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Abstract

A strong version of a conjecture of Viterbo asserts that all normalized symplectic
capacities agree on convex domains. We review known results showing that certain spe-
cific normalized symplectic capacities agree on convex domains. We also review why all
normalized symplectic capacities agree on S'-invariant convex domains. We introduce
a new class of examples called “monotone toric domains”, which are not necessarily con-
vex, and which include all dynamically convex toric domains in four dimensions. We
prove that for monotone toric domains in four dimensions, all normalized symplectic
capacities agree. For monotone toric domains in arbitrary dimension, we prove that the
Gromov width agrees with the first equivariant capacity. We also study a family of ex-
amples of non-monotone toric domains and determine when the conclusion of the strong
Viterbo conjecture holds for these examples. Along the way we compute the cylindrical
capacity of a large class of “weakly convex toric domains” in four dimensions.

1 Introduction

If X and X’ are domains! in R?® = C", a symplectic embedding from X to X' is a smooth
embedding ¢ : X < X’ such that ¢*w = w, where w denotes the standard symplectic form
on R?". If there exists a symplectic embedding from X to X', we write X — X',

An important problem in symplectic geometry is to determine when symi)lectic embed-
dings exist, and more generally to classify the symplectic embeddings between two given
domains. Modern work on this topic began with the Gromov nonsqueezing theorem [11],
which asserts that the ball

B™(r) = {zeC| 7|22 < r}
symplectically embeds into the cylinder

Z*(R)={zeC" | m|21* < R}
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if and only if » < R. Many questions about symplectic embeddings remain open, even for
simple examples such as ellipsoids and polydisks.
If there exists a symplectic embedding X < X', then we have the volume constraint
S

Vol(X) < Vol(X’). To obtain more nontrivial obstructions to the existence of symplectic
embeddings, one often uses various symplectic capacities. Definitions of the latter term
vary; here we define a symplectic capacity to be a function ¢ which assigns to each domain
in R?", possibly in some restricted class, a number ¢(X) € [0, oc], satisfying the following
axioms:

(Monotonicity) If X and X’ are domains in R?", and if there exists a symplectic embedding
X < X', then ¢(X) < ¢(X').
S

(Conformality) If 7 is a positive real number then c¢(rX) = r2¢(X).

We say that a symplectic capacity c is normalized if it is defined at least for convex domains
and satisfies

c(B*"(1)) = c(2*"(1)) = 1.

The first example of a normalized symplectic capacity is the Gromov width defined by

) -y

B (r) = X}.

This trivially satisfies all of the axioms except for the normalization requirement cg, (Z2"(1)),
which holds by Gromov non-squeezing. A similar example is the cylindrical capacity defined
by

c7(X) = inf {R

X ZQ”(R)}.

Additional examples of normalized symplectic capacities are the Hofer-Zehnder capacity
cnyz defined in [16] and the Viterbo capacity cgi defined in [31]. There are also useful families
of symplectic capacities parametrized by a positive integer k, including the Ekeland-Hofer
capacities CEH defined in [8, 9] using calculus of variations; the “equivariant capacities” ch
defined in [12] using positive equivariant symplectic homology; and in the four-dimensional
case, the ECH capacities CE’CH defined in [17] using embedded contact homology. For
each of these families, the k& = 1 capacities clEH7 ch, and c]flCH are normalized. Some
additional symplectic capacities defined using rational symplectic field theory were recently
introduced in [27, 28]. For more about symplectic capacities in general we refer to [6, 25]
and the references therein.

The goal of this paper is to discuss some results and examples related to the following

conjecture, which apparently has been folkore since the 1990s.

Conjecture 1.1 (strong Viterbo conjecture). If X is a convex domain in R?", then all
normalized symplectic capacities of X are equal.

Viterbo conjectured the following statement? in [32]:

2Viterbo also conjectured that equality holds in (1.1) only if int(X) is symplectomorphic to an open ball.



Conjecture 1.2 (Viterbo conjecture). If X is a conver domain in R®*™ and if c is a
normalized symplectic capacity, then

¢(X) < (n!'Vol(X))/™. (1.1)

The inequality (1.1) is true when ¢ is the Gromov width cg;, by the volume constraint,
because Vol(B?*(r)) = r™/n!. Thus Conjecture 1.1 implies Conjecture 1.2. The Viterbo
conjecture recently gained more attention as it was shown in [4] that it implies the Mahler
conjecture® in convex geometry.

Lemma 1.3. If X is a domain in R?", then cq:(X) < cz(X), with equality if and only if
all normalized symplectic capacities of X agree (when they are defined for X ).

Proof. 1t follows from the definitions that if ¢ is a normalized symplectic capacity defined
for X, then cq(X) < ¢(X) < ez (X). O

Thus the strong Viterbo conjecture is equivalent to the statement that every convex
domain X satisfies cq;(X) = cz(X). We now discuss some examples where it is known
that cgr = ¢z. Hermann [13] showed that all T"-invariant convex domains have to satisfy
car = cz. This generalizes to S'-invariant convex domains by the following elementary
argument:

Proposition 1.4 (Y. Ostrover, private communication). Let X be a compact convex do-
main in C* which is invariant under the S' action by € -z = (e?2,...,e"2,). Then

CGr(X) = Cz(X).

