
Scaling laws for stagnant-lid convection with a buoyant crust1

Kyle Batra1 and Bradford Foley22

1Department of Astronomy & Astrophysics, Pennsylvania State University3

2Department of Geosciences, Pennsylvania State University4

Abstract5

Stagnant-lid convection, where subduction and surface plate motion is absent, is common among6

the rocky planets and moons in our solar system, and likely among rocky exoplanets as well. How7

stagnant-lid planets thermally evolve is an important issue, dictating not just their interior evolution8

but also the evolution of their atmospheres via volcanic degassing. On stagnant-lid planets, the crust9

is not recycled by subduction and can potentially grow thick enough to significantly impact convection10

beneath the stagnant lid. We perform numerical models of stagnant-lid convection to determine new11

scaling laws for convective heat flux that specifically account for the presence of a buoyant crustal layer.12

We systematically vary the crustal layer thickness, crustal layer density, Rayleigh number, and Frank-13

Kamenetskii parameter for viscosity to map out system behavior and determine the new scaling laws.14

We find two end-member regimes of behavior: a “thin crust limit,” where convection is largely unaffected15

by the presence of the crust, and the thickness of the lithosphere is approximately the same as it would16

be if the crust were absent; and a “thick crust limit,” where the crustal thickness itself determines the17

lithospheric thickness and heat flux. Scaling laws for both limits are developed and fit the numerical model18

results well. Applying these scaling laws to rocky stagnant-lid planets, we find that the crustal thickness19

needed for convection to enter the thick crust limit decreases with increasing mantle temperature and20

decreasing mantle reference viscosity. Moreover, if crustal thickness is limited by the formation of dense21

eclogite, and foundering of this dense lower crust, then smaller planets are more likely to enter the thick22

crust limit because their crusts can grow thicker before reaching the pressure where eclogite forms. When23

convection is in the thick crust limit, mantle heat flux is suppressed. As a result, mantle temperatures24

can be elevated by 100s of degrees K for up to a few Gyrs in comparison to a planet with a thin crust.25

Whether convection enters the thick crust limit during a planet’s thermal evolution also depends on the26

initial mantle temperature, so a thick, buoyant crust additionally acts to preserve the influence of initial27

conditions on stagnant-lid planets for far longer than previous thermal evolution models, which ignore28

the effects of a thick crust, have found.29

Key Words: Planetary interiors, Planetary tectonics, Dynamics of lithosphere and mantle, Dynam-30
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1 Introduction32

Stagnant-lid planets and satellites are common in the solar system, as Earth is the only rocky planet known33

to operate in a plate-tectonic regime of mantle convection (e.g. Breuer & Moore, 2015; Stern et al., 2018).34

Understanding the geologic history of rocky planets and moons in the solar system thus requires understand-35

ing the thermal evolution of stagnant-lid planets. Much work has been devoted to exploring the physics of36

stagnant-lid convection, in particular for determining scaling laws for convective heat flux or interior flow37

speed (e.g. Christensen, 1984; Ogawa et al., 1991; Davaille & Jaupart, 1993; Solomatov, 1995; Grasset &38

Parmentier, 1998; Reese et al., 1998; Dumoulin et al., 1999; Solomatov & Moresi, 2000; Reese et al., 2005;39

Korenaga, 2009; Weller & Lenardic, 2016; Thiriet et al., 2019), and modeling the thermal evolution of40

stagnant-lid planets with either parameterized models based on these scaling laws, or fully dynamic two-41

and three-dimensional convection models (e.g. Schubert et al., 1979; Spohn, 1991; Stevenson et al., 1983;42

Hauck & Phillips, 2002; Fraeman & Korenaga, 2010; Morschhauser et al., 2011; Grott et al., 2011; Plesa43

et al., 2015).44

The study of stagnant-lid planet evolution is also relevant to exoplanets. Whether exoplanets are more45

likely to have stagnant-lid tectonics, plate tectonics, or other intermediate forms of tectonics, is unclear46

and difficult to predict from first principles. Studies of exoplanet geodynamics have reached a range of47

conflicting conclusions on whether super-Earths are more likely to have plate tectonics or not, or even which48

planetary characteristics are most important for promoting plate tectonics (e.g. Valencia et al., 2007; O’Neill49

& Lenardic, 2007; Korenaga, 2010; Stamenkovic et al., 2011; van Heck & Tackley, 2011; Foley et al., 2012;50

Lenardic & Crowley, 2012; Stein et al., 2013; Noack & Breuer, 2014). However, given that these studies found51

that the operation of plate tectonics was quite sensitive to factors such as size, mantle heat budget, or the52

surface environment, and the ubiquity of stagnant-lids on the rocky objects of our solar system, stagnant-lid53

planets are likely to make up a significant portion of the exoplanet population.54

Operating in a stagnant-lid regime has important implications for a planet’s volatile cycling and climate55

evolution. Plate tectonics has long been thought to be important, and possibly even essential, for a habitable56

surface environment, as it helps drive the carbonate-silicate cycle that regulates Earth’s climate (e.g. Walker57

et al., 1981; Berner et al., 1983; Kasting & Catling, 2003; Foley & Driscoll, 2016). However, recent work has58

shown that stagnant-lid exoplanets can also sustain volatile cycling and outgassing that promotes a habitable59

climate, under some conditions (Noack et al., 2017; Tosi et al., 2017; Foley & Smye, 2018; Valencia et al.,60

2018; Foley, 2019; Höning et al., 2019). The thermal evolution of the mantle is critical for stagnant-lid planet61

climate evolution, as it dictates the rate of volcanic outgassing over time (Tosi et al., 2017; Dorn et al., 2018;62

Foley & Smye, 2018; Höning et al., 2019). Thus better constraints on the thermal evolution of stagnant-lid63
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planets will also allow better assessments of the potential for habitability of rocky exoplanets.64

1.1 Crust formation and stagnant-lid convection65

The physics of stagnant-lid convection in simple systems, where convection is purely thermally driven and66

viscosity depends only on temperature, is well understood. However, there are many additional complications67

present in real stagnant-lid planets that can significantly affect their thermal evolution. One such process68

is melting and subsequent chemical differentiation, which may be especially important early in stagnant-lid69

planets’ histories, when mantle temperatures are expected to be high (e.g. Breuer & Moore, 2015; Byrne,70

2020). In particular, mantle melting produces crusts that can grow thick on stagnant-lid planets, as there is no71

subduction to constantly recycle this crust (e.g. Hauck & Phillips, 2002; Keller & Tackley, 2009; Morschhauser72

et al., 2011; Plesa & Breuer, 2014). The crust is chemically buoyant compared to the underlying mantle at73

surface pressures, unless the degree of melting in the mantle is very high, but can become negatively buoyant74

due to metamorphic reactions at pressures >∼ 1 − 2 GPa (e.g. Hacker, 1996). The crust is also expected75

to be enriched in heat producing elements, as these elements are incompatible in the mantle (e.g. Hart &76

Brooks, 1974; Beattie, 1993), and to have a lower thermal conductivity than the mantle (e.g. Clauser &77

Huenges, 1995; Turcotte & Schubert, 2002). Each of these effects could significantly modulate a stagnant-lid78

planet’s mantle dynamics and thermal history.79

Both a lower thermal conductivity in the crust, and enrichment of heat producing elements, can be incor-80

porated in thermal evolution models using existing methods. A geotherm through the crust and stagnant-lid81

can be calculated from the heat conduction equation, and then the lid thickness can be determined based on82

a balance between the conductive heat flux at the base of the lid, and the convective heat flux supplied by83

the mantle (e.g. Hauck & Phillips, 2002; Grott et al., 2011, see also §6); this method has been successfully84

benchmarked against two- and three-dimensional convection models (e.g. Thiriet et al., 2019). However,85

when treating the crust in this manner, scaling laws for mantle convective heat flux are still needed.86

Previous models have typically assumed that convective heat flux is unaffected by the presence of the87

crust (e.g. Morschhauser et al., 2011; Plesa & Breuer, 2014; Foley & Smye, 2018), or that standard stagnant-88

lid scaling laws apply to convection in the mantle beneath the crust (e.g. Fraeman & Korenaga, 2010). The89

buoyancy of the crust, however, could significantly modify the mantle convective heat flux, in particular if90

the crust grows thick. In many thermal evolution models, the crust grows so thick that it reaches the base91

of the stagnant lid, especially early in a planet’s evolution, when mantle temperatures are high (e.g. Hauck92

& Phillips, 2002; Morschhauser et al., 2011; Plesa & Breuer, 2014; Foley & Smye, 2018). These models93

find that such thick crusts can form even when taking into account partitioning of heat producing elements94
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into the crust, and mantle depletion due to crustal extraction. However, many previous models ignore the95

influence crustal buoyancy could have on the dynamics at the base of the stagnant lid, and instead assume96

that all crust reaching the base of the lid founders into the mantle (e.g. Morschhauser et al., 2011; Plesa &97

Breuer, 2014; Foley & Smye, 2018); this is in keeping with the assumption that mantle convective heat flux98

is unaffected by the presence of the crust.99

Assuming that crust always founders when reaching the base of the stagnant lid, and that lid thickness100

is not influenced by the crust’s buoyancy, is questionable. If the crust grows thick enough to reach the lid101

base, its positive buoyancy could suppress foundering of the rheological sub-layer, the thin layer below the102

lid where viscosities are low enough to fully participate in convection (e.g. Solomatov, 1995). As a result,103

the effective thickness of the stagnant lid would increase, and the effective temperature difference driving104

convection (that is, the temperature difference across the actively convecting portion of the mantle, beneath105

the stagnant lid) would decrease. Both of these effects would act to suppress convective heat flux. Lourenço106

et al. (2018) argues that melting and crust production can enhance convective heat flux on stagnant-lid107

planets, via thermal weakening of the lower mantle lithosphere by melt migration. However, once the crust108

has grown thick enough to reach the stagnant-lid base, thermal weakening will not help drive foundering,109

since it is the crust’s buoyancy that resists sinking rather than the lid’s viscosity. Scaling laws for convective110

heat flux when a thick, buoyant crust influences foundering at the base of the stagnant lid have not been111

developed, nor has this effect been incorporated in thermal evolution models. The goal of our paper is thus112

to accomplish this task.113

The formation of eclogite, or other dense phases, in the lower crust can drive crustal foundering, and114

hence limit crustal thickness. As a result, in applying our newly developed scaling laws for heat flux with115

a buoyant crust to stagnant-lid planets, we will limit crustal thickness to the depth where eclogite forms116

(see §5). Moreover, crustal foundering driven by eclogite could also drag the underlying lithospheric mantle117

with it, in addition to limiting the crustal thickness (e.g. Johnson et al., 2014). If lithospheric mantle is118

entrained by foundering crust, the stagnant lid thickness will be decreased, at least during periods of crustal119

foundering, enhancing convective heat flux. While the effect of foundering dense crust could be important, at120

least for transient periods when foundering is active, it is beyond the scope of this study. Here we will focus121

solely on buoyant crusts. Future work will consider heat flux variations during crustal foundering events.122

In addition to the crust, mantle melting also forms a depleted mantle layer below the crust (e.g. Schott123

et al., 2001; Fraeman & Korenaga, 2010; Plesa & Breuer, 2014). The depleted mantle is also buoyant124

compared to the primitive mantle, although depleted mantle density is larger than crust density in most125

cases. In addition, depleted mantle may have an elevated viscosity compared to primitive mantle, due to126

dehydration during melting (e.g. Hirth & Kohlstedt, 1996). The influence of a depleted mantle layer on127
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heat flux and thermal evolution of stagnant-lid planets has already been studied extensively (e.g. Schott128

et al., 2001; Korenaga, 2009; Fraeman & Korenaga, 2010; Morschhauser et al., 2011; Ogawa & Yanagisawa,129

2011; Plesa & Breuer, 2014), so we will neglect this effect here and focus our modeling solely on the crust’s130

buoyancy.131

1.2 Previous work on thermo-chemical convection132

There are a number of other important aspects of chemical geodynamics, a topic which includes the effects133

of chemical differentiation on mantle convection and the corresponding effects of mantle convection on134

the formation and evolution of chemical heterogeneity, that have received extensive study previously (e.g.135

Tackley, 2015). These include studying whether chemical differentiation of the mantle, either during magma136

ocean solidification or later magmatism and crust production, can lead to large-scale layering within the137

mantle, the effects of melting and crust production on the properties and dynamics of the lithosphere, and138

the mixing of chemical heterogeneities by mantle convection (see e.g. Kellogg, 1992, for a review of mixing).139

Some early studies considered whether the upper and lower mantles convected separately on Earth, due140

to density differences induced either by phase transitions (e.g. Christensen & Yuen, 1985; Tackley et al.,141

1993) or by differences in composition (e.g. Richter & Johnson, 1974; Richter & McKenzie, 1981; Davaille,142

1999). Chemical layering could be primordial, developing as a result of fractional crystallization during143

magma ocean solidification (e.g. Elkins-Tanton et al., 2003; Zaranek & Parmentier, 2004; Tosi et al., 2013),144

formed by deposition of dense, garnet-bearing crust in the lower mantle via subduction (e.g. Ogawa &145

Nakamura, 1998), or a combination of the two. However, seismic evidence now indicates that convection146

operates across the whole mantle (e.g. Helffrich & Wood, 2001), with any layering confined to the very147

lowermost mantle (e.g. Kellogg et al., 1999), most likely the large low shear velocity provinces (LLSVPs)148

(e.g. Garnero & McNamara, 2008; Hernlund & McNamara, 2015). The formation and evolution of LLSVPs149

has received significant attention, in particular focusing on the density needed to explain the present day150

shapes and persistence of these features (e.g. Davaille, 1999; McNamara & Zhong, 2005; Li & McNamara,151

2013; Mulyukova et al., 2015; Jones et al., 2020).152

More relevant to our study is previous work on how chemical differentiation modifies the properties153

and dynamics of the lithosphere. The effect of crustal buoyancy on the operation of plate tectonics on154

Earth has been well studied. A thick, buoyant crust can potentially prevent subduction (e.g. Oxburgh155

& Parmentier, 1977; Vlaar, 1985; Davies, 1992; van Thienen et al., 2004b), however, even in this case156

local crustal thickening and the formation of eclogite can still drive at least short-lived subduction episodes157

(van Thienen et al., 2004a). The formation of depleted mantle coincident with crust production modifies158
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lithospheric viscosity. If the depleted mantle is very thick, then it can dictate the thickness of the lithosphere159

and suppress convective heat flux in a plate-tectonic regime (e.g. Korenaga, 2006), similar to what we show160

for stagnant-lid convection with a buoyant crust. Also relevant to our study is work on mantle convective heat161

flux through continents. Continents also suppress convective heat flux, effectively insulating the underlying162

mantle, and we find that the same principles used to develop scaling laws for this effect also work for our case163

of stagnant-lid convection (e.g. Lenardic & Kaula, 1996; Lenardic, 1998; Lenardic et al., 2005; Van Thienen,164

2007).165

Finally, as reviewed above in §1.1, the formation and evolution of crust and depleted mantle for stagnant-166

lid planets, in particular Mars, has been studied previously. However, despite some studies where the167

formation of buoyant crust due to mantle melting is modeled for Mars (Keller & Tackley, 2009; Ruedas168

et al., 2013), no study has yet carefully examined how a buoyant crust influences convective heat flux, nor169

developed scaling laws that can be used in parameterized thermal evolution models.170

1.3 Purpose of this study171

As outlined above, our study focuses on how a thick, buoyant crust modulates the dynamics of the base of172

the stagnant lid, and hence convective heat flux, as this is a key remaining uncertainty in the role melting and173

crust formation plays in stagnant-lid thermal evolution. We will focus solely on the role of crustal buoyancy,174

as the effects of heat producing element enrichment in the crust and a lower thermal conductivity in the175

crust have already been extensively studied. Likewise, the formation of a depleted mantle layer beneath the176

crust has also been carefully studied previously, and will be neglected here. We will also only consider thick177

buoyant crusts; how foundering of dense lower crust influences stagnant-lid convective heat flux is outside178

this study’s scope.179

We therefore use simple numerical convection models to study how convective heat flux scales when a180

thick, buoyant crust is present, and to develop new scaling laws based on these models. We then apply these181

scaling laws to stagnant-lid planets, by first demonstrating the conditions under which crustal buoyancy182

significantly influences convective heat flux, assuming the crust can grow no thicker than the depth where183

eclogite forms. We then demonstrate how crusts up to this maximum thickness imposed by the formation184

of eclogite would influence stagnant-lid planet thermal evolution.185

In both sets of models, the model set up will be kept as simple as possible. In the numerical convection186

models, we model convection in a two-dimensional Cartesian domain, with a strongly temperature-dependent187

viscosity and an imposed chemically buoyant layer at the surface representing the crust. As we focus solely188

on the influence of crustal buoyancy, the only distinguishing feature of the crustal layer in our models is its189
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buoyancy. We systematically vary the thickness of the crustal layer and the Rayleigh number over a wide190

parameter range, such that robust scaling laws can be developed.191

The crustal layer in the numerical convection models can evolve as a result of mantle flow, becoming192

thickened in regions of convergence and thinned in regions of divergence, but the volume of the crust is193

fixed. Crust is neither created by mantle melting nor destroyed by foundering. We also do not consider194

mantle heat loss by melting, which can dominate when the mantle is hot, and keep the mantle temperature195

regulated near the solidus (e.g. O’Reilly & Davies, 1981; Turcotte, 1989; Keller & Tackley, 2009; Ogawa196

& Yanagisawa, 2011; Nakagawa & Tackley, 2012; Moore & Webb, 2013). However, even in this case it is197

important to know the thickness of the lithosphere and convective heat flux, which can be influenced by the198

presence of the crust, as the scaling laws we develop in this paper show. Moreover, as volcanism rates decline,199

convective heat loss will become the primary mode of mantle cooling. In this case, with a potentially thick200

crust left behind from prior volcanism, our scaling laws will be directly relevant for modeling subsequent201

mantle thermal evolution.202

In applying our scaling laws to stagnant-lid planet thermal evolution, we will make similar assumptions.203

We will again focus solely on crust buoyancy, and neglect a lower thermal conductivity in the crust and204

enrichment of heat producing elements. These effects are discussed in §6, and there we show that including205

them would only reinforce our conclusions about how crustal buoyancy modulates mantle convective heat206

flux. We will also assume fixed buoyant crustal layers, so the role of crustal buoyancy can be illustrated in207

a simple manner. Time-evolving crustal thickness can be tracked with a model explicitly calculating mantle208

melting and crust production, which our new heat flux scaling laws can be incorporated into; this is left209

as a topic for future work. Throughout the paper, our models (both the numerical convection models and210

thermal evolution models) will treat the crust as simply a buoyant layer, and neglect other characteristics211

of the crust as discussed above. We will still refer to this buoyant layer in our models as “crust,” given that212

this is the physical feature we are modeling. However, readers should note the other differences between213

crust and mantle that our models neglect, as discussed here and further in §6.214

The paper is organized as follows. The background theory and numerical model setup is described in215

§2, the numerical model results explained in §3, and scaling analysis presented in §4. In §5 we constrain216

the planetary characteristics (planet size, reference viscosity, and interior temperature) where a thick crust217

capable of impeding convective heat flux can form, and apply our new scaling laws to a set of simple models of218

stagnant-lid planet thermal evolution. Finally, we discuss key uncertainties in our scaling laws and modeling219

in §6, and summarize conclusions in §7.220
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2 Theory221

