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The ECH capacities are a sequence of numerical invariants of sym-
plectic four-manifolds which give (sometimes sharp) obstructions to
symplectic embeddings. These capacities are defined using embed-
ded contact homology, and establishing their basic properties cur-
rently requires Seiberg-Witten theory. In this note we define a new se-
quence of symplectic capacities in four dimensions using only basic
notions of holomorphic curves. The new capacities satisfy the same
basic properties as ECH capacities and agree with the ECH capaci-
ties for the main examples for which the latter have been computed,
namely convex and concave toric domains. The new capacities are
also useful for obstructing symplectic embeddings into closed sym-
plectic four-manifolds. This work is inspired by a recent preprint of
McDuff-Siegel (1) giving a similar elementary alternative to symplec-
tic capacities from rational SFT.
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W e define a symplectic capacity to be a function c which1

maps some set of symplectic manifolds (possibly non-2

compact, disconnected, and/or with boundary or corners) to3

[0,∞]. We assume the following two properties:4

(Monotonicity) If (X,ω) and (X ′, ω′) are symplectic mani-5

folds of the same dimension for which c is defined, and if6

there exists a symplectic embedding ϕ : (X,ω)→ (X ′, ω′),7

then c(X,ω) ≤ c(X ′, ω′).8

(Conformality) If r > 0 then c(X, rω) = rc(X,ω).9

Various symplectic capacities are used to study symplectic10

embedding problems. In particular, symplectic capacities give11

obstructions to symplectic embeddings via the Monotonicity12

property, because under the hypotheses of this property, if13

c(X,ω) > c(X ′, ω′), then a symplectic embedding (X,ω) →14

(X ′, ω′) cannot exist. See e.g. (2) for a survey of symplectic15

capacities.16

Perhaps the most basic example of a symplectic capacity is17

the Gromov width cGr. For a > 0, define the ball18

B2n(a) = {z ∈ Cn | π|z|2 ≤ a}19

with the restriction of the standard symplectic form20 ∑n

i=1 dxi dyi on Cn = R2n. If dim(X) = 2n, then cGr(X,ω)21

is defined to be the supremum over a such that there exists a22

symplectic embedding B2n(a)→ (X,ω). The celebrated Gro-23

mov nonsqueezing theorem (3) is equivalent to the statement24

that the cylinder25

Z2n(a) = {z ∈ Cn | π|z1|2 ≤ a}26

has Gromov width equal to a.27

While the Gromov width has a very simple definition, it28

is difficult to use by itself for studying symplectic embedding29

problems, since it is defined in terms of symplectic embeddings.30

In general, there is a gap we would like to bridge between (1)31

symplectic capacities with simple geometric definitions that32

can be hard to compute, such as the Gromov width; and (2) 33

symplectic capacities defined using Floer-theoretic or related 34

machinery which are more computable, but whose definition 35

requires substantial technical work. 36

One example of the latter type of capacity is the sequence 37

of Ekeland-Hofer capacities defined using variational methods 38

in (4), or the conjecturally equivalent capacities defined in (5) 39

using positive S1-equivariant symplectic homology. 40

Another example, which is the focus of the present paper, 41

is the sequence of ECH capacities introduced in (6); see the 42

expositions in (7, 8) and the review below. Let (X,ω) be a 43

symplectic four-manifold, not necessarily closed or connected. 44

The ECH capacities of (X,ω) are a sequence of real numbers 45

0 = cECH
0 (X,ω) < cECH

1 (X,ω) ≤ cECH
2 (X,ω) ≤ · · · ≤ +∞. 46

Monotonicity of ECH capacities means that if (X ′, ω′) is an- 47

other symplectic four-manifold, and if there exists a symplectic 48

embedding (X,ω)→ (X ′, ω′), then 49

cECH
k (X,ω) ≤ cECH

k (X ′, ω′) [1] 50

for all k. This obstruction is known to be sharp in some cases. 51

For example, McDuff (9) showed that if X and X ′ are open 52

ellipsoids in R4 with the restriction of the standard symplectic 53

form, then there exists a symplectic embedding X → X ′ if 54

and only if cECH
k (X) ≤ cECH

k (X ′) for all k. More generally, 55

Cristofaro-Gardiner (10) showed that this sharpness result ex- 56

tends to the case when X is an open “concave toric domain”, 57

and X ′ is a “convex toric domain”, in R4; see the definitions 58

below. The ECH capacities are defined using embedded con- 59

tact homology (8), and the proof of the symplectic embedding 60

obstruction in Eq. (1) uses cobordism maps on embedded 61
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contact homology, which currently need to be defined using62

