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The ECH capacities are a sequence of numerical invariants of sym-
plectic four-manifolds which give (sometimes sharp) obstructions to
symplectic embeddings. These capacities are defined using embed-
ded contact homology, and establishing their basic properties cur-
rently requires Seiberg-Witten theory. In this note we define a new se-
quence of symplectic capacities in four dimensions using only basic
notions of holomorphic curves. The new capacities satisfy the same
basic properties as ECH capacities and agree with the ECH capaci-
ties for the main examples for which the latter have been computed,
namely convex and concave toric domains. The new capacities are
also useful for obstructing symplectic embeddings into closed sym-
plectic four-manifolds. This work is inspired by a recent preprint of
McDuff-Siegel (1) giving a similar elementary alternative to symplec-
tic capacities from rational SFT.

symplectic embeddings | symplectic capacities | ECH capacities

W e define a symplectic capacity to be a function ¢ which
maps some set of symplectic manifolds (possibly non-
compact, disconnected, and/or with boundary or corners) to
[0, 00]. We assume the following two properties:

(Monotonicity) If (X,w) and (X',w’) are symplectic mani-
folds of the same dimension for which c is defined, and if
there exists a symplectic embedding ¢ : (X,w) — (X', w’),
then ¢(X,w) < (X', w").

(Conformality) If r > 0 then ¢(X, rw) = re(X,w).

Various symplectic capacities are used to study symplectic
embedding problems. In particular, symplectic capacities give
obstructions to symplectic embeddings via the Monotonicity
property, because under the hypotheses of this property, if
c(X,w) > ¢(X',w'), then a symplectic embedding (X,w) —
(X', w") cannot exist. See e.g. (2) for a survey of symplectic
capacities.

Perhaps the most basic example of a symplectic capacity is
the Gromov width cgy. For a > 0, define the ball

B*(a) ={z € C" | n|2|> < a}

with the restriction of the standard symplectic form
Sor  dwidy; on C* = R*™. If dim(X) = 2n, then ca:(X,w)
is defined to be the supremum over a such that there exists a
symplectic embedding B**(a) — (X,w). The celebrated Gro-
mov nonsqueezing theorem (3) is equivalent to the statement
that the cylinder

ZQ"(a) ={zeC"| 7r|z1|2 <a}

has Gromov width equal to a.

While the Gromov width has a very simple definition, it
is difficult to use by itself for studying symplectic embedding
problems, since it is defined in terms of symplectic embeddings.
In general, there is a gap we would like to bridge between (1)
symplectic capacities with simple geometric definitions that
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can be hard to compute, such as the Gromov width; and (2)
symplectic capacities defined using Floer-theoretic or related
machinery which are more computable, but whose definition
requires substantial technical work.

One example of the latter type of capacity is the sequence
of Ekeland-Hofer capacities defined using variational methods
in (4), or the conjecturally equivalent capacities defined in (5)
using positive S'-equivariant symplectic homology.

Another example, which is the focus of the present paper,
is the sequence of ECH capacities introduced in (6); see the
expositions in (7, 8) and the review below. Let (X,w) be a
symplectic four-manifold, not necessarily closed or connected.
The ECH capacities of (X,w) are a sequence of real numbers

0=co M(X,w) < M(X,w) < 5M(X,w) <+ < +o0,

Monotonicity of ECH capacities means that if (X', w’) is an-
other symplectic four-manifold, and if there exists a symplectic
embedding (X,w) — (X',w’), then

AM(X,w) < N(X, W) [1]

for all k. This obstruction is known to be sharp in some cases.
For example, McDuff (9) showed that if X and X’ are open
ellipsoids in R* with the restriction of the standard symplectic
form, then there exists a symplectic embedding X — X’ if
and only if cFCH(X) < ECH(X') for all k. More generally,
Cristofaro-Gardiner (10) showed that this sharpness result ex-
tends to the case when X is an open “concave toric domain”,
and X' is a “convex toric domain”, in R?; see the definitions
below. The ECH capacities are defined using embedded con-
tact homology (8), and the proof of the symplectic embedding
obstruction in Eq. (1) uses cobordism maps on embedded
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contact homology, which currently need to be defined using
Seiberg-Witten theory™.

More recently, Siegel (13) used rational symplectic field
theory (SFT) (14) to define a set of symplectic capacities
which are well suited to studying stabilized symplectic embed-
ding problems. These capacities are not yet rigorously defined
because the technical foundations of rational SFT are still a
work in progress. However McDuff-Siegel (1) showed that the
key applications of Siegel’s capacities can be proved rigorously,
using a replacement of some of Siegel’s capacities by an al-
ternate set of capacities with a more elementary definition
directly in terms of holomorphic curves with local tangency
constraints.

More generally, one can hope that capacities extracted
from Floer theories can be understood geometrically without
passing through Floer theory, or at least can be replaced
by more elementary capacities with the same applications.
Roughly speaking, following the idea of the McDuff-Siegel
capacities, the elementary capacities that we have in mind
are answers to versions of the following question: What is
the minimal energy for which holomorphic curves satisfying
certain conditions are guaranteed to exist?

The purpose of this article is to pursue this direction for the
ECH capacities. Namely we give an elementary definition of a
sequence of symplectic capacities for symplectic four-manifolds,
which we denote by ci, which are defined directly in terms of
holomorphic curves constrained to pass through k points. We
show that the capacities ¢, have the same basic properties as
ECH capacities and agree with them in important examples.
In particular, this allows some of the applications of ECH
capacities to be re-proved without using Seiberg-Witten theory.
The capacities ci also give good obstructions to symplectic
embeddings into some closed symplectic four-manifolds with
by = 1 such as CP? or S? x S?, whose ECH capacities are
not known. At the end, we define an even simpler sequence
of capacities ¢ in any dimension, which conjecturally agree
with the capacities ¢ in the main four-dimensional cases.