Proof. By compactness, there exists zp € 0X minimizing the distance to the origin. Let
r > 0 denote this minimal distance. Then the ball (|z| < r) is contained in X, so by
definition cg, (X) > 7.

By applying an element of U(n), we may assume without loss of generality that zp =
(r,0,...,0). By a continuity argument, we can assume without loss of generality that 0X
is a smooth hypersurface in R?”. By the distance minimizing property, the tangent plane
to 0X at zg is given by (z - (1,0,...,0) = r) where - denotes the real inner product. By
convexity, X is contained in the half-space (z - (1,0,...,0) < r). By the S' symmetry, X
is also contained in the half-space (z - (¢/?,0,...,0) < ) for each § € R/27Z. Thus X is
contained in the intersection of all these half-spaces, which is the cylinder |z;| < r. Then

cz(X) < mr? by definition. O

Remark 1.5. A similar argument shows that if & > 3 is an integer and if X C C" is a

convex domain invariant under the Z/k action by j - z = (e2™9/kzy, ... e?™/kz ) then
cz(X)

k
e (X) < - tan(m/k).

3The Mahler conjecture [22] states that for any n-dimensional normed space V', we have

n

Vol(By) Vol(By-) > %,

where By denotes the unit ball of V', and By~ denotes the unit ball of the dual space V*. For some examples
of Conjectures 1.1 and 1.2 related to the Mahler conjecture, see [26].



The role of the convexity hypothesis in Conjecture 1.1 is somewhat mysterious. We now
explore to what extent non-convex domains can satisfy cq, = cz.
To describe some examples, if € is a domain in RZ, define the toric domain

Xo={z€C"| (2%, .., [2al?) € Q).

The factors of m ensure that
Vol(Xq) = Vol(2). (1.2)

Let 01 denote the set of u € 9 such that pu; > 0 for all j =1,...,n.

Definition 1.6. A monotone toric domain is a compact toric domain X with smooth
boundary such that if 4 € 9, and if v an outward normal vector at y, then v; > 0 for all
j=1,...,n. See Figure lc.

A strictly monotone toric domain is a compact toric domain X with smooth boundary
such that if 4 € 91 and if v is a nonzero outward normal vector at g, then v; > 0 for all
j=1...,n.

One of our main results is the following;:

Theorem 1.7. (proved in §4) If Xq is a monotone toric domain in R*, then Car(X) =
cz(X).

Note that monotone toric domains do not have to be convex; see §2 for details on
when toric domains are convex. (Toric domains that are convex are already covered by
Proposition 1.4.)

To clarify the hypothesis in Theorem 1.7, let X be a compact domain in R?" with
smooth boundary, and suppose that X is “star-shaped”, meaning that the radial vector
field on R?" is transverse to 9X. Then there is a well-defined Reeb vector field R on 0X.
We say that X is dynamically convez if, in addition to the above hypotheses, every Reeb
orbit v has Conley-Zehnder index CZ(7y) > n+1 if nondegenerate, or in general has minimal
Conley-Zehnder index* at least n + 1. It was shown by Hofer-Wysocki-Zehnder [14] that if
X is strictly convex, then X is dynamically convex. However the Viterbo conjecture implies
that not every dynamically convex domain is symplectomorphic to a convex domain; see
Remark 1.9 below.

Proposition 1.8. (proved in §2) Let Xq be a compact star-shaped toric domain in R* with
smooth boundary. Then Xgq is dynamically convex if and only if Xq is a strictly monotone
toric domain.

Thus Theorem 1.7 implies that all dynamically convex toric domains in R* have cq, =
cz.

If X is a star-shaped domain with smooth boundary, let Ap;,(X) denote the minimal
period of a Reeb orbit on 0.X.

If 7 is degenerate then there is an interval of possible Conley-Zehnder indices of nondegenerate Reeb
orbits near v after a perturbation, and for dynamical convexity we require the minimum number in this
interval to be at least n + 1. In the 4-dimensional case (n = 2), this means that the dynamical rotation
number of the linearized Reeb flow around v, which we denote by p(y) € R, is greater than 1.



Remark 1.9. Without the toric hypothesis, not all dynamically convex domains in R* have
cgr = ¢z. In particular, it is shown in [1] that for & > 0 small, there exists a dynamically
convex domain X in R?* such that A, (X)?/(2vol(X)) > 2—e. One has cch (X) > Apin(X)
by [12, Thm. 1.1}, and cg:(X)? < 2vol(X) by the volume constraint. Thus

cz(X)
car(X)
Remark 1.10. It is also not true that all star-shaped toric domains have c¢g, = cz. Coun-

terexamples have been known for a long time, see e.g. [13], and in §5 we discuss a new
family of counterexamples.

>V2—c.