2.1 Background and Governing Equations222

Our models of thermo-chemical stagnant-lid convection, with an imposed buoyant layer representing the223

crust, are performed in a two-dimensional Cartesian domain. Two-dimensional models capture the essential224

physics of convection with a buoyant crust and are computationally cheap in comparison to three-dimensional225

models, allowing for a large exploration of the relevant parameter space. In the models a purely temperature-226

dependent viscosity is used, with ratios of surface viscosity to mantle interior viscosity large enough to induce227

stagnant-lid convection, as explained below.228

The buoyant crust is represented by a chemical composition field, C. For the crust, C = 1 and for229

the mantle C = 0. As chemical diffusion is slow compared to thermal diffusion (e.g. van Keken et al.,230

1997; Tackley & King, 2003), diffusion of composition is ignored and crust is only advected around the231

domain. The buoyancy of the crust relative to the mantle due to composition is described by the buoyancy232

number, B = ∆ρc/(ρα∆T ), where ∆ρc is the density difference between crust and mantle due solely to233

composition, and ρα∆T is the density difference across the mantle due solely to temperature (where ρ is234

average mantle density, α is the thermal expansion coefficient, and ∆T = Tm − Ts is the super-adiabatic235

temperature difference across the mantle, or the difference between the potential temperature at the bottom236

of the mantle, Tm, and the surface temperature, Ts).237

Our models are purely bottom heated, which is clearly a simplification as rocky planets will also likely be238

heated significantly from within by radionuclides and primordial heat, as is the case for Earth (e.g. Jaupart239

et al., 2015). Rocky exoplanets can also experience significant tidal heating (e.g. Jackson et al., 2008; Jackson240

et al., 2008; Driscoll & Barnes, 2015). Previous work on stagnant-lid convection has found, however, that241

purely bottom heated and purely internally heated convection result in the same scaling laws for convective242

heat flux, when convection is described by an internal Rayleigh number, which we introduce below in §4 (e.g.243

Solomatov, 1995; Solomatov & Moresi, 2000; Korenaga, 2009). Our model setup is thus justifiable for a first244

order analysis of how a thick, buoyant crustal layer influences convective heat flux. Changing the relative245

contributions of bottom and internal heating can cause deviations from the scaling laws found for either246

pure bottom heating or pure internal heating, due to the changing strength of upwelling plumes (Moore,247

2008; Weller & Lenardic, 2016; Weller et al., 2016; Korenaga, 2017). Thus exploring how the scaling laws248

we develop depend on the percentage of internal heating is an important avenue for future work.249

Our model solves the standard equations for conservation of mass, momentum, energy, and chemical250

composition, assuming infinite Prandtl number and applying the Boussinesq approximation. The equations251

are given below in terms of non-dimensional variables, where the following scales are used in the non-252
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Table 1: Key variables and non-dimensional parameters used in numerical models

Variable Meaning Equation

v
′

Velocity (1)

t
′

Time (2)

P
′

Pressure (2)

C
′

Composition (C
′

= 1 is crust, C
′

= 0 is mantle) (2) & (3)

T
′

Temperature (2) & (4)

ε̇
′

Strain rate tensor (2)

µ
′

Viscosity (2) & (5)
Non-dimensional parameter Meaning Equation

B Buoyancy number (2)
Ra0 Reference Rayleigh number (2)
θ Frank-Kamenetskii parameter (5) & (6)

δ
′

c0 Initial crustal thickness above (7)

Table 2: Quantities output from numerical models and parameters and variables used in
scaling analyses

Output quantity Meaning Equation
Nu Nusselt number (7)

T
′

i Internal temperature below (7)

δ
′

c Crustal thickness below (7)
Rai Internal Rayleigh number (8)

µ
′

i Interior mantle viscosity below (8)
Parameter or variable Meaning Equation

δ
′

0 Lithosphere thickness when crust is absent (12) & (13)

δ
′

sl Sub-crustal thermal boundary layer thickness (17)
Rac Critical Rayleigh number (17)

δ
′

bot Bottom thermal boundary layer thickness (23)
C1 Nusselt number scaling law constant (C1 = 0.48) (10)
C2 Nusselt number scaling law constant (C2 = 2.95) (9)
C3 Temperature scaling law constant (C3 = 2) (23)

9



dimensionalization (primes denote non-dimensional variables throughout the text): x = x
′

d, where x is253

the spatial coordinate and d is the thickness of the mantle; t = t
′

d2/κ, where t is time and κ is the254

thermal diffusivity of the mantle; v = v
′

κ/d, where v is velocity; T = T
′

∆T + Ts, where T is temperature;255

P = P
′

µmκ/d2, where P is dynamic pressure and µm is the reference viscosity of the mantle, defined as the256

viscosity at the basal mantle temperature, Tm; and ε̇ = ε̇
′

κ/d2, where ε̇ = 1/2(∂ui/∂xj + ∂uj/∂xi) is the257

strain-rate tensor. The governing equations, in terms of non-dimensional variables, are258

∇ · v
′

= 0 (1)

259

0 = −∇P
′

+∇ · (2µ
′

ε̇
′

) +Ra0(T
′

−BC
′

)ẑ (2)

260

∂C
′

∂t′
+ v

′

· ∇C
′

= 0 (3)

261

∂T
′

∂t′
+ v

′

· ∇T
′

= ∇2T
′

(4)

262

µ
′

= e(θ(1−T
′

)). (5)

Here, ẑ is the unit vector in the vertical direction and the reference Rayleigh number, Ra0, is defined263

as Ra0 = ρgα∆Td3/(κµm), where g is gravitational acceleration. The definitions of all key variables,264

non-dimensional parameters, and output quantities calculated from the numerical models can be found in265

Tables (1) and (2). The viscosity, Eq. (5), follows a Frank-Kamenetskii approximation of the full Arrhenius266

temperature-dependent viscosity law; this simplifies the scaling analysis as only one parameter, the Frank-267

Kamenetskii parameter, is involved in the viscosity law (e.g. Solomatov & Moresi, 2000; Korenaga, 2009).268

The Frank-Kamenetskii parameter is defined as269

θ =
Ev∆T

R(Ts +∆T )2
(6)

where Ev is the activation energy for viscosity and R is the universal gas constant. The difference between270

the Frank-Kamenetskii approximation and a full Arrhenius viscosity law is smallest at the high temperatures271

that prevail beneath the stagnant lid, and therefore actively participate in convection. As a result, scaling272

laws for convective heat flux developed with a Frank-Kamenetskii approximation have been found to only273

need a minor correction factor to fit numerical experiments performed with a full Arrhenius temperature-274

dependent viscosity law (Korenaga, 2009). The choice of viscosity law in our numerical convection models275

should thus not significantly impact our resulting scaling laws, or applications to rocky stagnant-lid planets.276

In most models we use θ = 13.82, which results in a viscosity ratio between the surface and base of the277
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mantle of 106, easily large enough to lie within the stagnant lid regime (e.g. Solomatov, 1995). We also278

explore the impact of θ in our scaling laws by running an additional set of models at θ = 16.12, which results279

in a viscosity ratio of 107.280

2.2 Numerical model setup281

The model equations (1)-(6) are solved using a finite volume code, as outlined in Foley & Bercovici (2014)282

and Foley et al. (2014). The top and bottom boundaries are free slip, while the side boundaries are periodic.283

The temperature is fixed to non-dimensional values of 0 and 1 at the top and bottom, respectively. To solve284

for the advection of chemical composition, the tracer ratio method is used (Tackley & King, 2003). The285

implementation of the tracer ratio method used in this code was benchmarked against the density-driven286

overturn test cases presented in van Keken et al. (1997); the results of these benchmark tests are shown in287

the supplementary material of Foley & Rizo (2017).288

The modeling strategy is to run sets of models with an increasingly thick buoyant layer representing289

the crust, at fixed Ra0 and θ, to determine how the buoyancy of the crust and its thickness influences the290

underlying convection and surface heat flux. These sets of models are then repeated at different Rayleigh291

numbers and Frank-Kamenetskii parameters, to constrain the influence of these factors and to develop292

complete scaling laws for the surface heat flux from stagnant-lid convection with a buoyant crustal layer.293

Models are started from one of two possible initial conditions: an initially static, conductive mantle, with294

convection developing as a result of small initial perturbations added to the temperature field; and an295

already developed, statistical steady-state convection pattern to which a buoyant crustal layer is added. In296

the second case, the initial conditions used are from models without a crust that had been previously run at297

the same Rayleigh number and Frank-Kamenetskii parameter. Test cases found that models with the same298

parameters and buoyant layer thicknesses, but different initial conditions (i.e. starting from either a static,299

conductive mantle or an already developed, statistical steady-state convection pattern), result in the same300

final interior temperature and Nusselt number at statistical steady-state. Our numerical convection model301

results are therefore independent of the initial condition.302

The initial thickness of the buoyant crustal layer, δ
′

c0, is imposed as part of the initial condition. This layer303

is then free to evolve self-consistently in response to the underlying convection pattern in the mantle. As a304

result, there can be some entrainment of the crust into the mantle, so we track how crustal thickness evolves305

over time, as outlined below. Most models use a buoyancy number of B = −1, where negative numbers306

correspond to buoyant material. We also ran sets of models with buoyancy number varying between −0.3307

and −0.7, to test if buoyancy number significantly influences the dynamics. In the numerical models we vary308
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the non-dimensional parameters Ra0 and B independently to map out system behavior. On a real planet,309

Ra0 and B are related through mantle temperature, as decreasing mantle temperature will decrease Ra0310

and increase B, for a fixed ∆ρc. However, the resulting scaling laws will capture these co-dependencies, and311

allow self-consistent thermal evolution models to be developed; this is analogous to isochemical stagnant-312

lid convection where θ and Ra0 are both functions of mantle temperature as well, and typically varied313

independently when developing scaling laws.314

With an average mantle density of ρ = 4500 kg·m−3, thermal expansivity of α = 3 × 10−5 K−1, and315

temperature difference across the mantle of ∆T = 1350 K, as on the modern day Earth, our chosen range of316

buoyancy numbers scale to ∆ρc ≈ −55 to −180 kg·m−3. With a hot interior temperature giving ∆T = 2000317

K, the resulting chemical density differences range from ∆ρc ≈ −80 to −270 kg·m−3. The crusts of Venus318

and Mars are predominantly mafic (e.g. Taylor & McLennan, 2009), as volcanism is expected to result mostly319

from primary melting of the mantle. Basalt has a density ≈ 300−400 kg·m−3 lower than peridotite at surface320

temperature and pressure. Higher temperature melts, such as komatiites, are denser, and only ≈ 100− 200321

kg·m−3 less dense than peridotite (Arndt, 1983). Our chosen range of buoyancy numbers is consistent with322

mafic crusts at the high end (B = −1.0), and also allows us to consider potentially denser crusts at the323

low end (B = −0.3), to test whether a smaller density difference between crust and mantle significantly324

influences the dynamics at the base of the lid when the crustal layer is thick.325

To analyze the model results and develop scaling laws, we calculate the time averaged Nusselt number326

(Nu), internal temperature (T
′

i ), and average crustal thickness (δ
′

c) from the numerical models. Convection327

simulations were run until a statistical steady-state is reached for Nu, T
′

i , and δ
′

c. Most models experience328

some entrainment of the buoyant crustal layer early in the model run, but then show an approximately329

constant buoyant layer thickness for the remainder of the run. However, models with B = −0.7, −0.5,330

and −0.3 show higher rates of entrainment that continue throughout the model run, such that a statistical331

steady-state is never reached (see §3.1). For the models reaching statistical steady-state, we calculate time332

averages of Nu, T
′

i , and δ
′

c during the time period after statistical steady-state is reached. For models that333

don’t reach statistical steady-state due to entrainment of the buoyant crustal layer, we take time averages334

over a short time window of 25 timesteps at the end of the model run, after the model has reached an335

approximately constant rate of entrainment.336

Nusselt number is calculated as337

Nu =

〈

∂T
′

∂z′

〉

z′=1

(7)

at each time step, where 〈∂T
′

/∂z
′

〉z′=1 is the horizontal average of the vertical temperature gradient evalu-338

ated at z
′

= 1, the top of the domain. The resulting time series is then integrated in time to find the time339
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averaged Nusselt number. The internal temperature is measured based on horizontally averaged, vertical340

profiles of temperature through the mantle. Horizontally averaged temperature has a local maximum just341

below the base of the stagnant lid; we designate this maximum as the interior temperature at each timestep,342

as this is the temperature that controls the dynamics of the base of the stagnant lid. Time averaging for343

internal temperature is the same as for Nusselt number.344

Finally, to determine the thickness of the buoyant crustal layer, we calculate a contour line at C
′

= 0.95,345

which occurs at the base of this layer, and then horizontally average the depth of this contour across the346

mantle. This calculation of crustal layer thickness is done as a post-processing step, using the full compo-347

sitional field in two dimensions. The full composition field is output less frequently than the calculations348

of Nu and T
′

i , which are done every timestep. However, there is sufficient time resolution to produce time349

averages of crustal thickness after each model has reached statistical steady-state.350

3 Results351

Example numerical model results with Ra0 = 106, θ = 13.82, B = −1.0 and increasing initial crustal352

thicknesses, δ
′

c0, are shown in Figures 1-2 (a compilation of all numerical model results and input parameters353

can be found in Table 4). The results can largely be grouped into two end member regimes of behavior: a354

“thin crust limit” and a “thick crust limit.” In the thin crust limit, the initial crustal layer is much thinner355

than the stagnant lid thickness of the “control” case, where the crust is absent; that is δ
′

c0 << δ
′

0, where δ
′

0356

is the stagnant lid thickness with no crust present.357

In this thin crust limit, the convection planform, Nusselt number, and interior mantle temperature358

are hardly affected by the presence of the crust or by changing the crust’s thickness (e.g. the cases with359

δ
′

c0 = 0.1−0.2 in Figures 1 & 2). As active convection is already confined to the region beneath the stagnant360

lid, a thin crust that sits entirely within the lid does not significantly impact convection or surface heat flux.361

However, as crustal thickness is increased, the thick crust limit is reached; in this limit the thickness of the362

crust itself controls the lid thickness. Thus with increasing crustal thickness, convection is confined to a363

smaller and smaller region beneath the base of the crust. The effective thickness of the lithosphere increases,364

thereby decreasing the Nusselt number and increasing the mantle interior temperature, due to less efficient365

heat loss from the mantle (e.g. the cases with δ
′

c0 = 0.3− 0.5 in Figures 1 & 2).366

The same trends in convection planform, Nusselt number, and mantle interior temperature are seen at367

different Rayleigh numbers and when the Frank-Kamenetskii parameter is varied. Figures 3-4 show the368

convective planform, time evolution of Nusselt number, and time evolution of mantle interior temperature,369

for models with Ra0 = 108, θ = 13.82, B = −1.0, and a range of crustal thicknesses. As before, when370
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Figure 1: Convection pattern at steady-state for models with Ra0 = 106 & θ = 13.82, showing both the
composition field (left) and temperature field (right). For the composition field, C

′

= 1 represents crust,
while C

′

= 0 represents mantle. Models with increasing initial crustal thickness, δ
′

c0, are shown, starting
from the case with no crust at the top, and increasing initial crustal thickness to δ

′

c0 = 0.5 at the bottom.
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Figure 2: Nusselt number as a function of time (A) and mantle internal temperature as a function of time
(B), for models with Ra0 = 106, θ = 13.82, and for initial crustal thicknesses, δ

′

c0, as given in the legend.
Models correspond to those shown in Figure 1.
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Figure 3: Convection pattern at statistical steady-state for models with Ra0 = 108 & θ = 13.82. Analogous
to Figure 1.
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c0, as given. Models correspond
to those shown in Figure 3.

17



1

2

3

4

5

6

7

8

9

N
u

s
s
e

lt
 N

u
m

b
e

r

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Crustal Thickness

θ = 13.82

Ra0 = 106

Ra0 = 3 × 106

Ra0 = 5 × 106

Ra0 = 107

Ra0 = 108

Ra0 = 5 × 108

A

1

2

3

4

5

6

7

8

9

N
u

s
s
e

lt
 N

u
m

b
e

r

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Crustal Thickness

θ = 16.12

Ra0 = 107

Ra0 = 5 × 107

Ra0 = 108

B

Figure 5: Average Nusselt number (Nu) as a function of average crustal thickness (δ
′

c) for models with Ra0
as specified in the legend and θ = 13.82 (A) and θ = 16.12 (B). As explained in the text (see §2.2), both
Nusselt number and average crustal thickness are time averages after the models have reached statistical
steady-state.

