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Scaling laws for stagnant-lid convection with a buoyant crust
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Abstract

Stagnant-lid convection, where subduction and surface plate motion is absent, is common among
the rocky planets and moons in our solar system, and likely among rocky exoplanets as well. How
stagnant-lid planets thermally evolve is an important issue, dictating not just their interior evolution
but also the evolution of their atmospheres via volcanic degassing. On stagnant-lid planets, the crust
is not recycled by subduction and can potentially grow thick enough to significantly impact convection
beneath the stagnant lid. We perform numerical models of stagnant-lid convection to determine new
scaling laws for convective heat flux that specifically account for the presence of a buoyant crustal layer.
We systematically vary the crustal layer thickness, crustal layer density, Rayleigh number, and Frank-
Kamenetskii parameter for viscosity to map out system behavior and determine the new scaling laws.
We find two end-member regimes of behavior: a “thin crust limit,” where convection is largely unaffected
by the presence of the crust, and the thickness of the lithosphere is approximately the same as it would
be if the crust were absent; and a “thick crust limit,” where the crustal thickness itself determines the
lithospheric thickness and heat flux. Scaling laws for both limits are developed and fit the numerical model
results well. Applying these scaling laws to rocky stagnant-lid planets, we find that the crustal thickness
needed for convection to enter the thick crust limit decreases with increasing mantle temperature and
decreasing mantle reference viscosity. Moreover, if crustal thickness is limited by the formation of dense
eclogite, and foundering of this dense lower crust, then smaller planets are more likely to enter the thick
crust limit because their crusts can grow thicker before reaching the pressure where eclogite forms. When
convection is in the thick crust limit, mantle heat flux is suppressed. As a result, mantle temperatures
can be elevated by 100s of degrees K for up to a few Gyrs in comparison to a planet with a thin crust.
Whether convection enters the thick crust limit during a planet’s thermal evolution also depends on the
initial mantle temperature, so a thick, buoyant crust additionally acts to preserve the influence of initial
conditions on stagnant-lid planets for far longer than previous thermal evolution models, which ignore
the effects of a thick crust, have found.

Key Words: Planetary interiors, Planetary tectonics, Dynamics of lithosphere and mantle, Dynam-

ics: convection currents, and mantle plumes
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1 Introduction

Stagnant-lid planets and satellites are common in the solar system, as Earth is the only rocky planet known
to operate in a plate-tectonic regime of mantle convection (e.g. Breuer & Moore, 2015; Stern et al., 2018).
Understanding the geologic history of rocky planets and moons in the solar system thus requires understand-
ing the thermal evolution of stagnant-lid planets. Much work has been devoted to exploring the physics of
stagnant-lid convection, in particular for determining scaling laws for convective heat flux or interior flow
speed (e.g. Christensen, 1984; Ogawa et al., 1991; Davaille & Jaupart, 1993; Solomatov, 1995; Grasset &
Parmentier, 1998; Reese et al., 1998; Dumoulin et al., 1999; Solomatov & Moresi, 2000; Reese et al., 2005;
Korenaga, 2009; Weller & Lenardic, 2016; Thiriet et al., 2019), and modeling the thermal evolution of
stagnant-lid planets with either parameterized models based on these scaling laws, or fully dynamic two-
and three-dimensional convection models (e.g. Schubert et al., 1979; Spohn, 1991; Stevenson et al., 1983;
Hauck & Phillips, 2002; Fraeman & Korenaga, 2010; Morschhauser et al., 2011; Grott et al., 2011; Plesa
et al., 2015).

The study of stagnant-lid planet evolution is also relevant to exoplanets. Whether exoplanets are more
likely to have stagnant-lid tectonics, plate tectonics, or other intermediate forms of tectonics, is unclear
and difficult to predict from first principles. Studies of exoplanet geodynamics have reached a range of
conflicting conclusions on whether super-Earths are more likely to have plate tectonics or not, or even which
planetary characteristics are most important for promoting plate tectonics (e.g. Valencia et al., 2007; O’Neill
& Lenardic, 2007; Korenaga, 2010; Stamenkovic et al., 2011; van Heck & Tackley, 2011; Foley et al., 2012;
Lenardic & Crowley, 2012; Stein et al., 2013; Noack & Breuer, 2014). However, given that these studies found
that the operation of plate tectonics was quite sensitive to factors such as size, mantle heat budget, or the
surface environment, and the ubiquity of stagnant-lids on the rocky objects of our solar system, stagnant-lid
planets are likely to make up a significant portion of the exoplanet population.

Operating in a stagnant-lid regime has important implications for a planet’s volatile cycling and climate
evolution. Plate tectonics has long been thought to be important, and possibly even essential, for a habitable
surface environment, as it helps drive the carbonate-silicate cycle that regulates Earth’s climate (e.g. Walker
et al., 1981; Berner et al., 1983; Kasting & Catling, 2003; Foley & Driscoll, 2016). However, recent work has
shown that stagnant-lid exoplanets can also sustain volatile cycling and outgassing that promotes a habitable
climate, under some conditions (Noack et al., 2017; Tosi et al., 2017; Foley & Smye, 2018; Valencia et al.,
2018; Foley, 2019; Honing et al., 2019). The thermal evolution of the mantle is critical for stagnant-lid planet
climate evolution, as it dictates the rate of volcanic outgassing over time (Tosi et al., 2017; Dorn et al., 2018;

Foley & Smye, 2018; Honing et al., 2019). Thus better constraints on the thermal evolution of stagnant-lid
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planets will also allow better assessments of the potential for habitability of rocky exoplanets.

1.1 Crust formation and stagnant-lid convection

The physics of stagnant-lid convection in simple systems, where convection is purely thermally driven and
viscosity depends only on temperature, is well understood. However, there are many additional complications
present in real stagnant-lid planets that can significantly affect their thermal evolution. One such process
is melting and subsequent chemical differentiation, which may be especially important early in stagnant-lid
planets’ histories, when mantle temperatures are expected to be high (e.g. Breuer & Moore, 2015; Byrne,
2020). In particular, mantle melting produces crusts that can grow thick on stagnant-lid planets, as there is no
subduction to constantly recycle this crust (e.g. Hauck & Phillips, 2002; Keller & Tackley, 2009; Morschhauser
et al., 2011; Plesa & Breuer, 2014). The crust is chemically buoyant compared to the underlying mantle at
surface pressures, unless the degree of melting in the mantle is very high, but can become negatively buoyant
due to metamorphic reactions at pressures >~ 1 — 2 GPa (e.g. Hacker, 1996). The crust is also expected
to be enriched in heat producing elements, as these elements are incompatible in the mantle (e.g. Hart &
Brooks, 1974; Beattie, 1993), and to have a lower thermal conductivity than the mantle (e.g. Clauser &
Huenges, 1995; Turcotte & Schubert, 2002). Each of these effects could significantly modulate a stagnant-lid
planet’s mantle dynamics and thermal history.

Both a lower thermal conductivity in the crust, and enrichment of heat producing elements, can be incor-
porated in thermal evolution models using existing methods. A geotherm through the crust and stagnant-lid
can be calculated from the heat conduction equation, and then the lid thickness can be determined based on
a balance between the conductive heat flux at the base of the lid, and the convective heat flux supplied by
the mantle (e.g. Hauck & Phillips, 2002; Grott et al., 2011, see also §6); this method has been successfully
benchmarked against two- and three-dimensional convection models (e.g. Thiriet et al., 2019). However,
when treating the crust in this manner, scaling laws for mantle convective heat flux are still needed.

Previous models have typically assumed that convective heat flux is unaffected by the presence of the
crust (e.g. Morschhauser et al., 2011; Plesa & Breuer, 2014; Foley & Smye, 2018), or that standard stagnant-
lid scaling laws apply to convection in the mantle beneath the crust (e.g. Fraeman & Korenaga, 2010). The
buoyancy of the crust, however, could significantly modify the mantle convective heat flux, in particular if
the crust grows thick. In many thermal evolution models, the crust grows so thick that it reaches the base
of the stagnant lid, especially early in a planet’s evolution, when mantle temperatures are high (e.g. Hauck
& Phillips, 2002; Morschhauser et al., 2011; Plesa & Breuer, 2014; Foley & Smye, 2018). These models

find that such thick crusts can form even when taking into account partitioning of heat producing elements
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into the crust, and mantle depletion due to crustal extraction. However, many previous models ignore the
influence crustal buoyancy could have on the dynamics at the base of the stagnant lid, and instead assume
that all crust reaching the base of the lid founders into the mantle (e.g. Morschhauser et al., 2011; Plesa &
Breuer, 2014; Foley & Smye, 2018); this is in keeping with the assumption that mantle convective heat flux
is unaffected by the presence of the crust.

Assuming that crust always founders when reaching the base of the stagnant lid, and that lid thickness
is not influenced by the crust’s buoyancy, is questionable. If the crust grows thick enough to reach the lid
base, its positive buoyancy could suppress foundering of the rheological sub-layer, the thin layer below the
lid where viscosities are low enough to fully participate in convection (e.g. Solomatov, 1995). As a result,
the effective thickness of the stagnant lid would increase, and the effective temperature difference driving
convection (that is, the temperature difference across the actively convecting portion of the mantle, beneath
the stagnant lid) would decrease. Both of these effects would act to suppress convective heat flux. Lourengo
et al. (2018) argues that melting and crust production can enhance convective heat flux on stagnant-lid
planets, via thermal weakening of the lower mantle lithosphere by melt migration. However, once the crust
has grown thick enough to reach the stagnant-lid base, thermal weakening will not help drive foundering,
since it is the crust’s buoyancy that resists sinking rather than the lid’s viscosity. Scaling laws for convective
heat flux when a thick, buoyant crust influences foundering at the base of the stagnant lid have not been
developed, nor has this effect been incorporated in thermal evolution models. The goal of our paper is thus
to accomplish this task.

The formation of eclogite, or other dense phases, in the lower crust can drive crustal foundering, and
hence limit crustal thickness. As a result, in applying our newly developed scaling laws for heat flux with
a buoyant crust to stagnant-lid planets, we will limit crustal thickness to the depth where eclogite forms
(see §5). Moreover, crustal foundering driven by eclogite could also drag the underlying lithospheric mantle
with it, in addition to limiting the crustal thickness (e.g. Johnson et al., 2014). If lithospheric mantle is
entrained by foundering crust, the stagnant lid thickness will be decreased, at least during periods of crustal
foundering, enhancing convective heat flux. While the effect of foundering dense crust could be important, at
least for transient periods when foundering is active, it is beyond the scope of this study. Here we will focus
solely on buoyant crusts. Future work will consider heat flux variations during crustal foundering events.

In addition to the crust, mantle melting also forms a depleted mantle layer below the crust (e.g. Schott
et al., 2001; Fraeman & Korenaga, 2010; Plesa & Breuer, 2014). The depleted mantle is also buoyant
compared to the primitive mantle, although depleted mantle density is larger than crust density in most
cases. In addition, depleted mantle may have an elevated viscosity compared to primitive mantle, due to

dehydration during melting (e.g. Hirth & Kohlstedt, 1996). The influence of a depleted mantle layer on
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heat flux and thermal evolution of stagnant-lid planets has already been studied extensively (e.g. Schott
et al., 2001; Korenaga, 2009; Fraeman & Korenaga, 2010; Morschhauser et al., 2011; Ogawa & Yanagisawa,
2011; Plesa & Breuer, 2014), so we will neglect this effect here and focus our modeling solely on the crust’s

buoyancy.

1.2 Previous work on thermo-chemical convection

There are a number of other important aspects of chemical geodynamics, a topic which includes the effects
of chemical differentiation on mantle convection and the corresponding effects of mantle convection on
the formation and evolution of chemical heterogeneity, that have received extensive study previously (e.g.
Tackley, 2015). These include studying whether chemical differentiation of the mantle, either during magma
ocean solidification or later magmatism and crust production, can lead to large-scale layering within the
mantle, the effects of melting and crust production on the properties and dynamics of the lithosphere, and
the mixing of chemical heterogeneities by mantle convection (see e.g. Kellogg, 1992, for a review of mixing).

Some early studies considered whether the upper and lower mantles convected separately on Earth, due
to density differences induced either by phase transitions (e.g. Christensen & Yuen, 1985; Tackley et al.,
1993) or by differences in composition (e.g. Richter & Johnson, 1974; Richter & McKenzie, 1981; Davaille,
1999). Chemical layering could be primordial, developing as a result of fractional crystallization during
magma ocean solidification (e.g. Elkins-Tanton et al., 2003; Zaranek & Parmentier, 2004; Tosi et al., 2013),
formed by deposition of dense, garnet-bearing crust in the lower mantle via subduction (e.g. Ogawa &
Nakamura, 1998), or a combination of the two. However, seismic evidence now indicates that convection
operates across the whole mantle (e.g. Helffrich & Wood, 2001), with any layering confined to the very
lowermost mantle (e.g. Kellogg et al., 1999), most likely the large low shear velocity provinces (LLSVPs)
(e.g. Garnero & McNamara, 2008; Hernlund & McNamara, 2015). The formation and evolution of LLSVPs
has received significant attention, in particular focusing on the density needed to explain the present day
shapes and persistence of these features (e.g. Davaille, 1999; McNamara & Zhong, 2005; Li & McNamara,
2013; Mulyukova et al., 2015; Jones et al., 2020).

More relevant to our study is previous work on how chemical differentiation modifies the properties
and dynamics of the lithosphere. The effect of crustal buoyancy on the operation of plate tectonics on
Earth has been well studied. A thick, buoyant crust can potentially prevent subduction (e.g. Oxburgh
& Parmentier, 1977; Vlaar, 1985; Davies, 1992; van Thienen et al., 2004b), however, even in this case
local crustal thickening and the formation of eclogite can still drive at least short-lived subduction episodes

(van Thienen et al., 2004a). The formation of depleted mantle coincident with crust production modifies
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lithospheric viscosity. If the depleted mantle is very thick, then it can dictate the thickness of the lithosphere
and suppress convective heat flux in a plate-tectonic regime (e.g. Korenaga, 2006), similar to what we show
for stagnant-lid convection with a buoyant crust. Also relevant to our study is work on mantle convective heat
flux through continents. Continents also suppress convective heat flux, effectively insulating the underlying
mantle, and we find that the same principles used to develop scaling laws for this effect also work for our case
of stagnant-lid convection (e.g. Lenardic & Kaula, 1996; Lenardic, 1998; Lenardic et al., 2005; Van Thienen,
2007).

Finally, as reviewed above in §1.1, the formation and evolution of crust and depleted mantle for stagnant-
lid planets, in particular Mars, has been studied previously. However, despite some studies where the
formation of buoyant crust due to mantle melting is modeled for Mars (Keller & Tackley, 2009; Ruedas
et al., 2013), no study has yet carefully examined how a buoyant crust influences convective heat flux, nor

developed scaling laws that can be used in parameterized thermal evolution models.

1.3 Purpose of this study

As outlined above, our study focuses on how a thick, buoyant crust modulates the dynamics of the base of
the stagnant lid, and hence convective heat flux, as this is a key remaining uncertainty in the role melting and
crust formation plays in stagnant-lid thermal evolution. We will focus solely on the role of crustal buoyancy,
as the effects of heat producing element enrichment in the crust and a lower thermal conductivity in the
crust have already been extensively studied. Likewise, the formation of a depleted mantle layer beneath the
crust has also been carefully studied previously, and will be neglected here. We will also only consider thick
buoyant crusts; how foundering of dense lower crust influences stagnant-lid convective heat flux is outside
this study’s scope.

We therefore use simple numerical convection models to study how convective heat flux scales when a
thick, buoyant crust is present, and to develop new scaling laws based on these models. We then apply these
scaling laws to stagnant-lid planets, by first demonstrating the conditions under which crustal buoyancy
significantly influences convective heat flux, assuming the crust can grow no thicker than the depth where
eclogite forms. We then demonstrate how crusts up to this maximum thickness imposed by the formation
of eclogite would influence stagnant-lid planet thermal evolution.

In both sets of models, the model set up will be kept as simple as possible. In the numerical convection
models, we model convection in a two-dimensional Cartesian domain, with a strongly temperature-dependent
viscosity and an imposed chemically buoyant layer at the surface representing the crust. As we focus solely

on the influence of crustal buoyancy, the only distinguishing feature of the crustal layer in our models is its
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buoyancy. We systematically vary the thickness of the crustal layer and the Rayleigh number over a wide
parameter range, such that robust scaling laws can be developed.

The crustal layer in the numerical convection models can evolve as a result of mantle flow, becoming
thickened in regions of convergence and thinned in regions of divergence, but the volume of the crust is
fixed. Crust is neither created by mantle melting nor destroyed by foundering. We also do not consider
mantle heat loss by melting, which can dominate when the mantle is hot, and keep the mantle temperature
regulated near the solidus (e.g. O'Reilly & Davies, 1981; Turcotte, 1989; Keller & Tackley, 2009; Ogawa
& Yanagisawa, 2011; Nakagawa & Tackley, 2012; Moore & Webb, 2013). However, even in this case it is
important to know the thickness of the lithosphere and convective heat flux, which can be influenced by the
presence of the crust, as the scaling laws we develop in this paper show. Moreover, as volcanism rates decline,
convective heat loss will become the primary mode of mantle cooling. In this case, with a potentially thick
crust left behind from prior volcanism, our scaling laws will be directly relevant for modeling subsequent
mantle thermal evolution.

In applying our scaling laws to stagnant-lid planet thermal evolution, we will make similar assumptions.
We will again focus solely on crust buoyancy, and neglect a lower thermal conductivity in the crust and
enrichment of heat producing elements. These effects are discussed in §6, and there we show that including
them would only reinforce our conclusions about how crustal buoyancy modulates mantle convective heat
flux. We will also assume fixed buoyant crustal layers, so the role of crustal buoyancy can be illustrated in
a simple manner. Time-evolving crustal thickness can be tracked with a model explicitly calculating mantle
melting and crust production, which our new heat flux scaling laws can be incorporated into; this is left
as a topic for future work. Throughout the paper, our models (both the numerical convection models and
thermal evolution models) will treat the crust as simply a buoyant layer, and neglect other characteristics
of the crust as discussed above. We will still refer to this buoyant layer in our models as “crust,” given that
this is the physical feature we are modeling. However, readers should note the other differences between
crust and mantle that our models neglect, as discussed here and further in §6.