For monotone toric domains in higher dimensions, we do not know how to prove that
all normalized symplectic capacities agree, but we can at least prove the following:

Theorem 1.11. (proved in §3) If Xq is a monotone toric domain in R?", then
car(Xq) = 1 (Xq). (1.3)

Returning to convex domains, some normalized symplectic capacities are known to agree
(not the Gromov width or cylindrical capacity however), as we review in the following
theorem:

Theorem 1.12 (Ekeland, Hofer, Zehnder, Abbondandolo-Kang, Irie). If X is a convex
domain in R?", then:

(a) (X)) = enz(X) = csu(X) = fH(X).
(b) If in addition OX is smooth®, then all of the capacities in (a) agree with Amyin(X).

Proof. Part (b) implies part (a) because every convex domain can be C° approximated by
one with smooth boundary; and the capacities in (a) are C° continuous functions of the
convex domain X, by monotonicity and conformality.

Part (b) was shown for ¢z (X) by Hofer-Zehnder in [16], and for cgiy(X) by Irie [20] and
Abbondandolo-Kang [2]. The agreement of these two capacities with ¢{™(X) for convex
domains now follows from the combination of [12, Theorem 1.24] and [10, Lemma 3.2], as
explained by Irie in [20, Remark 2.15]. Finally, part (b) for ¢’ (X) has been claimed and
understood for a long time, but since we could not find a complete proof in the literature
we give one here in §6. 0

Organization of the paper

In §2 we discuss different kinds of toric domains and when they are convex or dynamically
convex. In §3 we consider the first equivariant capacity and prove Theorem 1.11. In §4 we
use ECH capacities to prove Theorem 1.7. In §5 we consider a family of examples of non-
monotone toric domains and determine when they do or do not satisfy the conclusions of
Conjectures 1.1 and 1.2. Along the way we compute the cylindrical capacity of a large class
of “weakly convex toric domains” in four dimensions (Theorem 5.6). In §6 we review the
definition of the first Ekeland-Hofer capacity and complete the (re)proof of Theorem 1.12.

SWithout the smoothness assumption, it is shown in [3, Prop. 2.7] that cuz(X) agrees with the minimum
action of a “generalized closed characteristic” on 0X.
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2 Toric domains

In this section we review some important classes of toric domains and discuss when they

are convex or dynamically convex.
If Q is a domain in R"™, define

Q={peR"| (ml,....|lul) € Q}.

Definition 2.1. [12] A convex toric domain is a toric domain Xq such that Q is compact
and convex. See Figure la.

This terminology may be misleading because a “convex toric domain” is not the same
thing as a compact toric domain that is convex in R?"; see Proposition 2.3 below.

Definition 2.2. [12] A concave toric domain is a toric domain Xq such that € is compact
and RY, \ 2 is convex. See Figure 1b.

We remark that if Xq is a convex toric domain or concave toric domain and if X has
smooth boundary, then it is a monotone toric domain.

Proposition 2.3. A toric domain Xq is a convex subset of R®™ if and only if the set

ﬁz{uER”

7T(|u1|2,...,|un|2) GQ} (2.1)

is convex in R™.

Proof. (=) The set Q is just the intersection of the toric domain X with the subspace
R™ C C™. If Xq is convex, then its intersection with any linear subspace is also convex.
(<) Suppose that the set Q is convex. Let 2,2/ € Xq and let ¢ € [0,1]. We need to
show that
(1 — t)Z +t e Xq.

That is, we need to show that
(| =)z +t2f], o | (L —t)2n + 24]) € Q. (2.2)

We know that the 2" points (&|z1], ..., %|zn|) are all in Q, as are the 2" points (£|2}|,. .., £|2.]).
By the triangle inequality we have

(1 =)z + t25] < (1= 1)]z5] + 1] 2]

for each j = 1,...,n. It follows that the point in (2.2) can be expressed as (1 — t) times a
convex combination of the points (£|z1],...,£|2y|), plus ¢ times a convex combination of
the points (£[z]], ..., £|z}]). Since Q is convex, it follows that (2.2) holds. O



Q
Q
> >
(a) A convex toric domain (b) A concave toric domain
Q
Q
> >
(¢) A monotone toric domain (d) A weakly convex toric domain

Figure 1: Examples of toric domains Xq in R*

Example 2.4. If X is a convex toric domain, then Xq is a convex subset of R?".

Proof. Similarly to the above argument, this boils down to showing that if w,w’ € C and
0<t<1 then
(1 - t)w + tw')? < (1 —t)|w]? + tjw'|2.

The above inequality holds because the right hand side minus the left hand side equals
(t —t2)|Jw — w'|%. O

However the converse is not true:

Example 2.5. Let p > 0, and let Q be the positive quadrant of the LP unit ball,

n
St

Jj=1

Then Xq is a concave toric domain if and only if p < 1, and a convex toric domain if and
only if p > 1. By Proposition 2.3, the domain Xq is convex in R?" if and only if p > 1/2.

We now work out when four-dimensional toric domains are dynamically convex.



Proof of Proposition 1.8. As a preliminary remark, note that if a Reeb orbit has rotation
number p > 1, then so does every iterate of the Reeb orbit. Thus Xgq is dynamically convex
if and only if every simple Reeb orbit has rotation number p > 1.

