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ABSTRACT: We utilized high temporal resolution, near-surface observations of sustained winds

and gusts from two networks, the primarily airport-based Automated Surface Observing System

(ASOS) and the New York State Mesonet (NYSM), to evaluate forecasts from the operational

High-Resolution Rapid Refresh (HRRR) model, versions 3 and 4. Consistent with past studies,

we showed the model has a high degree of skill in reproducing the diurnal variation of network-

averaged wind speed of ASOS stations, but also revealed several areas where improvements could

be made. Forecasts were found to be underdispersive, deficient in both temporal and spatial

variability, with significant errors occurring during local nighttime hours in all regions and in

forested environments for all hours of the day. This explained why the model overpredicted the

network-averaged wind in the NYSM because much of that network’s stations are in forested

areas. A simple gust parameterization was shown not only to have skill in predicting gusts in both

networks but also to mitigate systemic biases found in the sustained wind forecasts.
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SIGNIFICANCE STATEMENT: Many users depend on forecasts from operational models and21

need to know their strengths, weaknesses, and limitations. We examined generally high-quality22

near-surface observations of sustained winds and gusts from the nationwide Automated Surface23

Observing System (ASOS) and the New York State Mesonet (NYSM) and used them to evaluate24

forecasts from the previous (Version 3) and current (Version 4) operational High-Resolution Rapid25

Refresh (HRRR) model for a selected month. Evidence indicated that the wind forecasts are26

excellent yet imperfect and areas for further improvement remain. In particular, we showed there27

is a high degree of skill in representing the diurnal variation of sustained wind at ASOS stations28

but insufficient spatial and temporal forecast variability and overprediction at night everywhere, in29

forested areas at all times of day, and at NYSM sites in particular, which are more likely to be sited30

in the forest. Gusts are subgrid even at the fine grid spacing of the HRRR (3 km) and thus must be31

parameterized. Our simple gust algorithm corrected for some of these systemic biases, resulting32

in very good predictions of the maximum hourly gust.33

1. Introduction34

Accurate wind forecasts are important in a number of areas, including and not limited to wind35

energy (Piccardo and Solari 1998; Petersen et al. 1998), pollution transport (Arya 1999), and an-36

ticipation and mitigation of damage resulting from strong winds (Holmes et al. 2014). An example37

of the latter is the “Santa Ana” weather event (cf. Rolinski et al. 2019), a cool-season pattern38

of offshore flow in Southern California that is known to dramatically increase the risk of large39

wildfires (Westerling et al. 2004; Rolinski et al. 2016). Numerical modeling of Santa Ana events40

using the Weather Research and Forecasting (WRF) model’s Advanced Research WRF (ARW)41

core (Skamarock et al. 2019) for the purposes of model verification and wind reconstruction (e.g.,42

Cao and Fovell 2016; Fovell and Cao 2017; Cao and Fovell 2018; Fovell and Gallagher 2018) has43

revealed strengths and weaknesses of both the forecasts and the observations of the sustained wind,44

which in practice implies averaging over periods of time such as 2 or 10 min. At mesoscale grid45

spacings, short-period (e.g., 3-s) gusts are a subgrid-scale phenomenon, necessitating parameter-46

ization in all operational numerical weather prediction models at this writing. There have been47

many such parameterizations proposed (cf. Sheridan 2011), some being rather complex (Panofsky48
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et al. 1977; Nakamura et al. 1996; Brasseur 2001; Gray 2003; Stucki et al. 2016; Gutiérrez and49

Fovell 2018; Benjamin et al. 2021, to name a few).50

Many users rely on wind predictions from operational models such as NOAA’s operational51

High-Resolution Rapid Refresh (HRRR) (cf. Benjamin et al. 2016; Dowell and co authors 2022).52

HRRR is based on WRF-ARW and has 3 km horizontal grid spacing covering the conterminous53

United States (CONUS). A number of studies have focused on verification of HRRR forecast54

fields, including wind speed (cf. Olson et al. 2019b; Pichugina et al. 2019; Wilczak et al. 2019). In55

particular, Fovell and Gallagher (2020), hereafter FG20, presented a forecast verification of HRRR56

version 3’s (HRRRV3 or V3) 00 and 12 UTC cycles, which were selected for their relatively long57

(36-h) forecast periods. (Although new HRRR cycles were launched hourly, only the 00 and 1258

UTC model runs ran longer than 18 h in V3.) Also, while other select months were also examined,59

the primary focus was on April 2019 as a representative time period.60

In addition to the boundary layer analysis that employed high-resolution radiosonde data, an61

evaluation of 2-m temperature and 10-m wind speed forecasts for ≈ 800 Automated Surface62

Observing System (ASOS) sites was conducted. These installations are typically, but not always,63

found at airports. FG20 demonstrated that the HRRRV3 produced skillful forecasts when averaged64

over the ASOS network although temperature biases were robustly related to station elevation65

and wind biases were negatively correlated with observed speed. The latter means that “sites66

characterized by slower observed winds were systematically more likely to be overpredicted while67

windier sites were underestimated” (FG20), consistent with the results of prior studies focusing68

specifically on Santa Ana events (cf. Cao and Fovell 2016; Fovell and Cao 2017; Cao and Fovell69

2018; Fovell and Gallagher 2018).70

In this work, FG20’s evaluation of forecasts for ASOS stations was reconsidered from scratch71

and considerably extended and improved. As in FG20, we started with April 2019, but the specific72

emphasis is on hourly mean winds and maximum gusts with the discussion confined to the 0073

UTC cycle in order to streamline the presentation. In this effort, data from the New York State74

Mesonet (NYSM; Brotzge et al. 2020) were also analyzed and gust forecasts made using a simple75

parameterization suggested by Cao and Fovell (2018, hereafter CF18) were considered. As version76

4 of the HRRR (HRRRV4 or V4) became operational in December 2020, an analysis of April 202177

is also provided to highlight improvements and identify remaining challenges.78
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This work diagnoses systemic errors and weaknesses of a very skillful operational model for the79

purposes of highlighting areas for potential future improvements. Another goal was to identify and80

understand issues with available observational data. This paper is organized as follows. Section 281

describes the data and methods used in this study and Sections 3 and 4 present our analyses of April82

2019 (HRRRV3) and April 2021 (HRRRV4), respectively, the latter emphasizing comparisons with83

the Section 3 findings. Finally, Section 5 presents some conclusions and recommendations.84

2. Data and methods85

Anemometers of different types, including the sonic, cup and vane, and propeller varieties, are86

used to sample the wind at some period we will term the sampling interval. These samples are then87

averaged over a certain period, the averaging interval. The World Meteorological Organization88

(WMO) standard (WMO 2018) specifies averaging intervals of 3-s and 10-min for the gust and89

sustained (mean) wind, respectively. In a given report consisting of sustained wind (hereafter90

usually termed simply as “wind”) and gust readings, the gust is conventionally the highest 3-s91

value within the averaging interval used for the wind1. The standard also specifies an anemometer92

mounting height at 10 m above ground level (AGL) with adequate clearance around the instrument.93

Ideally, the surrounding environment would consist of open flat terrain with obstacles no taller94

than 4 m and more than thirty times their height (2◦ above the horizon) away from the anemometer95

(WMO wind class 1). Adherence to these guidelines, however, is not all that common in practice.96

NOAA makes HRRR model outputs available hourly and on the hour, providing forecasts of97

10-m AGL wind speed representing an instant of time2. However, because the winds at any grid98

point only vary over time periods that are much longer than the model time step (20 s), these are99

interpreted as sustained winds. As in FG20, 1-min ASOS observations were obtained from the100

National Centers for Environmental Information (NCEI) archive, which are available for more than101

850 sites in the CONUS. The 1-min observations provide measurements of sustained winds and102

gusts made from sonic anemometers nominally at 10 m AGL. Although the internal processing103

is complicated3, the sustained wind readings we used effectively represent an average of samples104

1In the United States, a significant exception to this is the Remote Automated Weather Station (RAWS) network, for which hourly reports consist
of the past hour’s highest speed sample (peak wind) along with the mean wind of the last 10 min prior to the report (National Wildfire Coordinating
Group 2019). Thus, there is no guarantee the peak came from the samples used to compute the sustained wind.

