structure with longitudinal disparity in
mineral content and collagen alignment to support multiple cell populations and specific
tissue formation. Further research is needed to better understand the underlying
mechanisms by which gellan gum regulates cellular response and differentiation, and
tissue regeneration. Currently, in vivo studies on gellan gum are scarce for tissue
engineering and are limited to small animal models. The use of appropriate animal and
injury models need to be considered to ensure that the evaluations are justified in
physiologically relevant environments to humans. Currently mimicking the mineral
gradient of enthesis for small animals is technologically challenging to realize in fabricated

scaffolds. Big animal models can potentially overcome this limitation although the costs



for investigation may be an obstacle. Establishing a standard animal injury model for
enthesis regeneration is necessary for fair evaluations of various scaffolds for potential
clinical translation. The review is summarized as follows:
e Enthesis regeneration efforts are ongoing with limited success.
e Fabricating biomimetic scaffolds using polysaccharide-based materials offer
promising results.
e The underlying mechanisms of bioactivity of rhamnose-containing polysaccharides
for osteochondral tissue regeneration should be further investigated.
e Elucidation of a standard animal and injury model for enthesis regeneration is yet

to be attained.
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List of abbreviations

PGA: polyglycolic acid

PLCL.: poly-L-lactide-co-e-caprolactone
PLGA: poly-(lactic-co-glycolic acid)

PCL: polycaprolactone

nHA-PLLA: nanohydroxyapatite-poly-L-lactic acid
F127: Pluronic F127

BMP-2: bone morphogenetic protein-2
PDGEF: platelet-derived growth factor
CTGF: connective tissue growth factor
TGF, B3: transforming growth factor beta 3
ARS: aligned-random nanofibrous scaffold
BMD: bone mineral density

BV/TV: bone volume/total volume

GAG: glycosaminoglycan

BMSCs: bone marrow stromal cells

BER: berberine

B-TCP: beta-tricalcium phosphate

HPMC: hydroxypropylmethylcellulose

ICS: icariin-conditioned serum

EGM-2: endothelial growth medium-2
BaG: bioactive glass

EM-OM: endothelial and osteogenic medium
GG: gellan gum

MSCs: mesenchymal stem cells

ALP: alkaline phosphatase

PDA: polydopamine

ASCs: adipose-derived stem cells

MA: methacrylated

CHX: chlorhexidine

GBR: guided bone regeneration



SBF: simulated body fluid

PL: pullulan

Ty: tyramine

LGnr: lignocellulose nanofibrils
FS: forsterite

MEL: melatonin

PEGDA: polyethylene glycol diacrylate.
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Table 1. In vivo studies utilizing composite scaffolds for enthesis (tendon-bone)

regeneration.

Scaffold
materials
PGA and PLCL

nanofibers

PLGA nanofibers
with fibrin layers
PLLA and nHA-
PLLA layers
Asymmetrically
porous PCL/F127
membranes
Aligned-random
dual layers of
PLLA/PCL/silk
fibroin

PLGA
microspheres
embedded in PCL

microstrands

Induction
factor

BMP-2

PDGF +
BMP-2

Autologous
Achilles

tendon

CTGF + TGF
B3 + BMP-2

Cell source

Rat ADSCs

Endogenous

stem cells

Animal model

- Sheep
(infraspinatus)
Rat
(supraspinatus)
Rabbit
(supraspinatus)

Rat (patellar)

Rabbit (patellar)

Rat

(supraspinatus)

Outcome
Fibrocartilage
Fibrovascular scar
Fibrocartilage
Fibrocartilage,
mineralized

fibrocartilage, bone

Fibrocartilage, bone

Fibrocartilage, bone

Note: PGA: polyglycolic acid; PLCL: poly-L-lactide-co-¢-caprolactone; PLGA: poly-(lactic-co-glycolic acid); PCL:

polycaprolactone; nHA-PLLA: nanohydroxyapatite-poly-L-lactic acid; F127: Pluronic F127; PDGF: Platelet-derived
growth factor; BMP-2: bone morphogenetic protein-2; CTGF: connective tissue growth factor; TGF p3: transforming

growth factor beta 3.

Reference

94

93

114

96

111

95



Table 2. In vivo studies utilizing polysaccharide-based materials for osteochondral

regeneration.