Definition of the capacities c;,

We begin by recalling some basic definitions.

Let Y be a three-manifold and let A be a contact form on
Y. Let £ = Ker(\) denote the associated contact structure,
and let R denote the associated Reeb vector field. Define an
orbit set to be a finite set of pairs o = {(a, m;)} where the
«; are distinct simple Reeb orbits, and the m; are positive
integers. Define the symplectic action of the orbit set a by

A(a)—Zmi/ai)\.

The contact form X is nondegenerate if every Reeb orbit (simple
or multiply covered) is nondegenerate, i.e. the linearized return
map does not have 1 as an eigenvalue.

We say that an almost complex structure J on R x Y is
A-compatible if JOs = R, where s denotes the R coordinate; J
sends the contact structure £ to itself, rotating positively in
the sense that d\(v, Jv) > 0 for every nonzero v € &; and J is
R-invariant.

*Heuristically one might expect to define such a cobordism map just by counting holomorphic curves.
Although this is possible in some special cases (11, 12), in general there are severe transversality
difficulties with multiply covered curves; see (8, §5.5) for explanation.
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We define a four-dimensional Liouville domain to be a
compact symplectic four-manifold (X,w) with boundary Y
such that there exists a primitive of w which restricts to a
contact form A on Y, for which the contact orientation of Y
agrees with the boundary orientation of 9X. A basic example
is a star-shaped domain in R*. Here a “star-shaped domain”
is a compact domain in R*" with smooth boundary which
is transverse to the radial vector field, with the restriction
of the standard symplectic form. We say that the Liouville
domain (X,w) is nondegenerate if the contact form A\ on Y is
nondegenerate; this notion does not depend on the choice of
primitive of w.

Given a Liouville domain as above, and given ¢ > 0, a
choice of primitive of w determines a neighborhood N: of Y
in X, and an identification

N: ~ (—¢,0] X Y, 2]

under which w|y, is identified with d(e*)), where s denotes
the (—¢, 0] coordinate. Using this identification, we can glue
to obtain a smooth manifold

X = X Uy ([0,00) X Y), 3]

which we call the “symplectization completion” of X. This
manifold has a symplectic form @ which agrees with w on
X and with d(e’\) on [0,00) X Y. Strictly speaking, this
completion depends on the choice of primitive of w, which we
suppress from the notation.

We say that an almost complex structure J on X is
cobordism-compatible if J|x is w-compatible, and if J|[ c0)xy
is the restriction of a A-compatible almost complex structure
on RxY.

Define an admissible symplectic four-manifold to be a (pos-
sibly disconnected) compact symplectic four-manifold (X, w)
such that each component is either closed or a nondegenerate
Liouville domain. Define X to be the union of the closed
components and the symplectization completions of the Li-
ouvile domain components. Define J(X,w) to be the set
of almost complex structures on X which are w-compatible
on the closed components and cobordism-compatible on the
completed Liouville domain components.

Let J € J(X,w). We consider holomorphic maps

u:(2,5) — (X, J)

where ¥ is a punctured compact Riemann surface (possibly
disconnected), such that for each puncture in X, there is a Reeb
orbit 7 on 0X and a neighborhood of the puncture mapping
asymptotically to [0,00) x v as s — co. To avoid trivialities
we assume that the restriction of u to each component of
the domain ¥ is nonconstant. Let M7(X) denote the set
of J-holomorphic maps as above, modulo reparametrization
by biholomorphic maps (X',7') = (2,7). If @1,...,2x € X
are distinct points, let MJ(Y; Z1,...,Tr) denote the set of
u € M7 (X) such that z1,...,z1 € u(X).

Define the energy £(u) as follows. If ¥ is connected and
u maps to a closed component of X, then £(u) = fz uw. If
Y is connected and uw maps to a completed Liouville domain
component, then £(u) is the sum over the punctures of ¥ of
the symplectic actions of the corresponding Reeb orbits. If
is disconnected, then £(u) is the sum of the energies of the
connected components.
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Definition 1. Let (X,w) be an admissible symplectic four-
manifold and let & be a nonnegative integer. Define

er(X,w) = sup inf £
JeT(X) weMI (Xiz1,...,@p)
x1,...,T, € X distinct [4]
€ [0, o0].

Remark 2. A key observation, which avoids various techni-
cal difficulties, is that in Eq. (4), we can restrict attention
to holomorphic curves u that do not have any multiply cov-
ered components'. This is because we can always replace a
multiply covered component by the underlying somewhere
injective curve to reduce energy without invalidating the point
constraints.

The following lemma will be proved below:

Lemma 3. Let (X,w) and (X',w’) be admissible symplectic
four-manifolds and let k be a nonnegative integer. If there
exists a symplectic embedding ¢ : (X,w) — (X',w’), then

cr(X,w) < crp(X,W).

To extend the definition of ¢; to more general symplectic
four-manifolds, we use the following basic procedure; compare
(6, §4.2).

Definition 4. Let (X’,w’) be any symplectic four-manifold
(possibly noncompact, disconnected, and/or with boundary or
corners) and let k£ be a nonnegative integer. Define

cx(X',w") = sup{ck (X, w)}

where the supremum is over admissible symplectic four-
manifolds (X, w) for which there exists a symplectic embedding
v (X,w) = (X,

It follows from Lemma 3 that Definition 4 agrees with
Definition 1 when (X', w’) is already an admissible symplectic
four-manifold.