2The lowest horizontal wind model level is close to 10 m AGL and the 10-m wind speed value is obtained via vertical interpolation. See
Benjamin et al. (2021).

3See documentation at https://www.weather.gov/asos/
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taken over the 2-min period prior to the report, with the highest 3-s average during the 1-min105

interval provided as the gust. The consequences of the relatively coarse (1 kt or 0.5144 m s−1)106

precision of ASOS wind and gust reports will be noted in the analyses to come.107

The FG20 analysis used top-of-the-hour ASOS reports and model fields were interpolated to108

station locations in the usual fashion. However, owing to the model’s horizontal resolution, which109

does not resolve small turbulent eddies, there is very likely less temporal and spatial variability110

in the forecasts than in the observations. To assess whether this unduly influenced the results,111

we elected to pursue an alternative strategy in this new effort, using the observed hourly mean112

wind speed and hourly maximum gust. Sustained wind observations from each site were averaged113

through a 60-min window centered at the top of each hour and the largest gust report within that114

window was identified. For each station, only hours without missing or invalid data in a given hour115

were retained. Thus, we used hourly-averaged winds instead of 2-min averages in the sustained116

wind verifications. Owing to Harper et al. (2010), who argued that different averaging intervals117

represent “equivalent measures of the true mean wind but with differing variance”, we expected118

that the results for the sustained wind would be nearly unchanged, and this proved to be true.119

In contrast, the altered handling of the gusts did make a difference. In prior work using 1-min120

ASOS observations (including Cao and Fovell 2016, 2018; Fovell and Gallagher 2018), the gust121

in each station record represented the largest speed sample during the 1-min interval at the top of122

each hour. Because this covers only 1.7% of the hour, we believe the hourly maximum gust is a123

better measure of the wind threat. This caused a reasonable and anticipated change in the gust124

factor (GF), being the gust divided by the sustained wind. Averaged over the CONUS, the 1-min125

ASOS GF was about 1.29 and this increased to 1.86 with the new strategy. Further discussion may126

be found in the Appendix.127

Although most ASOS stations are at airports there are some significant exceptions, such as the128

consistently windiest site (KDGP - Guadalupe Pass, TX), a non-airport installation sited near a129

steep cliff. There are some very low wind speed stations, including non-airport sites such as130

KMEH (Meacham, OR), KP69 (Lowell, ID), and KMHS (Mt. Shasta, CA), and small airports131

possessing significant along-runway obstructions, examples being KVPC (Carterville, GA) and132

K1JO (Bonifay, FL). A fraction of installations reportedly have anemometers mounted below 10133
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m AGL (e.g., KMTP - Montauk, NY). None of these problem stations were excluded from our134

analyses because they were not found to alter our results or conclusions.135

The New York State Mesonet (Brotzge et al. 2020) contains 126 surface stations distributed across136

the state with an average spacing of 27 km. Each station possess sonic and propeller anemometers137

mounted (apart from five rooftop installations in New York City) at 10 m AGL. Retention of these138

rooftop sites did not change our results or conclusions. The precision of the sonic and propeller139

anemometer readings are 0.1 and 0.17 m s−1, respectively (G. Lufft Mess und Regeltechnik GmbH140

2021; R.M. Young Company 2000). Quality controlled, three-second observations from both141

sensors were obtained directly from the Mesonet. This would seem to represent an opportunity142

to evaluate the influence of hardware on the wind measurements but there are some unfortunate143

complications. The NYSM propeller instrument provided a 3-s average wind every 3 s, consistent144

with the WMO gust standard and being the same gust averaging interval employed by the ASOS145

sonic anemometers. In contrast, the NYSM’s sonic instrument sampled once per second but only146

every third reading was recorded, meaning its gusts are actually 1-s and not 3-s averages.147

As with the ASOS data, we used the NYSM readings to construct hourly average winds and148

hourly maximum gusts centered on the hour for both instruments, but retained only hours with149

valid data from both instruments. Over April 2019 and 2021, mean propeller winds were about 0.25150

m s−1 (10.7%) lower than for the sonic, and gusts were 0.6 m s−1 (12%) slower, these differences151

being large enough to be relevant to our analyses. The propeller anemometer reported relatively152

more readings close to calm. The network-averaged GFs for April 2019 were 2.21 and 2.24 from153

the propeller and sonic instruments, respectively. The shorter interval used with the sonic gust data154

could be expected to increase the GF slightly (cf. Durst 1960).155

FG20 did not consider gust forecasts. Herein we verified forecasts made using the simple CF18156

parameterization for 10-m gusts, which consisted of multiplying the (sustained) wind forecast by157

the network-averaged GF after correcting for the mean network-averaged bias. We note the HRRR158

model also provides “gust potential” forecasts created using boundary layer depths and winds159

(Benjamin et al. 2021). However, in the hourly HRRR outputs, these forecasts are instantaneous160

values. It would be inappropriate to consider them as predictions of the hourly maximum gust161

and they do not verify well against them anyway (not shown). The HRRR makes subhourly (every162

15-min) forecasts available, but these neither fully sample the hour nor are available beyond forecast163
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hour 18, even in HRRRV4. As a consequence, we did not consider the HRRR’s gust forecasts in164

this study.165

3. HRRRV3 wind and gust evaluation for April 2019166

Figures 1 and 2a show the topography and primary landuse assignments used by the HRRRV3.167

Landuse and terrain information was obtained from the WRF Geogrid file made available on168

NOAA’s HRRR website (http://rapidrefresh.noaa.gov/hrrr/). In WRF-ARW version 3, on which169

HRRRV3 was based, there were two separate landuse databases derived from MODIS (Moderate170

Resolution Imaging Spectroradiometer) satellite information available with HRRRV3 employing171

the lower-resolution version. Surface roughness lengths (𝑧0), constructed as described in He et al.172

(2021), were extracted from model outputs at forecast hour 124.173

The locations of 807 ASOS and 126 NYSM sites are also shown on Fig. 1, with marker size174

reflecting mean wind speed for April 2019. Sites with fewer than 500 observations in the month175

were excluded from the analysis and are not shown. Owing to finite resolution, a few stations were176

misclassified as being over water (including having 𝑧0 < 0.01 m), and these were also removed.177