Seiberg-Witten theory∗.63

More recently, Siegel (13) used rational symplectic field64

theory (SFT) (14) to define a set of symplectic capacities65

which are well suited to studying stabilized symplectic embed-66

ding problems. These capacities are not yet rigorously defined67

because the technical foundations of rational SFT are still a68

work in progress. However McDuff-Siegel (1) showed that the69

key applications of Siegel’s capacities can be proved rigorously,70

using a replacement of some of Siegel’s capacities by an al-71

ternate set of capacities with a more elementary definition72

directly in terms of holomorphic curves with local tangency73

constraints.74

More generally, one can hope that capacities extracted75

from Floer theories can be understood geometrically without76

passing through Floer theory, or at least can be replaced77

by more elementary capacities with the same applications.78

Roughly speaking, following the idea of the McDuff-Siegel79

capacities, the elementary capacities that we have in mind80

are answers to versions of the following question: What is81

the minimal energy for which holomorphic curves satisfying82

certain conditions are guaranteed to exist?83

The purpose of this article is to pursue this direction for the84

ECH capacities. Namely we give an elementary definition of a85

sequence of symplectic capacities for symplectic four-manifolds,86

which we denote by ck, which are defined directly in terms of87

holomorphic curves constrained to pass through k points. We88

show that the capacities ck have the same basic properties as89

ECH capacities and agree with them in important examples.90

In particular, this allows some of the applications of ECH91

capacities to be re-proved without using Seiberg-Witten theory.92

The capacities ck also give good obstructions to symplectic93

embeddings into some closed symplectic four-manifolds with94

b+2 = 1 such as CP 2 or S2 × S2, whose ECH capacities are95

not known. At the end, we define an even simpler sequence96

of capacities ĉk in any dimension, which conjecturally agree97

with the capacities ck in the main four-dimensional cases.98

Definition of the capacities ck99

We begin by recalling some basic definitions.100

Let Y be a three-manifold and let λ be a contact form on101

Y . Let ξ = Ker(λ) denote the associated contact structure,102

and let R denote the associated Reeb vector field. Define an103

orbit set to be a finite set of pairs α = {(αi,mi)} where the104

αi are distinct simple Reeb orbits, and the mi are positive105

integers. Define the symplectic action of the orbit set α by106

A(α) =
∑
i

mi

∫
αi

λ.107

The contact form λ is nondegenerate if every Reeb orbit (simple108

or multiply covered) is nondegenerate, i.e. the linearized return109

map does not have 1 as an eigenvalue.110

We say that an almost complex structure J on R × Y is111

λ-compatible if J∂s = R, where s denotes the R coordinate; J112

sends the contact structure ξ to itself, rotating positively in113

the sense that dλ(v, Jv) > 0 for every nonzero v ∈ ξ; and J is114

R-invariant.115

∗Heuristically one might expect to define such a cobordism map just by counting holomorphic curves.
Although this is possible in some special cases (11, 12), in general there are severe transversality
difficulties with multiply covered curves; see (8, §5.5) for explanation.

We define a four-dimensional Liouville domain to be a 116

compact symplectic four-manifold (X,ω) with boundary Y 117

such that there exists a primitive of ω which restricts to a 118

contact form λ on Y , for which the contact orientation of Y 119

agrees with the boundary orientation of ∂X. A basic example 120

is a star-shaped domain in R4. Here a “star-shaped domain” 121

is a compact domain in R2n with smooth boundary which 122

is transverse to the radial vector field, with the restriction 123

of the standard symplectic form. We say that the Liouville 124

domain (X,ω) is nondegenerate if the contact form λ on Y is 125

nondegenerate; this notion does not depend on the choice of 126

primitive of ω. 127

Given a Liouville domain as above, and given ε > 0, a 128

choice of primitive of ω determines a neighborhood Nε of Y 129

in X, and an identification 130

Nε ' (−ε, 0]× Y, [2] 131

under which ω|Nε is identified with d(esλ), where s denotes 132

the (−ε, 0] coordinate. Using this identification, we can glue 133

to obtain a smooth manifold 134

X = X ∪Y ([0,∞)× Y ), [3] 135

which we call the “symplectization completion” of X. This 136

manifold has a symplectic form ω which agrees with ω on 137

X and with d(esλ) on [0,∞) × Y . Strictly speaking, this 138

completion depends on the choice of primitive of ω, which we 139

suppress from the notation. 140

We say that an almost complex structure J on X is 141

cobordism-compatible if J |X is ω-compatible, and if J |[0,∞)×Y 142

is the restriction of a λ-compatible almost complex structure 143

on R× Y . 144

Define an admissible symplectic four-manifold to be a (pos- 145

sibly disconnected) compact symplectic four-manifold (X,ω) 146

such that each component is either closed or a nondegenerate 147

Liouville domain. Define X to be the union of the closed 148

components and the symplectization completions of the Li- 149

ouvile domain components. Define J (X,ω) to be the set 150

of almost complex structures on X which are ω-compatible 151

on the closed components and cobordism-compatible on the 152

completed Liouville domain components. 153

Let J ∈ J (X,ω). We consider holomorphic maps 154

u : (Σ, j) −→ (X, J) 155

where Σ is a punctured compact Riemann surface (possibly 156

disconnected), such that for each puncture in Σ, there is a Reeb 157

orbit γ on ∂X and a neighborhood of the puncture mapping 158

asymptotically to [0,∞)× γ as s→∞. To avoid trivialities 159

we assume that the restriction of u to each component of 160

the domain Σ is nonconstant. Let MJ(X) denote the set 161

of J-holomorphic maps as above, modulo reparametrization 162

by biholomorphic maps (Σ′, j′) '→ (Σ, j). If x1, . . . , xk ∈ X 163

are distinct points, let MJ(X;x1, . . . , xk) denote the set of 164

u ∈MJ(X) such that x1, . . . , xk ∈ u(Σ). 165

Define the energy E(u) as follows. If Σ is connected and 166

u maps to a closed component of X, then E(u) =
∫

Σ u
∗ω. If 167

Σ is connected and u maps to a completed Liouville domain 168

component, then E(u) is the sum over the punctures of Σ of 169

the symplectic actions of the corresponding Reeb orbits. If Σ 170

is disconnected, then E(u) is the sum of the energies of the 171

connected components. 172
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Definition 1. Let (X,ω) be an admissible symplectic four-173

manifold and let k be a nonnegative integer. Define174

ck(X,ω) = sup
J∈J (X)

x1, . . . , xk ∈ X distinct

inf
u∈MJ (X;x1,...,xk)