Remark 5. The definition of ¢ is inspired by the paper of
McDuff-Siegel (1), which gives a similar elementary definition
of a sequence of symplectic capacities gk, as an alternative to
symplectic capacities that were defined in (13) using rational
SFT (14). The capacities g are defined for symplectic mani-
folds of any dimension using genus zero holomorphic curves
that are constrained to have contact of order k& with a local
divisor.

Some variants of Definition 1 are possible. For example one
could require each component of the domain of u to have genus
zero; the resulting capacities may be related to the capacities

Ok

Proof of the monotonicity lemma

To begin discussing the basic properties of the capacities cy,
we now prove Lemma 3.

The following notation will be useful. Let (X,w) be an
admissible symplectic four-manifold and let o = {(a;,m;)}
be an orbit set for Y = 9X. Let H2(X, ) denote the set of
relative homology classes of 2-chains Z in X with 07 = a.
This set is an affine space over Ha(X).

TWe saythatu : ¥ — X “has no multiply covered components” if the restriction of the map « to

each component of the domain X is not multiply covered (which means that it must be somewhere
injective), and no two components of 3 have the same image under w.

Hutchings

Given J € J(X,w), let M7 (X, a;21,...,x1) denote the
set of holomorphic curves in M7 (X;z1,...,xx) such that for
each i, there are punctures asymptotic to covers of a; with
total multiplicity m;, and there are no other punctures. Note
that each u € MJ(Y, ;Z1,...,2k) has a well-defined relative
homology class [u] € Ha(X, a).

Proof of Lemma 3. For € > 0, let N, denote the neighborhood
of 0X in Eq. (2). The time e flow of the Liouville vector field
(coming from the primitive of w) defines a symplectomorphism

(X N\ Neywlx\nv.) = (X e w). (5]

It follows from Definition 1 that cj satisfies the Conformality
property (Eq. (9) below), so we deduce from Eq. (5) that

(X \ Neswlxin.) = e “en(X, w) (6]

Consequently, by replacing X with X \ N: for € > 0 small
if necessary, we can assume without loss of generality that
©(X) C int(X").

Now fix z1,...,z; € X distinct, J € J(X,w), and & > 0.
To prove the lemma, we need to show that there exists u €
MJ(Y; Z1,...,2x) With

E(w) < (X' w') +e.

We will use a “neck stretching” argument.

Write Y = 0X and let A denote the contact form on Y.
Since p(X) C int(X'), there exists a neighborhood U of p(Y)
in X'\ ¢(int(X)) and an identification

(U, w'lu) = ([0,6) x Y,d(e*)))

for some § > 0, where s denotes the [0,d) coordinate. For
each R > 0, we can choose an almost complex structure
Jr € J(X’,w') such that ¢ extends to a biholomorphism

or: (X Uy ([0,R) xY),J) = (o(X)UU,Jr). [T

We can further assume that Jr is independent of R outside of
e(X)UU.
By the definition of ¢, for each R we can choose

ur € M7 (X5 0(x1), ..., pl(ar))

with
E(ur) < cr(X',W') +e. 8]

Let u% denote the intersection of the curve ug with ¢(X)UU,
composed with cpgl. We now want to argue that there is a
sequence R; — oo such that the intersections of the curves
uf converge in some sense to the desired curve u. This task
is complicated by the fact that we do not have an a priori
bound on the genus of the components of the domains of the
curves upr, so we cannot directly use SF'T compactness as in
(15, 16).

Fortunately, there is a local version of Gromov compactness
using currents which does not require any genus bound. This
was proved in the four-dimensional case by Taubes (17, Prop.
3.3), and an updated version which works in arbitrary dimen-
sion was proved by Doan-Wapulski (18, Prop. 1.9). By this
local Gromov compactness and the energy bound Eq. (8), as
applied in (19, §9.4), we can find a sequence R; — oo such that
the curves uf% converge as currents to a proper holomorphic

map v to X which passes through the points z1,...,zx, is
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asymptotic as a current as s — oo to an orbit set for Y, and
has energy less than ¢, (X’,w’) +&. A priori, components of
the domain of v may have infinite genus, and to complete the
proof of the lemma we need to arrange that they are punctured
compact Riemann surfaces.

We can pass to a subsequence so that there is a single
orbit set o’ for X’ such that each ug, is in the moduli space
MR (X7 o s (1), . . ., (xr)), because there are only finitely
many orbit sets for 9X’ with action less than cx(X',w’) + €.
When applying Gromov compactness above, we can further use
the arguments in (19, §9.4) to chase down the rest of the energy
of the holomorphic curves ur, and pass to a subsequence such
that the relative homology class [ur,] € H2(X’,a’) does not
depend on 1.

By Remark 2, we can assume that each ugr, has no multiply
covered components. Since we are in four dimensions, the
relative adjunction formula of (20, Prop. 4.9) and the asymp-
totic writhe bound of (20, Lem. 4.20) imply that there is a
lower bound on the Euler characteristic of the domain of ug,
depending only on the orbit set o’ and the relative homology
class [ur,;]. We can also assume that the domain of each ug,
has at most £ components, since otherwise some components
can be discarded without violating the requirement to pass
through the points x1,...,xr. Consequently we obtain an
i-independent upper bound on the genus of each component
of the domain of ug,.

We can then pass to a subsequence such that the compo-
nents of the domain of ur, can be numbered so that the jth
component is a punctured compact Riemann surface with the
genus and number of punctures not depending on 4, and the
sequence of j* components with the restrictions of the maps
uR, converges as ¢ — 0o to a component of u whose domain
is also a punctured compact Riemann surface. O

Properties of the capacities c;,

Theorem 6. The capacities ci of four-dimensional symplectic
manifolds have the following properties:

(Conformality) If r > 0 then
ck(X,rw) = rep(X, w). [9]
(Increasing)
0= CO(X7W) < cl(X7w) < CQ(Xvw) < <Aoo

(Disjoint Union)

m m

Cr H(Xi,wi)

i=1

max

= (X, w;).
k1+~<+km:kzck"( i»wi)

i=1
(Sublinearity)

chri(X,w) < ep(X,w) + a(X,w).