WRF-ARW and the HRRR’s Rapid Update Cycle (RUC) land surface model utilize fractional178

landuse assignments, and more than half (53%) of the ASOS stations were associated with more179

than one class (Fig. 2b). This can and does influence surface characteristics (including roughness)180

used in a given grid cell. That being said, the class representing the primary assignment had181

an average landuse fraction of 0.84 over the 807 ASOS sites, this ranging from 0.74 among the182

forested lands to 0.88 for the cropland and urban classes.183

a. Analysis by forecast hour and local time192

As in FG20, we first considered ASOS network-averaged winds expressed in terms of forecast193

hour, which extended out to 36 h for the 00 UTC cycle. The present result (Fig. 3a) is nearly194

identical to that shown in FG20 (their Fig. 7a), illustrating that the adoption of hourly mean195

observations made essentially no difference. Again, the model started with a small negative bias196

(defined as forecast minus observation) of about -0.5 m s−1 that became smaller in magnitude with197

time over the first 24 forecast hours. This bias is small compared to the spatial variation of the198

4In WRF-ARW, roughness lengths reported in the 0 h model output has not yet been updated, and thus may not be correct.
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terrain
elevation (m)

HRRRV3 terrain map and April 2019 mean wind speeds

Fig. 1. Topography of the HRRRV3 domain, superposed with locations of 807 ASOS stations (red) and 126

NYSM sites (blue, in inset) retained in the April 2019 analysis. Marker sizes indicate monthly average wind

speed from April 2019, using observations from all times of day.

184

185

186

observations (illustrated by the grey vertical bars) owing to fact we are averaging across a very199

wide area spanning four time zones.200

New to this evaluation are examinations of forecast and observation spatial and temporal variabil-201

ity and an analysis by local time (LT). Figure 4a reveals that the spatial variation of the forecasts202

valid at ASOS sites (henceforth, “ASOS forecasts”), expressed as the standard deviation, was203

smaller than that of the observations at all forecast hours. There is a diurnal cycle in both, again204

smeared by averaging across time zones. This may be in part a consequence of local landscape205

features (valleys, hills, obstacles and/or land surface variations) that cannot be resolved in the206

model. Since the mean forecast and observed winds were quite similar, it can be anticipated that207

the model would fail to represent the frequency of both lower and higher wind speeds. This will be208

examined presently. Additionally, Fig. 4b presents time series of the difference between forecast209
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(a) HRRRV3 primary landuse category

(b) HRRRV3 primary landuse fraction

(c) HRRRV4 primary landuse category

(d) HRRRV4 primary landuse fraction

landuse
category

landuse
fraction

HRRRV3 and HRRRV4 landuse maps

Fig. 2. Primary landuse assignments used in the (a) HRRRV3, and (c) HRRRV4, color coded by landuse

category, showing ocean and lakes (blue), croplands (gold), grasslands (light green), evergreen, deciduous, and

mixed forests and woody savannas (dark green), open shrublands (maroon), and urban (bright red) and barren

(white) lands. In (b) and (d), fraction (0-1) of the primary landuse classification in the HRRRV3 and HRRRV4,

respectively.

187

188

189

190

191

and observation spatial standard deviation and the forecast wind bias. They are similar in that they210

both were negative but became less so with time.211

Expressed in terms of LT, the network-averaged forecasts retained a negative bias through220

the day (Fig. 3b), with the model apparently ramping up the late morning winds too slowly221

and diminishing them too quickly into the evening5. The HRRR model employs the Mel-222

lor–Yamada–Nakanishi–Niino Level 2.5 (MYNN2) planetary boundary and surface layer param-223

eterizations (Nakanishi and Niino 2004) which have been refined in recent years (cf. Olson et al.224

2019a). This finding may hold clues for further parameterization improvements. There was a225

5The analysis time, forecast hour 0, was removed from this analysis owing to the shift in bias behavior seen between the analysis and forecast
hour 1 in Figs. 4a and b.
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(d) HRRRV4 April 2021

(a) HRRRV3 April 2019

HRRR 00Z cycle ASOS network-averaged 10-m wind by forecast hour and local time: April 2019 and 2021

(c) HRRRV4 April 2021

forecast hour

forecast hour

local time

local time

(b) HRRRV3 April 2019

Fig. 3. Time series of ASOS observations (red) and HRRR forecasts (black) of 10-m sustained wind speeds,

averaged spatially across the ASOS network and temporally over the month of (a, b) April 2019, and (c, d) April

2021, presented with respect to HRRR forecast hour (left) and local time (right). On all plots, the vertical grey

bars denote ±1 standard deviation of the averaged observations.

212

213

214

215

diurnal cycle in both forecast and observation spatial variation (Fig. 5a) but again the forecast vari-226

ability was slightly smaller and the diurnal variation in spatial standard deviation difference and227

forecast bias was very small (Fig. 5b). It is emphasized that this is an excellent, if not completely228

perfect, forecast, at least with respect to the network average.229

In pointed contrast, the HRRRV3 overpredicted wind speeds averaged over the 126 NYSM sites230

by more than 1 m s−1 (Fig. 6a). Part of this gap is due to the propeller instrument that, as noted231

above, reports lower sustained wind speeds than its sonic counterpart. However, the forecast bias232

with respect to the sonic observations was 0.77 m s−1, which is still sizable. Another difference233

is that the spatial variability of the forecasts (Fig. 6b) was larger than the observations at every234

forecast hour with the biases and spatial standard deviation differences being relatively constant235

with forecast hour (Fig. 6c). We need to emphasize at this point that the ASOS and NYSM networks236
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(a) HRRRV3 April 2019 spatial standard deviations

HRRR 00Z cycle ASOS network averages by forecast hour: April 2019 and 2021

(b) HRRRV3 April 2019 forecast-observation di�erences

(c) HRRRV4 April 2021 spatial standard deviations

(d) HRRRV4 April 2021 forecast-observation di�erences

Fig. 4. Time series of the spatial standard deviation of ASOS observations (red) and HRRR forecasts (black)

of 10-m wind speed for April 2019 and April 2021 (top row), and of forecast minus observation average wind

speed (bias, red) and spatial standard deviation (black) for these same two months (bottom row). All are shown

with respect to HRRR forecast hour.

216

217

218

219

(a) HRRRV3 April 2019 spatial standard deviations

HRRR 00Z cycle ASOS network averages by local time: April 2019 and 2021

(b) HRRRV3 April 2019 forecast-observation di�erences

(c) HRRRV4 April 2021 spatial standard deviations

(d) HRRRV4 April 2021 forecast-observation di�erences

Fig. 5. Similar to Fig. 4 but expressed in terms of local time.

serve different needs and represent markedly different siting philosophies. Instead of being largely237

colocated with airports, NYSM stations sample the landscapes and geography of the state.238
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(a) NYSM propeller network-averaged wind

HRRRV3 00Z cycle NYSM propeller 10-m network averages by forecast hour: April 2019
(b) NYSM propeller spatial standard deviations

(c) NYSM propeller forecast-observation di�erences

Fig. 6. Similar to Figs. 3a and 5a,b but for the NYSM propeller observations and forecasts.