E(u)

∈ [0,∞].
[4]175

Remark 2. A key observation, which avoids various techni-176

cal difficulties, is that in Eq. (4), we can restrict attention177

to holomorphic curves u that do not have any multiply cov-178

ered components†. This is because we can always replace a179

multiply covered component by the underlying somewhere180

injective curve to reduce energy without invalidating the point181

constraints.182

The following lemma will be proved below:183

Lemma 3. Let (X,ω) and (X ′, ω′) be admissible symplectic184

four-manifolds and let k be a nonnegative integer. If there185

exists a symplectic embedding ϕ : (X,ω)→ (X ′, ω′), then186

ck(X,ω) ≤ ck(X ′, ω′).187

To extend the definition of ck to more general symplectic188

four-manifolds, we use the following basic procedure; compare189

(6, §4.2).190

Definition 4. Let (X ′, ω′) be any symplectic four-manifold191

(possibly noncompact, disconnected, and/or with boundary or192

corners) and let k be a nonnegative integer. Define193

ck(X ′, ω′) = sup{ck(X,ω)}194

where the supremum is over admissible symplectic four-195

manifolds (X,ω) for which there exists a symplectic embedding196

ϕ : (X,ω)→ (X ′, ω′).197

It follows from Lemma 3 that Definition 4 agrees with198

Definition 1 when (X ′, ω′) is already an admissible symplectic199

four-manifold.200

Remark 5. The definition of ck is inspired by the paper of201

McDuff-Siegel (1), which gives a similar elementary definition202

of a sequence of symplectic capacities g̃k, as an alternative to203

symplectic capacities that were defined in (13) using rational204

SFT (14). The capacities g̃k are defined for symplectic mani-205

folds of any dimension using genus zero holomorphic curves206

that are constrained to have contact of order k with a local207

divisor.208

Some variants of Definition 1 are possible. For example one209

could require each component of the domain of u to have genus210

zero; the resulting capacities may be related to the capacities211

g̃k.212

Proof of the monotonicity lemma213

To begin discussing the basic properties of the capacities ck,214

we now prove Lemma 3.215

The following notation will be useful. Let (X,ω) be an216

admissible symplectic four-manifold and let α = {(αi,mi)}217

be an orbit set for Y = ∂X. Let H2(X,α) denote the set of218

relative homology classes of 2-chains Z in X with ∂Z = α.219

This set is an affine space over H2(X).220

†We say that u : Σ → X “has no multiply covered components” if the restriction of the map u to
each component of the domain Σ is not multiply covered (which means that it must be somewhere
injective), and no two components of Σ have the same image under u.