(Monotonicity) If there exists a symplectic embedding ¢ :
(X,w) = (X', "), then

er(X,w) < er(X',W').
(C°-Continuity) For each k, the capacity ci, defines a con-

tinuous function on the set of star-shaped domains in R*
with respect to the Hausdorff metric on compact sets.
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(Spectrality) If (X,w) is a four-dimensional Liouville domain
with boundary Y, then for each k with cx(X,w) < oo,
there exists an orbit set o in'Y, which is nullhomologous
in X, with cx(X,w) = A(a).

(ECH Index) If X is a nondegenerate star-shaped domain in
R*, then c(X) < oo, and in the Spectrality property, we
can choose a so that its ECH indext satisfies I(a) > 2k.

(Ball)
cx(B*(a)) = da

where d is the unique nonnegative integer with

d>+d<2k<d*+3d

(Asymptotics) If X C R* is a compact domain with smooth
boundary, then

cr(X) = 2vol(X) Y22 + O(kMY).

Proof. For admissible symplectic four-manifolds, the Confor-
mality, Increasing, Disjoint Union, and Sublinearity properties
follow immediately from Definition 1. It then follows from
Lemma 3 and Definition 4 that these properties, as well as
the Monotonicity property, also hold for general symplectic
four-manifolds.

The C°-Continuity property follows from Conformality and
Monotonicity, since if two star-shaped domains are close in
the Hausdorff metric, then each is contained in the scaling of
the other by a number slightly larger than 1. Note here that
if X is a star-shaped domain and r > 0, then Conformality
implies that cx(rX) = r%ci(X).

To prove the Spectrality property, suppose first that (X,w)
is a nondegenerate Liouville domain with cx(X,w) < co. It
follows from the definition of ¢ that there is an orbit set «
with ¢, (X,w) = A(a), because in Eq. (4), for every curve wu,
the energy £(u) is the action of some orbit set «, and the set
of all such actions is discrete. Also « is nullhomologous in X
because there is a holomorphic curve in X asymptotic to it.

If (X,w) is a degenerate Liouville domain, then the Spec-
trality property follows by approximating with nondegenerate
Liouville domains and using Eq. (6) and Monotonicity as in
the proof of C° continuity.

To prove the ECH Index property, first note that cx(X) <
oo by Monotonicity and the upper bound on ¢y, of a ball proved
in Eq. (13) below. Recall from Remark 2 that in Eq. (4), we
can restrict attention to holomorphic curves that do not have
any multiply covered components. Let MJ (X, a;x1,...,Tk)
denote the set of curves in M7 (X, a;x1,...,xs) without mul-
tiply covered components. The hypothesis that X is nonde-
generate implies that the set of symplectic actions of orbit sets
in 0X is discrete, so we can rewrite Eq. (4) as

ck(X) = max
JeJ(X)

T1,..., x), € X distinct

min {A(a) ’ M (Y,a; T1,...

[10]

If ue M{(X,a;x1,...,zx), then it follows from the ECH
index inequality, see e.g. (8, §3.4), that
ind(u) < I(a). [11]

Tsee e.g. (21, Def. 5.2) for the definition of the ECH index of . The definition there is stated for

ECH generators (a special kind of orbit set, see Remark 7), but is valid for arbitrary orbit sets.
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Here ind(u) denotes the Fredholm index of u, which for
generic J € J(X) is the dimension of the component of
the moduli space Mi(Y, «) containing u. In particular, if
J € j(Y) and z1,...,xr € X are generic, then for any
u € MJ(X,o;x1,...,x1), the dimension of the component of
the latter moduli space containing w is ind(u) — 2k > 0, so
if the latter moduli space is nonempty then by Eq. (11) we
have I(«) > 2k. Tt follows that for generic J € J(X) and
Z1,...,T, € X, the minimum in Eq. (10) has the form A(«)
where I(a) > 2k. By Gromov compactness as in the proof
of Lemma 3, the maximum in Eq. (10) must be realized by
generic J € J(X) and z1,...,z, € X.

To prepare for the proof of the Ball property, if a,b > 0,
define the ellipsoid

E(a,b) = {z ec?

el o)
a b

Calculations e.g. in (8, §3.7) show that for any ellipsoid E(a, b)
with a/b irrational, there are just two simple Reeb orbits,
which have symplectic action a and b, and the ECH index
defines a bijection from the set of orbit sets to the set of
nonnegative even integers. Furthermore the symplectic action
is an increasing function of the ECH index.

To prove the Ball property, by the Conformality property
we can assume that a = 1. Let € > 0 be irrational and consider
the ellipsoid

E(1—¢,1) C E(1,1) = B*(1).

For a given nonnegative integer d, if ¢ is sufficiently small,
then by the previous paragraph, the orbit set of ECH index
d? 4 d has symplectic action d(1 —¢). Taking ¢ — 0, it follows
from the ECH index and Monotonicity properties that

c(d2+d)/2(B4(1)) 2 d. [12]

To complete the proof of the Ball property, by the Increasing
property, we need to show that

C(d2+3d)/2(B4(1)) <d. (13]
By Monotonocity, it is enough to show that
c(a213a)2(CP? wrs) < d. (14]

Here wrs denotes the Fubini-Study form on CPQ, normalized
so that a line has symplectic area 1. To prove Eq. (14),
write k = (d® + 3d)/2; it is enough to show that for any
J € J(CP? wps) and any x1,...,2x € CP?, there exists a
J-holomorphic curve, possibly with disconnected domain, of
total degree d passing through the points z1,...,x5. For a
given J, for generic x1,...,xr this was shown by Gromov
(3, §0.2.B) (it also follows from Taubes’s “Seiberg-Witten =
Gromov” theorem as explained in the proof of Theorem 17
below), and for arbitrary z1,...,zx it follows from Gromov
compactness.