b. Analysis by station239

The present study also enhanced the station-based analysis of FG20 and the previously cited work240

on Santa Ana winds. We started by comparing forecast and observed sustained winds averaged241

over all available pairs for each station (Fig. 7a). Each dot is an ASOS (black) or NYSM (orange)242

station. Regarding the ASOS sites, while there are a few, non-impactful outliers, the squared linear243

correlation coefficient between the series is moderately high (𝑅2 = 0.56) and largely arrayed along244

the 1:1 correspondence line. NYSM stations are generally found beneath the 1:1 line, consistent245

with the overprediction already demonstrated. The least-squares fit shown was based solely on the246

807 ASOS sites.247

The relationship between forecast wind bias and various variables is examined in Fig. 8. Similar248

to previous studies already cited, the forecasts were not correlated with the bias (Fig. 8a), even249

for NYSM stations (orange circles). However, the observations were significantly and negatively250

correlated with bias (Fig. 8b), indicating overprediction of calmer sites and underprediction at251

windier locations. The NYSM stations do not appear to be exceptional, apart from the fact that252

as a relatively low wind speed network their sites are more likely to be associated with positive253

biases. A comparable analysis using the NYSM’s sonic observations was only subtly different (not254

shown).255

CF18 demonstrated (their Fig. 11d) that the forecast wind bias was also positively correlated265

with the station gust factor, which could be expected because GF incorporates the observed wind.266

They used station GF relative to the network average value to interpret the forecast bias and infer267
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HRRR 00Z cycle ASOS station analysis: April 2019 and 2021
(a) HRRRV3 April 2019 forecast v. observed sustained wind (b) HRRRV3 April 2019 forecast v. observed gust

(c) HRRRV4 April 2021 forecast v. observed sustained wind (d) HRRRV4 April 2021 forecast v. observed gust

KDGP

KDGP

Fig. 7. Forecast vs. observed (a) wind and (b) and gust speeds averaged over all forecast/observation pairs

from April 2019 or April 2021, aggregated by station. Here each dot is an individual station, either ASOS (black)

or NYSM propeller (orange). Gust forecasts used the CF18 strategy (see text). Least squares fits (red lines)

are based only on ASOS sites. Panels (c) and (d) are for April 2021. For April 2019, ASOS station KDGP is

identified. This station had insufficient observations for April 2021.

256

257

258

259

260

site exposure. Locations with significant obstructions would be expected to have relatively lower268

wind speeds than similar although unobstructed sites, but short-period gusts might be anticipated269

to be less impacted, leading to higher GF values. Wind speeds at these stations would be expected270

to be overforecast because the model cannot “see” and account for these obstructions. In contrast,271
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HRRRV3 00Z cycle ASOS/NYSMPROP forecast wind bias station analysis: April 2019

KGDP
KGDP

KGDP KGDP

(a) forecast wind speed v. bias (b) observed wind speed v. bias

(c) inverse gust factor v. bias (d) forecast-observation temporal std. dev. v. bias

Fig. 8. Station averages from April 2019 of (a) forecast wind speed, (b) observed wind speed (c), inverse gust

factor, and (d) temporal standard deviation difference (forecast-observation) presented vs. station average forecast

wind bias for ASOS (black) and NYSM (orange) stations. Least squares fits (red lines) shown only incorporated

ASOS sites. ASOS station KDGP is identified.

261

262

263

264

sites with lower GFs might have local features, such as hills, that might help speed up the wind272

relative to a more average setting. These stations would likely be underpredicted.273

In Fig. 8c, we see a sizable negative correlation between bias and GF, although here we have274

instead elected to employ its reciprocal, the inverse gust factor (iGF), because it improves the275

linear relationship with bias and is bounded between 0 and 1. GF and iGF are functions of the276

observational data only and we see the model tended to overpredict when the sustained wind speeds277

were particularly small relative to the gust and underpredict when they were more comparable.278

CF18 also considered a simple gust parameterization that was inspired by the association between279

bias and GF (and thus iGF). That strategy partially compensated for the biases in the sustained280
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wind forecasts by applying the network-average gust factor to all wind forecasts, yielding less281

biased gust predictions. Underpredicted stations also tended to have smaller GF (larger iGF)282

values than average, so multiplying the too-low speed forecasts by the network average at least283

partially mitigated the model’s negative sustained wind bias. Similarly, overpredicted sites often284

had larger than average GFs (smaller iGFs) so multiplying the positively biased forecasts by the285

smaller network-average GF compensated for some of the overprediction.286

This idea was applied to the April 2019 HRRR forecasts and is shown in Fig. 7b. In this case,287

ASOS wind forecasts were multiplied by 1.86, being roughly the network’s average GF for the288

hourly maximum gust. This GF was applied to forecasts made for the top of the hour because we289

have insufficient information to determine the hourly mean forecast wind speed. With that caveat,290

we note this very simple gust parameterization performed quite well, with an even higher 𝑅2 (0.62)291

than the forecast/observed wind relationship. Again there is a tendency for forecast/observation292

pairs to spread along the 1:1 line.293

The CF18 parameterization implicitly presumed the network-averaged forecast wind bias was294

negligible so application of a single GF value could mitigate errors relative to the average. That295

is not the case for the NYSM. Figure 7b also shows (again in orange) NYSM gust forecasts made296

using that network’s average GF (2.21), after adjustment for the mean forecast wind bias of about297

1 m s−1. Compared to the sustained winds, these gust forecast/observation pairs clustered much298

closer to the 1:1 line.299

Finally, Fig. 8d demonstrates that the difference between forecast and observation temporal300

standard deviation was also well-correlated with forecast bias. Note now the standard deviations301

represent the temporal variability of the forecasts and observations at each station. Stations at302

which the forecasts have more variability than the observations tended to be overpredicted with303

respect to wind speed and underprediction often resulted at stations where the observations had304

more variation. However, as with GF and iGF, this variable is not independent of the observed305

wind. The standard deviation of a variable like wind speed, which has the hard constraint of being306

non-negative, can (and, although not shown, generally does) increase with the variable magnitude.307

Spatial plots (Fig. 9) were examined to look for patterns. While the average forecast wind308

bias, computed over all stations and forecast hours, was only -0.2 m s−1 (cf. Fig. 3a), it remains309

that 507 of the 807 stations (63%) were underpredicted in the mean. Figure 9a shows that the310
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positively biased stations were concentrated in the Southeast, the Appalachians generally, and into311

the Northeast where forested land is more common (Fig. 2a). In Fig. 9b, marker size reflects312

the squared linear correlation between the forecast and observed winds, based on an average of313

1000+ forecast/observation pairs from each site. 𝑅2 values ranged between 0.03 (KP69) and 0.77314

(KARR - Aurora, IL) with a mean of 0.57 and median of 0.59. Correlations were high throughout315

most of the country, even in the Southeast where mean winds were relatively light, and lowest316

in the mountainous West. Like the correlation coefficient, 𝑅2 is not sensitive to means or mean317

differences between series and is most likely low where the predictions are somewhat out of phase318

with the measurements. The concentration of low correlations in the western CONUS may reflect319

the influence of local features on diurnal winds that the model fails to properly represent.320

Figure 9c reveals how the temporal standard deviation difference between the forecasts and ob-321

servations varied spatially. Figure 8d showed that the former tended to be the larger when observed322

wind speeds were low and forecasts were positively biased. The mean and median differences were323