The paper is organized as follows. The background theory and numerical model setup is described in
§2, the numerical model results explained in §3, and scaling analysis presented in §4. In §5 we constrain
the planetary characteristics (planet size, reference viscosity, and interior temperature) where a thick crust
capable of impeding convective heat flux can form, and apply our new scaling laws to a set of simple models of
stagnant-lid planet thermal evolution. Finally, we discuss key uncertainties in our scaling laws and modeling

in §6, and summarize conclusions in §7.
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2 Theory

2.1 Background and Governing Equations

Our models of thermo-chemical stagnant-lid convection, with an imposed buoyant layer representing the
crust, are performed in a two-dimensional Cartesian domain. Two-dimensional models capture the essential
physics of convection with a buoyant crust and are computationally cheap in comparison to three-dimensional
models, allowing for a large exploration of the relevant parameter space. In the models a purely temperature-
dependent viscosity is used, with ratios of surface viscosity to mantle interior viscosity large enough to induce
stagnant-lid convection, as explained below.

The buoyant crust is represented by a chemical composition field, C'. For the crust, C = 1 and for
the mantle C' = 0. As chemical diffusion is slow compared to thermal diffusion (e.g. van Keken et al.,
1997; Tackley & King, 2003), diffusion of composition is ignored and crust is only advected around the
domain. The buoyancy of the crust relative to the mantle due to composition is described by the buoyancy
number, B = Ap./(paAT), where Ap. is the density difference between crust and mantle due solely to
composition, and paAT is the density difference across the mantle due solely to temperature (where p is
average mantle density, « is the thermal expansion coefficient, and AT = T, — T, is the super-adiabatic
temperature difference across the mantle, or the difference between the potential temperature at the bottom
of the mantle, T,,, and the surface temperature, Ty).

Our models are purely bottom heated, which is clearly a simplification as rocky planets will also likely be
heated significantly from within by radionuclides and primordial heat, as is the case for Earth (e.g. Jaupart
et al., 2015). Rocky exoplanets can also experience significant tidal heating (e.g. Jackson et al., 2008; Jackson
et al., 2008; Driscoll & Barnes, 2015). Previous work on stagnant-lid convection has found, however, that
purely bottom heated and purely internally heated convection result in the same scaling laws for convective
heat flux, when convection is described by an internal Rayleigh number, which we introduce below in §4 (e.g.
Solomatov, 1995; Solomatov & Moresi, 2000; Korenaga, 2009). Our model setup is thus justifiable for a first
order analysis of how a thick, buoyant crustal layer influences convective heat flux. Changing the relative
contributions of bottom and internal heating can cause deviations from the scaling laws found for either
pure bottom heating or pure internal heating, due to the changing strength of upwelling plumes (Moore,
2008; Weller & Lenardic, 2016; Weller et al., 2016; Korenaga, 2017). Thus exploring how the scaling laws
we develop depend on the percentage of internal heating is an important avenue for future work.

Our model solves the standard equations for conservation of mass, momentum, energy, and chemical
composition, assuming infinite Prandtl number and applying the Boussinesq approximation. The equations

are given below in terms of non-dimensional variables, where the following scales are used in the non-



Table 1: Key variables and non-dimensional parameters used in numerical models

Variable Meaning Equation
v Velocity (1)
t Time (2)
P’ Pressure (2)
c’ Composition (C" =1 is crust, C' = 0 is mantle)  (2) & (3)
T Temperature (2) & (4)
g'/ Strain rate tensor (2)
" Viscosity (2) & (5)
Non-dimensional parameter Meaning Equation

Rao
0

’

500

Buoyancy number

Reference Rayleigh number
Frank-Kamenetskii parameter

Initial crustal thickness

(2)
(2)
(5) & (6)
above (7)

Table 2: Quantities output from numerical models and parameters and variables used in

scaling analyses

Output quantity Meaning Equation
Nu Nusselt number (7)
T, Internal temperature below (7)
5, Crustal thickness below (7)
Ra; Internal Rayleigh number (8)
1 Interior mantle viscosity below (8)
Parameter or variable Meaning Equation
5y Lithosphere thickness when crust is absent (12) & (13)
5, Sub-crustal thermal boundary layer thickness (17)
Ra, Critical Rayleigh number (17)
Spor Bottom thermal boundary layer thickness (23)
4 Nusselt number scaling law constant (Cy = 0.48) (10)
Cy Nusselt number scaling law constant (Co = 2.95) (9)
Cs Temperature scaling law constant (Cs = 2) (23)
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dimensionalization (primes denote non-dimensional variables throughout the text): z = g/d, where z is
the spatial coordinate and d is the thickness of the mantle; ¢t = tld2/,‘$7 where t is time and k is the
thermal diffusivity of the mantle; v = y//i/ d, where v is velocity; T = T AT + Ty, where T is temperature;
P= Plumn/ d?, where P is dynamic pressure and p,, is the reference viscosity of the mantle, defined as the
viscosity at the basal mantle temperature, T,; and £ = é//i/dz, where £ = 1/2(0u;/0x; + Ou;/0x;) is the

strain-rate tensor. The governing equations, in terms of non-dimensional variables, are

’

V.w =0 (1)

0=-VP +V-(24'&) + Rao(T' — BC')z (2)
(98?+UI~VC/:O (3)

‘Z,/ +u VT = VT (4)

= e00=T"). (5)

Here, Z is the unit vector in the vertical direction and the reference Rayleigh number, Rag, is defined
as Rag = pgaATd®/(kp.,), where g is gravitational acceleration. The definitions of all key variables,
non-dimensional parameters, and output quantities calculated from the numerical models can be found in
Tables (1) and (2). The viscosity, Eq. (5), follows a Frank-Kamenetskii approximation of the full Arrhenius
temperature-dependent viscosity law; this simplifies the scaling analysis as only one parameter, the Frank-
Kamenetskii parameter, is involved in the viscosity law (e.g. Solomatov & Moresi, 2000; Korenaga, 2009).

The Frank-Kamenetskii parameter is defined as

E,AT
b= R(Ts + AT)? (6)

where FE, is the activation energy for viscosity and R is the universal gas constant. The difference between
the Frank-Kamenetskii approximation and a full Arrhenius viscosity law is smallest at the high temperatures
that prevail beneath the stagnant lid, and therefore actively participate in convection. As a result, scaling
laws for convective heat flux developed with a Frank-Kamenetskii approximation have been found to only
need a minor correction factor to fit numerical experiments performed with a full Arrhenius temperature-
dependent viscosity law (Korenaga, 2009). The choice of viscosity law in our numerical convection models
should thus not significantly impact our resulting scaling laws, or applications to rocky stagnant-lid planets.

In most models we use 6 = 13.82, which results in a viscosity ratio between the surface and base of the

10
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mantle of 108, easily large enough to lie within the stagnant lid regime (e.g. Solomatov, 1995). We also
explore the impact of # in our scaling laws by running an additional set of models at # = 16.12, which results

in a viscosity ratio of 107.

2.2 Numerical model setup

The model equations (1)-(6) are solved using a finite volume code, as outlined in Foley & Bercovici (2014)
and Foley et al. (2014). The top and bottom boundaries are free slip, while the side boundaries are periodic.
The temperature is fixed to non-dimensional values of 0 and 1 at the top and bottom, respectively. To solve
for the advection of chemical composition, the tracer ratio method is used (Tackley & King, 2003). The
implementation of the tracer ratio method used in this code was benchmarked against the density-driven
overturn test cases presented in van Keken et al. (1997); the results of these benchmark tests are shown in
the supplementary material of Foley & Rizo (2017).

The modeling strategy is to run sets of models with an increasingly thick buoyant layer representing
the crust, at fixed Rag and 6, to determine how the buoyancy of the crust and its thickness influences the
underlying convection and surface heat flux. These sets of models are then repeated at different Rayleigh
numbers and Frank-Kamenetskii parameters, to constrain the influence of these factors and to develop
complete scaling laws for the surface heat flux from stagnant-lid convection with a buoyant crustal layer.
Models are started from one of two possible initial conditions: an initially static, conductive mantle, with
convection developing as a result of small initial perturbations added to the temperature field; and an
already developed, statistical steady-state convection pattern to which a buoyant crustal layer is added. In
the second case, the initial conditions used are from models without a crust that had been previously run at
the same Rayleigh number and Frank-Kamenetskii parameter. Test cases found that models with the same
parameters and buoyant layer thicknesses, but different initial conditions (i.e. starting from either a static,
conductive mantle or an already developed, statistical steady-state convection pattern), result in the same
final interior temperature and Nusselt number at statistical steady-state. Our numerical convection model
results are therefore independent of the initial condition.

The initial thickness of the buoyant crustal layer, (5;0, is imposed as part of the initial condition. This layer
is then free to evolve self-consistently in response to the underlying convection pattern in the mantle. As a
result, there can be some entrainment of the crust into the mantle, so we track how crustal thickness evolves
over time, as outlined below. Most models use a buoyancy number of B = —1, where negative numbers
correspond to buoyant material. We also ran sets of models with buoyancy number varying between —0.3

and —0.7, to test if buoyancy number significantly influences the dynamics. In the numerical models we vary
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the non-dimensional parameters Rag and B independently to map out system behavior. On a real planet,
Rag and B are related through mantle temperature, as decreasing mantle temperature will decrease Rag
and increase B, for a fixed Ap.. However, the resulting scaling laws will capture these co-dependencies, and
allow self-consistent thermal evolution models to be developed; this is analogous to isochemical stagnant-
lid convection where 6 and Ray are both functions of mantle temperature as well, and typically varied
independently when developing scaling laws.

With an average mantle density of p = 4500 kg-m ™2, thermal expansivity of & = 3 x 107° K1, and
temperature difference across the mantle of AT = 1350 K, as on the modern day Earth, our chosen range of
buoyancy numbers scale to Ap,. ~ —55 to —180 kg-m~3. With a hot interior temperature giving AT = 2000
K, the resulting chemical density differences range from Ap, ~ —80 to —270 kg-m~3. The crusts of Venus
and Mars are predominantly mafic (e.g. Taylor & McLennan, 2009), as volcanism is expected to result mostly
from primary melting of the mantle. Basalt has a density ~ 300 —400 kg-m 2 lower than peridotite at surface
temperature and pressure. Higher temperature melts, such as komatiites, are denser, and only ~ 100 — 200
kg-m~3 less dense than peridotite (Arndt, 1983). Our chosen range of buoyancy numbers is consistent with
mafic crusts at the high end (B = —1.0), and also allows us to consider potentially denser crusts at the
low end (B = —0.3), to test whether a smaller density difference between crust and mantle significantly
influences the dynamics at the base of the lid when the crustal layer is thick.

To analyze the model results and develop scaling laws, we calculate the time averaged Nusselt number
(Nu), internal temperature (7} ), and average crustal thickness (d,) from the numerical models. Convection
simulations were run until a statistical steady-state is reached for Nu, T, i/, and (5;. Most models experience
some entrainment of the buoyant crustal layer early in the model run, but then show an approximately
constant buoyant layer thickness for the remainder of the run. However, models with B = —0.7, —0.5,
and —0.3 show higher rates of entrainment that continue throughout the model run, such that a statistical
steady-state is never reached (see §3.1). For the models reaching statistical steady-state, we calculate time
averages of Nu, Ti/7 and 6; during the time period after statistical steady-state is reached. For models that
don’t reach statistical steady-state due to entrainment of the buoyant crustal layer, we take time averages
over a short time window of 25 timesteps at the end of the model run, after the model has reached an

approximately constant rate of entrainment.

T’
NU—<8Z,> - (7)

at each time step, where <8T/ / 8z/>z/:1 is the horizontal average of the vertical temperature gradient evalu-

Nusselt number is calculated as

ated at 2 = 1, the top of the domain. The resulting time series is then integrated in time to find the time
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averaged Nusselt number. The internal temperature is measured based on horizontally averaged, vertical
profiles of temperature through the mantle. Horizontally averaged temperature has a local maximum just
below the base of the stagnant lid; we designate this maximum as the interior temperature at each timestep,
as this is the temperature that controls the dynamics of the base of the stagnant lid. Time averaging for
internal temperature is the same as for Nusselt number.

Finally, to determine the thickness of the buoyant crustal layer, we calculate a contour line at ' = 0.95,
which occurs at the base of this layer, and then horizontally average the depth of this contour across the
mantle. This calculation of crustal layer thickness is done as a post-processing step, using the full compo-
sitional field in two dimensions. The full composition field is output less frequently than the calculations
of Nu and T; , which are done every timestep. However, there is sufficient time resolution to produce time

averages of crustal thickness after each model has reached statistical steady-state.

3 Results

Example numerical model results with Rag = 105, § = 13.82, B = —1.0 and increasing initial crustal
thicknesses, 8., are shown in Figures 1-2 (a compilation of all numerical model results and input parameters
can be found in Table 4). The results can largely be grouped into two end member regimes of behavior: a
“thin crust limit” and a “thick crust limit.” In the thin crust limit, the initial crustal layer is much thinner
than the stagnant lid thickness of the “control” case, where the crust is absent; that is 6., << &, where &,
is the stagnant lid thickness with no crust present.

In this thin crust limit, the convection planform, Nusselt number, and interior mantle temperature
are hardly affected by the presence of the crust or by changing the crust’s thickness (e.g. the cases with
5;0 =0.1—-0.2 in Figures 1 & 2). As active convection is already confined to the region beneath the stagnant
lid, a thin crust that sits entirely within the lid does not significantly impact convection or surface heat flux.
However, as crustal thickness is increased, the thick crust limit is reached; in this limit the thickness of the
crust itself controls the lid thickness. Thus with increasing crustal thickness, convection is confined to a
smaller and smaller region beneath the base of the crust. The effective thickness of the lithosphere increases,
thereby decreasing the Nusselt number and increasing the mantle interior temperature, due to less efficient
heat loss from the mantle (e.g. the cases with (5;0 = 0.3 — 0.5 in Figures 1 & 2).

The same trends in convection planform, Nusselt number, and mantle interior temperature are seen at
different Rayleigh numbers and when the Frank-Kamenetskii parameter is varied. Figures 3-4 show the
convective planform, time evolution of Nusselt number, and time evolution of mantle interior temperature,

for models with Rag = 108, # = 13.82, B = —1.0, and a range of crustal thicknesses. As before, when
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Figure 1: Convection pattern at steady-state for models with Rag = 10° & 6 = 13.82, showing both the
composition field (left) and temperature field (right). For the composition field, C’ = 1 represents crust,
while ¢ =0 represents mantle. Models with increasing initial crustal thickness, (5;0, are shown, starting
from the case with no crust at the top, and increasing initial crustal thickness to 6., = 0.5 at the bottom.
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Figure 2: Nusselt number as a function of time (A) and mantle internal temperature as a function of time
(B), for models with Rag = 10°, § = 13.82, and for initial crustal thicknesses, d.,, as given in the legend.
Models correspond to those shown in Figure 1.
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Figure 4: Nusselt number as a function of time (A) and mantle internal temperature as a function of time (B),
for models with Rag = 10%, § = 13.82, and for initial crustal thicknesses, d,,, as given. Models correspond
to those shown in Figure 3.

17



0 =13.82 0=16.12
T4 —5mso ] [B — TSR °
81 O Ra,=3x10° | O Ra;=5x10"| g
vv Ell?avo=5><7106 O Ra,=108
A Ra,=10
g & v X Ray = 10° i L7
g 6 v VvV Ra;=5x10 ' 6
Z
= O v 5
A
N 4] * Oo 0o -4
- S O
<3 4a & AA; og 3
] g > 8 o O (ONONG) H
218 3 & 3°8 g4 8 2

00 01 02 03 04 05 0.6

Crustal Thickness

‘ ‘ ‘ ‘ ‘ ‘ 1
0.0 0.1 0.2 0.3 04 05 0.6

Crustal Thickness

Nusselt Number

Figure 5: Average Nusselt number (Nu) as a function of average crustal thickness (4,) for models with Rag
as specified in the legend and § = 13.82 (A) and 6 = 16.12 (B). As explained in the text (see §2.2), both
Nusselt number and average crustal thickness are time averages after the models have reached statistical
steady-state.

0.99

Internal Temperature

0.91

0.98 1
0.97 1
0.96 1
0.951
0.94 1
0.931
0.921

0 =13.82 0=16.12
O Ra=10° | | A O Ra=107 | B 0.99
& Ray=3x 108 1< Ra,=5x107 £ 0.98
2Fi%§10=5><7106 O I?(:-10=108 ’
Ra, =10 i
* Rag=10° . 0.97
VvV Ra,=5x 10 L
0 N N o 0.96
= i
v A o7 o 0.95
® o o : 20 £0.94
w A Aog _Bo :
X AL - 0.93
8%s § o o) '
Vo o O O £0.92

w w w w w w w ‘ ‘ ‘ ‘ ‘ 0.91
0.0 0.1 0.2 0.3 04 05 06 0.0 0.1 0.2 03 04 0.5 0.6

Crustal Thickness

Crustal Thickness

Internal Temperature

Figure 6: Average mantle interior temperature (7, Z-/), as a function of average crustal thickness ((5;) for models
with Rag as specified in the legend and 6 = 13.82 (A) and 6 = 16.12 (B), as in Figure 5. T} is calculated
from the numerical models as outlined in §2.2.



371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

5;0 << 5(/), changing crustal thickness has negligible impact. However, for crustal thicknesses larger than
a critical crustal thickness, the crust itself dictates the stagnant lid thickness, and from this point onward
increasing crustal thickness leads to lower Nusselt numbers and higher interior temperatures. As higher
Rayleigh number convection produces a thinner stagnant-lid, when the crust is absent, than lower Rayleigh
number convection, the critical crustal thickness where the thick crust limit is reached occurs at a lower
value. With Rag = 108, the thick crust limit is reached with initial crustal thicknesses of 5;0 > 0.15, while
with Rao = 10° crustal thicknesses of 5;0 > 0.3 — 0.4 are needed before the thick crust limit is reached.

Plotting time averaged Nusselt number as a function of time averaged crustal thickness for all model
results with B = —1.0 further highlights the trends discussed above (Figure 5). Time averages of Nusselt
number and crustal thickness are calculated as described in §2.2. For these models with B = —1.0, there is
some initial entrainment of the crust at the start of the model run, but eventually a statistical steady-state
is reached where Nu, T, and 8, are all constant. Nu and §, values reported in Figure 5 are for convection
after this statistical steady-state is reached.