Finally, the Asymptotics property was shown for ECH
capacities in (21, Thm. 1.1). The proof there just uses the
Monotonicity and Disjoint Union properties for ECH capacities
and the formula for the ECH capacities of a cube. Theorem 9
below implies that for a cube, the ECH capacities and the
capacities ¢, agree. Hence the Asymptotics property also
holds for the capacities c. O

Hutchings

Remark 7. The properties of the capacities ¢ in Theorem 6,
aside from the Sublinearity property, are also known to hold
for ECH capacities. These properties of ECH capacities were
proved in (6), except for the Asymptotics property, which is a
later refinement proved in (21).

For the ECH capacities, a slighty stronger version of the
ECH Index property follows from the definition of ECH capac-
ities reviewed in Eq. (20) below: namely one can arrange that
I(c) = 2k, and furthermore that the orbit set a is an ECH
generator. Here we say that an orbit set o = {(a, m;)} is an
ECH generator if m; = 1 whenever «; is hyperbolic (meaning
that the linearized return map has real eigenvalues).

Remark 8. Some applications of ECH capacities only need
the properties in Theorem 6, and thus can be re-proved using
the capacities c;. For example, Irie (22) proved a C* closing
lemma for Reeb vector fields on closed three-manifolds, using
the asymptotics of the ECH spectrum (23). In the case of
S3 with the standard contact structure, which corresponds to
star-shaped hypersurfaces in R*, the ECH spectrum agrees
with the ECH capacities of the corresponding star-shaped
domain, and Irie’s proof of the closing lemma works using only
the C°-Continuity, Spectrality, and Asymptotics properties in
Theorem 6.

Computation for convex toric domains

‘We now show that for “convex toric domains”, the capacities
¢k agree with a known combinatorial formula for their ECH
capacities®. In fact, the capacities ¢x for these examples are
uniquely determined by the properties in Theorem 6.

Let Q be a compact domain in R% . Define the toric domain

Xo = {Z eC” | T (|Z1\2, \22|2) € Q} .

Define a (four-dimensional) convez toric domain to be a toric
domain Xq as above such that the set

Q= {ne®®| () € 2}

is convex¥. Define a (four-dimensional) concave toric domain
to be a toric domain X¢q such that the set ]R2>0 \ Q is convex.

If Xq is a four-dimensional convex toric domain, let || - ||
denote the norm on R? defined by

ol = max { (v, ) [we B}

If v : [a, 8] — R? is a continuous, piecewise differentiable
curve, define its 2-length by
B
/ *
o) = [ 17 @)l 15
0 -1
1 0
Define a convex integral path to be a polygonal path A in
the nonnegative quadrant from the point (0,b) to the point
(a,0), for some nonnegative integers a and b, with vertices at

lattice points, such that the region bounded by A and the line
segments from (0, 0) to (a,0) and from (0, 0) to (0, b) is convex.

-~

where J =

Define £(A) to be the number of lattice points in this region,
including lattice points on the boundary.

§This formula appears in (24, Prop. 5.6). It is a specialization of a result in (10, Cor. A.12) computing
the ECH capacities of a more general notion of “convex toric domain”.

Y This is slightly misleading terminology, as a “convex toric domain” is not the same thing as a toric
domain that is convex; see (25, §2) for clarification.
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Theorem 9. If Xq is a four-dimensional convez toric domain,
then

~

n(Xa) = min{lo(A) | £(A) = k + 1} [16]

where the minimum is over convex integral paths A.

Proof. 1t is shown in (24, Lem. 5.4) that given L,e >
0, there is a nondegenerate star-shaped domain X’ with
disteo (X', Xq) < e with the following property: Every or-
bit set o for X’ with action A(a) < L determines a convex
integral path A such that |A(«) — £o(A)| < € and the ECH in-
dex I(a) < Q(E(A) —1). Tt then follows from the C°-Continuity
and ECH Index properties in Theorem 6 that

~

cx(Xa) > min{la(A) | £(A) > k + 1}. [17]

We now prove the reverse inequality. Let a > 0 be the
smallest real number such that Xoq C B*(a). In (10, §2.2), a
“negative weight sequence” is defined; this is a nonincreasing
(possibly finite) sequence of positive real numbers (a1, az,...).
It has the property that there is a symplectic embedding

XU Hint(B4(ai)) — B*(a)

which fills the volume of B*(a). Tt follows from the Disjoint
Union property that

er(Xa) < inf (ck+l(B4(a)) —a (]_[ B“(ai))) .

i<i

Furthermore, ¢; agrees with cE“" for a disjoint union of balls
by the Disjoint Union and Ball properties, so we can rewrite
the above inequality as

n(Xa) < inf (cfff‘(B‘*(a)) — pon (]_[ B4<ai>> ) . 8]

i<l

Finally, a combinatorial calculation in (10, §A.3) shows that
the right hand side of Eq. (18) is less than or equal to the
right hand side of Eq. (17).