Given J ∈ J (X,ω), let MJ(X,α;x1, . . . , xk) denote the 221

set of holomorphic curves inMJ(X;x1, . . . , xk) such that for 222

each i, there are punctures asymptotic to covers of αi with 223

total multiplicity mi, and there are no other punctures. Note 224

that each u ∈MJ (X,α;x1, . . . , xk) has a well-defined relative 225

homology class [u] ∈ H2(X,α). 226

Proof of Lemma 3. For ε > 0, let Nε denote the neighborhood 227

of ∂X in Eq. (2). The time ε flow of the Liouville vector field 228

(coming from the primitive of ω) defines a symplectomorphism 229

(X \Nε, ω|X\Nε ) ' (X, e−εω). [5] 230

It follows from Definition 1 that ck satisfies the Conformality 231

property (Eq. (9) below), so we deduce from Eq. (5) that 232

ck(X \Nε, ω|X\Nε ) = e−εck(X,ω) [6] 233

Consequently, by replacing X with X \ Nε for ε > 0 small 234

if necessary, we can assume without loss of generality that 235

ϕ(X) ⊂ int(X ′). 236

Now fix x1, . . . , xk ∈ X distinct, J ∈ J (X,ω), and ε > 0. 237

To prove the lemma, we need to show that there exists u ∈ 238

MJ(X;x1, . . . , xk) with 239

E(u) < ck(X ′, ω′) + ε. 240

We will use a “neck stretching” argument. 241

Write Y = ∂X and let λ denote the contact form on Y . 242

Since ϕ(X) ⊂ int(X ′), there exists a neighborhood U of ϕ(Y ) 243

in X ′ \ ϕ(int(X)) and an identification 244

(U , ω′|U ) ' ([0, δ)× Y, d(esλ)) 245

for some δ > 0, where s denotes the [0, δ) coordinate. For 246

each R > 0, we can choose an almost complex structure 247

JR ∈ J (X ′, ω′) such that ϕ extends to a biholomorphism 248

ϕR : (X ∪Y ([0, R)× Y ), J) '−→ (ϕ(X) ∪ U , JR). [7] 249

We can further assume that JR is independent of R outside of 250

ϕ(X) ∪ U . 251

By the definition of ck, for each R we can choose 252

uR ∈MJR (X ′;ϕ(x1), . . . , ϕ(xk)) 253

with 254

E(uR) < ck(X ′, ω′) + ε. [8] 255

Let uϕR denote the intersection of the curve uR with ϕ(X)∪U , 256

composed with ϕ−1
R . We now want to argue that there is a 257

sequence Ri → ∞ such that the intersections of the curves 258

uϕRi
converge in some sense to the desired curve u. This task 259

is complicated by the fact that we do not have an a priori 260

bound on the genus of the components of the domains of the 261

curves uR, so we cannot directly use SFT compactness as in 262

(15, 16). 263

Fortunately, there is a local version of Gromov compactness 264

using currents which does not require any genus bound. This 265

was proved in the four-dimensional case by Taubes (17, Prop. 266

3.3), and an updated version which works in arbitrary dimen- 267

sion was proved by Doan-Wapulski (18, Prop. 1.9). By this 268

local Gromov compactness and the energy bound Eq. (8), as 269

applied in (19, §9.4), we can find a sequence Ri →∞ such that 270

the curves uϕRi
converge as currents to a proper holomorphic 271

map u to X which passes through the points x1, . . . , xk, is 272
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asymptotic as a current as s→∞ to an orbit set for Y , and273

has energy less than ck(X ′, ω′) + ε. A priori, components of274

the domain of u may have infinite genus, and to complete the275

proof of the lemma we need to arrange that they are punctured276

compact Riemann surfaces.277

We can pass to a subsequence so that there is a single278

orbit set α′ for ∂X ′ such that each uRi is in the moduli space279

MJRi (X ′, α′;ϕ(x1), . . . , ϕ(xk)), because there are only finitely280

many orbit sets for ∂X ′ with action less than ck(X ′, ω′) + ε.281

When applying Gromov compactness above, we can further use282

the arguments in (19, §9.4) to chase down the rest of the energy283

of the holomorphic curves uRi and pass to a subsequence such284

that the relative homology class [uRi ] ∈ H2(X ′, α′) does not285

depend on i.286

By Remark 2, we can assume that each uRi has no multiply287

covered components. Since we are in four dimensions, the288

relative adjunction formula of (20, Prop. 4.9) and the asymp-289

totic writhe bound of (20, Lem. 4.20) imply that there is a290

lower bound on the Euler characteristic of the domain of uRi291

depending only on the orbit set α′ and the relative homology292

class [uRi ]. We can also assume that the domain of each uRi293

has at most k components, since otherwise some components294

can be discarded without violating the requirement to pass295

through the points x1, . . . , xk. Consequently we obtain an296

i-independent upper bound on the genus of each component297

of the domain of uRi .298

We can then pass to a subsequence such that the compo-299

nents of the domain of uRi can be numbered so that the jth300

component is a punctured compact Riemann surface with the301

genus and number of punctures not depending on i, and the302

sequence of jth components with the restrictions of the maps303

uRi converges as i→∞ to a component of u whose domain304

is also a punctured compact Riemann surface.305

Properties of the capacities ck306

Theorem 6. The capacities ck of four-dimensional symplectic307

manifolds have the following properties:308

(Conformality) If r > 0 then309

ck(X, rω) = rck(X,ω). [9]310

(Increasing)311

0 = c0(X,ω) < c1(X,ω) ≤ c2(X,ω) ≤ · · · ≤ +∞.312

(Disjoint Union)313

ck

(
m∐
i=1

(Xi, ωi)