-0.15 and -0.17 m s−1, respectively, with 581 (72%) of the sites having less variability among the324

forecasts than the observations. Note that the large red dots (representing larger forecast than ob-325

servation variability) are few in number and widely scattered. These are stations having significant326

local obstructions near the ASOS installations. For those sites, observation variability was likely327

suppressed by limited anemometer exposure. This measure could be used to identify problem sites328

for potential removal from analyses and data assimilations.329

Taken together, this analysis suggests that the small negative forecast bias seen in the network333

averaged winds (Fig. 3) is more significant than it might appear at first glance. The majority334

of locations have insufficient forecast variability that is strongly correlated with negative biases.335

This suggests the model is not capturing something that is important to determining real winds336

measured in the field. However, this is partly compensated by the inclusion of stations that are not337

at airports and/or have obvious siting issues. Had those sites been removed from the analysis, the338

underprediction would have been more pronounced. The model is still very skillful but steps could339

be taken to address its tendency to understate the mean winds at better exposed locations.340
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(a) HRRRV3 April 2019 forecast wind bias

(c) HRRRV3 April 2019 temporal standard deviation di�erence (forecast-observed)

(b) HRRRV3 April 2019 R2

(d) HRRRV4 April 2021 forecast wind bias

HRRRV3 and HRRRV4 station analysis maps: April 2019 and 2021

Fig. 9. Spatial plots of (a) average forecast wind bias, (b) forecast-observation squared correlation 𝑅2, and

(c) temporal standard deviation difference (forecast-observed) for April 2019. Panel (d) shows average forecast

wind bias for April 2021. For (a), (c), (d) positive values are red, negative are blue.

330

331

332

c. Analysis of forecast/observation pairs341

In their analysis, FG20 examined scatterplots involving all individual ASOS forecast and obser-342

vation pairs over a full month and this provided insight into the source of forecast biases. Here,343

we improve and extend that analysis, examining all 827,230 April 2019 pairs6. This represents the344

concatenation of forecasts and observations from 807 ASOS stations and all forecast hours from345

the daily 36-h HRRRV3 00 UTC cycle forecasts. Note that many observations were paired with346

more than one forecast.347

All ASOS forecast/observation pairs are presented as a heatmap, color coded by point density,348

in Fig. 10a. Although there is scatter about the 1:1 correspondence line, there is a reasonably good349

6There are fewer pairs in the present analysis than in FG20 (851,550) owing to the more stringent restrictions employed in the construction of
hourly-averaged observations.
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relationship (𝑅2 = 0.56) between these variables, comparable to that seen in the station-averaged350

analysis (Fig. 7a). The majority of observations and forecasts represented speeds less than 5 m s−1,351

and this fact drives the relationship. For higher observed winds, however, the forecasts still largely352

spread along the 1:1 line, indicating some usable skill. Similarly, all forecast gusts – created via353

the constant GF of 1.86 – are plotted against observed gusts in Fig. 10b. As was the case with the354

station-averaged analysis, the correlation is higher for the gust forecasts than their sustained wind355

counterparts.356

However, these same data viewed as histograms (Fig. 11) demonstrate that the forecast and362

observed wind and gust distributions had distinctly different shapes. The forecasts possessed a363

narrower peak such that the occurrence of both lower and higher observed winds was relatively364

more frequent. This result was suspected in the discussion of Fig. 4a above. Motivated by Fig. 8c,365

we also examined histograms of winds and gusts partitioned into lower and higher GF segments366

(Fig. 12). Forecast and observation pairs were separated into two groups based on the GF associated367

with the observation relative to the median value (about 1.81). With respect to winds (panels a, b)368

there is a much larger shift between the segments in the shapes of the observed wind distributions369

than for the forecasts. When the GF is lower, the observed distribution is shifted rightward, resulting370

in more observations than forecasts of values exceeding 3.5 m s−1. In contrast, observations in the371

high GF half are skewed towards lower speeds, resulting in a mean positive bias.372

To reiterate, the network mean bias of ASOS forecasts was nearly zero (Fig. 3a,b), but the bias377

was biased such that stations having lower average wind speeds were overpredicted while windier378

ones were underforecast (Figs. 8c, 11a). The constant GF algorithm exploits this systemic tendency379

to underpredict at sites where GFs lower than the network average and overpredict at the others by380

multiplying these biased wind forecasts by a single number (the network average GF), the result381

being less biased gust forecasts (Fig. 12c,d). For locations in space and/or instances in time where382

the observed GF was lower than the network average, multiplying by the larger average value helped383

shift the forecast gusts more into alignment with the observations (Fig. 12c). Similarly, multiplying384

forecasts of high GF instances or locations by the smaller network average helped correct for the385

deficiencies seen among the sustained winds. The result is not perfect and we have already seen386

that when the two segments are recombined (i.e., Fig. 11a), the forecast range is too narrow relative387
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HRRR 00Z cycle ASOS pairwise analysis: April 2019 and 2021
(a) HRRRV3 April 2019 forecast v. observed sustained wind (b) HRRRV3 April 2019 forecast v. observed gust

(c) HRRRV4 April 2021 forecast v. observed sustained wind (d) HRRRV4 April 2021 forecast v. observed gust

Fig. 10. All forecast/observation pairs of wind speed (left) and gust (right) for ASOS stations during April

2019 (top) and April 2021 (bottom). Color shading indicates point density and the linear regression line for each

is shown in red. Gust forecasts were produced using the ASOS network average GF. The black dot is the joint

mean. 𝑧0 > 0.01 indicates that sites misclassified as being over water have been removed. This is true for all

analyses in this study.

357

358

359

360

361

to the observations. In the next section, we will discover reasons for the excessive sharpness in the388

forecast distributions.389
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HRRR 00Z cycle ASOS histograms: April 2019 and 2021
(a) HRRRV3 April 2019 sustained winds (b) HRRRV3 April 2019 gusts

(c) HRRRV4 April 2021 sustained winds (d) HRRRV4 April 2021 gusts

Fig. 11. Histograms of all forecast (blue) and observed (red) wind speeds (left) and gusts (right) for April

2019 (top) and April 2021 (bottom). MAE stands for mean absolute error. Vertical solid lines indicate mean

values and dashed lines represent median values. A wider bin size was used for gusts owing to the coarse (1 kt)

precision of hourly maximum gust observations.

373

374

375

376

d. The roles of landuse and local time394

The potential roles of landuse type and local time were investigated to understand the differences395

between the observations and forecasts, especially with respect to their distributional shapes as396

seen in Fig. 11. As noted earlier, WRF-ARW uses fractional landuse allocations (cf. Fig. 2b) and397

the focus here is on the largest, or primary, assignment. For HRRRV3 and April 2019, 41% of398

the ASOS stations had a primary classification of cropland, 24% were urban, 14% had grassland,399

and 6% were given open shrubland assignments. The various forested land classes, including400

deciduous, evergreen, and mixed forests, accounted for about 11% of the ASOS sites. While401

unsurprising, it is clear that the urban landuse type is substantially overrepresented in the ASOS402

network relative to the CONUS landscape (see, for example, the bright red areas in Figs. 2a,c).403
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HRRRV3 00Z cycle ASOS histograms by gust factor: April 2019
(a) Winds: lower GF observations (c) Gusts: lower GF observations

(b) Winds: higher GF observations (d) Gusts: higher GF observations

Fig. 12. Similar to Fig. 11a,b but showing the April 2019 wind and gust distributions subdivided at the median

GF (about 1.81). The dotted red curves in (a) and (c) represent the higher GF observation distributions, to facilitate

comparison. Similarly, the dotted blue curves in (b) and (d) represent the lower GF forecast distributions. The

sawtooth variation in the observations in (a) and (b) is another consequence of the gust data precision.