To complete the proof, we observe that

~ ~

min{lo(A) | L(A) > k+ 1} = min{lo(A) | L(A) =k + 1},
as explained in (10, §A.3). O

Remark 10. By Theorem 9 and (24, Prop. 5.6), the capacities
¢, agree with the ECH capacities for convex toric domains. It
follows from the Monotonicity property that all obstructions to
symplectic embeddings between convex toric domains coming
from ECH capacities can be recovered using the capacities c.

Remark 11. Going beyond ECH capacities, it is shown in (24,
Thm. 1.19) that if Xo and Xq/ are four-dimensional convex
toric domains, and if there exists a symplectic embedding
Xa — Xq/, then a certain combinatorial criterion holds. This
leads to stronger symplectic embedding obstructions in some
cases where ECH capacities do not give sharp obstructions,
for example to symplectically embedding a polydisk into a ball
or ellipsoid; see (24, 26, 27).

The proof of (24, Thm. 1.19) rests on the existence of
an ECH index 0 holomorphic curve with certain properties
in (the completion of) a symplectic cobordism between the
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(perturbed) boundaries of Xo and Xq/, which is produced
using Seiberg-Witten theory. One can re-prove the existence
of such a curve using the methods of this paper, namely by
using the existence of curves in X/ with point constraints in
the image of X, as guaranteed by the capacities cx, and then
neck stretching as in the proof of Lemma 3.

Comparison with ECH capacities

Aside from the examples of toric domains, we do not know to
what extent ci agrees with c],;:CH, but we do have the following
general fact, whose proof (and statement) use Seiberg-Witten
theory:

Theorem 12. Let X be a four-dimensional Liouville domain
and let k be a nonnegative integer. Then

en(X) < R (X).

To prepare for the proof of Theorem 12, we now recall
the definition of the ECH capacities cEY, for the simplest
case of four-dimensional nondegenerate Liouville domains with
connected boundary.

Let Y be a closed oriented three-manifold and let A be a
nondegenerate contact form on Y. The following is an outline
of the definition of the embedded contact homology ECH(Y, ).
We define ECC(Y, \) to be the free Z/2-modulel generated by
the ECH generators; see Remark 7. For a generic A-compatible
almost complex structure J on R x Y, the ECH differential

8, : ECC(Y,\) — ECC(Y, \)

is defined as follows. If a and 3 are ECH generators, then the
coefficient of 8 in dya, which we denote by (9sa, 8) € Z/2,
is a mod 2 count of “J-holomorphic currents” C in R x Y,
modulo R translation, that are asymptotic to o as s — +o0
and to 8 as s - —oo, and that have ECH index I(C) = 1.
See (8, §3) for detailed definitions. It is shown in (29) that
93 = 0. We define ECH (Y, )\) to be the homology of the chain
complex (ECC(Y,)\),ds).

It follows from the definition of A-compatible almost com-
plex structure that the ECH differential decreases symplectic
action:

(Osa, B) # 0= A(a) > A(p). [19]

As a result, for each L € R, the ECH generators with action
less than L span a subcomplex of (ECC(Y, \),d). We define
the filtered ECH, which we denote by EC’HL(Y, A), to be the
homology of this subcomplex.

It was shown by Taubes (30) that ECH (Y, \) is isomorphic
to a version of Seiberg-Witten Floer cohomology defined by
Kronheimer-Mrowka (31). Taubes’s isomorphism was used in
(32, Thm. 1.3) to show that ECH(Y,\) and ECH*(Y, ) do
not depend on J; that is, the homologies for different choices
of J are canonically isomorphic to each other.

There is also a map

U:ECH"(Y,\) — ECH" (v, \)

induced by a chain map which counts J-holomorphic currents
with ECH index 2 passing through a base point in R x Y.
This map does not depend on the choice of base point when
Y is connected; otherwise it depends on a choice of connected
component of Y. See (33, §2.5) for more details.

Itis also possible to define ECH with integer coefficients (28, §9).
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Now let (X,w) be a four-dimensional nondegenerate Li-
ouville domain with connected boundary Y and associated
contact form A. In this case the k" ECH capacity is defined
by

e M(X,w) =inf {L>0|3n€ ECH*(Y,\): Urn=[0]}.
(20]
Here [f] is the homology class in ECH*(Y, ) of the empty
set of Reeb orbits, which is a cycle by Eq. (19). Note that by
Eq. (21) below, the existence of an exact filling of Y (namely
the Liouville domain X) implies that the class [@] # 0 in
ECHY (Y )).

Proof of Theorem 12. Let Y denote the boundary of X. For
brevity we just explain the case when Y is connected; the
general case follows by a similar argument using the more
general definition of ECH capacities in (6, Def. 4.3).

Since ¢ and cc°? both satisfy Conformality and Mono-
tonicity, by a continuity argument using Eq. (6) and the
analogous equation for cECH, we can assume without loss of
generality that X is nondegenerate.

Let A denote the contact form on Y. As explained for
example in (6, Thm. 2.3), for each L > 0, the exact filling X
of Y induces a cobordism map

®: ECH"(Y,\) — Z/2, [21]

defined using Seiberg-Witten theory, which sends [(] to 1.

Now suppose that J € J(X) and z1, ...,z € X. Heuris-
tically one might expect that if J and z1,...,xr are generic,
then the composition

doU*: ECH"(Y,\) — Z/2 [22]

is induced by a cocycle
¢: ECCH(Y,\) — 7Z/2

that counts J-holomorphic curves in X with ECH index 2k
passing through zi,...,xx. What one can actually prove,
as in the “holomorphic curves axiom” for ECH cobordism
maps in (32, Thm. 1.9) and the comparison of U maps in
(34, Thm. 1.1), is the following. For any J € J(X) and any
Z1,...,2k € X (not necessarily generic), the composition in
Eq. (22) is induced by a (noncanonical) cocycle ¢ with the
following property: If a is an ECH generator and ¢(«) # 0,
then there exists a “broken .J-holomorphic current” in X
passing through zi,...,x,. This last statement implies that
there is an orbit set o with A(a) < A(a) and a holomorphic
curve in M7 (X, o/;21,. .., x1).