For a given Rayleigh number and Frank-Kamenetskii parameter, all models show an approximately
constant Nusselt number with increasing crustal thickness, for low crustal thicknesses; this regime of behavior
is the thin crust limit. Then a sharp decline in Nusselt number with increasing crustal thickness at larger 6; is
seen, as convection enters the thick crust limit. The turnover point, where Nusselt number begins declining
with increasing crustal thickness, occurs at different 5; depending on the system’s Rayleigh number and
Frank-Kamenetskii parameter. The crustal thickness must be larger at lower Rayleigh number before the
thick crust limit is reached. Likewise larger 6 also requires a larger crustal thickness before the thick crust
limit is reached. These trends are consistent with the idea that the crust is unimportant for stagnant-lid
convection when it is much thinner than the lid thickness expected without a crust, and then begins to
control the thickness of the lid at larger values.

The drop in Nusselt number with increasing crustal thickness means less efficient heat loss from the
mantle interior, and thus a rise in internal temperature (Figure 6). We thus see a general trend where mantle
internal temperature is constant for thin crustal layers, then internal temperature increases with increasing
crustal thickness in the thick crust limit. In the thin crust limit, where the crust does not significantly
impact convection, temperature is largely insensitive to Rayleigh number, but increases with increasing 6,
as expected for stagnant-lid convection (Morris & Canright, 1984; Davaille & Jaupart, 1993; Solomatov,
1995; Grasset & Parmentier, 1998; Reese et al., 1998; Solomatov & Moresi, 2000; Korenaga, 2009). When
the crust controls the lid thickness, the internal temperature increases with increasing Rayleigh number. A
higher Rayleigh number leads to a higher heat flux across the base of the mantle, which, combined with a

low surface heat flux due to the thick crust present, causes the mantle to warm (see §4.2).
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3.1 Changing Buoyancy Number

With B = —1, we find that the buoyant crustal layer strongly resists sinking into the mantle, such that, when
thick enough, it can dictate the thickness of the lithosphere overall. With this buoyancy number, entrainment
of the crust over time is also limited. However, the buoyancy number of the crust on real stagnant-lid planets
can vary, based on the density of the crust and the temperature difference across the mantle. We therefore
explore how varying the buoyancy number of the crust in our models influences convection in the mantle
below. Larger in magnitude buoyancy numbers (that is, more negative) would mean larger positive buoyancy
forces for the crust, and hence would thus only enhance the effects already seen, namely that a thick crust
can suppress foundering at the base of the stagnant lid. However, lower in magnitude buoyancy numbers
may result in crusts with buoyancy forces too weak to suppress foundering at the lid base. We thus repeat
some of our model suites using buoyancy numbers of —0.7, —0.5, and —0.3, at a range of Rayleigh numbers.

The two main goals of these additional models are, first, to test whether entrainment of the buoyant
crustal layer occurs when smaller magnitude buoyancy numbers are used, and to quantify the rate of this
entrainment over time. If entrainment is fast on geologic timescales, it could reduce crustal thickness to the
point where the thick crust limit can not be reached, or where convection could only operate in this limit
for short time periods. The second is to test whether changing the buoyancy number significantly alters the
previously observed relationship between crustal thickness and Nusselt number, in particular when convection
is in the thick crust limit and if crustal entrainment is indeed significant.

We find that the buoyant crustal layer is slowly entrained by convection, at an approximately constant
rate over time, for buoyancy numbers with absolute value < 1. The rate of entrainment also increases with
decreasing absolute value of B (Figure 7; Table 6). These same trends hold for all models we ran, with
different buoyancy numbers, Rayleigh numbers, and initial crustal thicknesses (see Table 6). In addition to
the effect of B on entrainment rate, we also find that entrainment rate generally increases with increasing
Rayleigh number. We calculated average entrainment rates in our models by measuring the difference
between the initial and final (at the ending time of the model run) crustal thicknesses, and the elapsed time
from when entrainment of the crust began. The average entrainment rate is then the difference between
initial and final crustal thicknesses divided by the elapsed time during which entrainment occurred. The
highest non-dimensional entrainment rate we observed (for model parameters of Rag =5 x 108, B = —0.3,
0 = 13.82, and 4., = 0.1), was ~ —0.7869. Scaling this to a dimensional rate using the scaling factors
outlined in §2.1, we obtain ~ —2.7 x 1073 m-s™!, or & —8.6 m-Myr~! = —8.6 km-Gyr—!, for Earth’s
thermal diffusivity and mantle thickness. For Mars, the entrainment rates would be larger by about a factor

of two, though Mars would also have a smaller Rayleigh number than Earth for the same mantle temperature
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Figure 7: Buoyant crustal layer thickness as a function of time for models with Rag = 10% and the same
initial buoyant crustal layer thickness, 6;0. The models have different buoyancy number of B = —0.3 (blue),
B = —0.5 (red), B = —0.7 (orange), and B = —1.0 (black). Time sampling was less frequent in the model
with B = —1.0, so high frequency fluctuations are absent in the black curve. Lowering the buoyancy number
magnitude clearly leads to larger entrainment rates.

and viscosity. It would therefore take hundreds of millions to billions of years for significant crustal loss, on
the scale of ~ 10 kilometers, to occur even in our most rapidly entraining models.

Despite the observed crustal entrainment with B = —0.7,—0.5 and —0.3, we find that models with
different buoyancy numbers, but the same Rayleigh number and Frank-Kamenetskii parameter, still fall
along the same crustal thickness-Nusselt number trend as models with B = —1.0 (Figures 8A & B). The
buoyancy of the crust is still able to dictate lithosphere thickness and push convection into the thick crust
limit, even with lower in magnitude buoyancy numbers. The trends for mantle interior temperature as a
function of crustal thickness are less clear than for the Nusselt number, but again appear to be largely
insensitive to the buoyancy number, at least in the range of buoyancy numbers we tested (Figure 8C). In our
models where B # —1.0 and therefore entrainment is non-negligible, no statistical steady-state is reached.
The Nusselt number and internal temperature will continue evolving as the crust is thinning. For these
models, we calculate time averages of Nu, TZ-/, and 5; over the final 25 timesteps of each model run (see §2.2);
these model end time averages are what is plotted in Figures 8A & C.

However, the ending point in our models is arbitrary, so we also plot Nusselt number as a function of
crustal thickness for different timesteps during the model run, after the influence of the initial conditions on
the model Nusselt number has been erased (Figure 8B). The timesteps plotted are at intervals of 1072 — 1073

in non-dimensional units for Rag = 107, and 10~ for Ray = 10® and 5 x 10%. Figure 8B therefore shows
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Figure 8: Nusselt number as a function of crustal thickness (A & B) and internal temperature as a function
of crustal thickness (C) for models with § = 13.82, Rag = 107 (circles), Rag = 10® (diamonds), and
Rag = 5 x 10® (squares). Symbols are colored by the buoyancy number: B = —1.0 (white), B = —0.3 (blue),
B = —0.5 (red), and B = —0.7 (purple). In Figures 8A & C, the Nu, T}, and &, plotted for B # —1.0 are
averages over the final 25 timesteps of the model run, because active crustal entrainment means a statistical
steady-state is not reached in these models (see text for more details). In Figure 8B, Nusselt number and
crustal thickness are plotted at multiple timesteps during the model runs with B # —1.0, to show how
Nusselt number evolves as the crust thins due to entrainment. Specifically, results are plotted at timestep
intervals of 1072 — 1072 in non-dimensional units for Rag = 107, and intervals of 10™% for Rag = 108 and
5 x 108. Finally, in Figures 8A & B the curve 1/ 5; is shown, representing the maximum possible Nu in
the thick crust limit (i.e. the conductive heat flux across a layer of thickness ¢, with a non-dimensional
temperature difference of one).

how Nusselt number evolves as the crust thins due to entrainment. The results demonstrate that even as
the crust is thinning, the Nusselt number still follows the same trend as a function of crustal thickness,
with some fluctuation around this trend due to inherent time-dependence in convection. Entrainment does
not significantly change the scaling behavior, and thus the scaling laws we develop next, which give Nusselt
number as a function of crustal thickness, will hold even if entrainment is significant (as long as one knows
the actual crustal thickness at any given time). Moreover our arbitrary choice of end points to plot in Figures
8A & C is justifiable, as one could pick earlier timesteps in our models and still find that these points plot
along the same trend in 8, — Nu space.

Our results show that entrainment rates are low on geologic timescales, even for low absolute value
buoyancy numbers, and that the same scaling behavior is observed regardless of buoyancy number, even
when the crust is actively thinning due to entrainment. Based on the entrainment rates seen in our models,
crustal entrainment will not prevent a thick crust from forming, and a planet from entering the thick crust
limit. Early in planets’ histories when the mantle is hot and volcanism is extensive, crust formation is
significantly faster than even the fastest entrainment rates we observe in our models (e.g. Hauck & Phillips,
2002; Fraeman & Korenaga, 2010; Morschhauser et al., 2011), so thick crusts can still form. Entrainment

could cause crustal thinning when volcanism rates have waned due to mantle cooling, or after volcanism has
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shut down entirely. A thinning crust would have an important influence on a planet’s thermal evolution,
because a thinner crust will lead to a higher heat flux for a given Rag and 6 in the thick crust limit, as
our model results show. However, as long as one is able to track changes in crustal thickness over time,
our scaling laws, developed below, can capture this effect (see §6). Moreover, the entrainment rates in our
models are likely overestimates. Tackley & King (2003) show that entrainment rates in models using the
tracer-ratio method, as ours do, are sensitive to grid resolution and the number of tracers employed, with
higher resolution leading to lower entrainment rates. We thus expect that using higher resolution would
lower the already small entrainment rates seen in our models.

An important remaining question is how small in magnitude the buoyancy number would have to be for
thermal bouyancy to dominate over the crustal layer’s chemical buoyancy; in this situation entrainment rates
would likely be much higher, and the crust may be unable to ever grow thick enough for convection to enter
the thick crust limit, or the thick crust limit would be very short-lived if reached. While a buoyancy number
of B = —1.0 (or absolute value of 1) would represent a situation where chemical and thermal bouyancy
forces are equal when the surface fully participates in convection, in the stagnant lid regime the temperature
difference actually driving convection is reduced by the factor 1/6 (e.g. Davaille & Jaupart, 1993; Grasset
& Parmentier, 1998; Reese et al., 1998; Solomatov & Moresi, 2000; Korenaga, 2009, see also §4.2). The
thermal buoyancy forces driving foundering at the base of the lid are thus also reduced by the same factor.
For thermal buoyancy to dominate over compositional buoyancy, the absolute value of the buoyancy number
would therefore likely need to be B < 1/6, or about 0.06 — 0.07 for the range of 6 used in our models. We
therefore expect that as long as the absolute value of the crustal buoyancy number is larger than a 1/6, then

buoyancy forces are sufficient to allow convection to enter the thick crust limit, if the crust is thick enough.

3.2 Convective Stability of the Crust

When both the Rayleigh number and the buoyant crustal layer thickness are large, it is possible for the
Rayleigh number of just the crustal layer to exceed the critical Rayleigh number for the onset of convection.
In this case, convection will occur in both the crust and underlying mantle separately (Richter & Johnson,
1974; Richter & McKenzie, 1981). We therefore examined the temperature and velocity fields in our models
to determine if there is convection within the buoyant crustal layer or not. The large majority of the models
do not show crustal convection (Figure 9); only those models with large reference Rayleigh numbers, Ray,
and large initial crustal thicknesses, 6;0, display crustal convection. Specifically, with § = 13.82 we only
observe crustal convection in cases when Rag = 10® and the initial crustal thickness is 0.35 or greater, and

when Rag = 5 x 10% and the initial crustal thickness is 0.2 or greater.
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As the focus of this paper is on stagnant-lid planets where convection does not occur in the crust, because
this situation is more geologically relevant as we show in §5.1, we exclude models where convection develops
in the crust in Figures 5, 6, and 8, and the scaling analysis in §4.

We also observed different crustal dynamic states in two models with the same Rag = 5x10® and 5;0 =0.2,
but different buoyancy numbers and different initial conditions (Figure 9). A model with B = —1.0 and an
initially static, conductive mantle and crust did not develop convection within the crust. However, crustal
convection did start in models with B = —0.7, B = —0.5, and B = —0.3 that used a fully developed convec-
tion pattern, into which the buoyant crustal layer is inserted, as the initial condition. The different behavior
in the crust could be due to the different buoyancy numbers of those models. However, as buoyancy number
does not explicitly control convective stability of the crust (see §4.3), a more likely explanation is the differ-
ence in initial condition. The initial conductive temperature profile produces cold temperatures in the crust,
and therefore high viscosities which inhibit convection. Meanwhile starting from fully developed convection
produces warmer temperatures in the crust, thereby promoting convection. We only saw models with the
same Rayleigh number and crustal thickness produce different states of crustal dynamics for conditions that
are very close to the boundary between non-convecting and convecting buoyant crustal layers. Hysteresis
at Rayleigh numbers very close to the critical Rayleigh number has been documented previously for fluids
with strongly temperature-dependent viscosity (Stengel et al., 1982; Richter et al., 1983; Solomatov & Barr,
2006, 2007).

4 Scaling Analysis

4.1 Nusselt Number

The numerical models indicate that there are two end member limiting behaviors: the thin crust and thick
crust limits. Here scaling laws for the convective heat flux for both of these limits are derived. In the thin
crust limit, convection behaves the same as isochemical stagnant-lid convection, where scaling laws for heat
flux have been extensively studied. We thus provide a brief introduction to these scaling laws here, and fit
them to our numerical convection model results.

Without a crust, scaling laws for Nusselt number in the high Rayleigh number, high Nusselt number
limit (i.e. far from the critical Rayleigh number) for bottom heated convection typically take the form of

(e.g. Morris & Canright, 1984; Fowler, 1985; Solomatov, 1995; Dumoulin et al., 1999; Reese et al., 1998;
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Figure 9: Regime diagram in initial crustal thickness ((5;0)-reference Rayleigh number (Rag) space, for Frank-
Kamenetskii parameters of § = 13.82 (A) and ¢ = 16.12 (B). Model results where no crustal convection was
seen are indicated by white circles, while black diamonds indicate model results where crustal convection
was observed. In some cases, models with the same Ray and 5;0 were run at different buoyancy numbers
and with different initial conditions. The black circle indicates a case where both crustal convection and a
static crust were seen in models at the same Rag = 5 x 10% and (5;0 = 0.2, but with different B and initial
conditions. The dashed line shows the theoretical curve for the onset of convection in the crust, developed
in §4.3.
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Solomatov & Moresi, 2000; Korenaga, 2009):
Nu = C*6~ 49 Ra? (8)

where C* is a constant found empirically, 8 is the Nu— Ra scaling law exponent, Ra; = Rag/ ,u; is the internal
Rayleigh number, and u; is the average mantle interior viscosity, just beneath the stagnant lid. The average
interior viscosity can be calculated as the non-dimensional viscosity at T = TZ/ , giving ,u; =exp (6(1 — Ti,)).
Note that this same form of the Nusselt number scaling law also holds for purely internally heated convection,
where the internal Rayleigh number is defined at the same average interior viscosity as given above, and the
temperature drop across the mantle is defined as the difference between the average interior temperature
and surface temperature (e.g. Solomatov & Moresi, 2000; Korenaga, 2009).

Much work has then been devoted to determining the scaling law exponent g, from both theoretical stud-
ies, laboratory experiments, and numerical models. When the convection pattern is steady, both asymptotic
boundary layer theories and numerical experiments show that 8 = 1/5, and the scaling law takes the form
(e.g. Morris & Canright, 1984; Fowler, 1985; Reese et al., 1998; Dumoulin et al., 1999; Solomatov & Moresi,
2000):

Nu = G204 Ra}. (9)

On the other hand, when convection is time-dependent, 8 ~ 1/3 (e.g. Solomatov, 1995; Dumoulin et al.,

1999; Solomatov & Moresi, 2000; Korenaga, 2009), yielding:
4 1
Nu=C16"3Ra?. (10)

To establish scaling laws for the thin crust limit, we fit our isochemical numerical convection models
(that is, models that lack a buoyant crustal layer) to the above scaling laws, Egs. (9)-(10). As in Dumoulin
et al. (1999), we find that with increasing Rayleigh number, convection transitions from steady to time-
dependent behavior (Figure 10A). We determine whether models are steady or time-dependent based on the
standard deviations in Nusselt number and internal temperature, and visual inspection of the temperature
fields. There is a clear increase in standard deviations from negligably small values to values on the order
of ~ 1073 — 10™* at the switch from steady to time-dependent convection (Table 4), as well as a clear
switch from steady to time-dependent convection patterns when inspecting the temperature fields. We fit
our numerical models where a steady-state convection pattern develops to Eq. (9), and our models where
convection is time-dependent to Eq. (10). From this, we find Cy = 0.48 and Cy = 2.95, nearly identical to

the scaling laws from Dumoulin et al. (1999). We further find that our isochemical model results can be well
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fit using
Nu = max (Clﬂ_%Raf,Cge_gRa§> , (11)

also consistent with Dumoulin et al. (1999). That is, the transition from steady-state to time-dependent
convection occurs at approximately the point where Eq. (9) and Eq. (10) are equal.

Moore (2008) suggests Nusselt number scaling laws should have the form Nu —1 = (Ra — Ra,.)?, so that
Nusselt number converges to 1 as Rayleigh number approaches the critical Rayleigh number, Ra.. However,
as shown in Solomatov (1995), Nu also approaches 1 as Ra; approaches the critical Rayleigh number in Eq.
(10). With Ra. = 20.9* from (Solomatov, 1995, see also §4.3), Eq. (10) has the form Nu ~ (Ra/Ra.)”. A
scaling law with the form Nu — 1 = (Ra — Ra.)? converges to a scaling law with the form Nu ~ (Ra/Ra.)?
at high Rayleigh numbers, but shows different behavior at low Rayleigh numbers, despite both scaling laws
approaching Nu = 1 at Ra = Ra.. The scaling law form of Moore (2008) shows a weaker dependence of
Nu on Ra at lower Rayleigh number, similar to lowering 8 in Eq. (8). As a result, the scaling law form
of Moore (2008) may even be able to fit both our steady and time-dependent model results with a single
value of 3 ~ 1/3. While this is attractive, no study carefully testing the Nu — 1 = (Ra — Ra.)? scaling
law form with stagnant-lid convection model results currently exists, so we use Eq. (9) & Eq. (10), which
have been extensively tested. The goal of our study is not to develop new scaling laws for isochemical
stagnant-lid convection, but instead develop scaling laws for stagnant-lid convection with a thick, buoyant
layer representative of the crust. As our models with a thin crust behave the same as models with no crust,
any scaling law that properly captures isochemical stagnant-lid convection could be used for the thin-crust
limit, in place of Eq. (9) & Eq. (10) as used in this study.