)
= max
k1+···+km=k

m∑
i=1

cki (Xi, ωi).314

(Sublinearity)315

ck+l(X,ω) ≤ ck(X,ω) + cl(X,ω).316

(Monotonicity) If there exists a symplectic embedding ϕ :317

(X,ω)→ (X ′, ω′), then318

ck(X,ω) ≤ ck(X ′, ω′).319

(C0-Continuity) For each k, the capacity ck defines a con-320

tinuous function on the set of star-shaped domains in R4
321

with respect to the Hausdorff metric on compact sets.322

(Spectrality) If (X,ω) is a four-dimensional Liouville domain 323

with boundary Y , then for each k with ck(X,ω) < ∞, 324

there exists an orbit set α in Y , which is nullhomologous 325

in X, with ck(X,ω) = A(α). 326

(ECH Index) If X is a nondegenerate star-shaped domain in 327

R4, then ck(X) <∞, and in the Spectrality property, we 328

can choose α so that its ECH index‡ satisfies I(α) ≥ 2k. 329

(Ball) 330

ck(B4(a)) = da 331

where d is the unique nonnegative integer with 332

d2 + d ≤ 2k ≤ d2 + 3d. 333

(Asymptotics) If X ⊂ R4 is a compact domain with smooth 334

boundary, then 335

ck(X) = 2 vol(X)1/2k1/2 +O(k1/4). 336

Proof. For admissible symplectic four-manifolds, the Confor- 337

mality, Increasing, Disjoint Union, and Sublinearity properties 338

follow immediately from Definition 1. It then follows from 339

Lemma 3 and Definition 4 that these properties, as well as 340

the Monotonicity property, also hold for general symplectic 341

four-manifolds. 342

The C0-Continuity property follows from Conformality and 343

Monotonicity, since if two star-shaped domains are close in 344

the Hausdorff metric, then each is contained in the scaling of 345

the other by a number slightly larger than 1. Note here that 346

if X is a star-shaped domain and r > 0, then Conformality 347

implies that ck(rX) = r2ck(X). 348

To prove the Spectrality property, suppose first that (X,ω) 349

is a nondegenerate Liouville domain with ck(X,ω) < ∞. It 350

follows from the definition of ck that there is an orbit set α 351

with ck(X,ω) = A(α), because in Eq. (4), for every curve u, 352

the energy E(u) is the action of some orbit set α, and the set 353

of all such actions is discrete. Also α is nullhomologous in X 354

because there is a holomorphic curve in X asymptotic to it. 355

If (X,ω) is a degenerate Liouville domain, then the Spec- 356

trality property follows by approximating with nondegenerate 357

Liouville domains and using Eq. (6) and Monotonicity as in 358

the proof of C0 continuity. 359

To prove the ECH Index property, first note that ck(X) < 360

∞ by Monotonicity and the upper bound on ck of a ball proved 361

in Eq. (13) below. Recall from Remark 2 that in Eq. (4), we 362

can restrict attention to holomorphic curves that do not have 363

any multiply covered components. LetMJ
∗ (X,α;x1, . . . , xk) 364

denote the set of curves inMJ (X,α;x1, . . . , xk) without mul- 365

tiply covered components. The hypothesis that X is nonde- 366

generate implies that the set of symplectic actions of orbit sets 367

in ∂X is discrete, so we can rewrite Eq. (4) as 368

ck(X) = max
J∈J (X)

x1, . . . , xk ∈ X distinct

min
{
A(α)

∣∣MJ
∗
(
X,α;x1, . . . , xk

)
6= ∅
}
.

[10] 369

If u ∈MJ
∗ (X,α;x1, . . . , xk), then it follows from the ECH 370

index inequality, see e.g. (8, §3.4), that 371

ind(u) ≤ I(α). [11] 372

‡See e.g. (21, Def. 5.2) for the definition of the ECH index of α. The definition there is stated for
ECH generators (a special kind of orbit set, see Remark 7), but is valid for arbitrary orbit sets.
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Here ind(u) denotes the Fredholm index of u, which for373