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

In
te

rn
a
l 
T

e
m

p
e
ra

tu
re

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Crustal Thickness

θ = 13.82

Ra0 = 106

Ra0 = 3 × 106

Ra0 = 5 × 106

Ra0 = 107

Ra0 = 108

Ra0 = 5 × 108

A

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

In
te

rn
a
l 
T

e
m

p
e
ra

tu
re

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Crustal Thickness

θ = 16.12

Ra0 = 107

Ra0 = 5 × 107

Ra0 = 108

B
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with Ra0 as specified in the legend and θ = 13.82 (A) and θ = 16.12 (B), as in Figure 5. T
′

i is calculated
from the numerical models as outlined in §2.2.
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δ
′

c0 << δ
′

0, changing crustal thickness has negligible impact. However, for crustal thicknesses larger than371

a critical crustal thickness, the crust itself dictates the stagnant lid thickness, and from this point onward372

increasing crustal thickness leads to lower Nusselt numbers and higher interior temperatures. As higher373

Rayleigh number convection produces a thinner stagnant-lid, when the crust is absent, than lower Rayleigh374

number convection, the critical crustal thickness where the thick crust limit is reached occurs at a lower375

value. With Ra0 = 108, the thick crust limit is reached with initial crustal thicknesses of δ
′

c0 ≥ 0.15, while376

with Ra0 = 106 crustal thicknesses of δ
′

c0 ≥ 0.3− 0.4 are needed before the thick crust limit is reached.377

Plotting time averaged Nusselt number as a function of time averaged crustal thickness for all model378

results with B = −1.0 further highlights the trends discussed above (Figure 5). Time averages of Nusselt379

number and crustal thickness are calculated as described in §2.2. For these models with B = −1.0, there is380

some initial entrainment of the crust at the start of the model run, but eventually a statistical steady-state381

is reached where Nu, T
′

i , and δ
′

c are all constant. Nu and δ
′

c values reported in Figure 5 are for convection382

after this statistical steady-state is reached.383

For a given Rayleigh number and Frank-Kamenetskii parameter, all models show an approximately384

constant Nusselt number with increasing crustal thickness, for low crustal thicknesses; this regime of behavior385

is the thin crust limit. Then a sharp decline in Nusselt number with increasing crustal thickness at larger δ
′

c is386

seen, as convection enters the thick crust limit. The turnover point, where Nusselt number begins declining387

with increasing crustal thickness, occurs at different δ
′

c depending on the system’s Rayleigh number and388

Frank-Kamenetskii parameter. The crustal thickness must be larger at lower Rayleigh number before the389

thick crust limit is reached. Likewise larger θ also requires a larger crustal thickness before the thick crust390

limit is reached. These trends are consistent with the idea that the crust is unimportant for stagnant-lid391

convection when it is much thinner than the lid thickness expected without a crust, and then begins to392

control the thickness of the lid at larger values.393

The drop in Nusselt number with increasing crustal thickness means less efficient heat loss from the394

mantle interior, and thus a rise in internal temperature (Figure 6). We thus see a general trend where mantle395

internal temperature is constant for thin crustal layers, then internal temperature increases with increasing396

crustal thickness in the thick crust limit. In the thin crust limit, where the crust does not significantly397

impact convection, temperature is largely insensitive to Rayleigh number, but increases with increasing θ,398

as expected for stagnant-lid convection (Morris & Canright, 1984; Davaille & Jaupart, 1993; Solomatov,399

1995; Grasset & Parmentier, 1998; Reese et al., 1998; Solomatov & Moresi, 2000; Korenaga, 2009). When400

the crust controls the lid thickness, the internal temperature increases with increasing Rayleigh number. A401

higher Rayleigh number leads to a higher heat flux across the base of the mantle, which, combined with a402

low surface heat flux due to the thick crust present, causes the mantle to warm (see §4.2).403
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3.1 Changing Buoyancy Number404

With B = −1, we find that the buoyant crustal layer strongly resists sinking into the mantle, such that, when405

thick enough, it can dictate the thickness of the lithosphere overall. With this buoyancy number, entrainment406

of the crust over time is also limited. However, the buoyancy number of the crust on real stagnant-lid planets407

can vary, based on the density of the crust and the temperature difference across the mantle. We therefore408

explore how varying the buoyancy number of the crust in our models influences convection in the mantle409

below. Larger in magnitude buoyancy numbers (that is, more negative) would mean larger positive buoyancy410

forces for the crust, and hence would thus only enhance the effects already seen, namely that a thick crust411

can suppress foundering at the base of the stagnant lid. However, lower in magnitude buoyancy numbers412

may result in crusts with buoyancy forces too weak to suppress foundering at the lid base. We thus repeat413

some of our model suites using buoyancy numbers of −0.7, −0.5, and −0.3, at a range of Rayleigh numbers.414

The two main goals of these additional models are, first, to test whether entrainment of the buoyant415

crustal layer occurs when smaller magnitude buoyancy numbers are used, and to quantify the rate of this416

entrainment over time. If entrainment is fast on geologic timescales, it could reduce crustal thickness to the417

point where the thick crust limit can not be reached, or where convection could only operate in this limit418

for short time periods. The second is to test whether changing the buoyancy number significantly alters the419

previously observed relationship between crustal thickness and Nusselt number, in particular when convection420

is in the thick crust limit and if crustal entrainment is indeed significant.421

We find that the buoyant crustal layer is slowly entrained by convection, at an approximately constant422

rate over time, for buoyancy numbers with absolute value < 1. The rate of entrainment also increases with423

decreasing absolute value of B (Figure 7; Table 6). These same trends hold for all models we ran, with424

different buoyancy numbers, Rayleigh numbers, and initial crustal thicknesses (see Table 6). In addition to425

the effect of B on entrainment rate, we also find that entrainment rate generally increases with increasing426

Rayleigh number. We calculated average entrainment rates in our models by measuring the difference427

between the initial and final (at the ending time of the model run) crustal thicknesses, and the elapsed time428

from when entrainment of the crust began. The average entrainment rate is then the difference between429

initial and final crustal thicknesses divided by the elapsed time during which entrainment occurred. The430

highest non-dimensional entrainment rate we observed (for model parameters of Ra0 = 5× 108, B = −0.3,431

θ = 13.82, and δ
′

c0 = 0.1), was ≈ −0.7869. Scaling this to a dimensional rate using the scaling factors432

outlined in §2.1, we obtain ≈ −2.7 × 10−13 m·s−1, or ≈ −8.6 m·Myr−1 = −8.6 km·Gyr−1, for Earth’s433

thermal diffusivity and mantle thickness. For Mars, the entrainment rates would be larger by about a factor434

of two, though Mars would also have a smaller Rayleigh number than Earth for the same mantle temperature435
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Figure 7: Buoyant crustal layer thickness as a function of time for models with Ra0 = 108 and the same
initial buoyant crustal layer thickness, δ

′

c0. The models have different buoyancy number of B = −0.3 (blue),
B = −0.5 (red), B = −0.7 (orange), and B = −1.0 (black). Time sampling was less frequent in the model
with B = −1.0, so high frequency fluctuations are absent in the black curve. Lowering the buoyancy number
magnitude clearly leads to larger entrainment rates.

and viscosity. It would therefore take hundreds of millions to billions of years for significant crustal loss, on436

the scale of ∼ 10 kilometers, to occur even in our most rapidly entraining models.437

Despite the observed crustal entrainment with B = −0.7,−0.5 and −0.3, we find that models with438

different buoyancy numbers, but the same Rayleigh number and Frank-Kamenetskii parameter, still fall439

along the same crustal thickness-Nusselt number trend as models with B = −1.0 (Figures 8A & B). The440

buoyancy of the crust is still able to dictate lithosphere thickness and push convection into the thick crust441

limit, even with lower in magnitude buoyancy numbers. The trends for mantle interior temperature as a442

function of crustal thickness are less clear than for the Nusselt number, but again appear to be largely443

insensitive to the buoyancy number, at least in the range of buoyancy numbers we tested (Figure 8C). In our444

models where B 6= −1.0 and therefore entrainment is non-negligible, no statistical steady-state is reached.445

The Nusselt number and internal temperature will continue evolving as the crust is thinning. For these446

models, we calculate time averages of Nu, T
′

i , and δ
′

c over the final 25 timesteps of each model run (see §2.2);447

these model end time averages are what is plotted in Figures 8A & C.448

However, the ending point in our models is arbitrary, so we also plot Nusselt number as a function of449

crustal thickness for different timesteps during the model run, after the influence of the initial conditions on450

the model Nusselt number has been erased (Figure 8B). The timesteps plotted are at intervals of 10−2−10−3
451

in non-dimensional units for Ra0 = 107, and 10−4 for Ra0 = 108 and 5 × 108. Figure 8B therefore shows452
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Figure 8: Nusselt number as a function of crustal thickness (A & B) and internal temperature as a function
of crustal thickness (C) for models with θ = 13.82, Ra0 = 107 (circles), Ra0 = 108 (diamonds), and
Ra0 = 5×108 (squares). Symbols are colored by the buoyancy number: B = −1.0 (white), B = −0.3 (blue),
B = −0.5 (red), and B = −0.7 (purple). In Figures 8A & C, the Nu, T

′

i , and δ
′

c plotted for B 6= −1.0 are
averages over the final 25 timesteps of the model run, because active crustal entrainment means a statistical
steady-state is not reached in these models (see text for more details). In Figure 8B, Nusselt number and
crustal thickness are plotted at multiple timesteps during the model runs with B 6= −1.0, to show how
Nusselt number evolves as the crust thins due to entrainment. Specifically, results are plotted at timestep
intervals of 10−2 − 10−3 in non-dimensional units for Ra0 = 107, and intervals of 10−4 for Ra0 = 108 and
5 × 108. Finally, in Figures 8A & B the curve 1/δ

′

c is shown, representing the maximum possible Nu in
the thick crust limit (i.e. the conductive heat flux across a layer of thickness δ

′

c with a non-dimensional
temperature difference of one).

how Nusselt number evolves as the crust thins due to entrainment. The results demonstrate that even as453

the crust is thinning, the Nusselt number still follows the same trend as a function of crustal thickness,454

with some fluctuation around this trend due to inherent time-dependence in convection. Entrainment does455

not significantly change the scaling behavior, and thus the scaling laws we develop next, which give Nusselt456

number as a function of crustal thickness, will hold even if entrainment is significant (as long as one knows457

the actual crustal thickness at any given time). Moreover our arbitrary choice of end points to plot in Figures458

8A & C is justifiable, as one could pick earlier timesteps in our models and still find that these points plot459

along the same trend in δ
′

c −Nu space.460

Our results show that entrainment rates are low on geologic timescales, even for low absolute value461

buoyancy numbers, and that the same scaling behavior is observed regardless of buoyancy number, even462

when the crust is actively thinning due to entrainment. Based on the entrainment rates seen in our models,463

crustal entrainment will not prevent a thick crust from forming, and a planet from entering the thick crust464

limit. Early in planets’ histories when the mantle is hot and volcanism is extensive, crust formation is465

significantly faster than even the fastest entrainment rates we observe in our models (e.g. Hauck & Phillips,466

2002; Fraeman & Korenaga, 2010; Morschhauser et al., 2011), so thick crusts can still form. Entrainment467

could cause crustal thinning when volcanism rates have waned due to mantle cooling, or after volcanism has468
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shut down entirely. A thinning crust would have an important influence on a planet’s thermal evolution,469

because a thinner crust will lead to a higher heat flux for a given Ra0 and θ in the thick crust limit, as470

our model results show. However, as long as one is able to track changes in crustal thickness over time,471

our scaling laws, developed below, can capture this effect (see §6). Moreover, the entrainment rates in our472

models are likely overestimates. Tackley & King (2003) show that entrainment rates in models using the473

tracer-ratio method, as ours do, are sensitive to grid resolution and the number of tracers employed, with474

higher resolution leading to lower entrainment rates. We thus expect that using higher resolution would475

lower the already small entrainment rates seen in our models.476

An important remaining question is how small in magnitude the buoyancy number would have to be for477

thermal bouyancy to dominate over the crustal layer’s chemical buoyancy; in this situation entrainment rates478

would likely be much higher, and the crust may be unable to ever grow thick enough for convection to enter479

the thick crust limit, or the thick crust limit would be very short-lived if reached. While a buoyancy number480

of B = −1.0 (or absolute value of 1) would represent a situation where chemical and thermal bouyancy481

forces are equal when the surface fully participates in convection, in the stagnant lid regime the temperature482

difference actually driving convection is reduced by the factor 1/θ (e.g. Davaille & Jaupart, 1993; Grasset483

& Parmentier, 1998; Reese et al., 1998; Solomatov & Moresi, 2000; Korenaga, 2009, see also §4.2). The484

thermal buoyancy forces driving foundering at the base of the lid are thus also reduced by the same factor.485

For thermal buoyancy to dominate over compositional buoyancy, the absolute value of the buoyancy number486

would therefore likely need to be B < 1/θ, or about 0.06 − 0.07 for the range of θ used in our models. We487

therefore expect that as long as the absolute value of the crustal buoyancy number is larger than ≈ 1/θ, then488

buoyancy forces are sufficient to allow convection to enter the thick crust limit, if the crust is thick enough.489

3.2 Convective Stability of the Crust490

When both the Rayleigh number and the buoyant crustal layer thickness are large, it is possible for the491

Rayleigh number of just the crustal layer to exceed the critical Rayleigh number for the onset of convection.492

In this case, convection will occur in both the crust and underlying mantle separately (Richter & Johnson,493

1974; Richter & McKenzie, 1981). We therefore examined the temperature and velocity fields in our models494

to determine if there is convection within the buoyant crustal layer or not. The large majority of the models495

do not show crustal convection (Figure 9); only those models with large reference Rayleigh numbers, Ra0,496

and large initial crustal thicknesses, δ
′

c0, display crustal convection. Specifically, with θ = 13.82 we only497

observe crustal convection in cases when Ra0 = 108 and the initial crustal thickness is 0.35 or greater, and498

when Ra0 = 5× 108 and the initial crustal thickness is 0.2 or greater.499
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As the focus of this paper is on stagnant-lid planets where convection does not occur in the crust, because500

this situation is more geologically relevant as we show in §5.1, we exclude models where convection develops501

in the crust in Figures 5, 6, and 8, and the scaling analysis in §4.502

We also observed different crustal dynamic states in two models with the sameRa0 = 5×108 and δ
′

c0 = 0.2,503

but different buoyancy numbers and different initial conditions (Figure 9). A model with B = −1.0 and an504

initially static, conductive mantle and crust did not develop convection within the crust. However, crustal505

convection did start in models with B = −0.7, B = −0.5, and B = −0.3 that used a fully developed convec-506

tion pattern, into which the buoyant crustal layer is inserted, as the initial condition. The different behavior507

in the crust could be due to the different buoyancy numbers of those models. However, as buoyancy number508

does not explicitly control convective stability of the crust (see §4.3), a more likely explanation is the differ-509

ence in initial condition. The initial conductive temperature profile produces cold temperatures in the crust,510

and therefore high viscosities which inhibit convection. Meanwhile starting from fully developed convection511

produces warmer temperatures in the crust, thereby promoting convection. We only saw models with the512

same Rayleigh number and crustal thickness produce different states of crustal dynamics for conditions that513

are very close to the boundary between non-convecting and convecting buoyant crustal layers. Hysteresis514

at Rayleigh numbers very close to the critical Rayleigh number has been documented previously for fluids515

with strongly temperature-dependent viscosity (Stengel et al., 1982; Richter et al., 1983; Solomatov & Barr,516

2006, 2007).517

4 Scaling Analysis518

4.1 Nusselt Number519

The numerical models indicate that there are two end member limiting behaviors: the thin crust and thick520

crust limits. Here scaling laws for the convective heat flux for both of these limits are derived. In the thin521

crust limit, convection behaves the same as isochemical stagnant-lid convection, where scaling laws for heat522

flux have been extensively studied. We thus provide a brief introduction to these scaling laws here, and fit523

them to our numerical convection model results.524

Without a crust, scaling laws for Nusselt number in the high Rayleigh number, high Nusselt number525

limit (i.e. far from the critical Rayleigh number) for bottom heated convection typically take the form of526

(e.g. Morris & Canright, 1984; Fowler, 1985; Solomatov, 1995; Dumoulin et al., 1999; Reese et al., 1998;527
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c0)-reference Rayleigh number (Ra0) space, for Frank-
Kamenetskii parameters of θ = 13.82 (A) and θ = 16.12 (B). Model results where no crustal convection was
seen are indicated by white circles, while black diamonds indicate model results where crustal convection
was observed. In some cases, models with the same Ra0 and δ
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Solomatov & Moresi, 2000; Korenaga, 2009):528

Nu = C∗θ−(1+β)Raβi (8)

where C∗ is a constant found empirically, β is the Nu−Ra scaling law exponent, Rai = Ra0/µ
′

i is the internal529

Rayleigh number, and µ
′

i is the average mantle interior viscosity, just beneath the stagnant lid. The average530

interior viscosity can be calculated as the non-dimensional viscosity at T
′

= T
′

i , giving µ
′

i = exp (θ(1− T
′

i )).531

Note that this same form of the Nusselt number scaling law also holds for purely internally heated convection,532

where the internal Rayleigh number is defined at the same average interior viscosity as given above, and the533

temperature drop across the mantle is defined as the difference between the average interior temperature534

and surface temperature (e.g. Solomatov & Moresi, 2000; Korenaga, 2009).535

Much work has then been devoted to determining the scaling law exponent β, from both theoretical stud-536

ies, laboratory experiments, and numerical models. When the convection pattern is steady, both asymptotic537

boundary layer theories and numerical experiments show that β ≈ 1/5, and the scaling law takes the form538

(e.g. Morris & Canright, 1984; Fowler, 1985; Reese et al., 1998; Dumoulin et al., 1999; Solomatov & Moresi,539

2000):540

Nu = C2θ
−

6

5Ra
1

5

i . (9)

On the other hand, when convection is time-dependent, β ≈ 1/3 (e.g. Solomatov, 1995; Dumoulin et al.,541

1999; Solomatov & Moresi, 2000; Korenaga, 2009), yielding:542

Nu = C1θ
−

4

3Ra
1

3

i . (10)

To establish scaling laws for the thin crust limit, we fit our isochemical numerical convection models543

(that is, models that lack a buoyant crustal layer) to the above scaling laws, Eqs. (9)-(10). As in Dumoulin544

et al. (1999), we find that with increasing Rayleigh number, convection transitions from steady to time-545

dependent behavior (Figure 10A). We determine whether models are steady or time-dependent based on the546

standard deviations in Nusselt number and internal temperature, and visual inspection of the temperature547

fields. There is a clear increase in standard deviations from negligably small values to values on the order548

of ∼ 10−3 − 10−4 at the switch from steady to time-dependent convection (Table 4), as well as a clear549

switch from steady to time-dependent convection patterns when inspecting the temperature fields. We fit550

our numerical models where a steady-state convection pattern develops to Eq. (9), and our models where551

convection is time-dependent to Eq. (10). From this, we find C1 = 0.48 and C2 = 2.95, nearly identical to552

the scaling laws from Dumoulin et al. (1999). We further find that our isochemical model results can be well553
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fit using554

Nu = max
(

C1θ
−

4

3Ra
1

3

i , C2θ
−

6

5Ra
1

5

i

)

, (11)

also consistent with Dumoulin et al. (1999). That is, the transition from steady-state to time-dependent555

convection occurs at approximately the point where Eq. (9) and Eq. (10) are equal.556

Moore (2008) suggests Nusselt number scaling laws should have the form Nu− 1 = (Ra−Rac)
β , so that557

Nusselt number converges to 1 as Rayleigh number approaches the critical Rayleigh number, Rac. However,558

as shown in Solomatov (1995), Nu also approaches 1 as Rai approaches the critical Rayleigh number in Eq.559

(10). With Rac = 20.9θ4 from (Solomatov, 1995, see also §4.3), Eq. (10) has the form Nu ∼ (Ra/Rac)
β . A560

scaling law with the form Nu− 1 = (Ra−Rac)
β converges to a scaling law with the form Nu ∼ (Ra/Rac)

β
561

at high Rayleigh numbers, but shows different behavior at low Rayleigh numbers, despite both scaling laws562

approaching Nu = 1 at Ra = Rac. The scaling law form of Moore (2008) shows a weaker dependence of563

Nu on Ra at lower Rayleigh number, similar to lowering β in Eq. (8). As a result, the scaling law form564

of Moore (2008) may even be able to fit both our steady and time-dependent model results with a single565

value of β ≈ 1/3. While this is attractive, no study carefully testing the Nu − 1 = (Ra − Rac)
β scaling566

law form with stagnant-lid convection model results currently exists, so we use Eq. (9) & Eq. (10), which567

have been extensively tested. The goal of our study is not to develop new scaling laws for isochemical568

stagnant-lid convection, but instead develop scaling laws for stagnant-lid convection with a thick, buoyant569

layer representative of the crust. As our models with a thin crust behave the same as models with no crust,570

any scaling law that properly captures isochemical stagnant-lid convection could be used for the thin-crust571

limit, in place of Eq. (9) & Eq. (10) as used in this study.572

As Nu = T
′

i /δ
′

0, where δ
′

0 is the thickness of the lithosphere due to purely thermal convection, δ
′

0 is then573

given by574

δ
′

0 =

(

T
′

i

C1

)

θ
4

3

(

Ra0
µ

′

i

)

−
1

3

(12)

for time-dependent convection at high Rayleigh number, and for steady convection at low Rayleigh number575

δ
′

0 =

(

T
′

i

C2

)

θ
6

5

(

Ra0
µ

′

i

)

−
1

5

. (13)