390

391

392

393

Figure 13 reveals the existence of a robust association between primary assignment and forecast404

wind bias. Each class possesses two horizontal bars, representing the average bias (blue, units m405

s−1) among stations with that classification and their weighted contribution (red, units dm s−1 for406

convenience) reflecting station count towards the network-average bias of -0.2 m s−1. The most407

negative bias (-0.6 m s−1) was associated with the open shrublands stations but the urban and408

grassland sites had larger weighted shares owing to their larger station counts. Similarly, although409

cropland stations had a small class-average bias (-0.08 m s−1), their aggregate effect was not minor410

owing to their ubiquity (41% of stations). In contrast, the roughly 11% of installations residing in411

forested grid cells were positively biased, by as much as +0.52 m s−1 in the evergreen needleleaf412
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cells7. If these overpredictions were resolved in isolation, the network-averaged skill would actually413

decrease.414

Figure 14 presents histograms of forecast and observed sustained wind similar to Fig. 11a but420

have been segregated by selected primary landuse classes. All of the forecast distributions are421

too sharp and narrow relative to the observations. In urban areas (panel a), the observed wind422

distribution has spread farther to the right, revealing underforecasts of speeds exceeding about 3.5423

m s−1. That tendency was even more pronounced in the grassland and open shrubland group (panel424

b), which have been combined owing to their similarity. The small negative bias in the cropland425

class (panel c) occurred despite general overprediction of winds weaker than 1.5 m s−1.426

Importantly, the model has obviously failed to properly represent the general slowness of the430

winds in the forested areas (Fig. 14d). This elucidates why the network-averaged sustained winds431

from the NYSM were so overpredicted. Note that the Mesonet’s sustained wind histograms432

(Fig. 15) bear a strong resemblance to that of the ASOS forested class, independent of anenometer433

type. While only 11% of the ASOS sites were classified as forested in the HRRRV3, that category434

represented 43% of the Mesonet stations, and thus it exerts a powerful influence on this network’s435

average. Landuse type can affect wind forecasts through the roughness length, 𝑧0. Although this436

would require testing, it is not clear that simply raising 𝑧0 would improve these predictions because437

the more serious issue is site exposure.438

When the day is subdivided into four 6-hour segments as in Fig. 16, we clearly see the under-441

prediction of observed ASOS winds exceeding 4 m s−1 seen in Fig. 11 is largely confined to the442

nocturnal period between 6 PM and 6 AM local time (LT), when the boundary layer is likely to443

be stable8. This period is also largely responsible for the distributional differences between the444

forecasts and observations noted above. The frequency of relatively larger observed wind speeds at445

night was sufficient to make the mean bias of forecast/observation pairs to be negative, even though446

the model generated too few low speed predictions. This may represent a problem with how the447

model handles the stable boundary layer and its intermittent, localized turbulence (cf. Medeiros and448

Fitzjarrald 2014, 2015). In contrast, the daytime period of 6 AM to 6 PM LT (panels b and c) seems449

to be rather well represented in the HRRRV3 forecasts, albeit with a small underrepresentation at450

higher wind speeds (≥ 8 m s−1) that also led to small negative net biases.451

7Precise percentages vary slightly between the station and forecast/observation pair analyses owing to minor data dropouts.
8The number of forecast/observation pairs varies among the segments because we are only using the 00 UTC cycle and its 36 h simulations,

which means some times have more forecasts than others.
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(a) HRRRV3 April 2019

(b) HRRRV4 April 2021

HRRR 00Z cycle ASOS wind bias by primary landuse assignment

Fig. 13. Average forecast wind bias (blue bars) aggregated over ASOS stations having same HRRR primary

landuse assignments for (a) April 2019, and (b) April 2021. Red bars represent the weighted contribution

of that class towards the network-average bias. Landuse classes are ordered by weighted bias. Right axis:

percentage of stations having this primary classification. Precise percentages vary slightly between the station

and forecast/observation pair analyses owing to minor data dropouts.
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417

418

419
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HRRRV3 00Z cycle ASOS histograms by primary landuse assignment: April 2019
(a) Urban (24% of stations) (b) Grassland and open shrublands (20% of stations)

(c) Croplands (41% of stations) (d) Forested land (11% of stations)

Fig. 14. Similar to Fig. 11a but segregated by primary landuse (LU) category from the MODIS 21-class

database used by HRRRV3: (a) urban, (b) grasslands and open shrublands, (c) croplands, and (d) forested land

(including deciduous, evergreen, and mixed forest).

427

428

429

Those histograms aggregated all landuse classes. Figure 17 focuses on the 6 PM to midnight452

LT period differentiated by the landuse groupings examined in Fig. 14. Only the forested lands453

(panel d) did not have characteristic underprediction of relatively faster winds, again reflecting454

the less than optimal handling of those areas in the model. For the afternoon (noon to 6 PM LT)455

period (Fig. 18), however, only the urban classification (panel a) failed to capture the frequency of456

stronger winds. Thus, except in the vicinity of cities, the model’s inability to capture the frequency457

of stronger winds appears to be a nocturnal issue and one that might be addressed by reconsidering458

assumptions employed in the stable boundary layer regime. It is surmised that the urban issue459

may also stem from overly high specifications of surface roughness in those areas. While many460

airports are located in grids designated as urban, that does not mean that the local environment461

of the airport is truly city-like. Finally, we reiterate that resolving the issue with forested land or462
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(a) Propeller anemometer

(b) Sonic anemometer

HRRRV3 00Z cycle NYSM histograms: April 2019

Fig. 15. Similar to Fig. 11a but for April 2019 wind forecasts for NYSM sites compared to (a) propeller, and

(b) sonic observations.

439

440

removing those stations from the analysis would tend to make the nocturnal underprediction issue463

appear worse.464

4. HRRRV4 wind and gust evaluation for April 2021467

Version 4 of the HRRR became operational on 2 December 2020. The revised model incorporated468

a number of improvements to the planetary boundary layer and radiation schemes, the land surface469

model, and numerical methods and diffusion, and adopted a new gravity wave drag treatment470

(cf. Dowell and co authors 2022). It also shifted to the higher-resolution version of the MODIS471
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HRRRV3 00Z cycle ASOS histograms by local time: April 2019
(a) Midnight to 6 AM LT (b) 6 AM to noon LT

(c) Noon to 6 PM LT (d) 6 PM to midnight LT

Fig. 16. Similar to Figs. 11a and 14 but segmented with respect to local time (LT).

landuse database that was released with WRF Preprocessing System (WPS) version 3.9 in 2017,472

with consequences as discussed presently.473

Our examination of 10-m wind forecasts at ASOS stations from April 2021 from HRRRV4 em-474

phasizes points of similarity and difference with the April 2019 HRRRV3 results. The verification475

was again restricted to the 00 UTC cycle and through forecast hour 36, even though V4 now inte-476

grates out two full days for that start time. Although not shown, monthly mean wind speeds were477

very comparable to April 2019 (Fig. 1). Unfortunately, relative to April 2019, there were more478

missing observations in the ASOS 1-min database in April 2021. As a consequence, the database479

of hourly mean sustained wind and maximum gust had 32% fewer observations than for April 2019,480

averaging about 15400 observation/forecast pairs per forecast hour instead of 22650. Only 766481

sites remained after removal of misclassified stations and those with 500 or fewer observations. In482

our judgment, this does not negatively affect the evaluation.483

There are more differences between these two MODIS-derived databases than just the resolution484

enhancement. In HRRRV4 (Fig. 2c), a large fraction of the original croplands class (#12, gold),485
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HRRRV3 00Z cycle ASOS histograms by primary landuse for 6PM-midnight local time: April 2019
(a) Urban (24% of stations) (b) Grasslands and open shrublands (20% of stations)

(c) Croplands (41% of stations) (d) Forested land (11% of stations)

Fig. 17. Similar to Fig. 16a but focusing on the 6 PM to midnight LT period and separated into different

landuse groupings.