As Nu =T, /8,, where 0, is the thickness of the lithosphere due to purely thermal convection, &, is then

’ T/ 4 ]%(10)é
=(=L)65 ( —= 12
0 (Cl> ( Ky (12)

for time-dependent convection at high Rayleigh number, and for steady convection at low Rayleigh number

, T\ . Ra())é
o= =165 . . 13
0 <02> < o ( )

We next develop scaling laws for the thick crust limit, where the thickness of the crust itself controls the

given by

thickness of the stagnant lid. The Nusselt number in the thick crust limit will therefore be given by
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Figure 10: Nusselt number as a function of internal Rayleigh number for models without a crust (A), and
comparison of iso-chemical stagnant-lid convection scaling law predictions to model results (B). Model results
are used to determine the constants, C; and Cy, in equations Eq. (10) and Eq. (9). Filled black symbols
in Figure 10A denote model results where the convection pattern was steady, while open symbols denote
time-dependent convection. See the main text for how models are classified as exhibiting steady or time-
dependent convection. C is found by fitting the time-dependent models to Eq. (10), and Cs is found by
fitting the steady convection models to Eq. (9).
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Figure 11: Scaling law for Nusselt number in the thick crust limit, Eq. (14) & Eq. (17), against the observed
average Nusselt number from the numerical models (A). Predictions deviate from the model results at low
crustal thickness, when the crust does not significantly influence convection and Nusselt number is given by
standard thermal convection scaling laws, Eq. (9) & Eq. (10). Note that for models with a thin crust, or
no crust, the thick crust limit scaling law predicts high Nusselt numbers, > 10, and these points plot off our
scale in Figure 11. Scaling law for Nusselt number combining thick and thin crust limits Eq. (18) against
observed Nusselt number from the numerical model results (B).
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where 5;1 is the thickness of a thermal boundary layer in the mantle just below the crust; we call this the sub-
crustal thermal boundary layer. The total thickness of the top thermal boundary layer is then § = 6; + 5;1.
A similar approach has been used successfully to describe heat flux through continents (Lenardic et al.,
2005; Van Thienen, 2007); in these studies the total thickness of the conductive boundary layer is assumed
to consist of the continent and mantle root, as well as a thermal boundary layer beneath the rigid continent.
We assume that the sub-crustal boundary layer follows a scaling law analogous to the rheological boundary
layer in stagnant-lid convection. In this case, boundary layer thickness scales with Rayleigh number to
the —1/3 power, with the Rayleigh number defined based on the temperature difference across just the
active boundary layer, as this is the temperature scale driving convection (e.g. Solomatov, 1995). For the
sub-crustal boundary layer, the temperature scale across this boundary layer is Ti' — Té, where T; is the

temperature at the crust-mantle interface. With these assumptions

: Rao(T, - T))\ °
5, = e T ’ 15
sl < Racﬂi ) ( )

where, as in Egs. (12)-(13), we define Rayleigh number based on the mantle interior viscosity. We also include
the critical Rayleigh number, Ra., in the denominator of Eq. (15), as in Lenardic et al. (2005), because
convection will not occur if the Rayleigh number is sub-critical. We find that this allows our numerical
models results to be well fit with Ra. ~ 1000 (see below). A critical Rayleigh number for constant viscosity
convection is used here, because the small temperature difference between Ti/ & Tcl in the thick crust limit
results in approximately constant viscosity in the actively convecting mantle beneath the crust. In the thick
crust limit, T; — T. < AT, where AT, is the rheological temperature scale across the actively convecting
region in isochemical stagnant-lid convection, where viscosity variations are no greater than a factor of ~ 10
(see §4.2). As our numerical models neglect internal heating and have a constant thermal conductivity
through the mantle and crust, we can assume a linear temperature profile through the lithosphere. With

this assumption T; follows

— 8.

(& K3 (63l +6C> ( )
In §6 we show how TC/ can be calculated in the more general case, where heat production is not negligible
in the crust and mantle, and the crust and mantle have different thermal conductivities. We also discuss

how these additional factors would influence our derived scaling laws. Combining Eq. (15) & Eq. (16) and

rearranging,
5.7 _ Racp,
(5;1 + (5; RaoTi,

(17)
Equation (17) is solved numerically, using 6, and T, values that are determined from each numerical con-
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vection model as a post-processing step (see §2.2) when comparing the scaling law to model results.
Equation (17) shows that increasing internal Rayleigh number, either through an increase in Rag or a
decrease in u;7 will lead to a thinner sub-crustal thermal boundary layer due to higher convective vigor in

’

the mantle. A larger 5; causes a modest increase in §_,, due to a decrease in the temperature difference

s
driving foundering of the sub-crustal thermal boundary layer, Ti/ — T;, with increasing crustal thickness. We
note our scaling law for (5;“ Eq. (17), implies that 5;1 ~ Rag 1/3 regardless of Rag, while our isochemical

/% at low Ragp, when the convection pattern

numerical models were best fit by scaling laws implying § ~ Ray !
is steady. Despite this potential inconsistency, our scaling law for Nu in the thick crust limit fits the data
well, even at low Rayleigh number (Figure 11). The stagnant lid in the thick crust limit at low Rag appears

to have a flatter base than when the crust is absent (see Figure 1), and these flatter lid slopes might explain

why Eq. (17) produces an accurate scaling law even at low Rag. In addition, when the crust is very thick

’

EA

such that 6; >> 4, lithosphere thickness, and hence heat flux, are primarily controlled by crustal thickness.
Therefore our scaling law for Nu under these conditions is not strongly sensitive to how 5;l scales with Rayg.

At large crustal thicknesses, i.e. in the thick crust limit, Eq. (14) & Eq. (17) provide a good fit to the
numerical model results (Figure 11A). However, as expected, the scaling laws fail to match the numerical

model results when the crust is thin, and the Nusselt number is approximately the same as for purely thermal

convection. To account for this, we join the scaling laws for Nu in the thick crust and thin crust limits, as

co (H0) oot (22 D (18)

where 5;1 is given by Eq. (17). Comparing our predicted Nusselt numbers from Eq. (18) to those measured

/

T
Nu = min (m,max

sl c

ulloy

from the numerical models with B = —1.0 shows a good match (Figure 11B). Thus the scaling laws are
accurate across a wide range of parameters and in both the thin and thick crust limits. However, right
around the transition point between the thick and thin crust limits, the numerical model results do show a
relatively small deviation from the scaling laws (Figure 11B). This deviation is likely caused by the crust
disrupting the slopes that would form at the base of the stagnant lid in the isochemical case, and thereby
lowering the heat flux in a way our scaling laws do not capture. However, our scaling laws match the
thick and thin crust limits well, and the deviation described here is confined to a narrow range of crustal
thicknesses.

An implicit assumption in our scaling laws is that the switch between the thin and thick crust limits
occurs when the predicted Nusselt numbers from the two limits are equal, or equivalently when (5; + 6;1 = 5(').

’

The critical crustal thickness where convection transitions between these two limits is thus 8, .., = 0y — 0.

c—cri

To test the preceding prediction using the numerical model results, we compare the Nusselt number of models
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with a crust to the Nusselt number of the corresponding isochemical control case, that has the same Rag
and . We assume that the crust is significantly affecting convection, and thus the thick crust limit has
been reached, at the crustal thickness where the Nusselt number first becomes > 5% lower than the Nusselt
number for the corresponding isochemical control case.

For Rag = 10%, we find that the thickness of the stagnant lid in the control case is (56 = 0.55, using
equation Eq. (13) because with Rag = 10° a steady-state convection pattern develops. The crustal thickness
where Nu is > 5% lower than the control case Nu was found to be d, = 0.3441. Using Eq. (15) with
the internal temperature of this model, T;' = 0.9302, we calculate a sub-crustal thermal boundary layer
thickness of 5;1 = 0.2058. The critical crustal thickness where convection should enter the thick crust limit is

’

thus § . = 0.3442, nearly identical to the crustal thickness where we see a significant drop in the Nusselt

number. For Rag = 108, Nusselt number first begins to significantly decrease with a crustal thickness of
5; = 0.0925. Using Eq. (12) for this high Rayleigh number case, we estimate 5(') = 0.133, and, with a
measured T, = 0.9308, find 5;1 = 0.0430. The critical crustal thickness for the onset of the thick crust

limit is thus § + = 0.09, again matching what was found in the numerical models. The scaling laws thus

c—cri
successfully capture the transition between the thin and thick crust limits.

The models analyzed above all used B = —1.0. As discussed in §3.1, we also ran sets of models at
different buoyancy numbers of B = —0.7, B = —0.5, and B = —0.3. While these models display elevated
rates of crustal entrainment compared to the B = —1.0 models, the positive buouyancy of the crust still
dominates over the negative buoyancy of cool temperatures at the base of the lid, such that thick crusts
that dictate the overall thickness of the stagnant lid can still form. In addition, these models fall on the
same (5; — Nu trend as the models with B = —1.0, indicating that the thickness of the buoyant crustal layer
still controls convective heat flux in the same way in the thick crust limit, even with progressively weaker
positive buoyancy. Here we confirm that the models with varying buoyancy numbers also follow our scaling
law for Nusselt number, Equation (18) (Figure 12).

Our Nusselt number scaling law for convection with a buoyant crustal layer is therefore independent of
the buoyancy number, as long as: 1) the buoyancy of the crust is strong enough for a thick crust to form
and persist, which likely requires buoyancy numbers with absolute value > 1/6; and 2) one knows and uses
the actual crustal thickness present at a given time, taking into account crustal loss due to entrainment. In
fact, our numerical models show that even when the crust is actively thinning due to entrainment, Nu scales
with crustal thickness in the same way as our scaling laws predict (see §3.1). Our results therefore indicate
that the buoyancy of the crustal layer itself does not influence the thickness of the subcrustal boundary
layer, again as long as one considers the actual thickness of crust present at any given time. The buoyancy

number influences the rate of entrainment, with less buoyant crust being easier to entrain. However, given
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Figure 12: Predicted Nusselt number from our scaling law Eq. (18) against observed Nusselt number from
numerical models with varying Rayleigh number and Buoyancy number. Symbols are the same as in Figure
8. Observed Nusselt numbers presented here for models with B # —1.0 are averages at the end of each
model run, as explained in §2.2 & 3.1.

that the entrainment rates seen in our models are slow on geologic timescales for both Earth and Mars
sized planets, and that they are likely overestimates due to the significant numerical challenges involved in
modeling physically accurate entrainment rates, we chose not to develop a scaling law for the entrainment

rate. Such a task is best left for a study devoted to studying the physics of entrainment in detail.

4.2 Internal Temperature

In the thin crust limit, the internal temperature of the mantle is unaffected by the presence of the crust,
and thus the same as for purely thermal stagnant-lid convection (e.g., Solomatov & Moresi, 2000; Reese &
Solomatov, 2009). In this case, the non-dimensional temperature difference driving convection is AT;h =
arp /0, where a,;, is a constant (e.g. Davaille & Jaupart, 1993; Grasset & Parmentier, 1998; Reese et al.,
1998; Solomatov & Moresi, 2000; Korenaga, 2009). With a,, ~ 2, and with symmetry between the bottom
boundary layer and top rheological boundary layer (i.e. the boundary layer beneath the stagnant lid),

’

T, ~ 1 — 0!, which matches our numerical model results well. We find 7, ~ 0.925 for § = 13.82, and

7
’

T, ~ 0.935 for 6 = 16.12; these internal temperatures are approximately constant as Ray changes and for
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Figure 13: Internal temperature in the thick crust limit predicted by the scaling law Eq. (24), as a function
of the observed internal temperature from the numerical model results (A). Predictions deviate from the
model results when the crust is thin, and convection operates in the thin crust limit. Scaling law prediction
for internal temperature combining the thick and thin crust limits (as explained in the text), against the
observed internal temperature from the numerical models (B).

variations in crustal thickness within the thin crust limit (see §3 and Figure 6). However, when the crust
is thick we observe an increase in mantle interior temperature with increasing crustal thickness. We thus
develop a scaling law for the internal temperature in the thick crust limit, using a simple energy balance
approach where we equate the heat flux into the base of the mantle and the heat flux leaving the top of the

mantle. In terms of non-dimensional variables, heat flux into the bottom of the mantle, Féot, is:

1-T,

Fpop = —— (19)

where 6;0t is the thickness of the boundary layer at the bottom of the mantle. The non-dimensional heat

flux at the top of the mantle, the Nusselt number, is:

Nu= ?/ (20)
Equating these heat fluxes, we have / ,
T 1-T,
6’5 B ( 6llmt Z ) , (21)
which can be rearranged to give / ,
) 1-T,
o ®

33



690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

where ' =4, + 6;1 as we are considering convection in the thick crust limit.

We assume that 5;0t follows a scaling law analogous to that for the sub-crustal boundary layer Eq. (15):

-3
6@=@<waﬂv , (23)

e

where C3 is a constant. Empirically fitting our resulting scaling for internal temperature to the numerical

results we find C3 =~ 2. Combining equations (23) & (22),

’

1-T, 03 /L,z K
/ : = ’ ! ‘ / . 24
T, (@+@)<R%u—nﬂ 2

In Eq. (24), 5;1 is given by Eq. (17). We thus have a system of two equations for the unknowns Ti' & 5;1,

which is solved numerically.

In the thin crust limit, internal temperature is unaffected by crustal thickness, and so our scaling law,
derived for the thick crust limit, naturally does not match the numerical model results (Figure 13A). The
scaling law significantly underpredicts internal temperature because it assumes that crustal thickness dictates
the thickness of the top thermal boundary layer. Thus, for thin crusts it predicts thin lithospheres and hence
low internal temperatures. However, with increasing crustal thickness, the internal temperatures predicted
from the scaling law converge to the observed internal temperatures from the numerical models.

As with the scaling law for Nusselt number, we can combine the thin and thick crust limits into one scaling
law, by taking the internal temperature to be the maximum of these limits (i.e. the maximum of T; ~1—6~!
for the thin crust limit, and 7; found from solving Eq. (24) for the thick crust limit). This combined scaling
law matches the full set of numerical model results with B = —1.0 to first order, across both the thick and
thin crust limits (Figure 13B). As with the scaling law for Nu, the fit to models where B is varied is of
similar accuracy (not shown). In particular, the scaling law accurately predicts the magnitude of temperature
increase with increasing crustal thickness in the thick crust limit, as numerical model results cluster around
the line representing a perfect match between scaling law prediction and numerical model results. However,
there is scatter around this trend line, indicating that the scaling law is slightly underpredicting the influence
of Rayleigh number or Frank-Kamenetskii parameter on internal temperature. In particular, there appears
to be a stronger dependence of internal temperature on Ray than our scaling law predicts, so this is likely
the main source of error.

Also similar to our analysis for Nu, there is deviation between the scaling law and numerical convection
model results near the transition between the thick and thin crust limits. Observed internal temperatures

begin to increase with increasing crustal thickness before the scaling laws predict that they would enter the
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thick crust limit. This leads to data points plotting along a horizontal line in Figure 13B, at two different
predicted temperatures depending on #. However, as crustal thickness increases further and models fall fully
into the thick crust limit, the scaling law more accurately predicts the observed increase in temperature.
Further refinement of this scaling law could improve the fit to the numerical models, both in the thick crust
limit and in the transition region between the thick and thin crust limits. However, as scaling laws for
internal temperature are not needed for modeling the thermal evolution of stagnant-lid planets, such further
analysis is beyond this paper’s scope.

One result of Eq. (24) is that internal temperature increases with increasing Rayleigh number in the thick
crust limit, as seen in the numerical results (see Figure 6). A higher Rayleigh number reduces the thickness of
the bottom thermal boundary layer, thereby increasing the heat flux into the bottom of the mantle. Although
a higher Rayleigh number also decreases the thickness of the sub-crustal thermal boundary layer, this effect
is not enough to outweigh the influence of a higher basal heat flux, and interior temperature increases. The
reason for this is that as 6;1 gets thinner, the crust temperature, TC/, gets warmer and hence the temperature
difference driving foundering of the sub-crustal thermal boundary layer gets smaller. This makes 6;1 less
sensitive to Rag than the bottom thermal boundary layer. Changing 6 does not have a significant effect on
internal temperature in the thick crust limit in the numerical model results (see Figure 6), and the scaling
law reflects this. A larger 6 actually causes internal temperature to decrease slightly, the opposite of the
effect of 6 on internal temperature for purely thermal stagnant-lid convection. Again this is due to the
dynamics of the bottom thermal boundary layer; a larger 6 increases (5;“ and hence lowers the heat flux at
the base of the mantle. However, as (5; increases the effect of 6 becomes smaller, and models with the same

Rayleigh number and crustal thickness converge towards the same internal temperature regardless of 6.

4.3 Onset of Convection in the Crust

For convection to occur in the crust, the Rayleigh number of just the buoyant crustal layer, Racyust, must
exceed the critical Rayleigh number, Ra.. The critical Rayleigh number for convection with a strongly
temperature-dependent viscosity, where the viscosity at the base of mantle is used as the viscosity scale — as

in our definition of Rag — is (Stengel et al., 1982; Richter et al., 1983; Solomatov, 1995):
Ra. = 20.90*. (25)

Defining the temperature at the base of the crust as T, the crustal Rayleigh number is:

a(le — 15 3

Racrust =
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where ¢, is the crustal thickness. The crustal Rayleigh number can then be written in terms of the reference
Rayleigh number of the mantle, Rag, and non-dimensional variables as:

3T,
Racrust = Rag (e){p(@(l—Té))) ) (27)

where we have assumed 8, = 4., as the onset of convection in the crust occurs early during a model’s
evolution, before significant crustal entrainment.

Intuitively, the theory demonstrates that increasing Rag or 5;0 will increase the crustal Rayleigh num-
ber, and can induce convection. A higher basal crustal temperature, Tc/, also increases Racrust and favors
convection, while a larger Frank-Kamenetskii parameter for viscosity increases the critical Rayleigh number,
and inhibits crustal convection.