We next develop scaling laws for the thick crust limit, where the thickness of the crust itself controls the576

thickness of the stagnant lid. The Nusselt number in the thick crust limit will therefore be given by577

Nu =
T

′

i

δ
′

sl + δ′

c

, (14)
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Figure 10: Nusselt number as a function of internal Rayleigh number for models without a crust (A), and
comparison of iso-chemical stagnant-lid convection scaling law predictions to model results (B). Model results
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dependent convection. C1 is found by fitting the time-dependent models to Eq. (10), and C2 is found by
fitting the steady convection models to Eq. (9).
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where δ
′

sl is the thickness of a thermal boundary layer in the mantle just below the crust; we call this the sub-578

crustal thermal boundary layer. The total thickness of the top thermal boundary layer is then δ
′

= δ
′

c + δ
′

sl.579

A similar approach has been used successfully to describe heat flux through continents (Lenardic et al.,580

2005; Van Thienen, 2007); in these studies the total thickness of the conductive boundary layer is assumed581

to consist of the continent and mantle root, as well as a thermal boundary layer beneath the rigid continent.582

We assume that the sub-crustal boundary layer follows a scaling law analogous to the rheological boundary583

layer in stagnant-lid convection. In this case, boundary layer thickness scales with Rayleigh number to584

the −1/3 power, with the Rayleigh number defined based on the temperature difference across just the585

active boundary layer, as this is the temperature scale driving convection (e.g. Solomatov, 1995). For the586

sub-crustal boundary layer, the temperature scale across this boundary layer is T
′

i − T
′

c , where T
′

c is the587

temperature at the crust-mantle interface. With these assumptions588

δ
′

sl =

(

Ra0(T
′

i − T
′

c)

Racµ
′

i

)

−
1

3

, (15)

where, as in Eqs. (12)-(13), we define Rayleigh number based on the mantle interior viscosity. We also include589

the critical Rayleigh number, Rac, in the denominator of Eq. (15), as in Lenardic et al. (2005), because590

convection will not occur if the Rayleigh number is sub-critical. We find that this allows our numerical591

models results to be well fit with Rac ≈ 1000 (see below). A critical Rayleigh number for constant viscosity592

convection is used here, because the small temperature difference between T
′

i & T
′

c in the thick crust limit593

results in approximately constant viscosity in the actively convecting mantle beneath the crust. In the thick594

crust limit, Ti − Tc < ∆Trh where ∆Trh is the rheological temperature scale across the actively convecting595

region in isochemical stagnant-lid convection, where viscosity variations are no greater than a factor of ≈ 10596

(see §4.2). As our numerical models neglect internal heating and have a constant thermal conductivity597

through the mantle and crust, we can assume a linear temperature profile through the lithosphere. With598

this assumption T
′

c follows599

T
′

c = T
′

i

(

δ
′

c

δ
′

sl + δ′

c

)

. (16)

In §6 we show how T
′

c can be calculated in the more general case, where heat production is not negligible600

in the crust and mantle, and the crust and mantle have different thermal conductivities. We also discuss601

how these additional factors would influence our derived scaling laws. Combining Eq. (15) & Eq. (16) and602

rearranging,603

δ
′4
sl

δ
′

sl + δ′

c

=
Racµ

′

i

Ra0T
′

i

. (17)

Equation (17) is solved numerically, using δ
′

c and T
′

i values that are determined from each numerical con-604
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vection model as a post-processing step (see §2.2) when comparing the scaling law to model results.605

Equation (17) shows that increasing internal Rayleigh number, either through an increase in Ra0 or a606

decrease in µ
′

i, will lead to a thinner sub-crustal thermal boundary layer due to higher convective vigor in607

the mantle. A larger δ
′

c causes a modest increase in δ
′

sl, due to a decrease in the temperature difference608

driving foundering of the sub-crustal thermal boundary layer, T
′

i −T
′

c , with increasing crustal thickness. We609

note our scaling law for δ
′

sl, Eq. (17), implies that δ
′

sl ∼ Ra
−1/3
0 regardless of Ra0, while our isochemical610

numerical models were best fit by scaling laws implying δ
′

∼ Ra
−1/5
0 at low Ra0, when the convection pattern611

is steady. Despite this potential inconsistency, our scaling law for Nu in the thick crust limit fits the data612

well, even at low Rayleigh number (Figure 11). The stagnant lid in the thick crust limit at low Ra0 appears613

to have a flatter base than when the crust is absent (see Figure 1), and these flatter lid slopes might explain614

why Eq. (17) produces an accurate scaling law even at low Ra0. In addition, when the crust is very thick615

such that δ
′

c >> δ
′

sl, lithosphere thickness, and hence heat flux, are primarily controlled by crustal thickness.616

Therefore our scaling law for Nu under these conditions is not strongly sensitive to how δ
′

sl scales with Ra0.617

At large crustal thicknesses, i.e. in the thick crust limit, Eq. (14) & Eq. (17) provide a good fit to the618

numerical model results (Figure 11A). However, as expected, the scaling laws fail to match the numerical619

model results when the crust is thin, and the Nusselt number is approximately the same as for purely thermal620

convection. To account for this, we join the scaling laws for Nu in the thick crust and thin crust limits, as621

Nu = min

(

T
′

i

δ
′

sl + δ′

c

,max

[

C1θ
−

4

3

(

Ra0
µ

′

i

)
1

3

, C2θ
−

6

5

(

Ra0
µ

′

i

)
1

5

])

, (18)

where δ
′

sl is given by Eq. (17). Comparing our predicted Nusselt numbers from Eq. (18) to those measured622

from the numerical models with B = −1.0 shows a good match (Figure 11B). Thus the scaling laws are623

accurate across a wide range of parameters and in both the thin and thick crust limits. However, right624

around the transition point between the thick and thin crust limits, the numerical model results do show a625

relatively small deviation from the scaling laws (Figure 11B). This deviation is likely caused by the crust626

disrupting the slopes that would form at the base of the stagnant lid in the isochemical case, and thereby627

lowering the heat flux in a way our scaling laws do not capture. However, our scaling laws match the628

thick and thin crust limits well, and the deviation described here is confined to a narrow range of crustal629

thicknesses.630

An implicit assumption in our scaling laws is that the switch between the thin and thick crust limits631

occurs when the predicted Nusselt numbers from the two limits are equal, or equivalently when δ
′

c+δ
′

sl = δ
′

0.632

The critical crustal thickness where convection transitions between these two limits is thus δ
′

c−crit = δ
′

0− δ
′

sl.633

To test the preceding prediction using the numerical model results, we compare the Nusselt number of models634

30



with a crust to the Nusselt number of the corresponding isochemical control case, that has the same Ra0635

and θ. We assume that the crust is significantly affecting convection, and thus the thick crust limit has636

been reached, at the crustal thickness where the Nusselt number first becomes > 5% lower than the Nusselt637

number for the corresponding isochemical control case.638

For Ra0 = 106, we find that the thickness of the stagnant lid in the control case is δ
′

0 = 0.55, using639

equation Eq. (13) because with Ra0 = 106 a steady-state convection pattern develops. The crustal thickness640

where Nu is > 5% lower than the control case Nu was found to be δ
′

c = 0.3441. Using Eq. (15) with641

the internal temperature of this model, Ti
′ = 0.9302, we calculate a sub-crustal thermal boundary layer642

thickness of δ
′

sl = 0.2058. The critical crustal thickness where convection should enter the thick crust limit is643

thus δ
′

c−crit = 0.3442, nearly identical to the crustal thickness where we see a significant drop in the Nusselt644

number. For Ra0 = 108, Nusselt number first begins to significantly decrease with a crustal thickness of645

δ
′

c = 0.0925. Using Eq. (12) for this high Rayleigh number case, we estimate δ
′

0 = 0.133, and, with a646

measured T
′

i = 0.9308, find δ
′

sl = 0.0430. The critical crustal thickness for the onset of the thick crust647

limit is thus δ
′

c−crit = 0.09, again matching what was found in the numerical models. The scaling laws thus648

successfully capture the transition between the thin and thick crust limits.649

The models analyzed above all used B = −1.0. As discussed in §3.1, we also ran sets of models at650

different buoyancy numbers of B = −0.7, B = −0.5, and B = −0.3. While these models display elevated651

rates of crustal entrainment compared to the B = −1.0 models, the positive buouyancy of the crust still652

dominates over the negative buoyancy of cool temperatures at the base of the lid, such that thick crusts653

that dictate the overall thickness of the stagnant lid can still form. In addition, these models fall on the654

same δ
′

c −Nu trend as the models with B = −1.0, indicating that the thickness of the buoyant crustal layer655

still controls convective heat flux in the same way in the thick crust limit, even with progressively weaker656

positive buoyancy. Here we confirm that the models with varying buoyancy numbers also follow our scaling657

law for Nusselt number, Equation (18) (Figure 12).658

Our Nusselt number scaling law for convection with a buoyant crustal layer is therefore independent of659

the buoyancy number, as long as: 1) the buoyancy of the crust is strong enough for a thick crust to form660

and persist, which likely requires buoyancy numbers with absolute value > 1/θ; and 2) one knows and uses661

the actual crustal thickness present at a given time, taking into account crustal loss due to entrainment. In662

fact, our numerical models show that even when the crust is actively thinning due to entrainment, Nu scales663

with crustal thickness in the same way as our scaling laws predict (see §3.1). Our results therefore indicate664

that the buoyancy of the crustal layer itself does not influence the thickness of the subcrustal boundary665

layer, again as long as one considers the actual thickness of crust present at any given time. The buoyancy666

number influences the rate of entrainment, with less buoyant crust being easier to entrain. However, given667
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Figure 12: Predicted Nusselt number from our scaling law Eq. (18) against observed Nusselt number from
numerical models with varying Rayleigh number and Buoyancy number. Symbols are the same as in Figure
8. Observed Nusselt numbers presented here for models with B 6= −1.0 are averages at the end of each
model run, as explained in §2.2 & 3.1.

that the entrainment rates seen in our models are slow on geologic timescales for both Earth and Mars668

sized planets, and that they are likely overestimates due to the significant numerical challenges involved in669

modeling physically accurate entrainment rates, we chose not to develop a scaling law for the entrainment670

rate. Such a task is best left for a study devoted to studying the physics of entrainment in detail.671

4.2 Internal Temperature672

In the thin crust limit, the internal temperature of the mantle is unaffected by the presence of the crust,673

and thus the same as for purely thermal stagnant-lid convection (e.g., Solomatov & Moresi, 2000; Reese &674

Solomatov, 2009). In this case, the non-dimensional temperature difference driving convection is ∆T
′

rh =675

arh/θ, where arh is a constant (e.g. Davaille & Jaupart, 1993; Grasset & Parmentier, 1998; Reese et al.,676

1998; Solomatov & Moresi, 2000; Korenaga, 2009). With arh ≈ 2, and with symmetry between the bottom677

boundary layer and top rheological boundary layer (i.e. the boundary layer beneath the stagnant lid),678

T
′

i ≈ 1 − θ−1, which matches our numerical model results well. We find T
′

i ≈ 0.925 for θ = 13.82, and679

T
′

i ≈ 0.935 for θ = 16.12; these internal temperatures are approximately constant as Ra0 changes and for680
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Figure 13: Internal temperature in the thick crust limit predicted by the scaling law Eq. (24), as a function
of the observed internal temperature from the numerical model results (A). Predictions deviate from the
model results when the crust is thin, and convection operates in the thin crust limit. Scaling law prediction
for internal temperature combining the thick and thin crust limits (as explained in the text), against the
observed internal temperature from the numerical models (B).

variations in crustal thickness within the thin crust limit (see §3 and Figure 6). However, when the crust681

is thick we observe an increase in mantle interior temperature with increasing crustal thickness. We thus682

develop a scaling law for the internal temperature in the thick crust limit, using a simple energy balance683

approach where we equate the heat flux into the base of the mantle and the heat flux leaving the top of the684

mantle. In terms of non-dimensional variables, heat flux into the bottom of the mantle, F
′

bot, is:685

F
′

bot =
1− T

′

i

δ
′

bot

, (19)

where δ
′

bot is the thickness of the boundary layer at the bottom of the mantle. The non-dimensional heat686

flux at the top of the mantle, the Nusselt number, is:687

Nu =
T

′

i

δ′
. (20)

Equating these heat fluxes, we have688

T
′

i

δ′
=

(1− T
′

i )

δ
′

bot

, (21)

which can be rearranged to give689

δ
′

bot

δ′

c + δ
′

sl

=
1− T

′

i

T
′

i

, (22)
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where δ
′

= δ
′

c + δ
′

sl as we are considering convection in the thick crust limit.690

We assume that δ
′

bot follows a scaling law analogous to that for the sub-crustal boundary layer Eq. (15):691

δ
′

bot = C3

(

Ra0(1− T
′

i )

µ
′

i

)

−
1

3

, (23)

where C3 is a constant. Empirically fitting our resulting scaling for internal temperature to the numerical692

results we find C3 ≈ 2. Combining equations (23) & (22),693

1− T
′

i

T
′

i

=

(

C3

δ′

c + δ
′

sl

)

(

µ
′

i

Ra0(1− T
′

i )

)
1

3

. (24)

In Eq. (24), δ
′

sl is given by Eq. (17). We thus have a system of two equations for the unknowns T
′

i & δ
′

sl,694

which is solved numerically.695

In the thin crust limit, internal temperature is unaffected by crustal thickness, and so our scaling law,696

derived for the thick crust limit, naturally does not match the numerical model results (Figure 13A). The697

scaling law significantly underpredicts internal temperature because it assumes that crustal thickness dictates698

the thickness of the top thermal boundary layer. Thus, for thin crusts it predicts thin lithospheres and hence699

low internal temperatures. However, with increasing crustal thickness, the internal temperatures predicted700

from the scaling law converge to the observed internal temperatures from the numerical models.701

As with the scaling law for Nusselt number, we can combine the thin and thick crust limits into one scaling702

law, by taking the internal temperature to be the maximum of these limits (i.e. the maximum of Ti ≈ 1−θ−1
703

for the thin crust limit, and Ti found from solving Eq. (24) for the thick crust limit). This combined scaling704

law matches the full set of numerical model results with B = −1.0 to first order, across both the thick and705

thin crust limits (Figure 13B). As with the scaling law for Nu, the fit to models where B is varied is of706

similar accuracy (not shown). In particular, the scaling law accurately predicts the magnitude of temperature707

increase with increasing crustal thickness in the thick crust limit, as numerical model results cluster around708

the line representing a perfect match between scaling law prediction and numerical model results. However,709

there is scatter around this trend line, indicating that the scaling law is slightly underpredicting the influence710

of Rayleigh number or Frank-Kamenetskii parameter on internal temperature. In particular, there appears711

to be a stronger dependence of internal temperature on Ra0 than our scaling law predicts, so this is likely712

the main source of error.713

Also similar to our analysis for Nu, there is deviation between the scaling law and numerical convection714

model results near the transition between the thick and thin crust limits. Observed internal temperatures715

begin to increase with increasing crustal thickness before the scaling laws predict that they would enter the716
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thick crust limit. This leads to data points plotting along a horizontal line in Figure 13B, at two different717

predicted temperatures depending on θ. However, as crustal thickness increases further and models fall fully718

into the thick crust limit, the scaling law more accurately predicts the observed increase in temperature.719

Further refinement of this scaling law could improve the fit to the numerical models, both in the thick crust720

limit and in the transition region between the thick and thin crust limits. However, as scaling laws for721

internal temperature are not needed for modeling the thermal evolution of stagnant-lid planets, such further722

analysis is beyond this paper’s scope.723

One result of Eq. (24) is that internal temperature increases with increasing Rayleigh number in the thick724

crust limit, as seen in the numerical results (see Figure 6). A higher Rayleigh number reduces the thickness of725

the bottom thermal boundary layer, thereby increasing the heat flux into the bottom of the mantle. Although726

a higher Rayleigh number also decreases the thickness of the sub-crustal thermal boundary layer, this effect727

is not enough to outweigh the influence of a higher basal heat flux, and interior temperature increases. The728

reason for this is that as δ
′

sl gets thinner, the crust temperature, T
′

c , gets warmer and hence the temperature729

difference driving foundering of the sub-crustal thermal boundary layer gets smaller. This makes δ
′

sl less730

sensitive to Ra0 than the bottom thermal boundary layer. Changing θ does not have a significant effect on731

internal temperature in the thick crust limit in the numerical model results (see Figure 6), and the scaling732

law reflects this. A larger θ actually causes internal temperature to decrease slightly, the opposite of the733

effect of θ on internal temperature for purely thermal stagnant-lid convection. Again this is due to the734

dynamics of the bottom thermal boundary layer; a larger θ increases δ
′

bot and hence lowers the heat flux at735

the base of the mantle. However, as δ
′

c increases the effect of θ becomes smaller, and models with the same736

Rayleigh number and crustal thickness converge towards the same internal temperature regardless of θ.737

4.3 Onset of Convection in the Crust738

For convection to occur in the crust, the Rayleigh number of just the buoyant crustal layer, Racrust, must739

exceed the critical Rayleigh number, Rac. The critical Rayleigh number for convection with a strongly740

temperature-dependent viscosity, where the viscosity at the base of mantle is used as the viscosity scale – as741

in our definition of Ra0 – is (Stengel et al., 1982; Richter et al., 1983; Solomatov, 1995):742

Rac = 20.9θ4. (25)

Defining the temperature at the base of the crust as Tc, the crustal Rayleigh number is:743

Racrust =
ρgα(Tc − Ts)δ

3
c

κµ(Tc)
(26)
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where δc is the crustal thickness. The crustal Rayleigh number can then be written in terms of the reference744

Rayleigh number of the mantle, Ra0, and non-dimensional variables as:745

Racrust = Ra0

(

δ
′3
c0T

′

c

exp(θ(1− T ′

c))

)

, (27)

where we have assumed δ
′

c = δ
′

c0 as the onset of convection in the crust occurs early during a model’s746

evolution, before significant crustal entrainment.747

Intuitively, the theory demonstrates that increasing Ra0 or δ
′

c0 will increase the crustal Rayleigh num-748

ber, and can induce convection. A higher basal crustal temperature, T
′

c , also increases Racrust and favors749

convection, while a larger Frank-Kamenetskii parameter for viscosity increases the critical Rayleigh number,750

and inhibits crustal convection.751

To compare the theoretical estimate for the onset of convection in the crust to our numerical models, we752

calculate the crustal thickness where Racrust = Rac as a function of Ra0 and θ. To calculate T
′

c , we use Eqs.753

(16) - (17) assuming a mantle interior temperature of T
′

i ≈ 1, because mantle temperatures approaches one754

as crustal thickness increases (see §4.2). The theoretical curve fits the numerical model results well, with755

only some small deviation for the models with θ = 16.12 (Figure 9). Racrust is strongly sensitive to T
′

c , so our756

calculation for T
′

c is the most likely source of error. Estimating T
′

c requires assumptions about the structure757

of convection in the underlying mantle, which may not hold for all models, especially those with different758

initial conditions. Strong sensitivity of the boundary between convecting and non-convecting crustal layers759

to T
′

c is also consistent with our numerical model results, where initial conditions that produced warmer760

temperatures at the base of the crust were more likely to induce convection than those that produced colder761

temperatures. Ultimately, crustal thickness on stagnant-lid planets will likely be limited by the transition of762

lower crust to dense eclogite, and foundering of this crust. As we show next in §5.1, when crustal thickness763

is assumed to be limited to the depth where eclogite forms, the crust is sub-critical for convection for a764

geologically relevant range of mantle interior temperatures and reference viscosities.765