465

466

especially in the eastern CONUS, has been transferred into the previously existing but unused486

“cropland/vegetation mosaic" group (#14, cyan). The croplands category presently accounts for487

only 18.3% of ASOS station primary assignments while the mosaic claims 14.9%. In the west,488

a portion of the open shrublands (#7, maroon) primary assignments have been reassigned as489

grasslands (#10, light green), constituting 4.3% and 21.0% of ASOS sites in the newer MODIS490

database, respectively. We have continued combining those landuse types owing to their similarity491

with respect to model performance. The HRRRV4 grassland area has also spread eastward into492

the former croplands, so the grassland and open shrubland combination now represented 25% of493

the April 2021 ASOS primary assignments, an increase of 5 percentage points. Some areas that494

had been assigned to one of the forest classes (categories 1-5) have been reclassified as woody495

savannas (#8), increasing its share of the network from 2.6% to 7.2%. Owing to their similarity,496
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HRRRV3 00Z cycle ASOS histograms by primary landuse for noon-6PM local time: April 2019
(a) Urban (24% of stations) (b) Grasslands and open shrublands (20% of stations)

(c) Croplands (41% of stations) (d) Forested land (11% of stations)

Fig. 18. As in Fig. 17 but focusing on the noon to 6 PM LT period.

class 8 was analyzed with the forested land, and this combination represented 13% of the ASOS497

stations retained in the April 2021 analysis.498

As in Section 3, above, these are primary landuse assignments. The fractional landuse appor-499

tionments represent another difference with HRRRV3. In HRRRV4, 87% of ASOS stations reside500

in grid cells assigned more than one landuse class, up from 53% in V3 (compare Figs. 2 panels501

d and b), a consequence of V4’s higher landuse resolution. The average fraction claimed by the502

primary class was 0.7, a decrease from 0.83 for V3. Again, this was relatively smaller for the503

forested group and also the new cropland/vegetation mosaic classes (both about 0.6) than for the504

urban and croplands (both ≈ 0.7) and grasslands (0.8). The HRRRV4 landscape is more finely505

divided and this makes analyzing by primary landuse assignment less precise, but again we find506

some value in this effort.507

Figures 3c and 4c,d present the April 2021 forecast hour analysis. The small negative forecast508

bias that was previously seen in V3 has vanished (indeed, the mean bias is now essentially zero)509

although the spatial standard deviation of the forecasts was still smaller than that of the observations510
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at all forecast hours. The local time versions of these figures also revealed some improvements511

(Figs. 3d and 5c,d). Despite involving fewer sites, the station analysis results and conclusions were512

little changed. 𝑅2 values for the sustained wind and gust fits were higher for both station-average513

(Figs. 7c,d) and pairwise (Fig. 10c,d) comparisons and (although not shown, see Gallagher 2021)514

the average forecast wind was again uncorrelated with bias but the higher wind stations were still515

underpredicted and lower sites overforecast in a manner that is predictable from iGF or GF9. In516

addition, the association between bias and the difference between forecast and observed temporal517

standard deviation remained (also not shown, cf. Gallagher 2021). Viewed spatially (Fig. 9d),518

forecast bias was still concentrated in the east CONUS in general and southeast in particular,519

although errors were somewhat smaller in magnitude.520

The wind and gust histograms (Fig. 11c,d) also suggest improvements relative to April 2019.521

However, the compensating errors between more densely treed areas (the forest and woody savannas522

categories) and the urban and grassland areas persisted (Fig. 13b). The now more spatially confined523

croplands class was still the best modeled and the newly separate mosaic group had a positive bias,524

which is unsurprising because much of the this group’s stations are in the southeast, the site of525

lower wind observations (not shown, but similar to Fig. 1) and positive biases (Fig. 9d). Still, the526

histograms representing the urban and combined grassland and open shrubland categories (Fig. 19,527

top row) also reveal better model behavior at relatively higher wind speeds compared to HRRRV3528

(Fig. 14). For convenience, we have combined the cropland and mosaic classes in Fig. 19c, despite529

their differences, and note that the forested and woody savanna grouping remained the most poorly530

handled (Fig. 19d).531

In the end, and despite the improvements in model performance, we see that the glaringly different534

distributional shapes noted previously are still present and that this is still driven by the 6 PM to535

6 AM period (Fig. 20). Clearly, more work on the stable boundary layer remains to be done.536

Although 10-m wind speeds during this period are typically not strong, sizable wind errors may537

have implications for boundary layer pollution transport, wind energy, etc..538

5. Summary and recommendations539

Our previous study, Fovell and Gallagher (2020, FG20), presented a detailed verification of540

Version 3 of the HRRR model focusing on surface and boundary layer winds and temperatures. It541

9Station KDGP, which was an outlier in the April 2019 analysis, did not have sufficient April 2021 observations for inclusion.
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HRRRV4 00Z cycle ASOS histograms by primary landuse assignment: April 2021
(a) Urban (27% of stations) (b) Grassland and open shrublands (25% of stations)

(c) Croplands (33% of stations) (d) Forested and woody savanna land (13% of stations)

Fig. 19. Similar to Fig. 14, but for April 2021 and referencing primary assignments from the higher resolution

MODIS landuse database used by HRRRV4.