To compare the theoretical estimate for the onset of convection in the crust to our numerical models, we
calculate the crustal thickness where Racrust = Rac as a function of Rag and 6. To calculate TC/, we use Egs.
(16) - (17) assuming a mantle interior temperature of TZ/ ~ 1, because mantle temperatures approaches one
as crustal thickness increases (see §4.2). The theoretical curve fits the numerical model results well, with
only some small deviation for the models with § = 16.12 (Figure 9). Racyust is strongly sensitive to TC/, so our
calculation for Tc/ is the most likely source of error. Estimating TC/ requires assumptions about the structure
of convection in the underlying mantle, which may not hold for all models, especially those with different
initial conditions. Strong sensitivity of the boundary between convecting and non-convecting crustal layers
to Té is also consistent with our numerical model results, where initial conditions that produced warmer
temperatures at the base of the crust were more likely to induce convection than those that produced colder
temperatures. Ultimately, crustal thickness on stagnant-lid planets will likely be limited by the transition of
lower crust to dense eclogite, and foundering of this crust. As we show next in §5.1, when crustal thickness
is assumed to be limited to the depth where eclogite forms, the crust is sub-critical for convection for a

geologically relevant range of mantle interior temperatures and reference viscosities.

5 Application to Planetary Thermal Evolution

5.1 Conditions for planetary mantles to convect in the thick crust limit

Our numerical models and scaling analyses show that when buoyant crusts grow as thick, or thicker, than
the thickness of the stagnant lid that would have existed with no crust present, they suppress convective
heat flux. These thick, buoyant crusts effectively increase the thickness of the stagnant lid, as the crust is

too buoyant to sink into the mantle. However, as introduced in §1.1, there are processes that limit crustal
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thickness, and thus may prevent crusts from growing thick enough for planets to enter the thick crust limit
that our numerical models and scaling analyses explore. Heat producing elements partition into the crust,
thereby lowering the heating power in the mantle (e.g. Hauck & Phillips, 2002; Fraeman & Korenaga, 2010;
Foley & Smye, 2018), partial melting depletes the mantle, increasing its solidus and therefore making further
melting more difficult (e.g. Maalge, 2004), the temperature at the base of the crust increases as the crust
grows thicker, which can lead to melting of the lower crust, and metamorphic reactions, in particular the
transition of basalt to eclogite, densify the lower crust and can cause it to founder into the mantle (e.g. Ito
& Kennedy, 1971; Hacker, 1996; Semprich et al., 2010; Jull & Kelemen, 2001; Taylor & McLennan, 2009;
Artemieva & Meissner, 2012; Baratoux et al., 2014). Heat producing element partitioning into the crust and
increases in mantle solidus upon depletion have been studied previously, and thick crusts capable of reaching
the base of the stagnant lid can still form, as explained in §1.1. However, the formation of eclogite could
more stringently limit crustal thickness, as the dense eclogitized crust is likely to founder into the mantle.
We thus use our scaling laws developed in §4.1 to estimate here whether, and under what conditions, crusts
thick enough for convection to enter the thick crust limit can form, when their thickness is limited by the
formation of eclogite.

Stagnant-lid planets produce crust through primary melting of the mantle, and hence the composition of
this crust is expected to be mafic. For mafic crusts, eclogite is the dense phase that forms at high pressure,
so we focus on eclogite here. The pressure where eclogite forms depends on temperature, water content,
and other factors (e.g. Ito & Kennedy, 1971; Hacker, 1996; Hacker et al., 2003; Semprich et al., 2010; Taylor
& McLennan, 2009; Artemieva & Meissner, 2012; Baratoux et al., 2014). For a mid-ocean ridge basalt
composition, the minimum pressure for eclogite formation given by Hacker (1996) is 1.2 GPa; we will use
this pressure in our analysis.

We first calculate the minimum crustal thickness needed for convection to enter the thick crust limit,
Oc—crit- As outlined in §4.1, §._ it = 09 — d5;. We calculate ., for a range of mantle reference viscosities,
mantle interior temperatures, and for different planet sizes, as these are the key controlling parameters that
likely vary from planet to planet in the galaxy, or over a planet’s history (Figure 14A & B). We assume pure
internal heating in this analysis, as real stagnant-lid planets are likely to contain a significant component of
internal heat production, as is the case for the Earth (e.g. Jaupart et al., 2015). When convection is purely
internally heated, it is unlikely to develop steady-state convection patterns, even at low Rayleigh numbers.
Heat flux is thus found to scale as Eq. (10) for internally heated, isochemical stagnant-lid convection (e.g.
Solomatov & Moresi, 2000; Korenaga, 2009). That is, the steady-state convection scaling relationship of
Nu ~ Ra'/5 is typically not seen. As a result we use Eq. (12) to calculate §y regardless of Rayleigh

number here. Moreover, when convection is purely internally heated, AT = T; — T, as there is no thermal
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boundary layer at the base of the mantle. The internal Rayleigh number, Ra;, is therefore defined as
pga(T; — Ty)d® [ (k(T3)), and 0 = B, (T; — T;) /(RTY).

Our numerical convection models were bottom heated, rather than internally heated. However time-
dependent, isochemical stagnant-lid convection follows the same Nusselt number-Rayleigh number scaling
law, Eq. (10), for both purely bottom heated and purely internally heated convection. Even the constant
(' is nearly unchanged: we find C; ~ 0.48 for our bottom heated models, while Solomatov & Moresi (2000)
and Korenaga (2009) find C; = 0.5 — 0.55 for their purely internally heated models. Moreover, Lenardic
et al. (2005) develop scaling laws for convection beneath continental lithosphere that are analogous to our
scaling laws for the thick-crust limit; they find these scaling laws hold for convection with internal heating.
Applying our scaling laws to internally heated planets should thus be at least first order accurate.

The following Arrhenius temperature-dependent viscosity law is used:

[ = fir €XP (% (Tl - ;)) (28)

where the reference viscosity of the mantle, p,, is defined at the reference temperature 7, = 1650 K,
E, = 300 kJ-mol~! is the activation energy, and R = 8.314 J-mol~'-K~! is the universal gas constant. All
mantle temperatures discussed in this section are reported as potential temperatures, as it is differences in
potential temperature that contribute to the thermal buoyancy forces driving convection, rather than absolute
temperatures. We are also primarily interested in the mantle temperature just beneath the stagnant lid,
as mantle properties here control instability at the base of the lid. The distinction between absolute and
potential temperature is only important deeper in the interior, where adiabatic heating is significant.

Our numerical mantle convection models use a Frank-Kamenentskii approximation for the viscosity law,
rather than the full Arrhenius law given above in Eq. (28). However, Korenaga (2009) showed that the
same heat flux scaling law holds for either viscosity formulation, and only a small correction factor to the
effective Frank-Kamenetskii parameter is needed when an Arrheinus viscosity law is used; this correction
factor is beyond the scope of the simple first order calculations presented here. The correction factor results
in slightly larger effective values of 6, and hence lower Nu and larger dg. Our calculations presented here
therefore slightly underestimate dg.

Finally, as in our numerical convection models, we also neglect differences in thermal conductivity between
crust and mantle, and heat production in the crust and stagnant-lid. However, as we explain in §6, including
these effects would only act to decrease the crustal thickness needed for convection to enter the thick crust
limit, for a given mantle temperature. As a result, the calculations presented in Figure 14 are conservative,

and the critical crustal thicknesses needed for convection to enter the thick crust limit shown are upper
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bounds. The reason is that both effects increase the temperature at the base of the crust, T, and thus also
increase the subcrustal boundary layer thickness, d5;. With a thicker dg;, the critical crustal thickness needed
for convection to enter the thick crust limit is smaller, for a given dg.

We solve for 0.t for an Earth-size (Figure 14A) and Mars-size planet (Figure 14B). For the Earth-size
planet, we assume p = 4500 kgm ™3, ¢ = 9.8 m-s™2, a = 3 x 107° K~!, and d = 2890 km. For the Mars-size
planet, we assume only the mantle density, gravity, and mantle thickness are different: we use p = 3500
kgm™3, g =3.7m-s"2 and d = 1740 km (e.g. Zuber, 2001). We assume the same mantle thermal diffusivity

2.s71 which can be calculated from k = k/(pumcp), where

for Earth-size and Mars-size planets of £ = 1076 m
k is thermal conductivity, pum is upper mantle density, and ¢, is heat capacity. Using k = 5 W-m~ LK
pum = 3300 kgm ™3, and ¢, = 1250 W-m~1-K~! for both Earth- and Mars-size planets, x ~ 1076 m?.s1.
Our estimate ignores variations in thermal diffusivity with pressure or temperature in the mantle, which could
lead to slightly different average thermal diffusivities for Earth-size and Mars-size planets. For all models
presented in this section, surface temperature, T, is fixed to Ty = 273 K. A complete list of parameters and
variables used for the calculations here in §5.1-5.2 can be found in Table (3).

We find that the higher the mantle temperature and lower the reference viscosity, the thinner the critical
crustal thickness needs to be for convection to enter the thick crust limit. A higher mantle temperature also
decreases the buoyancy number, for a given crust-mantle chemical density difference, making crust easier to
entrain. However, entrainment rates are slow on geologic timescales for all our numerical convection models,
and the compositional density difference between the crust and mantle would have to be very small (< 10
kg-m~3) for thermal buoyancy to dominate over the positive chemical buoyancy of the crust and drive more
rapid entrainment (see §3.1 & 6). It is thus easier for planetary mantles to operate in the thick crust limit
when reference viscosity is low or mantle temperature is high. For an Earth-size planet, crusts less than
30 km thick will still be thick enough for convection to be in the thick crust limit, and hence to suppress
convective heat flux, if T; > 1800 K at u, = 10'® Pa-s, or T; > 2000 K at u, = 10'° Pa-s. Higher mantle
temperatures and lower reference viscosities lead to more vigorous convection and hence a thinner Jy. The
thinner §p, the thinner the crust can be and still dictate the overall thickness of the lithosphere. However,
with decreasing mantle temperature or increasing reference viscosity, d._cit rapidly increases, to very large
thickness of >~ 100 km. Such thick crusts are unlikely to form in reality due to the transition of basalt
to eclogite, as we show next. For a Mars-size planet the same trends hold, but . i is everywhere larger.
A Mars-size planet has lower p and g, which decreases convective vigor and increases dg for a given mantle
temperature and reference viscosity. As a result, a thicker crust is needed for convection to enter the thick
crust limit.

As crusts thick enough for the lower crust to transition to eclogite are dynamically unstable, and unlikely
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Figure 14: The critical crustal thickness needed for convection to enter the thick crust limit, §._¢t, for an
Earth-size planet as a function of internal temperature and mantle reference viscosity (A). Dashed contour
line at 43 km (or log,, (43) = 1.63) is the depth where eclogite forms. Therefore, it may not be possible for
the crust to grow thicker than ~ 43 km. The critical crustal thickness needed for convection to enter the
thick crust limit for a Mars-sized planet (B). For this size planet the depth where eclogite forms is & 116 km,
(or log;, (116) = 2.06). Above the dotted line in the upper left corner our scaling laws predict convection
would cease. (C) Critical mantle temperature, T;_yit, required for convection to be in the thick crust limit
as a function of mantle thickness and reference viscosity, when the crust is assumed to extend to the depth
where eclogite forms. Above the dashed contour line at ~ 2100 K, the mantle would experience complete
melting beneath the stagnant lid, and therefore effectively form a magma ocean. For all the results shown
here we confirmed that the crust would be subcritical for convection, using the critical Rayleigh number for
stagnant-lid convection given in Solomatov (1995).
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to persist over geologic timescales, we assume that the maximum plausible crustal thickness, §._max, iS set by
the depth where eclogite forms. With a pressure where eclogite forms of Py = 1.2 GPa, dc—max = Pec1/(pcg),
where p. = 2800 kg-m? is the density of the crust. For an Earth-size planet we find d,_ax ~ 43 km, and for a
Mars-size planet d._max ~ 116 km. These maximum crustal thickness limits are plotted on Figures 14A & B
as dashed lines. When d._ it < 0¢—max, as found for high mantle temperatures and low reference viscosities,
then crusts thick enough for convection to enter the thick crust limit can plausibly form. However, when
Oc—ecrit > Oc—max, it is unlikely that convection will ever be able to enter the thick crust limit, because the
formation of dense eclogite will prevent crusts from growing thick enough to reach d._cyit.

For an Earth-size planet, convection will be unlikely to ever enter the thick crust limit for the majority
of the range of plausible reference viscosities and internal temperatures we considered, unless crusts can
grow thicker than the nominal depth where eclogite forms (Figure 14A). However, for a Mars-size planet,
Oc—crit < dc—max for a larger range of p, and T;. Convection can therefore enter the thick crust limit for a
wider range of conditions on a Mars-size planet than on an Earth-size planet. Although the critical crustal
thickness needed for convection to enter the thick crust limit increases due to lower p and g, the lower g
also means the depth where eclogite forms increases. As 0._pmax Scales linearly with g, while dg scales as
(pg)l/ 3, 6e_max increases more rapidly than §,_c.;. The thick crust limit is therefore more likely to be seen
on smaller planets than on larger ones.

To more completely explore the influence of planet size, we calculate the critical mantle temperature,
T;_crit, needed for convection to enter the thick crust limit, for a crustal thickness equal to 0.—_max (Figure
14C). We calculate T;_ i for a range of mantle reference viscosities and mantle thicknesses. We use the same
methodology and assumptions, outlined above, as we used to calculate d._¢t. To scale mantle properties p,

g, and d with planet size, we use the scaling laws developed by Valencia et al. (2006, 2007):

o= e (;Ze) (29)
9= 9% <Z‘ZB>O.5 (30)
d=dg (AJZB)MS (31)

where M is planet mass. Equations (29)-(31) assume an approximately Earth-like core mass fraction.
The lower the critical mantle temperature for convection to enter the thick crust limit, the more likely it
will be for planets to convect in this regime, because it means this regime will be found for a broader range

of mantle temperatures. Planets are also likely to spend a larger fraction of their lifetime in the thick crust
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Table 3: Parameters and variables used in §5.1-5.2

Parameter Meaning Assumed value Equation
i Reference viscosity 108 — 10%2 Pass (28)
T, Reference mantle potential temperature 1650 K (28)
E, Viscosity activation energy 300 kJ-mol~! (28)
R Universal gas constant 8.314 J-mol 1Kt (28)
T, Surface temperature 2713 K below (28)
e Thermal expansion coefficient 3x 1075 K! below (28)
K Thermal diffusion coefficient 1076 m?.s7! below (28)
p Average mantle density (Earth) 4500 kg-m—3 below (28)
P Average mantle density (Mars) 3500 kg-m—3 below (28)
p Average mantle density (General planet size) - (29)
g Gravity (Earth) 9.81 m-s2 below (28)
g Gravity (Mars) 3.71 m-s~2 below (28)
g Gravity (General planet size) - (30)
d Mantle thickness (Earth) 2890 km below (28)
d Mantle thickness (Mars) 1740 km below (28)
d Mantle thickness (General planet size) - (31)
P.a Pressure where eclogite forms 1.2 GPa below (28)
Pe Average crust density 2800 kg-m 3 below (28)
k Thermal conductivity (Earth and Mars) 5W-m~LK! (32)
Vinan Volume of the mantle (Mars) 1.4 x 10%° m3 (33)
p Heat capacity 1250 J-kg= 1Kt (33)
As Surface area of planet (Mars) 1.4 x 10* m? (33)
Qo Initial heat production rate 25 or 50 TW (33)
Trad Radioactive decay constant 2.94 Gyrs (33)
Variable Meaning Units Equation
q Heat flux W-m~? (32) & (33)
T; Potential temperature of the mantle interior K (32) & (33)
i Viscosity of the mantle Pa-s (28)
t Time s (33)
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limit, when T; . is lower. As expected based on Figures 14A & B, we find that T;_ . decreases with
decreasing planet size or reference viscosity. For a planet with a Mars-like mantle thickness and p, = 108
Pa-s, T;_cit =~ 1600 K. However, for a planet with p, = 108 and d = 4500 km, ~ 1.5 times thicker
than Earth’s mantle, T; ¢y > 1800 K. T; ¢t then increases sharply with increasing reference viscosity, as
with larger reference viscosities the stagnant lid thickness produced by convection without a crust increases
significantly, when all else is held fixed. The mantle would then have to be very hot for convection to enter
the thick crust limit, when crustal thickness is limited to the depth where eclogite forms.

For very high mantle temperatures, extensive melting would occur. If melt fractions are larger than ~ 60
%, then the molten region will deform like a liquid, rather than like a solid (Solomatov, 2015). A large region
of the mantle experiencing such extensive melting would then behave more like a magma ocean than the
solid state mantle convection our models and scaling analyses apply to. To estimate the mantle temperature
where such magma ocean-like behvaior would develop, we estimate the minimum temperature where the
mantle exceeds the liquidus at the base of the lid, using the liquidus of Katz et al. (2003); this temperature
is found to be T; ~ 2100 K. For j, > 4 x 10%° Pa-s and d = 1700 km, the mantle can not get hot enough
to ever enter the thick crust limit, without leading to complete melting of the mantle, unless crust can grow
thicker than the depth where eclogite forms. For d = 4500 km this limit is lower; pu, < 2.5 x 10'° Pa-s for
convection to ever reach the thick crust limit, with our assumed maximum plausible crustal thickness.

Our results therefore indicate that the thick crust limit is more likely to be seen on small planets, and
planets with hot interiors and low reference viscosities. The formation of a thick, buoyant crust could thus
significantly impact the thermal evolution of such planets. Meanwhile, on large planets or planets with high
reference viscosities, the thick crust limit is unlikely to ever be reached, and hence the positive buoyancy of
the crust can be ignored in modeling such planets’ thermal evolution.

However, even for smaller planets, where a broader range of conditions allow convection to operate in
the thick crust limit, thermal evolution modeling is necessary to determine how large an impact a thick,
buoyant crust would have on such planets’ thermal histories, and for how long convection would remain in
the thick crust limit once entered. In particular, factors that promote convection entering the thick crust
limit, smaller planet size and lower reference viscosity, also enhance the rate of mantle cooling, when all else
is equal. It is therefore unclear how long such planets would remain in the thick crust limit. Initial mantle
temperature and planetary heat budget will also be important, as planets most prone to entering the thick
crust limit may need high rates of internal heating, or significant stores of primordial heat, for convection to
remain in the thick crust limit for an extended period of time. More rapid cooling on smaller planets may
also keep them from forming thick crusts in the first place. However, previous models for Mars show that

thick crusts (>= 100 km) can form when mantle reference viscosity is low or heat production rate is high
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Figure 15: Heat flux for a Mars-sized planet with a 116 km thick crust, which is the limit where eclogite
would form, as a function of mantle interior temperature and reference viscosity (A), and the heat flux for
the same conditions but where the influence of the crust is ignored (B).