5 Application to Planetary Thermal Evolution766

5.1 Conditions for planetary mantles to convect in the thick crust limit767

Our numerical models and scaling analyses show that when buoyant crusts grow as thick, or thicker, than768

the thickness of the stagnant lid that would have existed with no crust present, they suppress convective769

heat flux. These thick, buoyant crusts effectively increase the thickness of the stagnant lid, as the crust is770

too buoyant to sink into the mantle. However, as introduced in §1.1, there are processes that limit crustal771
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thickness, and thus may prevent crusts from growing thick enough for planets to enter the thick crust limit772

that our numerical models and scaling analyses explore. Heat producing elements partition into the crust,773

thereby lowering the heating power in the mantle (e.g. Hauck & Phillips, 2002; Fraeman & Korenaga, 2010;774

Foley & Smye, 2018), partial melting depletes the mantle, increasing its solidus and therefore making further775

melting more difficult (e.g. Maaløe, 2004), the temperature at the base of the crust increases as the crust776

grows thicker, which can lead to melting of the lower crust, and metamorphic reactions, in particular the777

transition of basalt to eclogite, densify the lower crust and can cause it to founder into the mantle (e.g. Ito778

& Kennedy, 1971; Hacker, 1996; Semprich et al., 2010; Jull & Kelemen, 2001; Taylor & McLennan, 2009;779

Artemieva & Meissner, 2012; Baratoux et al., 2014). Heat producing element partitioning into the crust and780

increases in mantle solidus upon depletion have been studied previously, and thick crusts capable of reaching781

the base of the stagnant lid can still form, as explained in §1.1. However, the formation of eclogite could782

more stringently limit crustal thickness, as the dense eclogitized crust is likely to founder into the mantle.783

We thus use our scaling laws developed in §4.1 to estimate here whether, and under what conditions, crusts784

thick enough for convection to enter the thick crust limit can form, when their thickness is limited by the785

formation of eclogite.786

Stagnant-lid planets produce crust through primary melting of the mantle, and hence the composition of787

this crust is expected to be mafic. For mafic crusts, eclogite is the dense phase that forms at high pressure,788

so we focus on eclogite here. The pressure where eclogite forms depends on temperature, water content,789

and other factors (e.g. Ito & Kennedy, 1971; Hacker, 1996; Hacker et al., 2003; Semprich et al., 2010; Taylor790

& McLennan, 2009; Artemieva & Meissner, 2012; Baratoux et al., 2014). For a mid-ocean ridge basalt791

composition, the minimum pressure for eclogite formation given by Hacker (1996) is 1.2 GPa; we will use792

this pressure in our analysis.793

We first calculate the minimum crustal thickness needed for convection to enter the thick crust limit,794

δc−crit. As outlined in §4.1, δc−crit = δ0 − δsl. We calculate δc−crit for a range of mantle reference viscosities,795

mantle interior temperatures, and for different planet sizes, as these are the key controlling parameters that796

likely vary from planet to planet in the galaxy, or over a planet’s history (Figure 14A & B). We assume pure797

internal heating in this analysis, as real stagnant-lid planets are likely to contain a significant component of798

internal heat production, as is the case for the Earth (e.g. Jaupart et al., 2015). When convection is purely799

internally heated, it is unlikely to develop steady-state convection patterns, even at low Rayleigh numbers.800

Heat flux is thus found to scale as Eq. (10) for internally heated, isochemical stagnant-lid convection (e.g.801

Solomatov & Moresi, 2000; Korenaga, 2009). That is, the steady-state convection scaling relationship of802

Nu ∼ Ra1/5 is typically not seen. As a result we use Eq. (12) to calculate δ0 regardless of Rayleigh803

number here. Moreover, when convection is purely internally heated, ∆T = Ti − Ts, as there is no thermal804
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boundary layer at the base of the mantle. The internal Rayleigh number, Rai, is therefore defined as805

ρgα(Ti − Ts)d
3/(κµ(Ti)), and θ = Ev(Ti − Ts)/(RT 2

i ).806

Our numerical convection models were bottom heated, rather than internally heated. However time-807

dependent, isochemical stagnant-lid convection follows the same Nusselt number-Rayleigh number scaling808

law, Eq. (10), for both purely bottom heated and purely internally heated convection. Even the constant809

C1 is nearly unchanged: we find C1 ≈ 0.48 for our bottom heated models, while Solomatov & Moresi (2000)810

and Korenaga (2009) find C1 ≈ 0.5 − 0.55 for their purely internally heated models. Moreover, Lenardic811

et al. (2005) develop scaling laws for convection beneath continental lithosphere that are analogous to our812

scaling laws for the thick-crust limit; they find these scaling laws hold for convection with internal heating.813

Applying our scaling laws to internally heated planets should thus be at least first order accurate.814

The following Arrhenius temperature-dependent viscosity law is used:815

µ = µr exp

(

Ev

R

(

1

Ti
−

1

Tr

))

(28)

where the reference viscosity of the mantle, µr, is defined at the reference temperature Tr = 1650 K,816

Ev = 300 kJ·mol−1 is the activation energy, and R = 8.314 J·mol−1·K−1 is the universal gas constant. All817

mantle temperatures discussed in this section are reported as potential temperatures, as it is differences in818

potential temperature that contribute to the thermal buoyancy forces driving convection, rather than absolute819

temperatures. We are also primarily interested in the mantle temperature just beneath the stagnant lid,820

as mantle properties here control instability at the base of the lid. The distinction between absolute and821

potential temperature is only important deeper in the interior, where adiabatic heating is significant.822

Our numerical mantle convection models use a Frank-Kamenentskii approximation for the viscosity law,823

rather than the full Arrhenius law given above in Eq. (28). However, Korenaga (2009) showed that the824

same heat flux scaling law holds for either viscosity formulation, and only a small correction factor to the825

effective Frank-Kamenetskii parameter is needed when an Arrheinus viscosity law is used; this correction826

factor is beyond the scope of the simple first order calculations presented here. The correction factor results827

in slightly larger effective values of θ, and hence lower Nu and larger δ0. Our calculations presented here828

therefore slightly underestimate δ0.829

Finally, as in our numerical convection models, we also neglect differences in thermal conductivity between830

crust and mantle, and heat production in the crust and stagnant-lid. However, as we explain in §6, including831

these effects would only act to decrease the crustal thickness needed for convection to enter the thick crust832

limit, for a given mantle temperature. As a result, the calculations presented in Figure 14 are conservative,833

and the critical crustal thicknesses needed for convection to enter the thick crust limit shown are upper834
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bounds. The reason is that both effects increase the temperature at the base of the crust, Tc, and thus also835

increase the subcrustal boundary layer thickness, δsl. With a thicker δsl, the critical crustal thickness needed836

for convection to enter the thick crust limit is smaller, for a given δ0.837

We solve for δc−crit for an Earth-size (Figure 14A) and Mars-size planet (Figure 14B). For the Earth-size838

planet, we assume ρ = 4500 kg·m−3, g = 9.8 m·s−2, α = 3× 10−5 K−1, and d = 2890 km. For the Mars-size839

planet, we assume only the mantle density, gravity, and mantle thickness are different: we use ρ = 3500840

kg·m−3, g = 3.7 m·s−2, and d = 1740 km (e.g. Zuber, 2001). We assume the same mantle thermal diffusivity841

for Earth-size and Mars-size planets of κ = 10−6 m2·s−1, which can be calculated from κ = k/(ρumcp), where842

k is thermal conductivity, ρum is upper mantle density, and cp is heat capacity. Using k = 5 W·m−1·K−1,843

ρum = 3300 kg·m−3, and cp = 1250 W·m−1·K−1 for both Earth- and Mars-size planets, κ ≈ 10−6 m2·s−1.844

Our estimate ignores variations in thermal diffusivity with pressure or temperature in the mantle, which could845

lead to slightly different average thermal diffusivities for Earth-size and Mars-size planets. For all models846

presented in this section, surface temperature, Ts, is fixed to Ts = 273 K. A complete list of parameters and847

variables used for the calculations here in §5.1-5.2 can be found in Table (3).848

We find that the higher the mantle temperature and lower the reference viscosity, the thinner the critical849

crustal thickness needs to be for convection to enter the thick crust limit. A higher mantle temperature also850

decreases the buoyancy number, for a given crust-mantle chemical density difference, making crust easier to851

entrain. However, entrainment rates are slow on geologic timescales for all our numerical convection models,852

and the compositional density difference between the crust and mantle would have to be very small (< 10853

kg·m−3) for thermal buoyancy to dominate over the positive chemical buoyancy of the crust and drive more854

rapid entrainment (see §3.1 & 6). It is thus easier for planetary mantles to operate in the thick crust limit855

when reference viscosity is low or mantle temperature is high. For an Earth-size planet, crusts less than856

30 km thick will still be thick enough for convection to be in the thick crust limit, and hence to suppress857

convective heat flux, if Ti > 1800 K at µr = 1018 Pa·s, or Ti > 2000 K at µr = 1019 Pa·s. Higher mantle858

temperatures and lower reference viscosities lead to more vigorous convection and hence a thinner δ0. The859

thinner δ0, the thinner the crust can be and still dictate the overall thickness of the lithosphere. However,860

with decreasing mantle temperature or increasing reference viscosity, δc−crit rapidly increases, to very large861

thickness of >∼ 100 km. Such thick crusts are unlikely to form in reality due to the transition of basalt862

to eclogite, as we show next. For a Mars-size planet the same trends hold, but δc−crit is everywhere larger.863

A Mars-size planet has lower ρ and g, which decreases convective vigor and increases δ0 for a given mantle864

temperature and reference viscosity. As a result, a thicker crust is needed for convection to enter the thick865

crust limit.866

As crusts thick enough for the lower crust to transition to eclogite are dynamically unstable, and unlikely867
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Figure 14: The critical crustal thickness needed for convection to enter the thick crust limit, δc−crit, for an
Earth-size planet as a function of internal temperature and mantle reference viscosity (A). Dashed contour
line at 43 km (or log10 (43) = 1.63) is the depth where eclogite forms. Therefore, it may not be possible for
the crust to grow thicker than ≈ 43 km. The critical crustal thickness needed for convection to enter the
thick crust limit for a Mars-sized planet (B). For this size planet the depth where eclogite forms is ≈ 116 km,
(or log10 (116) = 2.06). Above the dotted line in the upper left corner our scaling laws predict convection
would cease. (C) Critical mantle temperature, Ti−crit, required for convection to be in the thick crust limit
as a function of mantle thickness and reference viscosity, when the crust is assumed to extend to the depth
where eclogite forms. Above the dashed contour line at ≈ 2100 K, the mantle would experience complete
melting beneath the stagnant lid, and therefore effectively form a magma ocean. For all the results shown
here we confirmed that the crust would be subcritical for convection, using the critical Rayleigh number for
stagnant-lid convection given in Solomatov (1995).
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to persist over geologic timescales, we assume that the maximum plausible crustal thickness, δc−max, is set by868

the depth where eclogite forms. With a pressure where eclogite forms of Pecl = 1.2 GPa, δc−max = Pecl/(ρcg),869

where ρc = 2800 kg·m3 is the density of the crust. For an Earth-size planet we find δc−max ≈ 43 km, and for a870

Mars-size planet δc−max ≈ 116 km. These maximum crustal thickness limits are plotted on Figures 14A & B871

as dashed lines. When δc−crit < δc−max, as found for high mantle temperatures and low reference viscosities,872

then crusts thick enough for convection to enter the thick crust limit can plausibly form. However, when873

δc−crit > δc−max, it is unlikely that convection will ever be able to enter the thick crust limit, because the874

formation of dense eclogite will prevent crusts from growing thick enough to reach δc−crit.875

For an Earth-size planet, convection will be unlikely to ever enter the thick crust limit for the majority876

of the range of plausible reference viscosities and internal temperatures we considered, unless crusts can877

grow thicker than the nominal depth where eclogite forms (Figure 14A). However, for a Mars-size planet,878

δc−crit < δc−max for a larger range of µr and Ti. Convection can therefore enter the thick crust limit for a879

wider range of conditions on a Mars-size planet than on an Earth-size planet. Although the critical crustal880

thickness needed for convection to enter the thick crust limit increases due to lower ρ and g, the lower g881

also means the depth where eclogite forms increases. As δc−max scales linearly with g, while δ0 scales as882

(ρg)1/3, δc−max increases more rapidly than δc−crit. The thick crust limit is therefore more likely to be seen883

on smaller planets than on larger ones.884

To more completely explore the influence of planet size, we calculate the critical mantle temperature,885

Ti−crit, needed for convection to enter the thick crust limit, for a crustal thickness equal to δc−max (Figure886

14C). We calculate Ti−crit for a range of mantle reference viscosities and mantle thicknesses. We use the same887

methodology and assumptions, outlined above, as we used to calculate δc−crit. To scale mantle properties ρ,888

g, and d with planet size, we use the scaling laws developed by Valencia et al. (2006, 2007):889

ρ = ρ⊕
(

M

M⊕

)0.2

(29)

890

g = g⊕
(

M

M⊕

)0.5

(30)

891

d = d⊕
(

M

M⊕

)0.28

(31)

where M is planet mass. Equations (29)-(31) assume an approximately Earth-like core mass fraction.892

The lower the critical mantle temperature for convection to enter the thick crust limit, the more likely it893

will be for planets to convect in this regime, because it means this regime will be found for a broader range894

of mantle temperatures. Planets are also likely to spend a larger fraction of their lifetime in the thick crust895
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Table 3: Parameters and variables used in §5.1-5.2

Parameter Meaning Assumed value Equation
µr Reference viscosity 1018 − 1022 Pa·s (28)
Tr Reference mantle potential temperature 1650 K (28)
Ev Viscosity activation energy 300 kJ·mol−1 (28)
R Universal gas constant 8.314 J·mol−1·K−1 (28)
Ts Surface temperature 273 K below (28)
α Thermal expansion coefficient 3× 10−5 K−1 below (28)
κ Thermal diffusion coefficient 10−6 m2·s−1 below (28)
ρ Average mantle density (Earth) 4500 kg·m−3 below (28)
ρ Average mantle density (Mars) 3500 kg·m−3 below (28)
ρ Average mantle density (General planet size) - (29)
g Gravity (Earth) 9.81 m·s−2 below (28)
g Gravity (Mars) 3.71 m·s−2 below (28)
g Gravity (General planet size) - (30)
d Mantle thickness (Earth) 2890 km below (28)
d Mantle thickness (Mars) 1740 km below (28)
d Mantle thickness (General planet size) - (31)

Pecl Pressure where eclogite forms 1.2 GPa below (28)
ρc Average crust density 2800 kg·m−3 below (28)
k Thermal conductivity (Earth and Mars) 5 W·m−1·K−1 (32)

Vman Volume of the mantle (Mars) 1.4× 1020 m3 (33)
cp Heat capacity 1250 J·kg−1·K−1 (33)
As Surface area of planet (Mars) 1.4× 1014 m2 (33)
Q0 Initial heat production rate 25 or 50 TW (33)
τrad Radioactive decay constant 2.94 Gyrs (33)

Variable Meaning Units Equation
q Heat flux W·m−2 (32) & (33)
Ti Potential temperature of the mantle interior K (32) & (33)
µ Viscosity of the mantle Pa·s (28)
t Time s (33)

42



limit, when Ti−crit is lower. As expected based on Figures 14A & B, we find that Ti−crit decreases with896

decreasing planet size or reference viscosity. For a planet with a Mars-like mantle thickness and µr = 1018897

Pa·s, Ti−crit ≈ 1600 K. However, for a planet with µr = 1018 and d = 4500 km, ≈ 1.5 times thicker898

than Earth’s mantle, Ti−crit > 1800 K. Ti−crit then increases sharply with increasing reference viscosity, as899

with larger reference viscosities the stagnant lid thickness produced by convection without a crust increases900

significantly, when all else is held fixed. The mantle would then have to be very hot for convection to enter901

the thick crust limit, when crustal thickness is limited to the depth where eclogite forms.902

For very high mantle temperatures, extensive melting would occur. If melt fractions are larger than ≈ 60903

%, then the molten region will deform like a liquid, rather than like a solid (Solomatov, 2015). A large region904

of the mantle experiencing such extensive melting would then behave more like a magma ocean than the905

solid state mantle convection our models and scaling analyses apply to. To estimate the mantle temperature906

where such magma ocean-like behvaior would develop, we estimate the minimum temperature where the907

mantle exceeds the liquidus at the base of the lid, using the liquidus of Katz et al. (2003); this temperature908

is found to be Ti ≈ 2100 K. For µr > 4 × 1020 Pa·s and d = 1700 km, the mantle can not get hot enough909

to ever enter the thick crust limit, without leading to complete melting of the mantle, unless crust can grow910

thicker than the depth where eclogite forms. For d = 4500 km this limit is lower; µr < 2.5 × 1019 Pa·s for911

convection to ever reach the thick crust limit, with our assumed maximum plausible crustal thickness.912

Our results therefore indicate that the thick crust limit is more likely to be seen on small planets, and913

planets with hot interiors and low reference viscosities. The formation of a thick, buoyant crust could thus914

significantly impact the thermal evolution of such planets. Meanwhile, on large planets or planets with high915

reference viscosities, the thick crust limit is unlikely to ever be reached, and hence the positive buoyancy of916

the crust can be ignored in modeling such planets’ thermal evolution.917

However, even for smaller planets, where a broader range of conditions allow convection to operate in918

the thick crust limit, thermal evolution modeling is necessary to determine how large an impact a thick,919

buoyant crust would have on such planets’ thermal histories, and for how long convection would remain in920

the thick crust limit once entered. In particular, factors that promote convection entering the thick crust921

limit, smaller planet size and lower reference viscosity, also enhance the rate of mantle cooling, when all else922

is equal. It is therefore unclear how long such planets would remain in the thick crust limit. Initial mantle923

temperature and planetary heat budget will also be important, as planets most prone to entering the thick924

crust limit may need high rates of internal heating, or significant stores of primordial heat, for convection to925

remain in the thick crust limit for an extended period of time. More rapid cooling on smaller planets may926

also keep them from forming thick crusts in the first place. However, previous models for Mars show that927

thick crusts (>≈ 100 km) can form when mantle reference viscosity is low or heat production rate is high928
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Figure 15: Heat flux for a Mars-sized planet with a 116 km thick crust, which is the limit where eclogite
would form, as a function of mantle interior temperature and reference viscosity (A), and the heat flux for
the same conditions but where the influence of the crust is ignored (B).