532

533

was motivated by prior findings of systemic biases in forecast wind speeds at individual locations542

even when network-average bias was insignificant (Cao and Fovell 2016; Fovell and Cao 2017;543

Cao and Fovell 2018; Fovell and Gallagher 2018). FG20 leveraged underutilized observations (1-544

min ASOS and high-frequency radiosonde) to investigate pervasive background biases across the545

entirety of the CONUS in the operational HRRR model. The conclusions of FG20 were consistent546

with previous work, detailing a pervasive bias in forecasts of surface sustained wind speed that547

was highly (negatively) correlated with the observed value itself. Stations having lower average548

wind speeds were being overpredicted while the wind threat was being underestimated at windy549

locations.550

The present examination represented a deeper analysis into the nature and cause of these biases551

and also covered the now current version, HRRRV4. Analysis enhancements included verification552

against hourly mean winds, consideration of local time and landuse classification, inspection of the553
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HRRRV4 00Z cycle ASOS histograms by local time: April 2021
(a) Midnight to 6 AM LT (b) 6 AM to noon LT

(c) Noon to 6 PM LT (d) 6 PM to midnight LT

Fig. 20. Similar to Fig. 16, but for April 2021.

temporal and spatial variability of forecast and observed winds and biases, and the incorporation of554

additional surface observations from the New York State Mesonet (NYSM). Additionally, hourly555

maximum gusts were assessed and verified, using the network-average gust factor (GF) approach556

as proposed in Cao and Fovell (2018, CF18). Since GF was also correlated with bias, with smaller557

and larger factors associated with under- and overprediction, respectively, multiplying the biased558

wind forecasts by a fixed value (the network average) was found to reduce the bias in the gust559

predictions compared to those of the sustained winds.560

For two spring months in 2019 and 2021, we showed the network average sustained wind forecasts561

for ASOS stations were excellent in Version 3 and even better in the current configuration. That562

said, the negative correlation between bias and mean observed wind speed persisted in Version 4,563

and we also demonstrated that the forecast and wind distributions were distinctly different overall,564

with ASOS forecasts in both versions having less spread about their modal value of about 2.5 m565

s−1 than in reality. Furthermore, observations associated with below-median GFs skewed towards566

higher speeds and those with above-median values skewed sharply leftward, characteristics not567
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captured in the forecasts. The inclusion of stations classified as forested land in the model actually568

worked to obscure the model’s tendency to underpredict winds across the bulk of the ASOS569

network. A large fraction of the NYSM sites are situated in forested areas and that explained why570

the wind speeds at those stations were substantially overpredicted in the model.571

Regarding local time, forecast wind distributions during the daytime looked quite good but less572

so at night, when the boundary and surface layer are usually stable. This demonstrates that further573

work needs to be done in the nocturnal regime. Even that systemic bias was landscape-dependent,574

however. Especially in urban and grassland areas, stronger winds at night were more common in575

the observations than in the model forecasts.576

Taken together, we see evidence of further improvement in the HRRRV4 relative to its already577

skillful predecessor, at least in the spring month selected for close analysis. The gust parameteri-578

zation inspired by Cao and Fovell (2018) continued to work well, despite its simplicity. Because579

it helped mitigate systemic biases, the CF18 gust can supply a starting point for a more sophis-580

ticated approach that might also factor in boundary layer depth, winds, and stability for even581

better-verifying predictions, especially in particularly challenging or dangerous situations (e.g.,582

downslope windstorms, tropical cyclones, convective storms, etc.). Challenges with respect to the583

stable boundary layer and the treatment of some landuse classes (especially forested areas) remain.584

Other important variables, such as temperature, moisture, and the HRRR’s own gust potential,585

have not yet been assessed. These should be foci of future work.586
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APPENDIX601

In Figs. 16 and 20, we demonstrated that the 10-m wind speed distributions for forecasts and602

observations were less comparable at night for both versions of the HRRR examined. A reviewer603

pointed out that our study design incorporated more nighttime than daytime hours and wondered604

how that influenced the results. We thank the reviewer for alerting us to this. We performed our605

analyses again, limiting them to forecast hours 0-24, inclusive, which makes the number of night606

and day hours much more comparable. However, we found few discernible changes to the figures,607

with the caveat noted below, and there was no impact on our conclusions. As a consequence, we608

have retained all forecast hours (0-36) common to both HRRR versions for the 00 UTC cycle.609

The reason for the insensitivity is that many of our analyses involved medians, means, and610

differences between means (i.e., biases). Even at night, the means and medians of the forecasts and611

observations were very similar, as were biases and mean absolute errors (Figs. 16 and 20), and that612

is why removing some of the nocturnal hours did not materially alter the results. The distributional613

differences at night, however, imply larger scatter among forecast/observation pairs. Figure A1 is a614

version of Fig. 10 in which only pairs for forecast hours 0-24 were retained. Reflecting the reduced615
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HRRR 00Z cycle ASOS pairwise analysis: April 2019 and 2021 (forecast hours 0-24)
(a) HRRRV3 April 2019 forecast v. observed sustained wind (b) HRRRV3 April 2019 forecast v. observed gust

(c) HRRRV4 April 2021 forecast v. observed sustained wind (d) HRRRV4 April 2021 forecast v. observed gust

Fig. A1. As in Fig. 10 but for analyses restricted to forecast hours 0-24, inclusive.

scatter, the 𝑅2 values are somewhat higher in this version, but the conclusions from our analyses616

remain unchanged.617

Another reviewer wondered about the large change in gust factor (GF), from 1.29 to 1.86, that618

occurred when we shifted from top-of-hour to hourly maximum gusts. First, we note that our619

GFs are usually computed as ratios-of-means, such that a station’s mean gust is being divided620

by its average sustained wind. The network-averaged GF then represents the ratio of the average621

of the gusts and sustained winds over all included stations. The mean-of-ratios approach is also622
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valid but typically results in higher gust factors because wind and gust distributions have long tails623

(cf. Fig. 11 and Gallagher 2021).624

In previous work (e.g., Fovell and Gallagher 2018), we used ASOS reports from the 1-min625

database, each of which consisted of a 2-min running average wind (i.e., sustained wind) and the626

peak 3-sec average (gust) during that one minute interval. Over the ASOS network, the gust factor627

for the 1-min reports averaged to about 1.29. For this study, we adopted the hourly maximum gust628

as a better measure of the wind threat. This GF is an hour’s fastest 3-s gust report divided by that629

hour’s mean sustained wind, so both the numerator and denominator of the gust factor have been630

redefined. However, consistent with Harper et al. (2010), the mean wind is nearly the same when631

averaged over 2- and 60-min periods. Yet, the largest gust discoverable within a given interval632

logically increases with interval length.633

Figure A2 presents the ratio-of-means GFs obtained from about 840 ASOS sites vs. the time634

interval for which the maximum 3-s gust was identified. For each station, for each of four months635

considered, the station’s entire record length 𝑇 was subdivided into nonoverlapping segments of636

length 𝜏 in minutes, where 1 ≤ 𝜏 ≤ 60. Then, for each segment without missing data, the maximum637

gust report was identified and the mean sustained wind was computed. These were first averaged638

over all available segments of length 𝜏 and then over all stations and the four months, yielding the639

ratio-of-means network-averaged GF representing time interval 𝜏. Because the average sustained640

wind for each interval represented the same information, only the numerator of the GF varied641

among the time intervals. Figure A2 demonstrates that the 1-min GF is about 1.29 (red star) while642

the 60-min value is about 1.84 (green star), about 1.4 times larger. This curve varies somewhat643

among seasons and more prominently among networks owing to differences in mean wind speeds,644

mounting heights, anemometer hardware, characteristic exposures, and possibly other factors, but645

the shape of the curve is typically logarithmic in time.646
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ASOS network-averaged gust factors for the 3-s wind (gust)

Composite of ~840 ASOS sites spanning
April and October 2019, and January and July 2020

Fig. A2. Gust factor curve for the ASOS network representing a composite of about 840 stations sampling

four seasons. For each time interval considered, the network-average maximum 3-s wind (gust) was divided by

the network-average sustained wind representing that interval. Red and blue stars represent the one-minute GF

used in Fovell and Gallagher (2018) and the 60-min GF used in this study, respectively.

647

648

649

650
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