(e.g. Hauck & Phillips, 2002; Fraeman & Korenaga, 2010); low reference viscosity further leads to the crust
forming rapidly, within ~ 100 Myrs (Fraeman & Korenaga, 2010). So the same conditions that make a small
planet more prone to entering the thick crust limit, based on our scaling analysis, also promote the rapid
formation of a thick crust. The thick crusts seen in these models (at extreme end-member values of reference
viscosity or heat production rate) are probably not realistic for Mars based on geophysical observations
(Wieczorek & Zuber, 2004; Goossens et al., 2017), but demonstrate the potential relevance of the thick crust
limit to planets with different interior properties and heat budgets. We therefore present a set of simple

parameterized convection models next, in order to explore these effects further.

5.2 Thermal evolution modeling

Here we present simple thermal evolution models of a Mars-size planet that incorporate our newly developed
scaling laws. We chose a Mars-size planet to model because smaller planets are more likely to enter the
thick crust limit, when the maximum crustal thickness is set by the depth where eclogite forms; the effect
of crustal buoyancy on mantle convective heat flux will thus be most pronounced for this size planet.

We first demonstrate how a thick, buoyant crust influences convective heat flux by calculating heat flux

as a function of the average mantle interior temperature, 7;, and mantle reference viscosity, u,., for a case
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where the crust is &~ 116 km thick and a case where no crust is present (Figure 15). A crustal thickness
of 116 km is used because this is the maximum thickness possible before the eclogite transition would be
reached on a Mars-size planet. We calculate heat flux, ¢, based on our scaling law for Nusselt number, Eq.
(18), employing all of the same assumptions as outlined above in §5.1. We assume time-dependent, internally
heated convection and therefore remove the scaling law for steady-state convection. The scaling law for heat
flux used in this section is thus

_ (KT -T) R -T) s,
¢ = min < 5 0. ,C1 7 073 Ra;3 | . (32)

The definitions of internal Rayleigh number, Ra;, and Frank-Kamenetskii parameter, 6, are the same as
given in §5.1. We also assume the same material properties for a Mars-size planet, p = 3500 kg-m =3, g = 3.7
m-s™2, d=1740 km, Ty, =273 K, a =3 x 1075 K™}, k = 1075 m?.s7!, and k = 5 W-m~1.K~! (Table 3).

As in §5.1 and in our numerical convection models, we neglect differences in thermal conductivity between
the crust and mantle, and enrichment of heat producing elements in the crust. Although these assumptions
were already justified above, additional discussion is warranted here. Including the effects of heat producing
element enrichment and a lower thermal conductivity in the crust would change the geotherm there, leading
to warmer temperatures at depth. However, in standard thermal evolution models that ignore the crust’s
buoyancy, or when the crust’s buoyancy is negligible (i.e. in the thin crust limit), this modified crustal
geotherm does not influence mantle convective heat flux in the stagnant lid regime (e.g. Hauck & Phillips,
2002). Mantle convective heat flux is dictated by the heat flux across the rheological sublayer at the base of
the stagnant lid in the thin crust limit (e.g. Solomatov, 1995). In this case, the temperature drop across the
rheological sublayer is entirely controlled by 8 and AT = T; — Ty, as AT, ~ AT/, while the thickness of the
rheological sublayer is controlled by 8 and Ra; (e.g. see §4). Both 6 and Ra, are functions of mantle interior
properties, mainly temperature and, for Ra;, viscosity, and not affected by the geotherm within the crust.
The total surface heat flux would be influenced, as the surface heat flux would be the sum of the heat flux
supplied to the base of the stagnant lid by the convecting mantle, and the heat produced within the crust.
However, it is the mantle convective heat flux that controls mantle thermal evolution, and therefore this is
the heat flux we present in Figure 15. Our estimate of the heat flux in the thin crust limit will therefore not
be affected by neglecting enrichment of heat producing elements and a lower thermal conductivity in the
crust.

In the thick crust limit, the crustal geotherm will influence mantle convective heat flux, as the temperature
difference across the subcrustal boundary layer is a function of the temperature at the base of the crust,

T.. Hence the thickness of the subcrustal boundary layer, d4, is also a function of T,. As explained below
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in §6, including heat producing element enrichment and a lower thermal conductivity in the crust both
act to increase T.. As a result, the temperature difference driving foundering of the subcrustal boundary
layer, T; — T,, shrinks and d,; increases. Including heat producing element enrichment and a lower thermal
conductivity in the crust would therefore lower mantle convective heat flux in the thick crust limit, beyond
what the calculations presented here show. Moreover, as explained above in §5.1, these same factors would
make it easier for convection to enter the thick crust limit in the first place. The lower mantle convective heat
flux brought about by a warmer T, would then feedback on the mantle interior temperature during a planet’s
thermal evolution. Neglecting heat producing element enrichment and variations in thermal conductivity in
the crust are thus conservative assumptions for the heat flux calculations presented in Figure 15; including
these effects would only accentuate the influence of crustal buoyancy on mantle heat flux illustrated here.
However, these same effects would have a more complicated effect on a planet’s mantle thermal history, in
particular heat producing element partitioning into the crust, which lowers the heating power in the mantle
as discussed further below.

When the mantle temperature is low or the reference viscosity is high, there is no difference in convective
heat flux between the no crust case and the 116 km thick crust case (Figure 15), because convection operates
in the thin crust limit at these conditions. The base of the stagnant lid extends far deeper than the base
of the crust. However, for mantle temperatures > 1600 K at ju, = 10'® Pa-s, or > 1950 K at p, = 10%°
Pa-s, convection operates in the thick crust limit. In this situation, convective heat flux is substantially
suppressed by the presence of the crust: heat flux is held to ~ 60 — 65 mW-m~2, and only weakly decreases
with decreasing mantle potential temperature or increasing reference viscosity, with a 116 km thick crust.
Meanwhile, if no crust is present, heat flux reaches ~ 400 mW-m~2 for T; = 2100 K and p, = 10'® Pa-s. As
a result, the presence of a thick, buoyant crust will suppress convective heat flux early in a planet’s history,
if mantle reference viscosity is lower than ~ 5 x 102° Pa-s and the initial mantle temperature is ~ 2100
K. As reference viscosity decreases, this suppression of heat flux by a thick crust extends to lower mantle
temperatures, and can thus persist longer during a planet’s thermal evolution.

To illustrate how suppression of convective heat flux by a thick, buoyant crust influences a stagnant-lid
planet’s thermal history, we next perform a set of simple parameterized convection models. We employ all
the same assumptions and material property values as given above, which results in the following equation

for the evolution of mantle temperature (e.g. Davies, 2007; Spohn, 1991; Foley & Smye, 2018)

dT; t
Vman — = As - - . 33
PVimantp— q — Qoexp < de> (33)
Mantle heat flux, ¢, is calculated from Eq. (32) as in Figure 15, V.45 is the volume of the mantle, ¢, = 1250
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Jkg=1.K~! is the heat capacity, and A, is the surface area of the mantle. Initial mantle heat production
rates, Qo, of 11.7, 25, and 50 TW are used. The first two are the heat production rates derived from the
compositional models of Wanke & Dreibus (1994) and Lodders & Fegley (1997), respectively, while the
last represents a planet enriched in heat producing elements beyond what is seen in the solar system. Such
enrichment in radionuclide abundances are possible for exoplanets, because large system to system variations
in heat producing element abundances are seen in stars (e.g. Unterborn et al., 2015; Botelho et al., 2019),
and thus likely to be reflected in any planets orbiting these stars. The decay constant, 7,..q = 2.94 Gyrs,
is calculated based on a weighted average of the four major heat producing elements (Driscoll & Bercovici,
2014; Foley & Smye, 2018). We run sets of models with assumed crustal thicknesses of 0 km (no crust), 58
km (half the depth to the eclogite transition), and 116 km (at the depth of the eclogite transition), reference
viscosities ranging from p, = 10'® — 102 Pa-s, and with initial mantle interior temperatures of Ti,; = 1800
K and Tin;; = 2100 K (Figure 16).

Only mantle heat loss by solid-state convection is considered in these thermal evolution models. We thus
neglect heat loss due to mantle melting and eruption, which could be significant when mantle temperatures
are high. We also hold the crustal thickness fixed in time; this is justifiable if the crust forms rapidly, as
is thought to be the case for Mars (e.g. Nimmo & Tanaka, 2005). Furthermore, if the formation of eclogite
ultimately limits crustal thickness, then the base of the crust will remain fixed over time at the depth where
eclogite forms, after an initial period of crust growth to this depth. Finally, as before, heat producing
element partitioning into the crust is ignored. The influence of these simplifications on the results presented
here is discussed further in §6. Though there are competing effects, in particular with heat producing
element enrichment in the crust, in sum we expect that our model simplifications lead to an overestimate of
mantle temperatures, particularly in the thick crust limit. The mantle temperatures presented below should
therefore be taken as upper bounds.

With the lower initial heat production rate of Qg = 11.7 TW (Figures 16A, C, & E), decreasing reference
viscosity leads to a greater influence of crustal buoyancy on the thermal history. With an initial mantle
temperature of Tin;, = 2100 K and reference viscosity j, = 102 Pa-s, only the thickest crust case enters the
thick crust limit, leading to a very small increase in mantle temperature during the first ~ 3 Gyrs of evolution
compared to the no crust case. However, with y,. = 10'® Pa-s, both the 116 km and 58 km thick crust models
enter the thick crust limit, leading to elevated mantle temperatures during the first ~ 2 and ~ 4 — 5 Gyrs,
respectively. The buoyancy of the crust acts to suppress convective heat flux during these time periods
(Figure 17E), thereby causing mantle temperatures to run hotter. As the mantle cools and the thickness of
the stagnant lid increases, planets transition into the thin crust limit, and begin cooling more rapidly. The

mantle temperature histories thus eventually converge, regardless of the imposed crustal thickness. However,
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Figure 16: Time evolution of mantle temperature for a Mars-sized planet with no crust (solid lines), a crustal
thickness of 58 km (dashed lines), and a crustal thickness of 116 km (dot-dashed lines). The latter two crustal
thicknesses correspond to pressures at the base of the crust that are halfway to, and equal to, the pressure
where eclogite forms, respectively. Initial mantle temperatures are either 1800 K (red) or 2100 K (blue).
Three different reference viscosities are shown, 102° Pa-s (A,B,C), 10! Pa-s (D,E,F), and 10'® Pa-s (G,H,I).
Models assume a total initial radiogenic heating rate of 11.7 TW (top row; A, D, & G), 25 TW (middle row;
B, E, & H) or 50 TW (bottom row; C, F, & I).
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Figure 17: Time evolution of mantle convective heat flux for the same models shown in Figure 16.
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this convergence can be very slow: with Tj,;, = 2100 K, p, = 10'® Pa-s, and a crustal thickness of 116 km,
convection remains in the thick crust limit for ~ 2.5 Gyrs, and elevated mantle temperatures persist for
~ 5 — 6 Gyrs. Mantle temperatures are ~ 200 — 250 K higher during the first 1-2 Gyrs of evolution for this
model, in comparison to the no crust case. However, note that the simplifications made in our model set up
mean we may overestimate this elevation in mantle temperature, and how long these elevated temperatures
last.

With Ti,i, = 1800 K, convection only enters the thick crust limit when the crust is 116 km thick and
i = 10'® Pa-s. The mantle temperature in this case is only elevated by a few tens of degrees above the
no crust case, and converges to the no crust case after ~ 2 — 3 Gyrs. The buoyancy effects of a thick crust
can thus accentuate differences in initial conditions, and allow the influence of different initial conditions to
persist for multiple Gyrs, even longer than the age of our solar system in some cases. The higher the initial
mantle temperature, the easier it is for convection to begin in the thick crust limit. As a result, mantle
heat flux is suppressed, meaning this additional primordial heat supplied by the higher initial temperature
is also more easily retained and contributes to long-lasting, elevated mantle temperatures. The buoyancy of
a thick crust therefore acts to weaken the thermostat, or Tozer, effect that tends to regulate mantle thermal
histories (Tozer, 1967, 1972), because mantle convective heat flux in the thick crust limit is far less sensitive
to mantle temperature than isochemical convection (Figure 15). The lower the reference viscosity and thicker
the crust, the longer it takes for initial conditions to be erased during mantle thermal evolution.

The same trends hold with a higher initial heat production rates of 25 & 50 TW (Figures 16B, E & H
and 16C, F & 1, respectively). With a higher heat production rate, mantle temperatures are generally higher
and it is thus easier for models to enter the thick crust limit. Moreover, models that enter the thick crust
limit experience more pronounced, and longer-lasting, periods of elevated mantle temperatures during their
early histories. With Qp = 50 TW, Tin;¢ = 2100 K and p, = 10'® Pa-s, mantle temperatures are ~ 500 K
greater during the first 1-2 Gyrs of evolution with a 116 km thick crust than if no crust were present (Figure
16F). Elevated temperatures then last for ~ 8 —9 Gyrs in this case. Even with a cooler initial temperature of
Tinit = 1800 K, the 116 km thick crust case reaches temperatures =~ 150 K hotter than the no crust case, and
elevated temperatures last for 5 — 6 Gyrs. Higher internal heating rates therefore accentuate and prolong the
effects of crustal buoyancy on mantle thermal evolution. As a result, the higher the initial internal heating
rate, the more the Tozer feedback is weakened, and the longer it will take for the influence of the initial
mantle temperature to be erased during a planet’s thermal evolution.

Crust formation has potentially removed half of the Martian mantle’s initial heat producing element
abundance (Plesa et al., 2018; Thiriet et al., 2018). Such depletion of heat producing elements in the mantle

would thus mean that our model with Qg = 50 TW would effectively have ~ 25 TW of initial heating
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power in the mantle once crustal formation has occurred, and thus may behave more like that case (i.e.,
Figures 16B, E, & H). Or put another way, the mantle, before crust formation, would need to have ~ 100
TW of initial heating power to follow the thermal histories presented in Figures 16C, F, & 1. As we discuss
in more detail in §6, though, there are effects cutting back the other way. Heat production in the crust
lowers mantle convective heat flux in the thick crust limit even more than our simple model estimates, by
changing the crustal geotherm. In addition, the rate of crust growth will be important, as the thicker the
crust the stronger the influence on mantle thermal history. A thick crust that grows slowly will lead to less
pronounced elevation of mantle temperatures compared to a case where the same crust grows very rapidly.
The thick crust limit could potentially be avoided altogether if crust growth is very slow. However, the same
factors that lead to a significant influence from a thick, buoyant crust (low mantle reference viscosities, high
mantle temperatures or rates of internal heat production) also lead to extensive mantle melting and faster
crust growth.

The time evolution of mantle convective heat flux also illustrates the same trends as the mantle temper-
ature histories (Figure 17). Here, the way a thick crust limits mantle heat flux early in a planet’s history is
clearly illustrated, as well as the transition from the thick crust to thin crust limits, which shows up as a
kink in the mantle heat flux versus time curve. In the thick crust limit, the weak dependence of mantle heat
flux on mantle temperature causes it to evolve far more slowly than in the thin crust limit, or than in the
cases where no crust is present; this further highlights the way the Tozer feedback is weakened by a thick,
buoyant crust. Without a crust, mantle heat fluxes converge to the same trend after 1-2 Gyrs with a low
reference viscosity, and after 3-4 Gyrs with a high reference viscosity, regardless of initial mantle temperature
due to the Tozer feedback. After the effect of initial conditions is erased, mantle heat flux largely follows the
mantle heat production rate. With a thick crust, this convergence does not happen until the mantle cools
to the point that convection evolves into the thin crust limit. With no crust, mantle heat fluxes are within
the range of 13-16 mW-m~2 after 4.5 Gyrs for Qo = 11.7 TW, compared to ~ 17 — 18 mW-m~2 in Hauck &
Phillips (2002), 20-23 mW-m~2 for Qo = 25 TW, and 32-36 mW-m~?2 for Qo = 50 TW. With a thick crust,
mantle heat flux after 4.5 Gyrs can be higher, due to suppression of early mantle cooling. The highest seen
is for the case with Tini = 2100 K, i, = 10'® Pa-s, and Qo = 50 TW, where mantle heat flux after 4.5 Gyrs
is ~ 63 mW-m~2.

Geophysical constraints indicate Mars’ reference viscosity is larger than 10'® Pa-s, in the range of 10?! —
10?2 Pass (e.g. Plesa et al., 2018; Samuel et al., 2019). Combined with an initial heat production rate of no
larger than 25 TW, with most geophysical models (e.g. Hauck & Phillips, 2002; Plesa et al., 2018) favoring
the 11.7 TW derived from Wanke & Dreibus (1994), and an estimated crustal thickness of <~ 80 km (e.g.

Wieczorek & Zuber, 2004), crustal buoyancy likely did not play a significant role in Mars’ thermal evolution.
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If Mars ever did enter the thick crust limit, this was likely short-lived and didn’t significantly alter mantle
temperature evolution. However, extrasolar planets with different compositions could have lower reference
viscosities or higher abundances of heat producting elements, such that formation of a thick, buoyant crust
could significantly impact their evolution. For example, a mantle composed of pure fayalite (an iron rich
mantle) is ~ 1000 times less viscous than a pure forsterite (or iron poor) mantle (e.g. Zhao et al., 2009), while
preliminary constraints on heat producing element budgets in other stars show abundances up to at least
2.5 times solar (Unterborn et al., 2015). Moreover, many exoplanets, in particular those around M-dwarf
stars, could experience significant additional heating from tidal dissipation or magnetic induction heating
(Jackson et al., 2008; Kislyakova et al., 2017). Such planets would be more likely to form thick crusts and
enter the thick crust limit, as well as have these thick crusts significantly influence their thermal histories.
Our thermal evolution model results therefore have important implications for the lifetime of volcanism
on such rocky stagnant-lid planets exoplanets. How long rocky planets stay volcanically active is of course of
interest for understanding their geologic histories, but is also critical for the evolution of their atmospheres.
In particular, stagnant-lid exoplanets that lie in their respective habitable zones can potentially sustain
temperate climates through the carbonate-silicate cycle (Tosi et al., 2017; Dorn et al., 2018; Foley & Smye,
2018; Valencia et al., 2018; Foley, 2019; Honing et al., 2019). However, volcanism is critical for maintaining
COy outgassing rates high enough to prevent global glaciation (Kadoya & Tajika, 2014; Foley & Smye, 2018;
Foley, 2019), so when volcanism ends, frozen snowball climates may prevail. That the presence of a thick,
buoyant crust weakens the Tozer feedback means that planets that are otherwise identical, but have different
initial mantle temperatures, could have drastically different thermal histories. Planets starting with initially
hot mantles will be able to sustain volcanism, and thus potentially habitable surface conditions, for up to a
few Gyrs longer than planets starting with initially cooler mantles. More detailed thermal evolution models
would be needed to quantify this effect more precisely, and how it influences predictions of the volcanic
lifetimes of rocky stagnant-lid planets. As our scaling analysis indicates, the effects of crustal buoyancy on
thermal history will be most pronounced for smaller planets with low reference viscosities and high internal
heat production rates, and thus it is these planets where initial conditions can most influence subsequent

evolution, and predicting the lifetime of volcanism will be most difficult.