(e.g. Hauck & Phillips, 2002; Fraeman & Korenaga, 2010); low reference viscosity further leads to the crust929

forming rapidly, within ∼ 100 Myrs (Fraeman & Korenaga, 2010). So the same conditions that make a small930

planet more prone to entering the thick crust limit, based on our scaling analysis, also promote the rapid931

formation of a thick crust. The thick crusts seen in these models (at extreme end-member values of reference932

viscosity or heat production rate) are probably not realistic for Mars based on geophysical observations933

(Wieczorek & Zuber, 2004; Goossens et al., 2017), but demonstrate the potential relevance of the thick crust934

limit to planets with different interior properties and heat budgets. We therefore present a set of simple935

parameterized convection models next, in order to explore these effects further.936

5.2 Thermal evolution modeling937

Here we present simple thermal evolution models of a Mars-size planet that incorporate our newly developed938

scaling laws. We chose a Mars-size planet to model because smaller planets are more likely to enter the939

thick crust limit, when the maximum crustal thickness is set by the depth where eclogite forms; the effect940

of crustal buoyancy on mantle convective heat flux will thus be most pronounced for this size planet.941

We first demonstrate how a thick, buoyant crust influences convective heat flux by calculating heat flux942

as a function of the average mantle interior temperature, Ti, and mantle reference viscosity, µr, for a case943
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where the crust is ≈ 116 km thick and a case where no crust is present (Figure 15). A crustal thickness944

of 116 km is used because this is the maximum thickness possible before the eclogite transition would be945

reached on a Mars-size planet. We calculate heat flux, q, based on our scaling law for Nusselt number, Eq.946

(18), employing all of the same assumptions as outlined above in §5.1. We assume time-dependent, internally947

heated convection and therefore remove the scaling law for steady-state convection. The scaling law for heat948

flux used in this section is thus949

q = min

(

k(Ti − Ts)

δsl + δc
, C1

k(Ti − Ts)

d
θ−

4

3Rai
1

3

)

. (32)

The definitions of internal Rayleigh number, Rai, and Frank-Kamenetskii parameter, θ, are the same as950

given in §5.1. We also assume the same material properties for a Mars-size planet, ρ = 3500 kg·m−3, g = 3.7951

m·s−2, d = 1740 km, Ts = 273 K, α = 3× 10−5 K−1, κ = 10−6 m2·s−1, and k = 5 W·m−1·K−1 (Table 3).952

As in §5.1 and in our numerical convection models, we neglect differences in thermal conductivity between953

the crust and mantle, and enrichment of heat producing elements in the crust. Although these assumptions954

were already justified above, additional discussion is warranted here. Including the effects of heat producing955

element enrichment and a lower thermal conductivity in the crust would change the geotherm there, leading956

to warmer temperatures at depth. However, in standard thermal evolution models that ignore the crust’s957

buoyancy, or when the crust’s buoyancy is negligible (i.e. in the thin crust limit), this modified crustal958

geotherm does not influence mantle convective heat flux in the stagnant lid regime (e.g. Hauck & Phillips,959

2002). Mantle convective heat flux is dictated by the heat flux across the rheological sublayer at the base of960

the stagnant lid in the thin crust limit (e.g. Solomatov, 1995). In this case, the temperature drop across the961

rheological sublayer is entirely controlled by θ and ∆T = Ti−Ts, as ∆Trh ∼ ∆T/θ, while the thickness of the962

rheological sublayer is controlled by θ and Rai (e.g. see §4). Both θ and Rai are functions of mantle interior963

properties, mainly temperature and, for Rai, viscosity, and not affected by the geotherm within the crust.964

The total surface heat flux would be influenced, as the surface heat flux would be the sum of the heat flux965

supplied to the base of the stagnant lid by the convecting mantle, and the heat produced within the crust.966

However, it is the mantle convective heat flux that controls mantle thermal evolution, and therefore this is967

the heat flux we present in Figure 15. Our estimate of the heat flux in the thin crust limit will therefore not968

be affected by neglecting enrichment of heat producing elements and a lower thermal conductivity in the969

crust.970

In the thick crust limit, the crustal geotherm will influence mantle convective heat flux, as the temperature971

difference across the subcrustal boundary layer is a function of the temperature at the base of the crust,972

Tc. Hence the thickness of the subcrustal boundary layer, δsl, is also a function of Tc. As explained below973
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in §6, including heat producing element enrichment and a lower thermal conductivity in the crust both974

act to increase Tc. As a result, the temperature difference driving foundering of the subcrustal boundary975

layer, Ti − Tc, shrinks and δsl increases. Including heat producing element enrichment and a lower thermal976

conductivity in the crust would therefore lower mantle convective heat flux in the thick crust limit, beyond977

what the calculations presented here show. Moreover, as explained above in §5.1, these same factors would978

make it easier for convection to enter the thick crust limit in the first place. The lower mantle convective heat979

flux brought about by a warmer Tc would then feedback on the mantle interior temperature during a planet’s980

thermal evolution. Neglecting heat producing element enrichment and variations in thermal conductivity in981

the crust are thus conservative assumptions for the heat flux calculations presented in Figure 15; including982

these effects would only accentuate the influence of crustal buoyancy on mantle heat flux illustrated here.983

However, these same effects would have a more complicated effect on a planet’s mantle thermal history, in984

particular heat producing element partitioning into the crust, which lowers the heating power in the mantle985

as discussed further below.986

When the mantle temperature is low or the reference viscosity is high, there is no difference in convective987

heat flux between the no crust case and the 116 km thick crust case (Figure 15), because convection operates988

in the thin crust limit at these conditions. The base of the stagnant lid extends far deeper than the base989

of the crust. However, for mantle temperatures > 1600 K at µr = 1018 Pa·s, or > 1950 K at µr = 1020990

Pa·s, convection operates in the thick crust limit. In this situation, convective heat flux is substantially991

suppressed by the presence of the crust: heat flux is held to ≈ 60− 65 mW·m−2, and only weakly decreases992

with decreasing mantle potential temperature or increasing reference viscosity, with a 116 km thick crust.993

Meanwhile, if no crust is present, heat flux reaches ≈ 400 mW·m−2 for Ti = 2100 K and µr = 1018 Pa·s. As994

a result, the presence of a thick, buoyant crust will suppress convective heat flux early in a planet’s history,995

if mantle reference viscosity is lower than ∼ 5 × 1020 Pa·s and the initial mantle temperature is ≈ 2100996

K. As reference viscosity decreases, this suppression of heat flux by a thick crust extends to lower mantle997

temperatures, and can thus persist longer during a planet’s thermal evolution.998

To illustrate how suppression of convective heat flux by a thick, buoyant crust influences a stagnant-lid999

planet’s thermal history, we next perform a set of simple parameterized convection models. We employ all1000

the same assumptions and material property values as given above, which results in the following equation1001

for the evolution of mantle temperature (e.g. Davies, 2007; Spohn, 1991; Foley & Smye, 2018)1002

ρVmancp
dTi

dt
= Asq −Q0 exp

(

−
t

τrad

)

. (33)

Mantle heat flux, q, is calculated from Eq. (32) as in Figure 15, Vman is the volume of the mantle, cp = 12501003
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J·kg−1·K−1 is the heat capacity, and As is the surface area of the mantle. Initial mantle heat production1004

rates, Q0, of 11.7, 25, and 50 TW are used. The first two are the heat production rates derived from the1005

compositional models of Wanke & Dreibus (1994) and Lodders & Fegley (1997), respectively, while the1006

last represents a planet enriched in heat producing elements beyond what is seen in the solar system. Such1007

enrichment in radionuclide abundances are possible for exoplanets, because large system to system variations1008

in heat producing element abundances are seen in stars (e.g. Unterborn et al., 2015; Botelho et al., 2019),1009

and thus likely to be reflected in any planets orbiting these stars. The decay constant, τrad = 2.94 Gyrs,1010

is calculated based on a weighted average of the four major heat producing elements (Driscoll & Bercovici,1011

2014; Foley & Smye, 2018). We run sets of models with assumed crustal thicknesses of 0 km (no crust), 581012

km (half the depth to the eclogite transition), and 116 km (at the depth of the eclogite transition), reference1013

viscosities ranging from µr = 1018 − 1020 Pa·s, and with initial mantle interior temperatures of Tinit = 18001014

K and Tinit = 2100 K (Figure 16).1015

Only mantle heat loss by solid-state convection is considered in these thermal evolution models. We thus1016

neglect heat loss due to mantle melting and eruption, which could be significant when mantle temperatures1017

are high. We also hold the crustal thickness fixed in time; this is justifiable if the crust forms rapidly, as1018

is thought to be the case for Mars (e.g. Nimmo & Tanaka, 2005). Furthermore, if the formation of eclogite1019

ultimately limits crustal thickness, then the base of the crust will remain fixed over time at the depth where1020

eclogite forms, after an initial period of crust growth to this depth. Finally, as before, heat producing1021

element partitioning into the crust is ignored. The influence of these simplifications on the results presented1022

here is discussed further in §6. Though there are competing effects, in particular with heat producing1023

element enrichment in the crust, in sum we expect that our model simplifications lead to an overestimate of1024

mantle temperatures, particularly in the thick crust limit. The mantle temperatures presented below should1025

therefore be taken as upper bounds.1026

With the lower initial heat production rate of Q0 = 11.7 TW (Figures 16A, C, & E), decreasing reference1027

viscosity leads to a greater influence of crustal buoyancy on the thermal history. With an initial mantle1028

temperature of Tinit = 2100 K and reference viscosity µr = 1020 Pa·s, only the thickest crust case enters the1029

thick crust limit, leading to a very small increase in mantle temperature during the first ≈ 3 Gyrs of evolution1030

compared to the no crust case. However, with µr = 1018 Pa·s, both the 116 km and 58 km thick crust models1031

enter the thick crust limit, leading to elevated mantle temperatures during the first ≈ 2 and ≈ 4 − 5 Gyrs,1032

respectively. The buoyancy of the crust acts to suppress convective heat flux during these time periods1033

(Figure 17E), thereby causing mantle temperatures to run hotter. As the mantle cools and the thickness of1034

the stagnant lid increases, planets transition into the thin crust limit, and begin cooling more rapidly. The1035

mantle temperature histories thus eventually converge, regardless of the imposed crustal thickness. However,1036
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Figure 16: Time evolution of mantle temperature for a Mars-sized planet with no crust (solid lines), a crustal
thickness of 58 km (dashed lines), and a crustal thickness of 116 km (dot-dashed lines). The latter two crustal
thicknesses correspond to pressures at the base of the crust that are halfway to, and equal to, the pressure
where eclogite forms, respectively. Initial mantle temperatures are either 1800 K (red) or 2100 K (blue).
Three different reference viscosities are shown, 1020 Pa·s (A,B,C), 1019 Pa·s (D,E,F), and 1018 Pa·s (G,H,I).
Models assume a total initial radiogenic heating rate of 11.7 TW (top row; A, D, & G), 25 TW (middle row;
B, E, & H) or 50 TW (bottom row; C, F, & I).
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Figure 17: Time evolution of mantle convective heat flux for the same models shown in Figure 16.
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this convergence can be very slow: with Tinit = 2100 K, µr = 1018 Pa·s, and a crustal thickness of 116 km,1037

convection remains in the thick crust limit for ≈ 2.5 Gyrs, and elevated mantle temperatures persist for1038

≈ 5− 6 Gyrs. Mantle temperatures are ≈ 200− 250 K higher during the first 1-2 Gyrs of evolution for this1039

model, in comparison to the no crust case. However, note that the simplifications made in our model set up1040

mean we may overestimate this elevation in mantle temperature, and how long these elevated temperatures1041

last.1042

With Tinit = 1800 K, convection only enters the thick crust limit when the crust is 116 km thick and1043

µr = 1018 Pa·s. The mantle temperature in this case is only elevated by a few tens of degrees above the1044

no crust case, and converges to the no crust case after ≈ 2− 3 Gyrs. The buoyancy effects of a thick crust1045

can thus accentuate differences in initial conditions, and allow the influence of different initial conditions to1046

persist for multiple Gyrs, even longer than the age of our solar system in some cases. The higher the initial1047

mantle temperature, the easier it is for convection to begin in the thick crust limit. As a result, mantle1048

heat flux is suppressed, meaning this additional primordial heat supplied by the higher initial temperature1049

is also more easily retained and contributes to long-lasting, elevated mantle temperatures. The buoyancy of1050

a thick crust therefore acts to weaken the thermostat, or Tozer, effect that tends to regulate mantle thermal1051

histories (Tozer, 1967, 1972), because mantle convective heat flux in the thick crust limit is far less sensitive1052

to mantle temperature than isochemical convection (Figure 15). The lower the reference viscosity and thicker1053

the crust, the longer it takes for initial conditions to be erased during mantle thermal evolution.1054

The same trends hold with a higher initial heat production rates of 25 & 50 TW (Figures 16B, E & H1055

and 16C, F & I, respectively). With a higher heat production rate, mantle temperatures are generally higher1056

and it is thus easier for models to enter the thick crust limit. Moreover, models that enter the thick crust1057

limit experience more pronounced, and longer-lasting, periods of elevated mantle temperatures during their1058

early histories. With Q0 = 50 TW, Tinit = 2100 K and µr = 1018 Pa·s, mantle temperatures are ≈ 500 K1059

greater during the first 1-2 Gyrs of evolution with a 116 km thick crust than if no crust were present (Figure1060

16F). Elevated temperatures then last for ≈ 8−9 Gyrs in this case. Even with a cooler initial temperature of1061

Tinit = 1800 K, the 116 km thick crust case reaches temperatures ≈ 150 K hotter than the no crust case, and1062

elevated temperatures last for 5−6 Gyrs. Higher internal heating rates therefore accentuate and prolong the1063

effects of crustal buoyancy on mantle thermal evolution. As a result, the higher the initial internal heating1064

rate, the more the Tozer feedback is weakened, and the longer it will take for the influence of the initial1065

mantle temperature to be erased during a planet’s thermal evolution.1066

Crust formation has potentially removed half of the Martian mantle’s initial heat producing element1067

abundance (Plesa et al., 2018; Thiriet et al., 2018). Such depletion of heat producing elements in the mantle1068

would thus mean that our model with Q0 = 50 TW would effectively have ≈ 25 TW of initial heating1069
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power in the mantle once crustal formation has occurred, and thus may behave more like that case (i.e.,1070

Figures 16B, E, & H). Or put another way, the mantle, before crust formation, would need to have ≈ 1001071

TW of initial heating power to follow the thermal histories presented in Figures 16C, F, & I. As we discuss1072

in more detail in §6, though, there are effects cutting back the other way. Heat production in the crust1073

lowers mantle convective heat flux in the thick crust limit even more than our simple model estimates, by1074

changing the crustal geotherm. In addition, the rate of crust growth will be important, as the thicker the1075

crust the stronger the influence on mantle thermal history. A thick crust that grows slowly will lead to less1076

pronounced elevation of mantle temperatures compared to a case where the same crust grows very rapidly.1077

The thick crust limit could potentially be avoided altogether if crust growth is very slow. However, the same1078

factors that lead to a significant influence from a thick, buoyant crust (low mantle reference viscosities, high1079

mantle temperatures or rates of internal heat production) also lead to extensive mantle melting and faster1080

crust growth.1081

The time evolution of mantle convective heat flux also illustrates the same trends as the mantle temper-1082

ature histories (Figure 17). Here, the way a thick crust limits mantle heat flux early in a planet’s history is1083

clearly illustrated, as well as the transition from the thick crust to thin crust limits, which shows up as a1084

kink in the mantle heat flux versus time curve. In the thick crust limit, the weak dependence of mantle heat1085

flux on mantle temperature causes it to evolve far more slowly than in the thin crust limit, or than in the1086

cases where no crust is present; this further highlights the way the Tozer feedback is weakened by a thick,1087

buoyant crust. Without a crust, mantle heat fluxes converge to the same trend after 1-2 Gyrs with a low1088

reference viscosity, and after 3-4 Gyrs with a high reference viscosity, regardless of initial mantle temperature1089

due to the Tozer feedback. After the effect of initial conditions is erased, mantle heat flux largely follows the1090

mantle heat production rate. With a thick crust, this convergence does not happen until the mantle cools1091

to the point that convection evolves into the thin crust limit. With no crust, mantle heat fluxes are within1092

the range of 13-16 mW·m−2 after 4.5 Gyrs for Q0 = 11.7 TW, compared to ≈ 17− 18 mW·m−2 in Hauck &1093

Phillips (2002), 20-23 mW·m−2 for Q0 = 25 TW, and 32-36 mW·m−2 for Q0 = 50 TW. With a thick crust,1094

mantle heat flux after 4.5 Gyrs can be higher, due to suppression of early mantle cooling. The highest seen1095

is for the case with Tinit = 2100 K, µr = 1018 Pa·s, and Q0 = 50 TW, where mantle heat flux after 4.5 Gyrs1096

is ≈ 63 mW·m−2.1097

Geophysical constraints indicate Mars’ reference viscosity is larger than 1018 Pa·s, in the range of 1021 −1098

1022 Pa·s (e.g. Plesa et al., 2018; Samuel et al., 2019). Combined with an initial heat production rate of no1099

larger than 25 TW, with most geophysical models (e.g. Hauck & Phillips, 2002; Plesa et al., 2018) favoring1100

the 11.7 TW derived from Wanke & Dreibus (1994), and an estimated crustal thickness of <≈ 80 km (e.g.1101

Wieczorek & Zuber, 2004), crustal buoyancy likely did not play a significant role in Mars’ thermal evolution.1102
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If Mars ever did enter the thick crust limit, this was likely short-lived and didn’t significantly alter mantle1103

temperature evolution. However, extrasolar planets with different compositions could have lower reference1104

viscosities or higher abundances of heat producting elements, such that formation of a thick, buoyant crust1105

could significantly impact their evolution. For example, a mantle composed of pure fayalite (an iron rich1106

mantle) is ∼ 1000 times less viscous than a pure forsterite (or iron poor) mantle (e.g. Zhao et al., 2009), while1107

preliminary constraints on heat producing element budgets in other stars show abundances up to at least1108

2.5 times solar (Unterborn et al., 2015). Moreover, many exoplanets, in particular those around M-dwarf1109

stars, could experience significant additional heating from tidal dissipation or magnetic induction heating1110

(Jackson et al., 2008; Kislyakova et al., 2017). Such planets would be more likely to form thick crusts and1111

enter the thick crust limit, as well as have these thick crusts significantly influence their thermal histories.1112

Our thermal evolution model results therefore have important implications for the lifetime of volcanism1113

on such rocky stagnant-lid planets exoplanets. How long rocky planets stay volcanically active is of course of1114

interest for understanding their geologic histories, but is also critical for the evolution of their atmospheres.1115

In particular, stagnant-lid exoplanets that lie in their respective habitable zones can potentially sustain1116

temperate climates through the carbonate-silicate cycle (Tosi et al., 2017; Dorn et al., 2018; Foley & Smye,1117

2018; Valencia et al., 2018; Foley, 2019; Höning et al., 2019). However, volcanism is critical for maintaining1118

CO2 outgassing rates high enough to prevent global glaciation (Kadoya & Tajika, 2014; Foley & Smye, 2018;1119