Scaffold materials Animal model

Rabbit
(patellar)

Ultra-purified alginate gel

Hyaluronic acid-alginate + Rat (patellar)

BER
Hyaluronic acid-alginate layer Sheep
and HA-alginate layer (patellar)
Ultra-purified alginate gel Canine
(patellar)
Silk fibroin-chitosan layer and Rabbit
silk fibroin-chitosan-nHA layer (patellar)

B-TCP layer, high- Goat (femoral

concentration chitosan-gelatin condyle)
layer, and low-concentration
chitosan-gelatin layer
Calcium phosphate granules Sheep
layer and chitosan-HPMC (femoral
layer condyle)
Tri-layered chitosan-gelatin Rabbit
scaffold (patellar)
Injectable ICS combined with Rabbit
chitosan (femoral
condyle)
Magnesium-encapsulated Rabbit (rotator
chitosan/ Pluronic F127 cuff)

composite

Impact
The purification of alginate significantly
enhanced the cellular proliferation and

chondrogenic differentiation of BMSCs and
improved the reparative tissue of osteochondral
defects.

The scaffold promoted the regeneration of
cartilage and bone tissues.

Incomplete bone formation due to slow
resorption rate of the scaffold. Cartilage repair
and integration with the scaffold was observed.

Hyaline-like cartilage and fibrocartilage tissue
formation were observed. Compared to
untreated defects, gel implantation significantly
enhanced osteochondral repair.

Cartilage and subchondral bone tissues formed
with complete filling of the lesion site.

The tri-layered scaffold prevented cartilage
infiltration into bone with better cartilage repair
than bi-layered scaffold.

Hyaline cartilage and subchondral bone
regeneration were observed but achieved
incomplete restoration of articular cartilage.

The scaffold supported glycosaminoglycan
(GAG) deposition and facilitated the articular
cartilage repair.

Cartilage and subchondral bone formation were
enhanced by the addition of chitosan to ICS.

The composite enhanced BMSCs adhesion
and chondrogenic differentiation in vitro. The
composite  significantly  increased  the
fibrocartilage interface regeneration in vivo.

Ref

123

127

124

134

135

136

137

132

133

138



Hyaluronic acid scaffold in
combination with an
autologous bone marrow
aspirate

Hyaluronic acid hydrogel

Hyaluronic acid hydrogel

Injectable hyaluronic acid

Hyaluronic acid scaffold

Human
(osteochondral
lesions of the
talus)

Human (knee
joint)

Human
(osteochondral
lesions of the
talus)

Human
(osteochondral
lesions of the
talus)

Rabbit
(femoral
condyles)

Effective pain relief and good clinical results. A
hyaline-like chondral tissue and integration of
the regenerated tissue was complete in 82% of
the cases. Well organized regenerated tissue
but relatively non-homogeneous and minimally
edematous.

Effective pain relief and function of the knee
joint. A hyaline-like cartilage filled the defect
and was integrated with the

surrounding normal cartilage.

No postoperative complications including nerve
injury, infection, and delayed wound healing.
The overall patient satisfaction rate was 90%.

Symptom, pain, activities of daily living, and
quality of life were improved over a mean
follow-up period of 2 years. No adverse effects
related to the injections were reported.

Stable and organized cartilage formation. The
surface was smooth and integrated with the
surrounding cartilage.

Note: BER: berberine; nHA: nano-hydroxyapatite; B-TCP: beta-tricalcium phosphate; HPMC:

Hydroxypropyl methylcellulose; ICS: icariin-conditioned serum.

139

128

140

129

141



Table 3. In vitro and in vivo studies utilizing gellan gum for bone and cartilage tissue

engineering

Materials/modification

Injectable GG-Bioglass

GG-ALP + PDA

GG-Coated gold
nanorods

GG-Bioglass

GG-Hyaluronic acid-
CaCl
Injectable GG-MA

GG-Demineralized
bone powder

GG-Silk fibroin-CaCl2

GG-Collagen

GG-nHA-CHX

TCP bone graft with
GG-Tuna skin gelatin
film for GBR

Cell source

Rat MSCs

Osteoblastic
cell line
MC3T3-E1

Human
osteoblast-
like cell line

Sa0S-2

Human

ASCs

Human

primary
osteoblasts

Human
ASCs

Human
ASCs
Human
ASCs

BMSCs

Animal
model

Rat calvarial
bone

Rabbit
calvarial bone

Target tissue

Bone

Bone

Bone

Bone

Osteochondral

Bone

Bone

Bone

Bone

Bone

Bone

Impact

Addition of bioglass
increased mechanical
strength and mineralization
of the scaffold. Cell
behavior and antibacterial
activity were influenced by
the type of bioglass.
Addition of ALP induced
apatite-like mineral
formation and increased
scaffold stiffness. Cell
attachment and proliferation
increased by incorporating
PDA.