6 Discussion

Our numerical convection models made a number of simplifications in order to reduce complexity, such
that the influence of crustal buoyancy forces on stagnant-lid convection could be isolated, and scaling laws

describing these effects developed. The simplifications in our numerical model setup were outlined in §1-
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2, and the implications discussed in some detail in §5. Specifically, our numerical convection models are
bottom heated and employ the Frank-Kamenetskii approximation for viscosity. Our scaling laws are thus
only benchmarked against fully dynamic mantle convection calculations for these conditions. However, as we
argue in §5.1, we expect them to still apply, at least to first order accuracy, to internally heated convection or
when an Arrhenius viscosity law is used, based on previous studies of stagnant-lid convection and convection
beneath continents on Earth. For mixed-mode heating the percentage of internal heating likely also matters,
and new convection models would be needed to develop scaling laws incorporating this factor.

A potentially more important simplification is that we neglect differences in thermal conductivity and
heat production rate between the crust and mantle, in both the numerical convection models and thermal
evolution models. As explained in §5.2, this is unlikely to affect the thin crust limit scaling laws, as the
mantle convective heat flux in this case is determined by the heat flux across the rheological sublayer, which
is a function of § and Ra;. However, heat flux in the thick crust limit will be modified, as the temperature
at the base of the crust, T¢, will be influenced by the heat production rate and thermal conductivity in the
crust.

A more general formulation for the mantle convective heat flux in the thick crust limit is

k(n - Tc)

S (34)

(Z =

This heat flux will be applied to the base of the crust, and the total surface heat flux will include ¢ and
any heat produced within the crust. T, can then be determined in a more general way by using the one-
dimensional, steady-state heat conduction equation to calculate a geotherm through the crust with a given
thickness d., conductivity k., and heat production rate per unit volume, x.; the latter two need not be the
same as their respective values in the mantle. Matching the heat flux at the base of the crust with the mantle

convective heat flux, one can solve for T, as

xc52§sl chs(ssl + kﬂac
T, = € —— -.
© T O (Gurke + 0uk) | Ok + Ok (35)

If k. = k and z. = 0, Eq. (35) is equivalent to the dimensional form of Eq. (16).

Combining Eq. (35) with Eq. (15), both T, and d4 can be calculated numerically. If §,; is fixed, either
decreasing k. or increasing x. causes T, to increase. However, increasing T, also causes dy to increase,
because the temperature difference driving foundering of the sub-crustal boundary layer is smaller. From
Eq. (35), a larger 5 acts to decrease T, in most cases (though the situation can reverse if heat production

rates in the crust are very large), so there are competing effects for how decreasing k. or increasing z.
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would ultimately influence T, d4, and convective heat flux, ¢. In the end, the direct influence of either
decreasing k. or increasing x. on 7, is stronger; both T, and Jg increase in this case. As a result, the
mantle convective heat flux, ¢, will decrease. Thus, including the effects of a lower thermal conductivity or
enrichment of heat producing elements in the crust will both act to suppress heat flux in the thick crust
limit, even further than our results presented above in §5.2 show. The increase in §5 brought about by lower
crustal thermal conductivity or higher crustal heat production would also make it easier for planets to enter
the thick crust limit; that is, the range of conditions where the thick crust limit could prevail, shown in
Figure 14, would expand. Ultimately numerical convection models including internal heating, concentration
of heat producing elements in the crust, and variable crustal thermal conductivity will be needed to confirm
the trends we outline here based on a simple geotherm calculation.

The effect of our model simplifications on mantle thermal evolution is more complicated, with many
competing factors. We outline these competing effects here, but ultimately more complex thermal evolution
models that track the time evolution of crustal thickness, heat loss by volcanism, and concentration of heat
producing elements in the crust would be needed to determine which effects are dominant. Such a task is
beyond the scope of this paper, but an important avenue for future work.

As seen above, the effect of a lower thermal conductivity and heat producing element enrichment in the
crust will make the heat flux in the thick crust limit even lower than what was used in our thermal evolution
models, for a given crustal thickness. This would tend to accentuate the effects described in §5.2, and prolong
the time period where convection operates in the thick crust limit. However, there are important effects
cutting the other way, which may be more significant in the end: depletion of heat producing elements
from the mantle due to crust formation, heat loss due to volcanism, and early heat loss before a thick
crust has formed. As explained in §5.2, crust formation strips heat producing elements from the mantle,
thereby lowering heating power in the mantle. This would lead to smaller deviations between the no crust
and thick crust cases than our thermal evolution models show. However, even with the lowest mantle
heat production rate we considered, a thick crust still significantly modifies mantle thermal history when
the reference viscosity is low. Therefore crustal buoyancy could be broadly important for planets with
compositions that lead to low viscosities. For planets with higher viscosities, large heat production rates,
either due to high abundances of heat producing elements or additional heat sources, would be needed for a
thick, buoyant crust to significantly modify thermal evolution.

Our numerical convection models and thermal evolution models also neglect heat transport by melting
and volcanic eruption, which is a significant heat loss mechanism when mantle temperatures are high (e.g.
O’Reilly & Davies, 1981; Ogawa & Nakamura, 1998; Nakagawa & Tackley, 2012; Moore & Webb, 2013;

Driscoll & Bercovici, 2014; Moore et al., 2017). Including heat loss by volcanism would likely produce lower
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mantle temperatures for all of our thermal evolution models, and potentially lessen the temperature difference
between models with a thick crust and those with a thin or no crust as well. Ultimately more sophisticated
thermal evolution models incorporating parameterizations for heat loss by volcanism (e.g. Kankanamge &
Moore, 2019), combined with our scaling laws for convective heat flux in the thick crust limit, would be
needed to determine the extent to which volcanic heat loss would limit the effect of a thick, buoyant crust
on mantle thermal history.

Finally, crustal thickness will of course evolve over time rather than remaining fixed, as assumed in our
thermal evolution models, and, save for some entrainment of the buoyant crustal layer, in our numerical
convection models. Very early in a planet’s history, the crust will grow as a result of volcanism, and thus
there will be a finite time before the crust is thick enough to enter the thick crust limit. As a result, heat loss
during a planet’s very early history will likely be higher than our thermal evolution models predict. However,
the crust formed rapidly on Mars, and such rapid crust growth due to extensive volcanism appears common
across the solar system (e.g. Moore et al., 2017; Byrne, 2020). Moreover, factors that lead to the strongest
influence of crustal bouyancy on thermal evolution, low reference viscosity, high initial mantle temperature,
and high mantle heat production rate, also favor the rapid formation of a thick crust. We therefore do not
expect this to be a significant effect, though the influence of the time evolution of crustal thickness should
be tested with more sophisticated thermal evolution models.

Loss of crust due to foundering or entrainment is also a possibility, that could modify our thermal evolution
model results. As previously discussed in §3, we do see entrainment of the crust, in particular when the
magnitude of the buoyancy number is low and the Rayleigh number is high. However, even this entrainment
is slow, and the rate of entrainment is likely overpredicted in the models due to numerical artifacts. We
therefore do not expect entrainment of buoyant crust to limit crustal thickness on real planets. Faster
entrainment rates could be seen if thermal buoyancy forces are able to dominate compositional buoyancy
forces in the convective sub-layer at the base of the stagnant lid. However, such a situation would require
buoyancy number absolute values < 1/, and thus very small compositional density differences of <~ 10
kg:m~3 for a Mars-size planet with a mantle potential temperature of 2100 K (a lower mantle temperature
decreases this estimated compositional density difference even further) (Tackley, 2015). Even mafic crust
formed from high degree mantle melting, such as komatiiate, has a compositional density difference much
larger than 10 kg-m~2. Cooling of the mantle over time could also form a gradient in buoyancy number in
the crust, with crust formed from higher temperature melting at the bottom and lower temperature melting
at the top; the lower crust would then have weaker compositional buoyancy (lower magnitude buoyancy
number) than the upper crust. However, given the arguments above, entrainment is likely to still be slow in

this case, and such a buoyancy gradient in the crust is unlikely to change our scaling laws. Moreover, such
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a compositional gradient would also be convectively stable, and help prevent convection from developing
within the crust. Finally, even if crust is actively thinning due to entrainment, our results show that Nusselt
number follows the same trend as a function of crustal thickness that our scaling laws predict.

Foundering of dense lower crust could be significant as well, and would likely enhance convective heat flux
above what our thick crust limit scaling laws predict. Our thermal evolution models assume the maximum
crustal thickness is set by the transition to eclogite. However, if active volcanism is continuously creating
new crust at the surface, and subsequently pushing the whole crustal column downwards, lower crust will be
pushed into the eclogite stability field. As a result, this lower crust can founder into the mantle, dragging
the underlying sub-crustal boundary layer with it. A planet where the lower crust is continuously foundering
may thus have a thinner, or even effectively non-existent, sub-crustal boundary layer, and therefore higher
convective heat flux with a thick crust than our models find. An important avenue for future work is thus
investigating stagnant-lid convection with a buoyant upper crust and negatively buoyant lower crust, to
develop heat flux scaling laws for the case where the lower crust is actively foundering. A similar effect
was proposed by Lourenco et al. (2018), who argue that lithospheric weakening by melt intrusion can drive
foundering of the lithosphere, and hence enhance stagnant-lid convective heat flux. However, this work did
not consider buoyancy variations between the upper and lower crust and mantle, which are critical for the

crustal foundering described here.

7 Conclusions

Numerical models of stagnant-lid convection with a buoyant crustal layer demonstrate two end-member
regimes of behavior: a thin crust limit, where convection is largely unaffected by the presence of the buoyant
crustal layer or its thickness, and a thick crust limit, where the buoyant crustal layer itself dictates the
thickness of the stagnant lid, and hence the convective heat flux. We develop scaling laws for the Nusselt
number in both limits. In the thin crust limit, convection follows previously developed scaling laws for purely
thermal stagnant-lid convection, because the buoyant layer has a negligible effect. In the thick crust limit, a
scaling law for Nusselt number is developed by assuming the stagnant lid thickness is given by the sum of the
buoyant crustal layer thickness and the thickness of a sub-crustal thermal boundary layer. The sub-crustal
thermal boundary layer thickness is found from standard boundary layer theory.

The scaling laws match the numerical model results well. The scaling laws also show when convection
switches between these two end-member limits. Specifically, the thick crust limit is entered when the sum
of the crust and sub-crustal thermal boundary layer thicknesses is greater than the stagnant lid thickness

expected if there was no buoyant crustal layer. Mantle interior temperature also increases in the thick crust
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limit, due to inefficient convective heat loss. A simple energy balance model was used to develop a scaling
law that captures this effect to first order.

The critical crustal thickness that must be exceeded for convection to enter the thick crust limit is a
strong function of mantle interior temperature, mantle reference viscosity, and planet size. The higher the
temperature and lower the reference viscosity, the thinner the critical crustal thickness for convection to
operate in the thick crust limit; planetary mantles are therefore more likely to convect in the thick crust
limit under these conditions. Convective vigor declines with decreasing planet size, and the critical crustal
thickness therefore increases. However, crustal thickness is likely limited by the transition to eclogite. This
transition occurs much deeper on a smaller planet than a larger one. If the crust can grow no deeper than
the depth where eclogite forms, then a wider range of interior temperatures and reference viscosities allow
convection to enter the thick crust limit on a smaller planet than a larger one. Reference viscosity would
have to be low (< 102 Pa-s) and mantle temperatures very high for convection to ever enter the thick crust
limit on an Earth-size planet.

Applying the scaling laws to the thermal evolution of Mars-like stagnant-lid exoplanets shows that when
convection operates in the thick crust limit, mantle heat flux is suppressed, and thus mantle temperature
is elevated, in comparison to a case where no crust is present. Such an elevation in mantle temperature
due to convection operating in the thick crust limit occurs early in a planet’s history, when heat production
and interior temperatures are high. As the planet cools, convection eventually switches to the thin crust
limit, and, with enough time, planets with a thick crust and those with no crust converge to the same
thermal evolution. However, during the time when the mantle convects in the thick crust limit, mantle
temperatures can reach hundreds of degrees K hotter than the no crust case, and these elevated temperatures
can last for > 5 Gyrs, depending on mantle reference viscosity, crustal thickness, and heat production rate.
Specifically the lower the reference viscosity, higher the heat production rate, and thicker the crust, the more
pronounced and long-lasting the period of elevated mantle temperatures. Our analysis indicates that Mars’
mantle reference viscosity is too high and heat production rate too low for crustal buoyancy to have played
a significant role it its thermal history. However, crustal buoyancy would be important for exoplanets with
lower reference viscosities or higher interior heat production rates.

The models also show that initial mantle temperature is important. The hotter the initial temperature,
the easier it is for convection to enter the thick crust limit. When convection is in the thick crust limit,
the suppression of mantle heat flux means primordial heat is retained for longer. Thick, buoyant crusts
therefore weaken the Tozer feedback, and cause the influence of initial conditions to persist for far longer on
stagnant-lid planets than traditional thermal evolution models, which ignore the effects of crustal buoyancy,

would predict. In particular small rocky exoplanets with low reference viscosities and high heat production
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pa  rates may take longer than the age of our solar system before initial conditions are erased, so predicting the

e thermal state of such planets may be especially difficult.
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Table 4: Compilation of numerical model results without crustal

convection
Rag 9 b0 5, T Nu B
10° 13.82 | 0.0 - 0.91954+8.7x 10713 | 1.6646 £1.7 x 10713 -
10° 13.82 | 0.1 | 0.0934 +2.63 x 107° | 0.919542.63 x 10713 | 1.6646 +4.85 x 107> | —1.0
105 | 13.82 | 0.2 | 0.1928 £9.64 x 107¢ | 0.9196 +-4.43 x 107% | 1.6637 £7.33 x 107° | —1.0
10 | 13.82 | 0.3 | 0.292246.45 x 107> | 0.9204 4+2.09 x 107> | 1.6456 £1.26 x 10~ | —1.0
10° | 13.82 | 0.4 | 0.3898+1.23 x 107* | 0.9204 4 1.13 x 1074 1.5802 4 0.001 —-1.0
105 | 13.82 | 0.5 | 0.4897 4+ 1.31 x 107* | 0.9256 +-4.67 x 107> | 1.4502 £ 6.65 x 107° | —1.0
3x10% | 13.82 | 0.0 - 0.9261 4 8.60 x 10713 | 2.0650 + 8.14 x 10~° -
3x10% | 13.82 | 0.1 | 0.0928 £1.21 x 10~% | 0.9261 £8.72 x 10~¢ | 2.0638 +2.35 x 10~* | —1.0
3x 100 | 13.82 | 0.2 | 0.1926 4+ 1.13 x 107° | 0.9263 £2.18 x 107° | 2.0560 4 6.97 x 10~* | —1.0
3x 100 | 13.82 | 0.3 | 0.289543.09 x 107° | 0.9274+7.43 x 107° | 2.00104+2.20 x 10~* | —1.0
3x10% | 13.82 | 0.35 | 0.3392 +£5.30 x 107° | 0.9302+7.65 x 107° | 1.9101 +5.83 x 10~* | —1.0
3x 100 | 13.82 | 0.4 | 0.389543.06 x 107° | 0.9342+1.01 x 107* | 1.7910+9.18 x 107° | —1.0
3x 100 | 13.82 | 0.5 | 0.490942.91 x 107° | 0.9410£1.13 x 107* | 1.55724+3.23 x 10~* | —1.0
5x 108 | 13.82 | 0.0 - 0.9271 4 3.30 x 10713 | 2.3084 £2.02 x 10~ !2 -
5x10° | 13.82 | 0.2 | 0.19134+4.90 x 1075 | 0.9268 +4.70 x 10~ 2.3020 4- 0.0017 -1.0
5x 100 | 13.82 | 0.3 | 0.287145.62 x 107° | 0.9325 £ 3.68 x 1074 2.1574 4 0.0014 -1.0
5x 100 | 13.82 | 0.32 | 0.307245.34 x 107° | 0.9337 £2.82 x 10~ 2.1077 4 0.0012 —-1.0
5x 100 | 13.82 | 0.4 | 0.388344.96 x 1075 | 0.9407 +£2.69 x 10~* | 1.8679 £2.39 x 10=* | —1.0
5x10° | 13.82 | 0.5 | 0.4906 4 4.26 x 1075 | 0.9464 +4.51 x 10~* | 1.6061 £8.30 x 10=* | —1.0
107 13.82 | 0.0 - 0.9258 +5.19 x 10713 | 2.6895 £ 2.07 x 102 -
107 | 13.82 | 0.1 | 0.0928 +6.57 x 107¢ | 0.9261 4 1.24 x 10~* 2.6797 + 0.0033 -1.0
107 | 13.82 | 0.2 | 0.1887 +4.31 x 10~° 0.9300 + 0.001 2.6092 + 0.0071 -1.0
107 | 13.82 | 0.25 | 0.2367 +6.19 x 107> | 0.9324 4 7.07 x 10~* 2.5091 + 0.0024 -1.0
107 | 13.82 | 0.3 | 0.2858 £ 5.60 x 107> | 0.9361 4 7.37 x 10~* 2.3431 4 0.0019 ~1.0
107 | 13.82 | 0.4 | 0.3880 +8.85 x 10~° 0.9489 + 0.0012 2.0073 4 0.0024 ~1.0
107 13.82 | 0.5 | 0.48874+1.74 x 107% | 0.9564 £5.24 x 10=* | 1.6867 £7.70 x 10=* | —1.0
107 13.82 | 0.2 | 0.151£3.84 x 10~* | 0.9309 +9.45 x 10~* 2.6496 £ 0.003 —-0.3
107 | 13.82 | 0.3 0.161 4 0.0037 0.9336 £ 9.35 x 1074 2.6118 & 0.001 -0.3
107 | 13.82 | 0.4 0.278 4 0.0064 0.9387 + 0.0022 2.4352 + 0.006 —-0.3
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Table 4: Compilation of numerical model results without crustal