Since Xq is star-shaped, 2 itself is also star-shaped. Since Xgq is compact with smooth
boundary, 8, is a smooth arc from some point (0, b) with b > 0 to some point (a,0) with
a > 0.

We can find the simple Reeb orbits and their rotation numbers by the calculations in
[5, §3.2] and [12, §2.2]. The conclusion is the following. There are three types of simple
Reeb orbits on 0Xgq:

(i) There is a simple Reeb orbit corresponding to (a,0), whose image is the circle in 0Xg
with 7]21]2 = @ and 23 = 0.

(ii) Likewise, there is a simple Reeb orbit corresponding to (0, ), whose image is the circle
in 0Xq with z; = 0 and 7|23|? = b.

(iii) For each point y € 9, Q where 9, has rational slope, there is an S* family of simple
Reeb orbits whose images sweep out the torus in 90X where 7(|21]?, [22]%) = p.

Let s; denote the slope of 9, Q at (a,0), and let sy denote the slope of 9, at (0,b). Then
the Reeb orbit in (i) has rotation number p = 1—s; ', and the Reeb orbit in (ii) has rotation
number p = 1 — sy. For a Reeb orbit in (iii), let v = (v, v2) be the outward normal vector
to 04+ at pu, scaled so that vy, 1o are relatively prime integers. Then each Reeb orbit in
this family has rotation number p = vy + vs.

If X is strictly monotone, then s1, sy < 0, and for each Reeb orbit of type (iii) we have
v1,vo > 1. It follows that every simple Reeb orbit has rotation number p > 1.

Conversely, suppose that every simple Reeb orbit has rotation number p > 1. Applying
this to the Reeb orbits (i) and (ii), we obtain that s1, s9 < 0. Thus 04 has negative slope
near its endpoints. The arc 0.2 can never go horizontal or vertical in its interior, because
otherwise there would be a Reeb orbit of type (iii) with v = (1,0) or v = (0,1), so that
p = 1. Thus Xq is strictly monotone. O

3 The first equivariant capacity

We now prove Theorem 1.11. (Some related arguments appeared in [12, Lem. 1.19].) If
ai,...,ay > 0, define the “L-shaped domain”

L(ay,...,an) = {p € R%y | pj < a; for some j}.

Lemma 3.1. Ifay,...,a, >0, then

n
S (Xrar,am) = Z a;.
j=1

Proof. Observe that

RgO\L(alw"?an) = (al,oo) X e X (an,oo).



is convex. Thus Xy, . 4, satisfies all the conditions in the definition of “concave toric
domain”, except that it is not compact.

A formula for c¢i™ of a concave toric domain is given in [12, Thm. 1.14]. The k = 1 case
of this formula asserts that if Xq is a concave toric domain in R?", then

) =i 3

=1

0 em}. (3.1)

By an exhaustion argument (see [12, Rmk. 1.3]), this result also applies to X q,, . 4,)- For
Q= L(ai,...,a,), the minimum in (3.1) is realized by u = (a1,...,a,). O

Lemma 3.2. If Xq is a monotone toric domain in R®*™ and if p € 0,9, then Q C
L(tr, .o pin)-

Proof. By an approximation argument we can assume without loss of generality that Xq
is strictly monotone. Then 9.} is the graph of a positive function f over an open set
U c R%! with 9;f < 0 for j = 1,...,n — 1. Tt follows that if (g},...,p,_;) € U and
Wy > pj for all j = 1,...,n — 1, then f(u},..., ;1) < f(u1,-..,pn-1). Consequently
Q does not contain any point p' with pj > p; for all j = 1,...,n. This means that
QC L(pa, -, pn). Figure 2 illustrates this inclusion for n = 2. O

Proof of Theorem 1.11. For a > 0, consider the simplex

n
ZMSG

j=1

A™(a) = { p e RY,

Observe that the toric domain Xan(,) is the ball B?"(a). Now let a > 0 be the largest real
number such that A™(a) C Q; see Figure 2.

We have B?"(a) C Xgq, so by definition a < cg,(Xq). Since c{ is a normalized
symplectic capacity, car(Xq) < ¢ (Xq). By the maximality property of a, there exists

a point p € 0+ with 2;21 f; = a. By an approximation argument we can assume that

p € 0+Q. By Lemma 3.2, Xq C X,
we then have

,ouin)- By the monotonicity of Cch and Lemma 3.1,

n
(X)) < M (Xpup) = D1 = a.
j=1

Combining the above inequalities gives cq;(Xq) = ¢IH(Xq) = a. O

4 ECH capacities

We now recall some facts about ECH capacities which we will use to prove Theorem 1.7.

Definition 4.1. A weakly convez toric domain in R* is a compact toric domain Xq C R*
such that €2 is convex, and 042 is an arc with one endpoint on the positive p; axis and one
endpoint on the positive uo axis. See Figure 1d.