Foley, 2019), so when volcanism ends, frozen snowball climates may prevail. That the presence of a thick,1120

buoyant crust weakens the Tozer feedback means that planets that are otherwise identical, but have different1121

initial mantle temperatures, could have drastically different thermal histories. Planets starting with initially1122

hot mantles will be able to sustain volcanism, and thus potentially habitable surface conditions, for up to a1123

few Gyrs longer than planets starting with initially cooler mantles. More detailed thermal evolution models1124

would be needed to quantify this effect more precisely, and how it influences predictions of the volcanic1125

lifetimes of rocky stagnant-lid planets. As our scaling analysis indicates, the effects of crustal buoyancy on1126

thermal history will be most pronounced for smaller planets with low reference viscosities and high internal1127

heat production rates, and thus it is these planets where initial conditions can most influence subsequent1128

evolution, and predicting the lifetime of volcanism will be most difficult.1129

6 Discussion1130

Our numerical convection models made a number of simplifications in order to reduce complexity, such1131

that the influence of crustal buoyancy forces on stagnant-lid convection could be isolated, and scaling laws1132

describing these effects developed. The simplifications in our numerical model setup were outlined in §1-1133
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2, and the implications discussed in some detail in §5. Specifically, our numerical convection models are1134

bottom heated and employ the Frank-Kamenetskii approximation for viscosity. Our scaling laws are thus1135

only benchmarked against fully dynamic mantle convection calculations for these conditions. However, as we1136

argue in §5.1, we expect them to still apply, at least to first order accuracy, to internally heated convection or1137

when an Arrhenius viscosity law is used, based on previous studies of stagnant-lid convection and convection1138

beneath continents on Earth. For mixed-mode heating the percentage of internal heating likely also matters,1139

and new convection models would be needed to develop scaling laws incorporating this factor.1140

A potentially more important simplification is that we neglect differences in thermal conductivity and1141

heat production rate between the crust and mantle, in both the numerical convection models and thermal1142

evolution models. As explained in §5.2, this is unlikely to affect the thin crust limit scaling laws, as the1143

mantle convective heat flux in this case is determined by the heat flux across the rheological sublayer, which1144

is a function of θ and Rai. However, heat flux in the thick crust limit will be modified, as the temperature1145

at the base of the crust, Tc, will be influenced by the heat production rate and thermal conductivity in the1146

crust.1147

A more general formulation for the mantle convective heat flux in the thick crust limit is1148

q =
k(Ti − Tc)

δsl
. (34)

This heat flux will be applied to the base of the crust, and the total surface heat flux will include q and1149

any heat produced within the crust. Tc can then be determined in a more general way by using the one-1150

dimensional, steady-state heat conduction equation to calculate a geotherm through the crust with a given1151

thickness δc, conductivity kc, and heat production rate per unit volume, xc; the latter two need not be the1152

same as their respective values in the mantle. Matching the heat flux at the base of the crust with the mantle1153

convective heat flux, one can solve for Tc as1154

Tc =
xcδ

2
cδsl

2(δslkc + δck)
+

kcTsδsl + kTiδc
δslkc + δck

. (35)

If kc = k and xc = 0, Eq. (35) is equivalent to the dimensional form of Eq. (16).1155

Combining Eq. (35) with Eq. (15), both Tc and δsl can be calculated numerically. If δsl is fixed, either1156

decreasing kc or increasing xc causes Tc to increase. However, increasing Tc also causes δsl to increase,1157

because the temperature difference driving foundering of the sub-crustal boundary layer is smaller. From1158

Eq. (35), a larger δsl acts to decrease Tc in most cases (though the situation can reverse if heat production1159

rates in the crust are very large), so there are competing effects for how decreasing kc or increasing xc1160
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would ultimately influence Tc, δsl, and convective heat flux, q. In the end, the direct influence of either1161

decreasing kc or increasing xc on Tc is stronger; both Tc and δsl increase in this case. As a result, the1162

mantle convective heat flux, q, will decrease. Thus, including the effects of a lower thermal conductivity or1163

enrichment of heat producing elements in the crust will both act to suppress heat flux in the thick crust1164

limit, even further than our results presented above in §5.2 show. The increase in δsl brought about by lower1165

crustal thermal conductivity or higher crustal heat production would also make it easier for planets to enter1166

the thick crust limit; that is, the range of conditions where the thick crust limit could prevail, shown in1167

Figure 14, would expand. Ultimately numerical convection models including internal heating, concentration1168

of heat producing elements in the crust, and variable crustal thermal conductivity will be needed to confirm1169

the trends we outline here based on a simple geotherm calculation.1170

The effect of our model simplifications on mantle thermal evolution is more complicated, with many1171

competing factors. We outline these competing effects here, but ultimately more complex thermal evolution1172

models that track the time evolution of crustal thickness, heat loss by volcanism, and concentration of heat1173

producing elements in the crust would be needed to determine which effects are dominant. Such a task is1174

beyond the scope of this paper, but an important avenue for future work.1175

As seen above, the effect of a lower thermal conductivity and heat producing element enrichment in the1176

crust will make the heat flux in the thick crust limit even lower than what was used in our thermal evolution1177

models, for a given crustal thickness. This would tend to accentuate the effects described in §5.2, and prolong1178

the time period where convection operates in the thick crust limit. However, there are important effects1179

cutting the other way, which may be more significant in the end: depletion of heat producing elements1180

from the mantle due to crust formation, heat loss due to volcanism, and early heat loss before a thick1181

crust has formed. As explained in §5.2, crust formation strips heat producing elements from the mantle,1182

thereby lowering heating power in the mantle. This would lead to smaller deviations between the no crust1183

and thick crust cases than our thermal evolution models show. However, even with the lowest mantle1184

heat production rate we considered, a thick crust still significantly modifies mantle thermal history when1185

the reference viscosity is low. Therefore crustal buoyancy could be broadly important for planets with1186

compositions that lead to low viscosities. For planets with higher viscosities, large heat production rates,1187

either due to high abundances of heat producing elements or additional heat sources, would be needed for a1188

thick, buoyant crust to significantly modify thermal evolution.1189

Our numerical convection models and thermal evolution models also neglect heat transport by melting1190

and volcanic eruption, which is a significant heat loss mechanism when mantle temperatures are high (e.g.1191

O’Reilly & Davies, 1981; Ogawa & Nakamura, 1998; Nakagawa & Tackley, 2012; Moore & Webb, 2013;1192

Driscoll & Bercovici, 2014; Moore et al., 2017). Including heat loss by volcanism would likely produce lower1193
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mantle temperatures for all of our thermal evolution models, and potentially lessen the temperature difference1194

between models with a thick crust and those with a thin or no crust as well. Ultimately more sophisticated1195

thermal evolution models incorporating parameterizations for heat loss by volcanism (e.g. Kankanamge &1196

Moore, 2019), combined with our scaling laws for convective heat flux in the thick crust limit, would be1197

needed to determine the extent to which volcanic heat loss would limit the effect of a thick, buoyant crust1198

on mantle thermal history.1199

Finally, crustal thickness will of course evolve over time rather than remaining fixed, as assumed in our1200

thermal evolution models, and, save for some entrainment of the buoyant crustal layer, in our numerical1201

convection models. Very early in a planet’s history, the crust will grow as a result of volcanism, and thus1202

there will be a finite time before the crust is thick enough to enter the thick crust limit. As a result, heat loss1203

during a planet’s very early history will likely be higher than our thermal evolution models predict. However,1204

the crust formed rapidly on Mars, and such rapid crust growth due to extensive volcanism appears common1205

across the solar system (e.g. Moore et al., 2017; Byrne, 2020). Moreover, factors that lead to the strongest1206

influence of crustal bouyancy on thermal evolution, low reference viscosity, high initial mantle temperature,1207

and high mantle heat production rate, also favor the rapid formation of a thick crust. We therefore do not1208

expect this to be a significant effect, though the influence of the time evolution of crustal thickness should1209

be tested with more sophisticated thermal evolution models.1210

Loss of crust due to foundering or entrainment is also a possibility, that could modify our thermal evolution1211

model results. As previously discussed in §3, we do see entrainment of the crust, in particular when the1212

magnitude of the buoyancy number is low and the Rayleigh number is high. However, even this entrainment1213

is slow, and the rate of entrainment is likely overpredicted in the models due to numerical artifacts. We1214

therefore do not expect entrainment of buoyant crust to limit crustal thickness on real planets. Faster1215

entrainment rates could be seen if thermal buoyancy forces are able to dominate compositional buoyancy1216

forces in the convective sub-layer at the base of the stagnant lid. However, such a situation would require1217

buoyancy number absolute values < 1/θ, and thus very small compositional density differences of <∼ 101218

kg·m−3 for a Mars-size planet with a mantle potential temperature of 2100 K (a lower mantle temperature1219

decreases this estimated compositional density difference even further) (Tackley, 2015). Even mafic crust1220

formed from high degree mantle melting, such as komatiiate, has a compositional density difference much1221

larger than 10 kg·m−3. Cooling of the mantle over time could also form a gradient in buoyancy number in1222

the crust, with crust formed from higher temperature melting at the bottom and lower temperature melting1223

at the top; the lower crust would then have weaker compositional buoyancy (lower magnitude buoyancy1224

number) than the upper crust. However, given the arguments above, entrainment is likely to still be slow in1225

this case, and such a buoyancy gradient in the crust is unlikely to change our scaling laws. Moreover, such1226
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a compositional gradient would also be convectively stable, and help prevent convection from developing1227

within the crust. Finally, even if crust is actively thinning due to entrainment, our results show that Nusselt1228

number follows the same trend as a function of crustal thickness that our scaling laws predict.1229

Foundering of dense lower crust could be significant as well, and would likely enhance convective heat flux1230

above what our thick crust limit scaling laws predict. Our thermal evolution models assume the maximum1231

crustal thickness is set by the transition to eclogite. However, if active volcanism is continuously creating1232

new crust at the surface, and subsequently pushing the whole crustal column downwards, lower crust will be1233

pushed into the eclogite stability field. As a result, this lower crust can founder into the mantle, dragging1234

the underlying sub-crustal boundary layer with it. A planet where the lower crust is continuously foundering1235

may thus have a thinner, or even effectively non-existent, sub-crustal boundary layer, and therefore higher1236

convective heat flux with a thick crust than our models find. An important avenue for future work is thus1237

investigating stagnant-lid convection with a buoyant upper crust and negatively buoyant lower crust, to1238

develop heat flux scaling laws for the case where the lower crust is actively foundering. A similar effect1239

was proposed by Lourenço et al. (2018), who argue that lithospheric weakening by melt intrusion can drive1240

foundering of the lithosphere, and hence enhance stagnant-lid convective heat flux. However, this work did1241

not consider buoyancy variations between the upper and lower crust and mantle, which are critical for the1242

crustal foundering described here.1243

7 Conclusions1244

Numerical models of stagnant-lid convection with a buoyant crustal layer demonstrate two end-member1245

regimes of behavior: a thin crust limit, where convection is largely unaffected by the presence of the buoyant1246

crustal layer or its thickness, and a thick crust limit, where the buoyant crustal layer itself dictates the1247

thickness of the stagnant lid, and hence the convective heat flux. We develop scaling laws for the Nusselt1248

number in both limits. In the thin crust limit, convection follows previously developed scaling laws for purely1249

thermal stagnant-lid convection, because the buoyant layer has a negligible effect. In the thick crust limit, a1250

scaling law for Nusselt number is developed by assuming the stagnant lid thickness is given by the sum of the1251

buoyant crustal layer thickness and the thickness of a sub-crustal thermal boundary layer. The sub-crustal1252

thermal boundary layer thickness is found from standard boundary layer theory.1253

The scaling laws match the numerical model results well. The scaling laws also show when convection1254

switches between these two end-member limits. Specifically, the thick crust limit is entered when the sum1255

of the crust and sub-crustal thermal boundary layer thicknesses is greater than the stagnant lid thickness1256

expected if there was no buoyant crustal layer. Mantle interior temperature also increases in the thick crust1257
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limit, due to inefficient convective heat loss. A simple energy balance model was used to develop a scaling1258

law that captures this effect to first order.1259

The critical crustal thickness that must be exceeded for convection to enter the thick crust limit is a1260

strong function of mantle interior temperature, mantle reference viscosity, and planet size. The higher the1261

temperature and lower the reference viscosity, the thinner the critical crustal thickness for convection to1262

operate in the thick crust limit; planetary mantles are therefore more likely to convect in the thick crust1263

limit under these conditions. Convective vigor declines with decreasing planet size, and the critical crustal1264

thickness therefore increases. However, crustal thickness is likely limited by the transition to eclogite. This1265

transition occurs much deeper on a smaller planet than a larger one. If the crust can grow no deeper than1266

the depth where eclogite forms, then a wider range of interior temperatures and reference viscosities allow1267

convection to enter the thick crust limit on a smaller planet than a larger one. Reference viscosity would1268

have to be low (< 1020 Pa·s) and mantle temperatures very high for convection to ever enter the thick crust1269

limit on an Earth-size planet.1270

Applying the scaling laws to the thermal evolution of Mars-like stagnant-lid exoplanets shows that when1271

convection operates in the thick crust limit, mantle heat flux is suppressed, and thus mantle temperature1272

is elevated, in comparison to a case where no crust is present. Such an elevation in mantle temperature1273

due to convection operating in the thick crust limit occurs early in a planet’s history, when heat production1274

and interior temperatures are high. As the planet cools, convection eventually switches to the thin crust1275

limit, and, with enough time, planets with a thick crust and those with no crust converge to the same1276

thermal evolution. However, during the time when the mantle convects in the thick crust limit, mantle1277

temperatures can reach hundreds of degrees K hotter than the no crust case, and these elevated temperatures1278

can last for > 5 Gyrs, depending on mantle reference viscosity, crustal thickness, and heat production rate.1279

Specifically the lower the reference viscosity, higher the heat production rate, and thicker the crust, the more1280

pronounced and long-lasting the period of elevated mantle temperatures. Our analysis indicates that Mars’1281

mantle reference viscosity is too high and heat production rate too low for crustal buoyancy to have played1282

a significant role it its thermal history. However, crustal buoyancy would be important for exoplanets with1283

lower reference viscosities or higher interior heat production rates.1284

The models also show that initial mantle temperature is important. The hotter the initial temperature,1285

the easier it is for convection to enter the thick crust limit. When convection is in the thick crust limit,1286

the suppression of mantle heat flux means primordial heat is retained for longer. Thick, buoyant crusts1287

therefore weaken the Tozer feedback, and cause the influence of initial conditions to persist for far longer on1288

stagnant-lid planets than traditional thermal evolution models, which ignore the effects of crustal buoyancy,1289

would predict. In particular small rocky exoplanets with low reference viscosities and high heat production1290
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rates may take longer than the age of our solar system before initial conditions are erased, so predicting the1291

thermal state of such planets may be especially difficult.1292
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Table 4: Compilation of numerical model results without crustal

convection

Ra0 θ δ
′

c0 δ
′

c T
′

i Nu B

106 13.82 0.0 - 0.9195± 8.7× 10−13 1.6646± 1.7× 10−13 -

106 13.82 0.1 0.0934± 2.63× 10−5 0.9195± 2.63× 10−13 1.6646± 4.85× 10−5 −1.0

106 13.82 0.2 0.1928± 9.64× 10−6 0.9196± 4.43× 10−6 1.6637± 7.33× 10−5 −1.0

106 13.82 0.3 0.2922± 6.45× 10−5 0.9204± 2.09× 10−5 1.6456± 1.26× 10−4 −1.0

106 13.82 0.4 0.3898± 1.23× 10−4 0.9204± 1.13× 10−4 1.5802± 0.001 −1.0

106 13.82 0.5 0.4897± 1.31× 10−4 0.9256± 4.67× 10−5 1.4502± 6.65× 10−5 −1.0

3× 106 13.82 0.0 - 0.9261± 8.60× 10−13 2.0650± 8.14× 10−6 -

3× 106 13.82 0.1 0.0928± 1.21× 10−5 0.9261± 8.72× 10−6 2.0638± 2.35× 10−4 −1.0

3× 106 13.82 0.2 0.1926± 1.13× 10−5 0.9263± 2.18× 10−5 2.0560± 6.97× 10−4 −1.0

3× 106 13.82 0.3 0.2895± 3.09× 10−5 0.9274± 7.43× 10−5 2.0010± 2.20× 10−4 −1.0

3× 106 13.82 0.35 0.3392± 5.30× 10−5 0.9302± 7.65× 10−5 1.9101± 5.83× 10−4 −1.0

3× 106 13.82 0.4 0.3895± 3.06× 10−5 0.9342± 1.01× 10−4 1.7910± 9.18× 10−5 −1.0

3× 106 13.82 0.5 0.4909± 2.91× 10−5 0.9410± 1.13× 10−4 1.5572± 3.23× 10−4 −1.0

5× 106 13.82 0.0 - 0.9271± 3.30× 10−13 2.3084± 2.02× 10−12 -

5× 106 13.82 0.2 0.1913± 4.90× 10−5 0.9268± 4.70× 10−5 2.3020± 0.0017 −1.0

5× 106 13.82 0.3 0.2871± 5.62× 10−5 0.9325± 3.68× 10−4 2.1574± 0.0014 −1.0

5× 106 13.82 0.32 0.3072± 5.34× 10−5 0.9337± 2.82× 10−4 2.1077± 0.0012 −1.0

5× 106 13.82 0.4 0.3883± 4.96× 10−5 0.9407± 2.69× 10−4 1.8679± 2.39× 10−4 −1.0

5× 106 13.82 0.5 0.4906± 4.26× 10−5 0.9464± 4.51× 10−4 1.6061± 8.30× 10−4 −1.0

107 13.82 0.0 - 0.9258± 5.19× 10−13 2.6895± 2.07× 10−12 -

107 13.82 0.1 0.0928± 6.57× 10−6 0.9261± 1.24× 10−4 2.6797± 0.0033 −1.0

107 13.82 0.2 0.1887± 4.31× 10−5 0.9300± 0.001 2.6092± 0.0071 −1.0

107 13.82 0.25 0.2367± 6.19× 10−5 0.9324± 7.07× 10−4 2.5091± 0.0024 −1.0

107 13.82 0.3 0.2858± 5.60× 10−5 0.9361± 7.37× 10−4 2.3431± 0.0019 −1.0

107 13.82 0.4 0.3880± 8.85× 10−5 0.9489± 0.0012 2.0073± 0.0024 −1.0

107 13.82 0.5 0.4887± 1.74× 10−4 0.9564± 5.24× 10−4 1.6867± 7.70× 10−4 −1.0

107 13.82 0.2 0.151± 3.84× 10−4 0.9309± 9.45× 10−4 2.6496± 0.003 −0.3

107 13.82 0.3 0.161± 0.0037 0.9336± 9.35× 10−4 2.6118± 0.001 −0.3

107 13.82 0.4 0.278± 0.0064 0.9387± 0.0022 2.4352± 0.006 −0.3
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Table 4: Compilation of numerical model results without crustal