generic J ∈ J (X) is the dimension of the component of374

the moduli space MJ
∗ (X,α) containing u. In particular, if375

J ∈ J (X) and x1, . . . , xk ∈ X are generic, then for any376

u ∈MJ
∗ (X,α;x1, . . . , xk), the dimension of the component of377

the latter moduli space containing u is ind(u) − 2k ≥ 0, so378

if the latter moduli space is nonempty then by Eq. (11) we379

have I(α) ≥ 2k. It follows that for generic J ∈ J (X) and380

x1, . . . , xk ∈ X, the minimum in Eq. (10) has the form A(α)381

where I(α) ≥ 2k. By Gromov compactness as in the proof382

of Lemma 3, the maximum in Eq. (10) must be realized by383

generic J ∈ J (X) and x1, . . . , xk ∈ X.384

To prepare for the proof of the Ball property, if a, b > 0,385

define the ellipsoid386

E(a, b) =
{
z ∈ C2

∣∣∣∣ π|z1|2

a
+ π|z2|2

b
≤ 1
}
.387

Calculations e.g. in (8, §3.7) show that for any ellipsoid E(a, b)388

with a/b irrational, there are just two simple Reeb orbits,389

which have symplectic action a and b, and the ECH index390

defines a bijection from the set of orbit sets to the set of391

nonnegative even integers. Furthermore the symplectic action392

is an increasing function of the ECH index.393

To prove the Ball property, by the Conformality property394

we can assume that a = 1. Let ε > 0 be irrational and consider395

the ellipsoid396

E(1− ε, 1) ⊂ E(1, 1) = B4(1).397

For a given nonnegative integer d, if ε is sufficiently small,398

then by the previous paragraph, the orbit set of ECH index399

d2 + d has symplectic action d(1− ε). Taking ε→ 0, it follows400

from the ECH index and Monotonicity properties that401

c(d2+d)/2(B4(1)) ≥ d. [12]402

To complete the proof of the Ball property, by the Increasing403

property, we need to show that404

c(d2+3d)/2(B4(1)) ≤ d. [13]405

By Monotonocity, it is enough to show that406

c(d2+3d)/2(CP 2, ωFS) ≤ d. [14]407

Here ωFS denotes the Fubini-Study form on CP 2, normalized408

so that a line has symplectic area 1. To prove Eq. (14),409

write k = (d2 + 3d)/2; it is enough to show that for any410

J ∈ J (CP 2, ωFS) and any x1, . . . , xk ∈ CP 2, there exists a411

J-holomorphic curve, possibly with disconnected domain, of412

total degree d passing through the points x1, . . . , xk. For a413

given J , for generic x1, . . . , xk this was shown by Gromov414

(3, §0.2.B) (it also follows from Taubes’s “Seiberg-Witten =415

Gromov” theorem as explained in the proof of Theorem 17416

below), and for arbitrary x1, . . . , xk it follows from Gromov417

compactness.418

Finally, the Asymptotics property was shown for ECH419

capacities in (21, Thm. 1.1). The proof there just uses the420

Monotonicity and Disjoint Union properties for ECH capacities421

and the formula for the ECH capacities of a cube. Theorem 9422

below implies that for a cube, the ECH capacities and the423

capacities ck agree. Hence the Asymptotics property also424

holds for the capacities ck.425

Remark 7. The properties of the capacities ck in Theorem 6, 426

aside from the Sublinearity property, are also known to hold 427

for ECH capacities. These properties of ECH capacities were 428

proved in (6), except for the Asymptotics property, which is a 429

later refinement proved in (21). 430

For the ECH capacities, a slighty stronger version of the 431

ECH Index property follows from the definition of ECH capac- 432

ities reviewed in Eq. (20) below: namely one can arrange that 433

I(α) = 2k, and furthermore that the orbit set α is an ECH 434

generator. Here we say that an orbit set α = {(αi,mi)} is an 435

ECH generator if mi = 1 whenever αi is hyperbolic (meaning 436

that the linearized return map has real eigenvalues). 437

Remark 8. Some applications of ECH capacities only need 438

the properties in Theorem 6, and thus can be re-proved using 439

the capacities ck. For example, Irie (22) proved a C∞ closing 440

lemma for Reeb vector fields on closed three-manifolds, using 441

the asymptotics of the ECH spectrum (23). In the case of 442

S3 with the standard contact structure, which corresponds to 443

star-shaped hypersurfaces in R4, the ECH spectrum agrees 444

with the ECH capacities of the corresponding star-shaped 445

domain, and Irie’s proof of the closing lemma works using only 446

the C0-Continuity, Spectrality, and Asymptotics properties in 447

Theorem 6. 448

Computation for convex toric domains 449

We now show that for “convex toric domains”, the capacities 450

ck agree with a known combinatorial formula for their ECH 451

capacities§. In fact, the capacities ck for these examples are 452

uniquely determined by the properties in Theorem 6. 453

Let Ω be a compact domain in R2
≥0. Define the toric domain 454

XΩ =
{
z ∈ Cn

∣∣ π (|z1|2, |z2|2
)
∈ Ω
}
. 455

Define a (four-dimensional) convex toric domain to be a toric 456

domain XΩ as above such that the set 457

Ω̂ =
{
µ ∈ R2 ∣∣ (|µ1|, |µ2|) ∈ Ω

}
458

is convex¶. Define a (four-dimensional) concave toric domain 459

to be a toric domain XΩ such that the set R2
≥0 \ Ω is convex. 460

If XΩ is a four-dimensional convex toric domain, let ‖ · ‖∗Ω 461

denote the norm on R2 defined by 462

‖v‖∗Ω = max
{
〈v, w〉

∣∣ w ∈ Ω̂
}
. 463

If γ : [α, β] → R2 is a continuous, piecewise differentiable 464

curve, define its Ω-length by 465

`Ω(γ) =
∫ β

α

‖Jγ′(t)‖∗Ω dt [15] 466

where J =
(

0 −1
1 0

)
. 467

Define a convex integral path to be a polygonal path Λ in 468

the nonnegative quadrant from the point (0, b) to the point 469

(a, 0), for some nonnegative integers a and b, with vertices at 470

lattice points, such that the region bounded by Λ and the line 471

segments from (0, 0) to (a, 0) and from (0, 0) to (0, b) is convex. 472

Define L̂(Λ) to be the number of lattice points in this region, 473

including lattice points on the boundary. 474

§This formula appears in (24, Prop. 5.6). It is a specialization of a result in (10, Cor. A.12) computing
the ECH capacities of a more general notion of “convex toric domain”.

¶This is slightly misleading terminology, as a “convex toric domain” is not the same thing as a toric
domain that is convex; see (25, §2) for clarification.
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Theorem 9. If XΩ is a four-dimensional convex toric domain,475

then476

ck(XΩ) = min{`Ω(Λ) | L̂(Λ) = k + 1} [16]477

where the minimum is over convex integral paths Λ.478

Proof. It is shown in (24, Lem. 5.4) that given L, ε >479

0, there is a nondegenerate star-shaped domain X ′ with480

distC0(X ′, XΩ) < ε with the following property: Every or-481

bit set α for X ′ with action A(α) < L determines a convex482

integral path Λ such that |A(α)− `Ω(Λ)| < ε and the ECH in-483

dex I(α) ≤ 2(L̂(Λ)−1). It then follows from the C0-Continuity484

and ECH Index properties in Theorem 6 that485

ck(XΩ) ≥ min{`Ω(Λ) | L̂(Λ) ≥ k + 1}. [17]486

We now prove the reverse inequality. Let a > 0 be the487

smallest real number such that XΩ ⊂ B4(a). In (10, §2.2), a488

“negative weight sequence” is defined; this is a nonincreasing489

(possibly finite) sequence of positive real numbers (a1, a2, . . .).490

It has the property that there is a symplectic embedding491

XΩ t
∐
i

int(B4(ai)) −→ B4(a)492

which fills the volume of B4(a). It follows from the Disjoint493

Union property that494

ck(XΩ) ≤ inf
l≥0

(
ck+l(B4(a))− cl

(∐
i≤l

B4(ai)

))
.495

Furthermore, ck agrees with cECH
k for a disjoint union of balls496

by the Disjoint Union and Ball properties, so we can rewrite497

the above inequality as498

ck(XΩ) ≤ inf
l≥0

(
cECH
k+l (B4(a))− cECH

l

(∐
i≤l

B4(ai)