M2

Figure 2: The inclusions A™(a) C Q C L(p1, ..., pn) for n =2

Theorem 4.2 (Cristofaro-Gardiner [7]). In R%, let Xq be a concave toric domain, and let
Xq be a weakly convex toric domain. Then there exists a symplectic embedding int(Xq) <
S

Xq if and only if cE“N(Xq) < EH(Xq) for all k > 0.

To make use of this theorem, we need some formulas to compute the ECH capacities
cECH. To start, consider a 4-dimensional concave toric domain Xq. Associated to Xgq is a
“weight sequence” W (Xgq), which is a finite or countable multiset of positive real numbers
defined in [5], see also [23], as follows. Let r be the largest positive real number such that
the triangle A2(r) C Q. We can write Q\ A2(r) = €, LIy, where €; does not intersect the
po-axis and §~22 does not intersect the pj-axis. It is possible that §~21 and /or §~22 is empty.
After translating the closures of € or Qs by (=r,0) and (0, —r) and multiplying them by

11 1
the matrices [0 1] and [ 0], respectively, we obtain two new domains ; and Qs in

11
Rzzo such that X, and Xq, are concave toric domains. We then inductively define
W(Xo) = (r) UW(Xa,) UW(Xa,), (4.1)

where ‘U’ denotes the union of multisets, and the term W (Xg,) is omitted if €; is empty.
Let us call two subsets of R? “affine equivalent” if one can be obtained from the other
by the composition of a translation and an element of GL(2,Z). If W(Xgq) = (a1, a2, ...),
then the domain €2 is canonically decomposed into triangles, which are affine equivalent to
the triangles A?(ay), A%(as), ... and which meet only along their edges; the first of these
triangles is A%(r). See [19, §3.1] for more details. We now recall the “Traynor trick”:

Proposition 4.3. [29] If T C RQZO is a triangle affine equivalent to A?(a), then there is a
symplectic embedding int(B*(a)) — Xing(T)-
S

As a result, there is a symplectic embedding

H int(B4(ai)) C Xq.

Consequently, by the monotonicity property of ECH capacities, we have

cECH (H int(B4(ai))> < ECH(X). (4.2)

10



Theorem 4.4 ([5]). If Xq is a four-dimensional concave toric domain with weight expan-
sion W(Xq) = (a1,a2,...), then equality holds in (4.2).

To make this more explicit, we know from [17] that®

ek (Himw‘*(ai))): sup > B (int(B (@) (4.3)

; kit=k 5

and
e, M (int(B*(a))) = g (B*(a)) = da, (4.4)

where d is the unique nonnegative integer such that
d* +d < 2k < d*+3d.

To state the next lemma, given a1, as > 0, define the polydisk

P(al,aQ) = {Z S CQ

7T|Z1|2 <a, 7T|22\2 < CLQ}-

This is a convex toric domain X where Q' is a rectangle of side lengths a1 and as.

Lemma 4.5. Let Xq be a four-dimensional concave toric domain. Let (a,0) and (0,b) be
the points where J4S) intersects the axes. Let i be a point on 0.8 minimizing p1 + p2, and
write 1 = 1 + po. Then there exists a symplectic embedding

int(Xgq) < P(r,max(b,a —1)).

Proof. One might hope for a direct construction using some version of “symplectic folding”
[24], but we will instead use the above ECH machinery. By Theorem 4.2, it is enough to
show that

CECH(XQ) < CECH(P(’I“, max(b,a — 1)) (4.5)

for each nonnegative integer k.

Consider the weight expansion W (Xq) = (a1, as,...) where a; = r. The decomposition
of Q into triangles corresponding to the weight expansion consists of the triangle A2%(r),
plus some additional triangles in the triangle with corners (0,7), (11, p2), (0,b), plus some
additional triangles in the triangle with corners (u1, p2), (r,0), (a,0); see Figure 3a. The
latter triangle is affine equivalent to the triangle with corners (u1, p2), (r,0), (r,a — r); see
Figure 3b. This allows us to pack triangles affine equivalent to A%(a;), A%(az),. .. into the
rectangle with horizontal side length r and vertical side length max(b,a — r). Thus by the
Traynor trick, we have a symplectic embedding

Hint(B(ai)) < P(r,max(b,a —r)).

i

Then Theorem 4.4 and the monotonicity of ECH capacities imply (4.5). O

SFor the sequence of numbers a; coming from a weight expansion, or for any finite sequence, the supremum
in (4.3) is achieved, so we can write ‘max’ instead of ‘sup’.

11
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(a) Weights of Xq (b) Ball packing into a polydisk

Figure 3: Embedding a concave toric domain into a polydisk

Proof of Theorem 1.7. Let r be the largest positive real number such that A%(r) C Q. We
have B4(r) C Xgq, so 7 < car(Xq), and we just need to show that cz(Xq) < 7.

Let i be a point on 04 such that p; +ps = r. By an approximation argument, we can
assume that Xg is strictly monotone, so that the tangent line to 942 at p is not horizontal
or vertical. Then we can find a,b > r such that 2 is contained in the quadrilateral with
vertices (0,0), (a,0), (11, 12), and (0,b). It then follows from Lemma 4.5 that there exists
a symplectic embedding int(Xq) < P(r,R) for some R > 0. Since P(r,R) C Z*(r), it
follows that cz(Xq) < r. O

5 A family of non-monotone toric examples

We now study a family of examples of non-monotone toric domains, and we determine when
they satisfy the conclusions of Conjecture 1.1 or Conjecture 1.2.