convection

Ra0 θ δ
′

c0 δ
′

c T
′

i Nu B

107 13.82 0.2 0.167± 3.10× 10−4 0.9331± 0.0012 2.6048± 0.017 −0.5

107 13.82 0.3 0.201± 0.0064 0.9333± 0.0014 2.516± 0.0022 −0.5

107 13.82 0.4 0.374± 3.59× 10−4 0.9472± 4.63× 10−4 2.0657± 0.0043 −0.5

107 13.82 0.2 0.178± 1.46× 10−4 0.9338± 0.0011 2.5735± 0.0016 −0.7

107 13.82 0.3 0.271± 0.0022 0.9362± 0.001 2.4085± 0.0022 −0.7

107 13.82 0.4 0.385± 9.92× 10−5 0.9472± 7.11× 10−4 2.0176± 9.13× 10−4 −0.7

3× 107 13.82 0.0 - 0.9292± 8.02× 10−4 3.49± 8.90× 10−4 -

5× 107 13.82 0.0 - 0.9308± 7.58× 10−4 3.9701± 0.0014 -

7× 107 13.82 0.0 - 0.9311± 0.0013 4.4246± 0.0043 -

108 13.82 0.0 - 0.9264± 9.48× 10−4 4.7581± 0.0106 -

108 13.82 0.05 0.0427± 2.54× 10−5 0.9292± 9.33× 10−4 4.7083± 0.0027 −1.0

108 13.82 0.1 0.0925± 2.79× 10−5 0.9308± 0.0012 4.6547± 0.0139 −1.0

108 13.82 0.15 0.1398± 5.40× 10−5 0.9378± 0.0014 4.4180± 0.0172 −1.0

108 13.82 0.2 0.1896± 1.84× 10−4 0.9421± 0.0012 3.8680± 0.0017 −1.0

108 13.82 0.3 0.2871± 3.43× 10−4 0.9542± 0.001 3.0266± 0.0033 −1.0

108 13.82 0.15 0.125± 2.47× 10−4 0.9303± 0.0012 4.6875± 0.0042 −0.3

108 13.82 0.25 0.225± 2.53× 10−4 0.945± 0.0011 3.5254± 0.0206 −0.3

108 13.82 0.15 0.138± 1.91× 10−4 0.9358± 5.59× 10−4 4.5728± 0.0166 −0.5

108 13.82 0.25 0.236± 1.57× 10−4 0.9468± 9.24× 10−4 3.3726± 0.0014 −0.5

108 13.82 0.15 0.142± 2.97× 10−5 0.936± 8.17× 10−4 4.3093± 0.0032 −0.7

108 13.82 0.25 0.239± 6.03× 10−5 0.9482± 0.0015 3.3313± 3.53× 10−4 −0.7

3× 108 13.82 0.0 - 0.9264± 0.0011 6.5279± 0.0029 -

5× 108 13.82 0.0 - 0.9206± 6.16× 10−4 7.8563± 0.0043 -

5× 108 13.82 0.05 0.0420± 2.05× 10−4 0.9212± 9.12× 10−4 7.8178± 0.0073 −1.0

5× 108 13.82 0.1 0.0887± 7.03× 10−4 0.9265± 0.001 7.1272± 0.0026 −1.0

5× 108 13.82 0.15 0.1322± 4.60× 10−4 0.9374± 6.45× 10−4 6.0529± 0.0032 −1.0

5× 108 13.82 0.2 0.1764± 7.28× 10−4 0.9481± 7.06× 10−4 4.9086± 0.0019 −1.0

5× 108 13.82 0.1 0.061± 1.62× 10−4 0.9221± 7.61× 10−4 7.8473± 0.0225 −0.3

5× 108 13.82 0.1 0.091± 5.08× 10−5 0.9283± 9.78× 10−4 6.9121± 0.0066 −0.5
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Table 4: Compilation of numerical model results without crustal

convection

Ra0 θ δ
′

c0 δ
′

c T
′

i Nu B

5× 108 13.82 0.1 0.093± 1.10× 10−4 0.9311± 9.91× 10−4 6.8331± 0.0026 −0.7

5× 108 13.82 0.15 0.1302± 3.38× 10−4 0.9386± 0.0021 5.8378± 7.16× 10−4 −0.3

5× 108 13.82 0.15 0.1366± 2.00× 10−4 0.94± 0.0013× 10−4 5.6128± 0.0013 −0.5

5× 108 13.82 0.15 0.139± 1.17× 10−4 0.9411± 0.0014 5.5059± 5.46× 10−4 −0.7

7× 108 13.82 0.0 - 0.9212± 8.44× 10−4 8.587± 0.0028 -

107 16.12 0.0 - 0.9365± 3.55× 10−13 2.2622± 1.91× 10−12 -

107 16.12 0.1 0.0931± 5.73× 10−6 0.9365± 4.85× 10−6 2.2620± 4.90× 10−5 −1.0

107 16.12 0.2 0.1928± 2.48× 10−6 0.9367± 1.30× 10−5 2.2552± 4.82× 10−4 −1.0

107 16.12 0.25 0.2418± 1.03× 10−5 0.9369± 1.11× 10−4 2.2472± 0.0015 −1.0

107 16.12 0.3 0.2899± 2.81× 10−5 0.9398± 3.55× 10−4 2.1702± 0.0035 −1.0

107 16.12 0.4 0.3906± 3.07× 10−5 0.9465± 7.92× 10−4 1.8887± 1.18× 10−4 −1.0

5× 107 16.12 0.0 - 0.9371± 0.0013 3.2609± 0.0104 -

5× 107 16.12 0.1 0.0934± 2.92× 10−5 0.9371± 0.0013 3.3048± 0.0075 −1.0

5× 107 16.12 0.2 0.1928± 0.0075 0.9442± 0.0011 3.0337± 0.0093 −1.0

5× 107 16.12 0.25 0.2426± 5.42× 10−5 0.9465± 0.0012 2.8745± 0.0046 −1.0

5× 107 16.12 0.3 0.2914± 2.43× 10−4 0.9519± 0.0017 2.6628± 0.006 −1.0

5× 107 16.12 0.4 0.3887± 1.60× 10−4 0.9598± 9.46× 10−4 2.1549± 6.15× 10−4 −1.0

7× 107 16.12 0.0 - 0.938± 0.001 3.6595± 0.0156 -

108 16.12 0.0 - 0.9351± 9.73× 10−4 4.0564± 0.0083 -

108 16.12 0.05 0.0420± 3.79× 10−5 0.9351± 9.65× 10−4 4.0191± 0.0105 −1.0

108 16.12 0.1 0.0931± 1.15× 10−5 0.9352± 0.0011 4.0644± 0.0152 −1.0

108 16.12 0.15 0.1423± 2.59× 10−4 0.9334± 0.0011 3.9814± 0.0037 −1.0

108 16.12 0.2 0.1912± 3.06× 10−4 0.9389± 8.61× 10−4 3.5552± 0.0072 −1.0

108 16.12 0.3 0.2886± 3.17× 10−4 0.9517± 9.94× 10−4 2.8710± 0.0033 −1.0

3× 108 16.12 0.0 - 0.9373± 9.84× 10−4 5.4032± 0.012 -
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Table 4: Compilation of numerical model results without crustal

convection

Ra0 θ δ
′

c0 δ
′

c T
′

i Nu B

Note that all crustal thickness, internal temperature, and Nusselt

number averages, and their standard deviations, for all models with

B = −0.7, −0.5, or −0.3 were calculated from the final 25 model

timesteps, as these models do not reach a statistical steady-state

due to crustal entrainment.
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Table 5: Compilation of numerical convection model results with

crustal convection

Ra0 θ δ
′

c0 δ
′

c T
′

i Nu B

108 13.82 0.4 0.3767± 0.0021 0.9534± 0.0011 3.2401± 0.0052 −1.0

108 13.82 0.35 0.243± 8.77× 10−4 0.9379± 6.76× 10−4 3.7912± 0.003 −0.3

108 13.82 0.35 0.307± 0.003 0.9497± 6.97× 10−4 3.1887± 0.001 −0.5

108 13.82 0.35 0.323± 2.44× 10−4 0.9513± 9.94× 10−4 3.1346± 0.002 −0.7

5× 108 13.82 0.2 0.155± 5.18× 10−4 0.9418± 6.56× 10−4 5.3843± 0.0011 −0.3

5× 108 13.82 0.3 0.193± 1.49× 10−4 0.9437± 5.29× 10−4 5.212± 0.0016 −0.3

5× 108 13.82 0.2 0.175± 1.75× 10−4 0.9479± 3.45× 10−4 4.8789± 0.0023 −0.5

5× 108 13.82 0.3 0.194± 0.0047 0.944± 7.67× 10−4 5.4074± 0.0023 −0.5

5× 108 13.82 0.2 0.183± 1.58× 10−4 0.9482± 6.69× 10−4 4.8992± 0.0068 −0.7

5× 108 13.82 0.3 0.268± 0.0015 0.9478± 6.02× 10−4 5.1386± 3.48× 10−4 −0.7

108 16.12 0.4 0.3849± 4.24× 10−4 0.9616± 8.84× 10−4 2.2775± 8.84× 10−4 −1.0

Note that all crustal thickness, internal temperature, and Nusselt

number averages, and their standard deviations, for all models with

B = −0.7, −0.5, or −0.3 were calculated from the final 25 model

timesteps, as these models do not reach a statistical steady-state

due to crustal entrainment.
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Table 6: Crust Entrainment Rate

Ra0 B θ δ
′

c0 Elapsed Time (t) δ
′

ci δ
′

cf Entrainment Rate

107 −0.3 13.82 0.2 0.3438 0.1927 0.1506 −0.1225

107 −0.3 13.82 0.3 0.4668 0.2931 0.1602 −0.2847

107 −0.3 13.82 0.4 0.2681 0.3935 0.2733 −0.4483

107 −0.5 13.82 0.2 0.3298 0.1928 0.167 −0.0782

107 −0.5 13.82 0.3 0.4985 0.2931 0.1936 −0.1996

107 −0.5 13.82 0.4 0.3037 0.3935 0.3735 −0.0659

107 −0.7 13.82 0.2 0.4022 0.1929 0.1775 −0.0383

107 −0.7 13.82 0.3 0.5368 0.2931 0.2674 −0.0479

107 −0.7 13.82 0.4 0.3420 0.3935 0.3851 −0.0246

108 −0.3 13.82 0.15 0.0328 0.1426 0.1243 −0.5579

108 −0.3 13.82 0.25 0.0462 0.2424 0.2247 −0.3831

108 −0.5 13.82 0.15 0.0312 0.1428 0.1372 −0.1795

108 −0.5 13.82 0.25 0.0629 0.2424 0.2355 −0.1097

108 −0.7 13.82 0.15 0.0372 0.1428 0.142 −0.0215

108 −0.7 13.82 0.25 0.0647 0.2426 0.2385 −0.0634

5× 108 −0.3 13.82 0.1 0.0474 0.0927 0.0554 −0.7869

5× 108 −0.3 13.82 0.15 0.0193 0.1429 0.1292 −0.7098

5× 108 −0.5 13.82 0.1 0.0143 0.0927 0.091 −0.1189

5× 108 −0.5 13.82 0.15 0.0275 0.1429 0.1361 −0.2473

5× 108 −0.7 13.82 0.1 0.0313 0.0927 0.0908 −0.0607

5× 108 −0.7 13.82 0.15 0.0249 0.1429 0.139 −0.1566

106 −1 13.82 0.1 2.1804 0.0941 0.0926 −0.0007

106 −1 13.82 0.2 2.1803 0.1927 0.1927 0.0000

106 −1 13.82 0.3 2.1803 0.2914 0.2909 −0.0002

106 −1 13.82 0.4 2.2205 0.3919 0.3866 −0.0024

106 −1 13.82 0.5 1.9304 0.4929 0.4868 −0.0032

106 −1 13.82 0.1 0.9994 0.0941 0.0929 −0.0012

3× 106 −1 13.82 0.2 0.9993 0.1928 0.1917 −0.0011

3× 106 −1 13.82 0.3 0.8523 0.2914 0.2857 −0.0067

3× 106 −1 13.82 0.35 0.8492 0.3436 0.3356 −0.0094
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Table 6: Crust Entrainment Rate

Ra0 B θ δ
′

c0 Elapsed Time (t) δ
′

ci δ
′

cf Entrainment Rate

3× 106 −1 13.82 0.4 0.8773 0.3926 0.3862 −0.0073

3× 106 −1 13.82 0.5 0.9995 0.4930 0.4886 −0.0044

5× 106 −1 13.82 0.2 0.9992 0.1928 0.1884 −0.0044

5× 106 −1 13.82 0.3 0.9992 0.2925 0.2813 −0.0112

5× 106 −1 13.82 0.32 0.9994 0.3130 0.3015 −0.0115

5× 106 −1 13.82 0.4 0.9962 0.3934 0.3837 −0.0097

5× 106 −1 13.82 0.5 0.9993 0.4933 0.4877 −0.0056

107 −1 13.82 0.1 0.9991 0.0941 0.0926 −0.0015

107 −1 13.82 0.2 0.9992 0.1928 0.1838 −0.0090

107 −1 13.82 0.25 0.8051 0.2426 0.2303 −0.0153

107 −1 13.82 0.3 0.9601 0.2933 0.2787 −0.0152

107 −1 13.82 0.4 0.9610 0.3939 0.3822 −0.0122

107 −1 13.82 0.5 0.9782 0.4935 0.4849 −0.0088

108 −1 13.82 0.05 0.1496 0.0417 0.0417 0.0000

108 −1 13.82 0.1 0.1470 0.0941 0.0921 −0.0136

108 −1 13.82 0.15 0.1879 0.1419 0.1376 −0.0229

108 −1 13.82 0.2 0.1880 0.1928 0.1870 −0.0309

108 −1 13.82 0.3 0.1989 0.2914 0.2826 −0.0442

5× 108 −1 13.82 0.05 0.0678 0.0414 0.0405 −0.0133

5× 108 −1 13.82 0.1 0.0698 0.0941 0.0843 −0.1404

5× 108 −1 13.82 0.15 0.0988 0.1418 0.1259 −0.1609

5× 108 −1 13.82 0.2 0.1110 0.1905 0.1679 −0.2036

107 −1 16.12 0.1 0.9991 0.0941 0.0927 −0.0014

107 −1 16.12 0.2 0.9993 0.1929 0.1928 −0.0001

107 −1 16.12 0.25 0.9992 0.2430 0.2394 −0.0036

107 −1 16.12 0.3 0.9783 0.2914 0.2858 −0.0057

107 −1 16.12 0.4 0.6571 0.3919 0.3879 −0.0061

5× 107 −1 16.12 0.1 0.1698 0.0941 0.0927 −0.0082

5× 107 −1 16.12 0.2 0.1879 0.1928 0.1926 −0.0011

5× 107 −1 16.12 0.25 0.2048 0.2430 0.2418 −0.0059
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Table 6: Crust Entrainment Rate

Ra0 B θ δ
′

c0 Elapsed Time (t) δ
′

ci δ
′

cf Entrainment Rate

5× 107 −1 16.12 0.3 0.2338 0.2914 0.2890 −0.0103

5× 107 −1 16.12 0.4 0.2388 0.3918 0.3843 −0.0314

108 −1 16.12 0.05 0.1959 0.0414 0.0414 0.0000

108 −1 16.12 0.1 0.1769 0.0941 0.0927 −0.0079

108 −1 16.12 0.15 0.1316 0.1419 0.1412 −0.0053

108 −1 16.12 0.2 0.1380 0.1928 0.1869 −0.0428

108 −1 16.12 0.3 0.1660 0.2914 0.2826 −0.0530
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Samuel, H., Lognonné, P., Panning, M., & Lainey, V. (2019). The rheology and thermal history of Mars1506

revealed by the orbital evolution of Phobos. Nature, 569 , 523–527.1507

Schott, B., Van den Berg, A., & Yuen, D. A. (2001). Focussed time-dependent martian volcanism from1508

chemical differentiation coupled with variable thermal conductivity. Geophys. Res. Lett., 28 , 4271–4274.1509

Schubert, G., Cassen, P., & Young, R. E. (1979). Subsolidus convective cooling histories of terrestrial planets.1510

Icarus, 38 , 192–211.1511

Semprich, J., Simon, N. S., & Podladchikov, Y. Y. (2010). Density variations in the thickened crust as a1512

function of pressure, temperature, and composition. International Journal of Earth Sciences, 99 , 1487–1513

1510.1514

Solomatov, S. (2015). Magma ocean and primordial mantle differentiation. In G. Schubert (Ed.), Treatise1515

on Geophysics (pp. 81–104). Elsevier.1516

Solomatov, V. (1995). Scaling of temperature-and stress-dependent viscosity convection. Physics of Fluids,1517

7 , 266.1518

Solomatov, V., & Barr, A. (2006). Onset of convection in fluids with strongly temperature-dependent,1519

power-law viscosity. Physics of the Earth and Planetary Interiors, 155 , 140–145.1520

74



Solomatov, V., & Barr, A. (2007). Onset of convection in fluids with strongly temperature-dependent, power-1521

law viscosity: 2. dependence on the initial perturbation. Physics of the Earth and Planetary Interiors,1522

165 , 1–13.1523

Solomatov, V. S., & Moresi, L.-N. (2000). Scaling of time-dependent stagnant lid convection: Application1524

to small-scale convection on Earth and other terrestrial planets. J. Geophys. Res., 105 , 21795–21818.1525

Spohn, T. (1991). Mantle differentiation and thermal evolution of Mars, Mercury, and Venus. Icarus, 90 ,1526

222–236.1527

Stamenkovic, V., Breuer, D., & Spohn, T. (2011). Thermal and transport properties of mantle rock at high1528

pressure: Applications to super-earths. Icarus, 216 , 572 – 596.1529

Stein, C., Lowman, J. P., & Hansen, U. (2013). The influence of mantle internal heating on lithospheric1530

mobility: Implications for super-Earths. Earth Planet. Sci. Lett., 361 , 448–459.1531

Stengel, K. C., Oliver, D. S., & Booker, J. R. (1982). Onset of convection in a variable-viscosity fluid. J.1532

Fluid Mech., 120 , 411–431.1533

Stern, R. J., Gerya, T., & Tackley, P. J. (2018). Stagnant lid tectonics: Perspectives from silicate planets,1534

dwarf planets, large moons, and large asteroids. Geosci. Front., 9 , 103–119.1535

Stevenson, D. J., Spohn, T., & Schubert, G. (1983). Magnetism and thermal evolution of the terrestrial1536

planets. Icarus, 54 , 466–489.1537

Tackley, P. (2015). 7.12 - Mantle Geochemical Geodynamics. In G. Schubert (Ed.), Treatise on Geophysics1538

(Second Edition) (pp. 521 – 585). Oxford: Elsevier. (Second edition ed.).1539

Tackley, P., Stevenson, D., Glatzmaier, G. A., & Schubert, G. (1993). Effects of an endothermic phase1540

transition at 670 km depth in a spherical model of convection in the earth’s mantle. Nature, 361, 699–1541

704 , .1542

Tackley, P. J., & King, S. D. (2003). Testing the tracer ratio method for modeling active compositional fields1543

in mantle convection simulations. Geochem., Geophys., Geosyst., 4 .1544

Taylor, S. R., & McLennan, S. (2009). Planetary crusts: their composition, origin and evolution volume 10.1545

Cambridge University Press.1546

Thiriet, M., Breuer, D., Michaut, C., & Plesa, A.-C. (2019). Scaling laws of convection for cooling planets1547

in a stagnant lid regime. Phys. Earth Planet. Int., 286 , 138–153.1548

75



Thiriet, M., Michaut, C., Breuer, D., & Plesa, A.-C. (2018). Hemispheric Dichotomy in Lithosphere Thickness1549

on Mars Caused by Differences in Crustal Structure and Composition. J. Geophys. Res. Planets, 123 ,1550

823–848.1551

Tosi, N., Godolt, M., Stracke, B., Ruedas, T., Grenfell, J. L., Höning, D., Nikolaou, A., Plesa, A.-C., Breuer,1552
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