Now suppose that L > ¢E°H(X). Then by the definition
of ECH capacities in Eq. (20), there exists n € ECH*(Y,\)
with UFn = [0]. It follows that (® o U¥)(n) = 1. By the
previous paragraph, for any J € J(X) and any 1, ...,z € X,
there exists an ECH generator o’ with A(a’) < L such that
MI(X,o;21,...,x1) # 0. It then follows from Eq. (10) that
ck(X) < L. Since L > cE“(X) was arbitrary, the theorem
follows. O

Remark 13. One can understand the inequality in Theo-
rem 12 as follows: The number ¢x(X) measures the minimal
energy of holomorphic curves in X through k points that are
guaranteed to exist, for whatever reason. On the other hand,
CECH (X) measures the energy of certain holomophic curves
in X through k points that are guaranteed to exist for ECH
reasons.
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Remark 14. There exist examples of Liouville domains and
positive integers k for which ¢y is strictly less than cl,;:CH. An
example is given by the unit cotangent bundle D*S?(4r),
where S?(a) denotes the 2-sphere with the round metric of
area a. It follows from results in (35, 36) that there exist
symplectic embeddings

int(P(2m,27)) — int(D*S%(47)) — S*(27) x S%(27).

Here the left hand side is a polydisk; see equation Eq. (24)
for the notation. We will see in Remark 19 below that the
capacities cx are the same for P(27,27) and S?(27) x S?(27),
so by Monotonicity they are also the same for D*S%(4n).
However the ECH capacities cE“H(D*$?(47)) are computed
in (35) and found to be larger for some k.

The main reason for the discrepancy is the following: The
Spectrality property in Theorem 6 asserts that cx of a Liouville
domain X with boundary Y is the action of an orbit set which
is nullhomologous in X. However by the definition of the ECH
capacities in Eq. (20), ci“®(X) is the action of an orbit set
which is nullhomologous in Y, a more restrictive condition.

Additional computations using Seiberg-Witten theory

‘We now compute some additional examples of the capacities cy,
using Seiberg-Witten theory (which could perhaps be avoided
with more work).

If Xq is a four-dimensional concave toric domain as defined
above, define an “anti-norm” on R? by

[vlo = min{((Jv1], [v2]), w) | w € D49}

where 04+€) denotes the closure of the portion of 92 not on
the axes. If v is a continuous, piecewise differentiable curve in
R?, now define its Q-length as in Eq. (15), but replacing the
norm || - || by the anti-norm [-].

Define a concave integral path to be a polygonal path A in
the nonnegative quadrant from the point (0, b) to the point
(a,0), for some nonnegative integers a and b, with vertices at
lattice points, which is the graph of a convex function. Define
LV(A) to be the number of lattice points in the region bounded
by A and the axes, this time (in contrast to the case of convex
toric domains) not including lattice points on A.

Theorem 15. If X is a four-dimensional concave toric do-
main, then

ex(Xa) = max{lo(A) | £(A) = k} [23]

where the mazimum is over concave integral paths A.

Remark 16. It is shown in (37, Thm. 1.21) that the same
formula holds for the ECH capacities cf " (Xaq).

Proof of Theorem 15. In (37, §1.3), see also (21, §1.3), a
“weight expansion” of Xq is defined; this is a nonincreasing
(possibly finite) sequence of positive real numbers (a1, az,...).
There is a symplectic embedding

H int B*(a;) — Xq

(3

which fills the volume of X¢q. It follows from the Monotonicity
property that

Ck(XQ) > ck (H B4(ai)> .

i<k
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By the Ball and Disjoint Union properties, we have

Ck <H B4(a,-)> =t (H B4(ai)> .

i<k i<k

It is shown in (37, §2) by a combinatorial calculation that

(H B4<ai>) > max{fa(A) | £(A) = K}

i<k

By Remark 16 and Theorem 12, the above inequalities are
equalities. O

We now consider some closed symplectic manifolds. Given
a > 0, let CP?(a) denote CP? with the Fubini-Study form,
scaled so that a line has symplectic area a. Let S?(a) denote
S? with a symplectic form of area a.

Theorem 17. Let a,b > 0 and let k be a nonnegative integer.

(a) ¢, (CP%(a)) = da where d is the unique nonnegative inte-
ger with d*> + d < 2k < d* + 3d.

(b) cx(S%(a) x S2(b)) = min{am + bn | m,n € Zso, (m +
(n+1) > k+1}.

To prepare for the proof of this theorem, if (X, w) is a closed
symplectic four-manifold with b3 (X) = 1, and if A € H2(X),
let SW(X,w,A) € Z/2 denote the mod 2 Seiberg-Witten
invariant of X, for the spin-c structure determined by w and
A, in the symplectic chamber; see the review in (38, §2). Define
the ECH index

I(A) = A- A+ (c1(TX), A) € Z.

Lemma 18. Let (X,w) be a closed symplectic four-manifold™™
with b (X) =1 and let A € Ha(X). If SW(X,w, A) # 0 and
I(A) = 2k, then c,p(X,w) < ([w], A).