convection
Rag 9 b0 5, T Nu B
107 | 13.82 | 0.2 | 0.167+3.10 x 10~* 0.9331 £ 0.0012 2.6048 £ 0.017 0.5
107 | 13.82 | 0.3 0.201 + 0.0064 0.9333 4 0.0014 2.516 + 0.0022 0.5
107 | 13.82 | 0.4 | 0.374+3.59 x 107* | 0.9472+4.63 x 10~* 2.0657 + 0.0043 -0.5
107 | 13.82 | 0.2 | 0.178 +1.46 x 10~* 0.9338 + 0.0011 2.5735 +0.0016 —-0.7
107 | 13.82 | 0.3 0.271 4 0.0022 0.9362 4 0.001 2.4085 + 0.0022 —0.7
107 | 13.82 | 0.4 | 0.3854+9.92x107° | 0.9472+7.11 x 10~* | 2.0176 +9.13 x 10~* | —0.7
3x 107 | 13.82 | 0.0 - 0.9292 £8.02 x 1074 3.49 +8.90 x 10~* -
5x 107 | 13.82 | 0.0 - 0.9308 + 7.58 x 1074 3.9701 +0.0014 -
7x107 | 13.82 | 0.0 - 0.9311 + 0.0013 4.4246 =+ 0.0043 -
105 | 13.82 | 0.0 - 0.9264 + 9.48 x 104 4.7581 4+ 0.0106 -
105 | 13.82 | 0.05 | 0.0427 +2.54 x 107> | 0.9292 4+ 9.33 x 10~* 4.7083 4 0.0027 ~1.0
105 | 13.82 | 0.1 | 0.0925+2.79 x 10~° 0.9308 £ 0.0012 4.6547 4+ 0.0139 -1.0
10% | 13.82 | 0.15 | 0.1398 4+ 5.40 x 10~° 0.9378 + 0.0014 4.4180 + 0.0172 -1.0
105 | 13.82 | 0.2 | 0.1896 + 1.84 x 10~* 0.9421 + 0.0012 3.8680 4 0.0017 ~-1.0
105 | 13.82 | 0.3 | 0.2871 +3.43 x 10~* 0.9542 4 0.001 3.0266 + 0.0033 —-1.0
108 13.82 | 0.15 | 0.12542.47 x 10~* 0.9303 4 0.0012 4.6875 4 0.0042 -0.3
108 13.82 | 0.25 | 0.22542.53 x 10~* 0.945 4 0.0011 3.5254 4- 0.0206 -0.3
108 13.82 | 0.15 | 0.1384+1.91 x 10~* | 0.9358 & 5.59 x 10~4 4.5728 £ 0.0166 -0.5
105 | 13.82 | 0.25 | 0.236 4+ 1.57 x 10~* | 0.9468 +9.24 x 10~* 3.3726 & 0.0014 —0.5
108 13.82 | 0.15 | 0.1424+2.97 x 107 | 0.936 £8.17 x 10~* 4.3093 4 0.0032 -0.7
105 | 13.82 | 0.25 | 0.23946.03 x 10~° 0.9482 + 0.0015 3.3313+£3.53 x 107* | —0.7
3x10% | 13.82 | 0.0 - 0.9264 + 0.0011 6.5279 + 0.0029 -
5x 10% | 13.82 | 0.0 - 0.9206 + 6.16 x 1074 7.8563 + 0.0043 -
5x 10% | 13.82 | 0.05 | 0.0420 £2.05 x 10=* | 0.92124+9.12 x 10~* 7.8178 & 0.0073 -1.0
5x10% | 13.82 | 0.1 | 0.0887 4+ 7.03 x 10~* 0.9265 + 0.001 7.1272 4+ 0.0026 -1.0
5x 10% | 13.82 | 0.15 | 0.1322 £4.60 x 10~* | 0.9374 +6.45 x 10~* 6.0529 + 0.0032 -1.0
5x10% | 13.82 | 0.2 | 0.1764 £7.28 x 107* | 0.9481 4 7.06 x 10~* 4.9086 4 0.0019 -1.0
5x10% | 13.82 | 0.1 | 0.06141.62x 10~* | 0.9221 +7.61 x 10~* 7.8473 £ 0.0225 -0.3
5x10% | 13.82 | 0.1 | 0.0914+5.08 x 107> | 0.9283 +9.78 x 10~* 6.9121 + 0.0066 —-0.5
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Table 4: Compilation of numerical model results without crustal

convection
Rag 9 b0 5, T Nu B
5x 108 | 13.82 | 0.1 | 0.093+£1.10x 10=* | 0.9311 £9.91 x 1074 6.8331 4 0.0026 —0.7
5x 10% | 13.82 | 0.15 | 0.1302 £ 3.38 x 1074 0.9386 + 0.0021 5.8378 £ 7.16 x 10~* | —0.3
5x 10% | 13.82 | 0.15 | 0.1366 +2.00 x 10~* | 0.94 +0.0013 x 10~* 5.6128 +0.0013 -0.5
5x 108 | 13.82 | 0.15 | 0.139+1.17 x 1074 0.9411 + 0.0014 5.5059 + 5.46 x 10~* | —0.7
7x10% | 13.82 | 0.0 - 0.9212 + 8.44 x 1074 8.587 4 0.0028 -
107 | 16.12 | 0.0 - 0.9365 4 3.55 x 10713 | 2.2622 +£1.91 x 10712 | -
107 | 16.12 | 0.1 | 0.0931+5.73 x 107¢ | 0.9365 4 4.85 x 1076 | 2.2620 £4.90 x 107° | —1.0
107 [ 16.12 | 0.2 | 0.1928 £2.48 x 107¢ | 0.9367 4 1.30 x 107> | 2.2552 +£4.82 x 107 | —1.0
107 | 16.12 | 0.25 | 0.2418 £1.03 x 107> | 0.9369 4 1.11 x 10~* 2.2472 4 0.0015 —-1.0
107 | 16.12 | 0.3 | 0.2899 +2.81 x 107> | 0.9398 4 3.55 x 10~* 2.1702 + 0.0035 ~1.0
107 | 16.12 | 0.4 | 0.3906 £3.07 x 107> | 0.946547.92 x 10~* | 1.8887 +£1.18 x 10~* | —1.0
5x 107 | 16.12 | 0.0 - 0.9371 +0.0013 3.2609 + 0.0104 -
5x 107 | 16.12 | 0.1 | 0.0934 42.92 x 107° 0.9371 +0.0013 3.3048 + 0.0075 ~1.0
5x 107 | 16.12 | 0.2 0.1928 4 0.0075 0.9442 + 0.0011 3.0337 + 0.0093 ~-1.0
5x 107 | 16.12 | 0.25 | 0.2426 4 5.42 x 107° 0.9465 4 0.0012 2.8745 + 0.0046 —-1.0
5% 107 | 16.12 | 0.3 | 0.2914 42.43 x 10~* 0.9519 + 0.0017 2.6628 + 0.006 -1.0
5x 107 | 16.12 | 0.4 | 0.3887 4+ 1.60 x 1074 | 0.9598 £9.46 x 10~* | 2.1549 £6.15 x 10~* | —1.0
7x107 | 16.12 | 0.0 - 0.938 & 0.001 3.6595 + 0.0156 -
105 | 16.12 | 0.0 - 0.9351 £9.73 x 1074 4.0564 + 0.0083 -
105 | 16.12 | 0.05 | 0.0420 +3.79 x 107> | 0.9351 4+ 9.65 x 10~* 4.0191 +0.0105 -1.0
105 | 16.12 | 0.1 | 0.0931 +1.15 x 10~° 0.9352 + 0.0011 4.0644 + 0.0152 -1.0
105 | 16.12 | 0.15 | 0.1423 +2.59 x 10~* 0.9334 + 0.0011 3.9814 + 0.0037 -1.0
105 | 16.12 | 0.2 | 0.191243.06 x 10~* | 0.9389 4+ 8.61 x 10~* 3.5552 + 0.0072 -1.0
108 | 16.12 | 0.3 | 0.2886 £3.17 x 107* | 0.95174+9.94 x 10~* 2.8710 + 0.0033 -1.0
3x10% | 16.12 | 0.0 - 0.9373 £9.84 x 1074 5.4032 £ 0.012 -
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Table 4: Compilation of numerical model results without crustal

convection

Rao

’ ’ ’

c (3

Note that all crustal thickness, internal temperature, and Nusselt
number averages, and their standard deviations, for all models with
B = —0.7, —0.5, or —0.3 were calculated from the final 25 model
timesteps, as these models do not reach a statistical steady-state

due to crustal entrainment.
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Table 5: Compilation of numerical convection model results with

crustal convection

’

’

/

Rag 0 8.0 5. T, Nu B
108 | 13.82 | 0.4 0.3767 & 0.0021 0.9534 + 0.0011 3.2401 + 0.0052 -1.0
108 13.82 | 0.35 | 0.243 £8.77 x 10~* | 0.9379 £ 6.76 x 10~* 3.7912 £ 0.003 —-0.3
108 | 13.82 | 0.35 0.307 + 0.003 0.9497 4+ 6.97 x 10~* 3.1887 4 0.001 —0.5
105 | 13.82 | 0.35 | 0.3234+2.44 x 10~* | 0.9513 +£9.94 x 10~* 3.1346 + 0.002 —-0.7
5x10% | 13.82 | 0.2 | 0.155+5.18 x 107% | 0.9418 £6.56 x 1074 5.3843 £ 0.0011 —-0.3
5x10% | 13.82 | 0.3 | 0.19341.49 x 10~* | 0.9437 +5.29 x 10~* 5.212 4 0.0016 —-0.3
5x10% | 13.82 | 0.2 | 0.1754+1.75 x 10~* | 0.9479 + 3.45 x 10~* 4.8789 4+ 0.0023 —0.5
5x10% | 13.82 | 0.3 0.194 & 0.0047 0.944 + 7.67 x 1074 5.4074 + 0.0023 —0.5
5x10% | 13.82 | 0.2 | 0.1834+1.58 x 10~* | 0.9482 + 6.69 x 10—* 4.8992 4+ 0.0068 —0.7
5x10% | 13.82 | 0.3 0.268 +0.0015 0.9478 4 6.02 x 10~* | 5.1386 £ 3.48 x 10~* | —0.7
105 | 16.12 | 0.4 | 0.3849+4.24 x 10~* | 0.9616 £ 8.84 x 10~* | 2.2775 £8.84 x 10~* | —1.0

Note that all crustal thickness, internal temperature, and Nusselt

number averages, and their standard deviations, for all models with

B = —0.7, —0.5, or —0.3 were calculated from the final 25 model

timesteps, as these models do not reach a statistical steady-state

due to crustal entrainment.
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Table 6: Crust Entrainment Rate

Rag B 0 0.0 | Elapsed Time (t) o 5;f Entrainment Rate
107 —0.3 | 13.82 | 0.2 0.3438 0.1927 | 0.1506 —0.1225
107 —0.3 | 13.82 | 0.3 0.4668 0.2931 | 0.1602 —0.2847
107 —0.3 | 13.82 | 0.4 0.2681 0.3935 | 0.2733 —0.4483
107 —0.5 | 13.82 | 0.2 0.3298 0.1928 | 0.167 —0.0782
107 —0.5 | 13.82 | 0.3 0.4985 0.2931 | 0.1936 —0.1996
107 —0.5 | 13.82 | 0.4 0.3037 0.3935 | 0.3735 —0.0659
107 —0.7 | 13.82 | 0.2 0.4022 0.1929 | 0.1775 —0.0383
107 —0.7 ] 13.82 | 0.3 0.5368 0.2931 | 0.2674 —0.0479
107 —0.7 ] 13.82 | 0.4 0.3420 0.3935 | 0.3851 —0.0246
108 —0.3 | 13.82 | 0.15 0.0328 0.1426 | 0.1243 —0.5579
108 —-0.3 | 13.82 | 0.25 0.0462 0.2424 | 0.2247 —0.3831
108 —0.5 | 13.82 | 0.15 0.0312 0.1428 | 0.1372 —0.1795
108 —0.5 | 13.82 | 0.25 0.0629 0.2424 | 0.2355 —0.1097
108 —0.7 | 13.82 | 0.15 0.0372 0.1428 | 0.142 —0.0215
108 —0.7 | 13.82 | 0.25 0.0647 0.2426 | 0.2385 —0.0634
5x10% | —0.3 | 13.82 | 0.1 0.0474 0.0927 | 0.0554 —0.7869
5x10% | —0.3 | 13.82 | 0.15 0.0193 0.1429 | 0.1292 —0.7098
5x10% | —0.5 | 13.82 | 0.1 0.0143 0.0927 | 0.091 —0.1189
5x10% | —0.5 | 13.82 | 0.15 0.0275 0.1429 | 0.1361 —0.2473
5x10% | —0.7 | 13.82 | 0.1 0.0313 0.0927 | 0.0908 —0.0607
5x10% | —0.7 | 13.82 | 0.15 0.0249 0.1429 | 0.139 —0.1566
106 -1 | 13.82 | 0.1 2.1804 0.0941 | 0.0926 —0.0007
106 -1 | 13.82| 0.2 2.1803 0.1927 | 0.1927 0.0000
106 -1 |13.82| 0.3 2.1803 0.2914 | 0.2909 —0.0002
10° -1 | 1382 | 04 2.2205 0.3919 | 0.3866 —0.0024
10° -1 | 1382 | 05 1.9304 0.4929 | 0.4868 —0.0032
10° -1 | 1382 | 0.1 0.9994 0.0941 | 0.0929 —0.0012
3x10% | —1 | 13.82 | 0.2 0.9993 0.1928 | 0.1917 —0.0011
3x10% | -1 | 13.82] 0.3 0.8523 0.2914 | 0.2857 —0.0067
3x10% | —1 | 13.82]0.35 0.8492 0.3436 | 0.3356 —0.0094
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Table 6: Crust Entrainment Rate

Rag B 0 0.0 | Elapsed Time (t) o 5;f Entrainment Rate
3x10% | —1 | 13.82| 04 0.8773 0.3926 | 0.3862 —0.0073
3x10% | —1 | 13.82] 0.5 0.9995 0.4930 | 0.4886 —0.0044
5x 106 | —1 | 13.82 | 0.2 0.9992 0.1928 | 0.1884 —0.0044
5x105 | -1 | 1382 | 0.3 0.9992 0.2925 | 0.2813 —0.0112
5x10% | —1 | 13.82 | 0.32 0.9994 0.3130 | 0.3015 —0.0115
5x10% | —1 | 13.82 | 04 0.9962 0.3934 | 0.3837 —0.0097
5x10° | —1 | 1382 | 0.5 0.9993 0.4933 | 0.4877 —0.0056

107 -1 | 1382 | 0.1 0.9991 0.0941 | 0.0926 —0.0015

107 -1 | 1382 | 0.2 0.9992 0.1928 | 0.1838 —0.0090

107 -1 | 13.82 | 0.25 0.8051 0.2426 | 0.2303 —0.0153

107 -1 | 1382 | 0.3 0.9601 0.2933 | 0.2787 —0.0152

107 -1 |1382| 04 0.9610 0.3939 | 0.3822 —0.0122

107 -1 | 1382 | 05 0.9782 0.4935 | 0.4849 —0.0088

108 -1 | 13.82 | 0.05 0.1496 0.0417 | 0.0417 0.0000

108 -1 | 13.82 | 0.1 0.1470 0.0941 | 0.0921 —0.0136

108 -1 | 13.82 | 0.15 0.1879 0.1419 | 0.1376 —0.0229

108 -1 | 13.82 | 0.2 0.1880 0.1928 | 0.1870 —0.0309

108 -1 | 13.82 | 0.3 0.1989 0.2914 | 0.2826 —0.0442
5x10% | —1 | 13.82 | 0.05 0.0678 0.0414 | 0.0405 —0.0133
5x10% | —1 | 13.82 | 0.1 0.0698 0.0941 | 0.0843 —0.1404
5x10% | —1 | 13.82 | 0.15 0.0988 0.1418 | 0.1259 —0.1609
5x10% | —1 | 13.82 | 0.2 0.1110 0.1905 | 0.1679 —0.2036

107 -1 |16.12 | 0.1 0.9991 0.0941 | 0.0927 —0.0014

107 -1 |16.12 | 0.2 0.9993 0.1929 | 0.1928 —0.0001

107 -1 | 16.12 | 0.25 0.9992 0.2430 | 0.2394 —0.0036

107 -1 |16.12 | 0.3 0.9783 0.2914 | 0.2858 —0.0057

107 -1 1612 | 04 0.6571 0.3919 | 0.3879 —0.0061
5x107 | -1 | 16.12 | 0.1 0.1698 0.0941 | 0.0927 —0.0082
5x107 | -1 |16.12 | 0.2 0.1879 0.1928 | 0.1926 —0.0011
5x107 | —1 | 16.12 | 0.25 0.2048 0.2430 | 0.2418 —0.0059
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Table 6: Crust Entrainment Rate

Rag B 0 0.0 | Elapsed Time (t) o 6;f Entrainment Rate
5x107 | -1 |16.12 | 0.3 0.2338 0.2914 | 0.2890 —0.0103
5x107 | —1 | 16.12 | 0.4 0.2388 0.3918 | 0.3843 —0.0314

108 -1 | 16.12 | 0.05 0.1959 0.0414 | 0.0414 0.0000

108 -1 |[16.12 | 0.1 0.1769 0.0941 | 0.0927 —0.0079

108 -1 | 16.12 | 0.15 0.1316 0.1419 | 0.1412 —0.0053

108 -1 |16.12 | 0.2 0.1380 0.1928 | 0.1869 —0.0428

108 -1 |16.12 | 0.3 0.1660 0.2914 | 0.2826 —0.0530
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9 Data availability

The mantle convection code used to perform the modeling is available on GitHub: https://github.com/bradfordjfoley/foley-
convection-code. The raw numerical model results and input files used for the models are available at Penn

State’s data commons: https://www.datacommons.psu.edu/commonswizard/MetadataDisplay.aspx?Dataset=6289
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