For 0 < a < 1/2, let Q, be the convex polygon with corners (0,0), (1 —2a,0), (1 —a,a),
(a,1—a) and (0,1 — 2a), and write X, = Xq,; see Figure 4a. Then X, is a weakly convex
(but not monotone) toric domain.

Proposition 5.1. Let 0 < a < 1/2. Then the Gromov width and cylindrical capacity of
X, are given by

cGr(Xy) = min(1 — a,2 — 4a), (5.1)
cz(Xy)=1-—a.

Corollary 5.2. Let 0 < a < 1/2 and let X, be as above. Then:

(a) The conclusion of Conjecture 1.1 holds for X,, i.e. all normalized symplectic capacities
defined for X, agree, if and only if a < 1/3.

(b) The conclusion of Conjecture 1.2 holds for X, i.e. every normalized symplectic capacity

¢ defined for X, satisfies ¢(Xa) < /2 Vol(X,), if and only if a < 2/5.
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Proof of Corollary 5.2. (a) By Lemma 1.3, we need to check that cq;(X,) = cz(X,) if and
only if a < 1/3. This follows directly from (5.1) and (5.2).

(b) Since ¢y is the largest normalized symplectic capacity, the conclusion of Conjecture
1.2 holds for X, if and only if

cz(Xa) < /2 Vol(X,). (5.3)
By equation (1.2), we have

Vol(Xq, ) = * —24(12'
It follows from this and (5.2) that (5.3) holds if and only if a < 2/5. O

Remark 5.3. To recap, the conclusion of Conjecture 1.1 holds if and only if the ratio
cz/ccr = 1, and the conclusion of Conjecture 1.2 holds if and only if the ratio ¢7, /(n! Vol) <
1. The above calculations show that both of these ratios for X, go to infinity as a — 1/2.

S = o

2 >
1—2a 1 M,

(a) The domain €, (b) A domain to which Theorem 5.6 applies

Figure 4: Some domains

To prove Proposition 5.1, we will use the following formula for the ECH capacities of
a weakly convex toric domain Xq. Let r be the smallest positive real number such that
Q C A2(r). Then A2(r)\Q = Q1 UQ, where Q1 does not intersect the pg-axis, and Qg does
not intersect the uj-axis. It is possible that o and /or Q, is empty. As in the discussion
preceding (4.1), the closures of Q) and Qs are affine equivalent to domains 7 and Qs such
that Xq, and Xq, are concave toric domains. Denote the union (as multisets) of their

weight sequences by
W(Xq,) UW(Xq,) = (a1,...).

We then have:

Theorem 5.4 (Choi-Cristofaro-Gardiner [7]). If Xq is a four-dimensional weakly convex
toric domain as above, then

ok (Xq) = inf {cESF (BY(r)) — " (L[ B4<a@-)> } : (54)
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We need one more lemma, which follows from [21, Cor. 4.2]:

Lemma 5.5. Let puy,po > a > 0. Let Q be the “diamond” in Rzzo given by the convex hull
of the points (pu1 £ a, p2) and (u1, pe £+ a). Then there is a symplectic embedding

int(B*(2a)) < Xa.

Proof of Proposition 5.1. To prove (5.1), we first describe the ECH capacities of X,. In
the formula (5.4) for X,, we have r = 1, while the weight expansions of ; and g are
both (a,a); the corresponding triangles are shown in Figure 5(b). Thus by Theorem 5.4
and equation (4.3), we have

4
M (Xa) = - 1n£ {Ckgl1+l2+13+l4 (B'(1 z;c LM (B } - (5.5)
i=
We also note from (4.4) that
et N(BY(r) = SN(BY () =, c5 H(BY(r)) = 2.
Taking k£ =1 and (Iy,...,l4) = (1,0,0,0) in equation (5.5), we get
AN (X, )<1-a. (5.6)
Taking £k =1 and (Iy,...,l4) = (1,1,1,1) in equation (5.5), we get
M Xq,) < 2 - 4da. (5.7)

By (5.6) and (5.7) and the fact that ¢P’CH is a normalized symplectic capacity, we conclude
that
car(Xq,) <min(1l — a,2 — 4a). (5.8)
To prove the reverse inequality to (5.8), suppose first that 0 < a < 1/3. It is enough to
prove that there exists a symplectic embedding int(B*(1 —a)) < Xq,. By Theorem 4.2, it
is enough to show that ’
e M(BY(1 —a)) < fM(Xa,)

for all nonnegative integers k. By equation (5.5), the above inequality is equivalent to

4
kN B —a) + Y N(BY @) < R iy, (BYD) (5.9)
=1

for all nonnegative integers k,l1,...,l4 > 0. To prove (5.9), by the monotonicity of ECH
capacities and the disjoint union formula (4.3), it suffices to find a symplectic embedding

int (34(1 —a)l HB4(a)> < B*(1).