Proof. If J € J(X,w) and z1,...,z, € X are generic, then it
follows from Taubes’s “Seiberg-Witten = Gromov” theorem
(39) that there exists a J-holomorphic curve (possibly with
disconnected domain) in the homology class A passing through
the points x1,...,xr. Thus

E(u) < ([w], 4)

when J, x1, ...,z are generic. A Gromov compactness argu-
ment shows that the supremum in the definition of ¢y (X, w)
in Eq. (4) is realized for generic J, z1,...,zk. O

Proof of Theorem 17. (a) Let d be the integer in the statement
of the theorem. Then by Eq. (12) and the Conformality, Mono-
tonicity, and Increasing properties, we have c(CP?(a)) > da.
On the other hand, by Eq. (14) and the Conformality, Mono-
tonicity, and Increasing properties, we have c;(CP?(a)) < da.
The latter inequality also follows from Lemma 18 and the
Increasing property, because if A € Ha(CP?) is d times the
homology class of a line, then I(A) = d* 4 3d, and as reviewed
in (38, §2.4) we have SW(A) # 0.
(b) Let L denote the right hand side of the equation in
(b). If m and n are nonnegative integers, and if A = (m,n) €
I b;'(X) > 1 then the lemma is also true (now the Seiberg-Witten invariant does not depend

on a choice of chamber), but vacuous, because in this case one of the corollaries of Taubes’s
“Seiberg-Witten = Gromov” theorem in (39) is that SW (X, w, A) # O implies I(A) = 0.
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H(S% x §?), then I(A) = 2(mn+m+n). As reviewed in (38,
§2.4), we have SW(A) # 0. It follows from Lemma 18 and
the Increasing property that

cx (5% (a) x S*(b)) < L.
To prove the reverse inequality, consider the polydisk

Pla,b) ={z€C? | rlz|® <a, 7|z <b}.  [24]

A calculation using Theorem 9 shows that
ck(P(a,b)) = L.

Since the interior of P(a, b) symplectically embeds into S?(a) x
S2(b), we are done by Monotonicity. O

Remark 19. Theorem 17 shows that the capacities ci are the
same for CP?(a) and the ball B*(a); and likewise they are the
same for S?(a) x S?(b) and the polydisk P(a,b). This means
that if the capacities ¢ obstruct a symplectic embedding of a
symplectic four-manifold (X,w) into B*(a) or P(a,b) respec-
tively, then a symplectic embedding of (X,w) into CP?(a) or
S%(a) x S?(b) respectively is not possible either. The same
statement is true for the ECH capacities cECH when X is a
star-shaped domain by (38, Thm. 1.4).

An even simpler definition of capacities

To conclude, we now define an even simpler series of symplectic
capacities, for symplectic manifolds of any dimension.

If (X,w) is a symplectic manifold, let J(X,w) denote the
set of w-compatible almost complex structures on X. Given
J € J(X,w), let P7(X) denote the set of proper holomorphic
maps

u:(S,7) — (X,J)

where (S, j) is a one-dimensional complex manifold (not nec-
essarily compact or connected), and we assume that the re-
striction of u to each component of S is nonconstant. Note
that regarded as a two-dimensional real manifold, S does not
have boundary. Given u as above, define the energy

E(u) = /Su*w € [0, o0].

Note that the energy is well-defined because u*w is point-
wise nonnegative. If zq1,...,2r € X are distinct, let
PJ(X;x1,...,x1) denote the set of proper maps u as above
such that z1,...,zx € u(S).

Definition 20. Let (X,w) be a compact symplectic manifold
(possibly disconnected and/or with boundary), and let k be a
nonnegative integer. Define

aw= e,
€T (Xw
T1,...,xTk € int(X) distinct [25}
inf E(u) €0, o).

u€PY (int(X);a1,..., zk)

Remark 21. It follows immediately from the definition that
the capacities ¢y satisfy the Conformality, Increasing, Disjoint
Union, and Sublinearity properties in Theorem 6.

We can also quickly show that they satisfy Monotonicity
under symplectic embeddings ¢ : (X,w) — (X’,w’) between
symplectic manifolds of the same dimension, without using
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Gromov compactness. This is because since X is compact,
any J € J(X,w) can be extended to J' € J(X',w') with
I ox) = @xd.

One can now further deduce that each ¢ is a C°-continuous
function on the set of star-shaped domains in R?".

Remark 22. When k = 1, the capacity ¢; is very similar’
to the “symplectic width” defined by Gromov in (40, §4.1).
In particular, ¢1(B*"(a)) = a. The symplectic width should
not be confused with the Gromov width cqr defined in the
introduction. The Monotonicity property of ¢; implies that
CGr S /C\l.

In a sense the capacities ¢ are more natural than the Ck,
because for domains that are not Liouville domains, they are
defined directly, without taking a supremum over symplectic
embeddings as in Definition 4. However the price for this is that
we have to consider holomorphic curves without nice boundary
conditions, which makes computations more difficult.

Remark 23. Suppose that dim(X) = 4. If X is closed, then
cx(X,w) = cx(X,w) by definition. If (X,w) is a Liouville
domain, then we have

(X, w) < ep(X,w). [26]
This is because if € > 0, then any almost complex structure
J € J(X,w) can be extended to an w-compatible almost
complex structure on X whose restriction to [¢,00) X Y agrees
with an e® \-compatible almost complex structure on R x Y.
It follows from this as in Eq. (6) that

(X, w) < efer(X,w).

We can choose € > 0 arbitrarily small, and this proves Eq. (26).
We conjecture that in fact ¢, (X, w) = cx(X,w) when (X, w)
is a four-dimensional Liouville domain.

Example 24. The simplest example of ¢ that we do not
know how to compute is ¢z of a four-dimensional ball. We
currently just know that

S<am) <

Here the first inequality holds because three copies of
int(B*(1/2)) can be symplectically embedded into B*(1), and

the second inequality holds because int(B*(1)) can be sym-
plectically embedded into CP?(1).
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