))
. [18]499

Finally, a combinatorial calculation in (10, §A.3) shows that500

the right hand side of Eq. (18) is less than or equal to the501

right hand side of Eq. (17).502

To complete the proof, we observe that503

min{`Ω(Λ) | L̂(Λ) ≥ k + 1} = min{`Ω(Λ) | L̂(Λ) = k + 1},504

as explained in (10, §A.3).505

Remark 10. By Theorem 9 and (24, Prop. 5.6), the capacities506

ck agree with the ECH capacities for convex toric domains. It507

follows from the Monotonicity property that all obstructions to508

symplectic embeddings between convex toric domains coming509

from ECH capacities can be recovered using the capacities ck.510

Remark 11. Going beyond ECH capacities, it is shown in (24,511

Thm. 1.19) that if XΩ and XΩ′ are four-dimensional convex512

toric domains, and if there exists a symplectic embedding513

XΩ → XΩ′ , then a certain combinatorial criterion holds. This514

leads to stronger symplectic embedding obstructions in some515

cases where ECH capacities do not give sharp obstructions,516

for example to symplectically embedding a polydisk into a ball517

or ellipsoid; see (24, 26, 27).518

The proof of (24, Thm. 1.19) rests on the existence of519

an ECH index 0 holomorphic curve with certain properties520

in (the completion of) a symplectic cobordism between the521

(perturbed) boundaries of XΩ and XΩ′ , which is produced 522

using Seiberg-Witten theory. One can re-prove the existence 523

of such a curve using the methods of this paper, namely by 524

using the existence of curves in XΩ′ with point constraints in 525

the image of XΩ, as guaranteed by the capacities ck, and then 526

neck stretching as in the proof of Lemma 3. 527

Comparison with ECH capacities 528

Aside from the examples of toric domains, we do not know to 529

what extent ck agrees with cECH
k , but we do have the following 530

general fact, whose proof (and statement) use Seiberg-Witten 531

theory: 532

Theorem 12. Let X be a four-dimensional Liouville domain 533

and let k be a nonnegative integer. Then 534

ck(X) ≤ cECH
k (X). 535

To prepare for the proof of Theorem 12, we now recall 536

the definition of the ECH capacities cECH
k , for the simplest 537

case of four-dimensional nondegenerate Liouville domains with 538

connected boundary. 539

Let Y be a closed oriented three-manifold and let λ be a 540

nondegenerate contact form on Y . The following is an outline 541

of the definition of the embedded contact homology ECH(Y, λ). 542

We define ECC(Y, λ) to be the free Z/2-module‖ generated by 543

the ECH generators; see Remark 7. For a generic λ-compatible 544

almost complex structure J on R× Y , the ECH differential 545

∂J : ECC(Y, λ) −→ ECC(Y, λ) 546

is defined as follows. If α and β are ECH generators, then the 547

coefficient of β in ∂Jα, which we denote by 〈∂Jα, β〉 ∈ Z/2, 548

is a mod 2 count of “J-holomorphic currents” C in R × Y , 549

modulo R translation, that are asymptotic to α as s→ +∞ 550

and to β as s → −∞, and that have ECH index I(C) = 1. 551

See (8, §3) for detailed definitions. It is shown in (29) that 552

∂2
J = 0. We define ECH(Y, λ) to be the homology of the chain 553

complex (ECC(Y, λ), ∂J). 554

It follows from the definition of λ-compatible almost com- 555

plex structure that the ECH differential decreases symplectic 556

action: 557

〈∂Jα, β〉 6= 0 =⇒ A(α) > A(β). [19] 558

As a result, for each L ∈ R, the ECH generators with action 559

less than L span a subcomplex of (ECC(Y, λ), ∂J ). We define 560

the filtered ECH, which we denote by ECHL(Y, λ), to be the 561

homology of this subcomplex. 562

It was shown by Taubes (30) that ECH(Y, λ) is isomorphic 563

to a version of Seiberg-Witten Floer cohomology defined by 564

Kronheimer-Mrowka (31). Taubes’s isomorphism was used in 565

(32, Thm. 1.3) to show that ECH(Y, λ) and ECHL(Y, λ) do 566

not depend on J ; that is, the homologies for different choices 567

of J are canonically isomorphic to each other. 568

There is also a map 569

U : ECHL(Y, λ) −→ ECHL(Y, λ) 570

induced by a chain map which counts J-holomorphic currents 571

with ECH index 2 passing through a base point in R × Y . 572

This map does not depend on the choice of base point when 573

Y is connected; otherwise it depends on a choice of connected 574

component of Y . See (33, §2.5) for more details. 575

‖ It is also possible to define ECH with integer coefficients (28, §9).
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Now let (X,ω) be a four-dimensional nondegenerate Li-576

ouville domain with connected boundary Y and associated577

contact form λ. In this case the kth ECH capacity is defined578

by579

cECH
k (X,ω) = inf

{
L ≥ 0

∣∣ ∃η ∈ ECHL(Y, λ) : Ukη = [∅]
}
.