4
This embedding exists by the Traynor trick (Proposition 4.3) using the triangles shown in
Figure 5(a).

Finally, when 1/3 < a < 1/2, it is enough to show that there exists a symplectic
embedding int(B*(2 — 4a)) . Xq,. This exists by Lemma 5.5 using the diamond shown
in Figure 5(b).

This completes the proof of (5.1). Equation (5.2) follows from Theorem 5.6 below. [J
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1—a 1
(a) 0<a<1/3 (b) 1/3 < a<1/2

Figure 5: Ball packings

Theorem 5.6. Let Xq C R* be a weakly convex toric domain, see Definition 4.1. For
j=1,2, let
Mj = max{p; | p € Q}.

Assume that there exists (M, p2) € 01 with pg < My, and that there exists (p1, M) €
01 with 1 < My. Then
CZ(XQ) = min(Ml, MQ).

That is, under the hypotheses of the theorem, see Figure 4b, an optimal symplectic
embedding of Xq into a cylinder is given by the inclusion of Xq into (7|21 < Mj) or
(m|22f* < Ms).

Proof. From the above inclusions we have cz(Xq) < min(Mj, Ms). To prove the reverse
inequality, suppose that there exists a symplectic embedding

Xo < ZY(R). (5.10)

We need to show that R > min(Mj, Ms). To do so, we will use ideas’ from [18].

Let € > 0 be small. Let (A,0) and (0, B) denote the endpoints of 9, Q. By an approxi-
mation argument, we can assume that 0, is smooth, and that 0, has positive slope less
than ¢ near (4,0) and slope greater than e ! near (0, B). As in the proof of Proposition 1.8,
there are then three types of Reeb orbits on 9Xq:

(i) There is a simple Reeb orbit whose image is the circle with 7|z1|> = A and 2z = 0. This

Reeb orbit has symplectic action (period) equal to A, and rotation number 1 — 1.

"The main theorem in [18] gives a general obstruction to a symplectic embedding of one four-dimensional
convex toric domain into another, which sometimes goes beyond the obstruction coming from ECH capac-
ities. This theorem can be generalized to weakly convex toric domains; but rather than carry out the full
generalization, we will just explain the simple case of this that we need.
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(ii) There is a simple Reeb orbit whose image is the circle with z; = 0 and 7|z2|?> = B.
1

This Reeb orbit has symplectic action B and rotation number 1 —e™".

(iii) For each point p € 0, where 0, has rational slope, there is an S* family of simple
Reeb orbits in the torus where 7(|21|?,|22|?) = p. If v = (v1,12) is the outward
normal vector to 94€) at pu, scaled so that vy, v are relatively prime integers, then
these Reeb orbits have rotation number v; + v5 and symplectic action p - v. See [12,
§2.2].

We claim now that:

(*) Every Reeb orbit on 0Xq with positive rotation number has symplectic action at least
min(M 1, MQ).

To prove this claim, we only need to check the type (iii) simple Reeb orbits where v +v5 > 1.
For such an orbit we must have v1 > 1 or o > 1. Suppose first that 41 > 1. By the
hypotheses of the theorem there exists 4 such that (M, uh) € 04 and My > pf. Since
) is convex and v is an outward normal at u, the symplectic action

pov > (M, py) v =M+ (1 — 1)(My — py) + (v1 +v2 — 1)y > M.

Likewise, if o > 1, then the symplectic action u - v > Mos.

As in [18, §5.3], starting from the symplectic embedding (5.10), by replacing Xq with
an appropriate subset and replacing Z4(R) with an appropriate superset, we obtain a
symplectic embedding X’ = int(Z’), where:

e 7' is an ellipsoid whose boundary has one simple Reeb orbit v, with symplectic action
A(v4+) = R + ¢ and Conley-Zehnder index CZ(y4) = 3, another simple Reeb orbit
with very large symplectic action, and no other simple Reeb orbits.

e X’ is a (non-toric) star-shaped domain with smooth boundary, all of whose Reeb
orbits are nondegenerate. Every Reeb orbit on X’ with rotation number greater
than or equal to 1 has action at least min(M;, Ms) — e.

The symplectic embedding gives rise to a strong symplectic cobordism W whose positive
boundary is 9Z" and whose negative boundary is 9X’. The argument in [18, §6] shows that
for a generic “cobordism-admissible” almost complex structure J on the “completion” of
W, there exists an embedded J-holomorphic curve u with one positive end asymptotic to
the Reeb orbit v, in 7', negative ends asymptotic to some Reeb orbits 1, ..., v, in 0X’,
and Fredholm index ind(u) = 0. The Fredholm index is computed by the formula

ind(u) = 29 + [CZ(3+) ~ 1] = > [CZ(3) — (5.11)

where g denotes the genus of w. Furthermore, since J-holomorphic curves decrease sym-
plectic action, we have

Ar4) = 3 Al). (5.12)
=1
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We claim now that at least one of the Reeb orbits ; has action at least min(M;, Ms) —e.
Then the inequality (5.12) gives

R+ ¢ > min(Mj, My) — ¢,

and since € > 0 was arbitrarily small, we are done.