Increased mineralization

Addition of bioglass
improved microstructure
and the mechanical
properties. Cells adhered
and spread.
Promoted cell survival and
osteoblastic progression
and produced mineralized
nodules
Cells were able to
osteodifferentiated.
Bone tissue formed

Increased mineralization

Cells were able to
osteodifferentiate.
Microvessel-like network
formation was observed.
Addition of nHA improved
mechanical, biodegradable,
and osteogenic properties.
Incorporating CHX inhibited
E. faecalis.

The film protected the bone
defects from soft tissue
invasion, and bone
regeneration was observed.
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GG molecular weight
reduction

Oxidized GG-
Carboxymethyl
chitosan

Bilayered GG/GG-HAp
soaked in SBF

GG-Gelatine
methacrylamide

GG-Manuka honey
composite

GG-Glycol chitosan

GG/PL hydrogel

Betamethasone-loaded
Ty-GG hydrogels

Injectable GG/LGne/FS-
MEL

Dopamine-modified GG

GG-encapsulated cells

GG-MA

Injectable GG

GG-PEGDA

Injectable
GG/dexamethasone-
cyclodextrin hydrogel

Porcine
articular
cartilage
chondrocytes
Rabbit
articular
cartilage
chondrocytes

Equine joints
chondrocytes

hMSCs

Rabbit leg
cartilage
chondrocytes
Rabbit
BMSCs
Rabbit
chondrogenic
primary cells
Human
articular
chondrocytes
Human nasal
cartilage

Rabbit ASCs

Autologous
rabbit ASCs

BMSCs

Rabbit
chondrocytes

Rabbit
articular
cartilage

defects

Rabbit with
induced
chondral
lesions
Rabbit medial
parapatellar
arthrotomy

Mouse
subcutaneous

Rabbit
cartilage
defect

Cartilage

Cartilage

Osteochondral

Cartilage

Cartilage

Cartilage

Cartilage

Cartilage

Cartilage

Cartilage

Cartilage

Cartilage

Cartilage

Cartilage

Cartilage

Controlled gelation
temperature, cell
proliferation and specific
matrix formation
Enhanced the viability and
proliferation of cells.

Distinct cartilage-like and
bone-like layers

Addition of GG increased
stiffness of constructed and
supported matrix production

by cells.

Suitable mechanical
properties, antibacterial
activity, high synthesis of
collagen Il, GAGs and
proteoglycans
GAG synthesis and mRNA
expression of cartilage-
specific genes.
Chondrogenesis promotion
of BMSC

Healthy proliferation and
survival of chondrogenic
primary cells
Cell adhesion, proliferation
and gene expression of
cartilage-specific genes
Up-regulation of cartilage-
specific genes

Hyaline-like cartilage tissue
formation

Regeneration of critical size
lesions with good
integration with native
cartilage
Suppressed inflammatory
mediators, induced cartilage
formation and autophagy-
related gene expression

Chondrogenic differentiation
of BMSCs

Enhanced expression levels
of cartilage-related genes,
and improved anti-
inflammatory response

Note: GG: gellan gum; MSCs: mesenchymal stem cells; ALP: alkaline phosphatase; PDA: polydopamine; ASCs:
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adipose-derived stem cells; MA: methacrylated; nHA: nano-hydroxyapatite; CHX: chlorhexidine; BMSCs: bone
marrow mesenchymal stem cells; GBR: guided bone regeneration; SBF: simulated body fluid; PL: pullulan; Ty:

tyramine; LGne: lignocellulose nanofibrils; FS: forsterite; MEL: melatonin; PEGDA: polyethylene glycol diacrylate.