To prove the above claim, suppose to the contrary that all of the Reeb orbits +; have
action less than min(Mj, M) — . Then all of the Reeb orbits v; have rotation number
p(7i) < 1, which means that they all have Conley-Zehnder index CZ(~;) < 1. It now follows
from (5.11) that ind(u) > 2, which is a contradiction®. O

6 The first Ekeland-Hofer capacity

The goal of this section is to (re)prove the following theorem. This is well-known in the
community and is attributed to Ekeland, Hofer and Zehnder [9, 15]. It was first mentioned
by Viterbo in [30, Proposition 3.10].

Theorem 6.1 (Ekeland-Hofer-Zehnder). Let W C R*" be a compact convexr domain with
smooth boundary. Then

CllaH(W) = Amm(W)

We start by recalling the definition of the first Ekeland-Hofer capacity cI'H. Let E =
H'Y2(S', R?"). That is, if € L*(S*,R?") is written as a Fourier series z = >pez €2 My
where 3, € R?", then

reEFE Z\k||xkl2 < 0.
keZ
Recall that there is an orthogonal splitting £ = ET @ E° @ E~ and orthogonal projections
P°: E — E° where o = +,0,—. The symplectic action of x € E is defined to be

Al@) = 5 (P72 = 1P 2lFp12) -

DO |

It follows from a simple calculation that if x is smooth, then A(z) = [ Ao, where X denotes
the standard Liouville form on R?".
Let H denote the set of H € C*°(R?") such that

e H|y =0 for some U C R?" open,
e H(z) = c|z|? for z >> 0 where ¢ & {m,2m,3m,...}.

For H € H, the action functional Ay : H'/2(S*,R?") — R is defined by

Ap(z) = A(z) — /O H(x(t))dt. (6.1)

80ne way to think about the information that we are getting out of (5.11), as well as the general sym-
plectic embedding obstruction in [18], is that we are making essential use of the fact that every holomorphic
curve has nonnegative genus.
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Note that the natural action of S* on itself induces an St-action on E. Let T be the set of
homeomorphisms h : E — E such that h can be written as

hz)=e+@Pte 4+ Plr + - @ P 0+ K(2),

where v4,7_ : E — R are continuous, S'-invariant and map bounded sets to bounded
sets, and K : E — E is continuous, S'-equivariant and maps bounded sets to precompact
sets. Let ST denote the unit sphere in Et with respect to the H'/2 norm. The first
Ekeland-Hofer capacity is defined in [9] by

AW = inf{cg, | H € H,W C supp H},
where
ci1 = inf{sup Ax(€) | € C E is S'-invariant, and Vh € T : h(€) N ST # 0}.

Proof of Theorem 6.1. Since W is star-shaped, there is a unique differentiable function
r: R*™ — R which is C*° in R?" \ {0} satisfying 7(cz) = ¢?r(z) for ¢ > 0 such that

W ={zeR™|r(z) <1},
OW ={z € R*™ | r(z) = 1}.

Let a = Apin(W) and fix € > 0. Let f € C$H(R) be a convex function such that f(r) =0
for r <1 and f(r) = Cr — (a4 ¢) for r > 2 for some constant C' > «. In particular,

fr)>Cr—(a+e¢), forallr. (6.2)

We now choose a convex function H € C°°(R?") such that

H(z) = [f(r(2), ifr(z) <2,
H(z) > f(r(z)), forallzeR?" (6.3)
H(z) = clz|? if z >> 0 for some ¢ € Ry \ 7Z.

Let g € F be an action-minimizing Reeb orbit on 0W, reparametrized as a map xzg :
R/Z = S* — R?" of speed a, so that A(zg) = o and r(x¢) = 1 and ¢ = aJVr(zg). From
a simple calculation we deduce that x( is a critical point of the functional ¥ : F — R
defined by

1
¥(o) = Aw) —a [ r(a(o) . (6.4)
0
Observe that ¥(cz) = 2¥(z) for ¢ > 0. So szg is a critical point of ¥ for all s > 0. Let
£=1[0,00) - Ptog@ E° @ E~.

We now claim that ¥(z) < 0 for all z € £&. To prove this, let £ = sPTzo @ EC @ E~.
Observe that ¥|¢, is a concave function. Since sz is a critical point of ¥|¢, it follows that
max ¥ (&) = U(sxg) = s2¥(z0) = 0.

From (6.1), (6.2), (6.3) and (6.4) we obtain

AH(JU)§\Il(x)+a+8+(C'—oz)/olr(x(t))dt§a+s.
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Note that ¢ is Sl-invariant. Moreover it is proven in [8] that h(£) N ST # @ for all h € T.
So cy1 < a+e. Hence P (W) < a +¢ for all € > 0. Therefore

AHW) < a.

To prove the reverse inequality, recall from [9, Prop. 2] that ¢ (W) is the symplectic

action of some Reeb orbit on 0W. Thus

AW > a
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