[20]580

Here [∅] is the homology class in ECHL(Y, λ) of the empty581

set of Reeb orbits, which is a cycle by Eq. (19). Note that by582

Eq. (21) below, the existence of an exact filling of Y (namely583

the Liouville domain X) implies that the class [∅] 6= 0 in584

ECHL(Y, λ).585

Proof of Theorem 12. Let Y denote the boundary of X. For586

brevity we just explain the case when Y is connected; the587

general case follows by a similar argument using the more588

general definition of ECH capacities in (6, Def. 4.3).589

Since ck and cECH
k both satisfy Conformality and Mono-590

tonicity, by a continuity argument using Eq. (6) and the591

analogous equation for cECH
k , we can assume without loss of592

generality that X is nondegenerate.593

Let λ denote the contact form on Y . As explained for594

example in (6, Thm. 2.3), for each L ≥ 0, the exact filling X595

of Y induces a cobordism map596

Φ : ECHL(Y, λ) −→ Z/2, [21]597

defined using Seiberg-Witten theory, which sends [∅] to 1.598

Now suppose that J ∈ J (X) and x1, . . . , xk ∈ X. Heuris-599

tically one might expect that if J and x1, . . . , xk are generic,600

then the composition601

Φ ◦ Uk : ECHL(Y, λ) −→ Z/2 [22]602

is induced by a cocycle603

φ : ECCL(Y, λ) −→ Z/2604

that counts J-holomorphic curves in X with ECH index 2k605

passing through x1, . . . , xk. What one can actually prove,606

as in the “holomorphic curves axiom” for ECH cobordism607

maps in (32, Thm. 1.9) and the comparison of U maps in608

(34, Thm. 1.1), is the following. For any J ∈ J (X) and any609

x1, . . . , xk ∈ X (not necessarily generic), the composition in610

Eq. (22) is induced by a (noncanonical) cocycle φ with the611

following property: If α is an ECH generator and φ(α) 6= 0,612

then there exists a “broken J-holomorphic current” in X613

passing through x1, . . . , xk. This last statement implies that614

there is an orbit set α′ with A(α′) ≤ A(α) and a holomorphic615

curve inMJ(X,α′;x1, . . . , xk).616

Now suppose that L > cECH
k (X). Then by the definition617

of ECH capacities in Eq. (20), there exists η ∈ ECHL(Y, λ)618

with Ukη = [∅]. It follows that (Φ ◦ Uk)(η) = 1. By the619

previous paragraph, for any J ∈ J (X) and any x1, . . . , xk ∈ X,620

there exists an ECH generator α′ with A(α′) < L such that621

MJ (X,α′;x1, . . . , xk) 6= ∅. It then follows from Eq. (10) that622

ck(X) ≤ L. Since L > cECH
k (X) was arbitrary, the theorem623

follows.624

Remark 13. One can understand the inequality in Theo-625

rem 12 as follows: The number ck(X) measures the minimal626

energy of holomorphic curves in X through k points that are627

guaranteed to exist, for whatever reason. On the other hand,628

cECH
k (X) measures the energy of certain holomophic curves629

in X through k points that are guaranteed to exist for ECH630

reasons.631

Remark 14. There exist examples of Liouville domains and 632

positive integers k for which ck is strictly less than cECH
k . An 633

example is given by the unit cotangent bundle D∗S2(4π), 634

where S2(a) denotes the 2-sphere with the round metric of 635

area a. It follows from results in (35, 36) that there exist 636

symplectic embeddings 637

int(P (2π, 2π)) −→ int(D∗S2(4π)) −→ S2(2π)× S2(2π). 638

Here the left hand side is a polydisk; see equation Eq. (24) 639

for the notation. We will see in Remark 19 below that the 640

capacities ck are the same for P (2π, 2π) and S2(2π)× S2(2π), 641

so by Monotonicity they are also the same for D∗S2(4π). 642

However the ECH capacities cECH
k (D∗S2(4π)) are computed 643

in (35) and found to be larger for some k. 644

The main reason for the discrepancy is the following: The 645

Spectrality property in Theorem 6 asserts that ck of a Liouville 646

domain X with boundary Y is the action of an orbit set which 647

is nullhomologous in X. However by the definition of the ECH 648

capacities in Eq. (20), cECH
k (X) is the action of an orbit set 649

which is nullhomologous in Y , a more restrictive condition. 650

Additional computations using Seiberg-Witten theory 651

We now compute some additional examples of the capacities ck 652

using Seiberg-Witten theory (which could perhaps be avoided 653

with more work). 654

If XΩ is a four-dimensional concave toric domain as defined 655

above, define an “anti-norm” on R2 by 656

[v]Ω = min{〈(|v1|, |v2|), w〉 | w ∈ ∂+Ω} 657

where ∂+Ω denotes the closure of the portion of ∂Ω not on 658

the axes. If γ is a continuous, piecewise differentiable curve in 659

R2, now define its Ω-length as in Eq. (15), but replacing the 660

norm ‖ · ‖ by the anti-norm [·]. 661

Define a concave integral path to be a polygonal path Λ in 662

the nonnegative quadrant from the point (0, b) to the point 663

(a, 0), for some nonnegative integers a and b, with vertices at 664

lattice points, which is the graph of a convex function. Define 665

Ľ(Λ) to be the number of lattice points in the region bounded 666

by Λ and the axes, this time (in contrast to the case of convex 667

toric domains) not including lattice points on Λ. 668

Theorem 15. If XΩ is a four-dimensional concave toric do- 669

main, then 670

ck(XΩ) = max{`Ω(Λ) | Ľ(Λ) = k} [23] 671

where the maximum is over concave integral paths Λ. 672

Remark 16. It is shown in (37, Thm. 1.21) that the same 673

formula holds for the ECH capacities cECH
k (XΩ). 674

Proof of Theorem 15. In (37, §1.3), see also (21, §1.3), a 675

“weight expansion” of XΩ is defined; this is a nonincreasing 676

(possibly finite) sequence of positive real numbers (a1, a2, . . .). 677

There is a symplectic embedding 678∐
i

intB4(ai) −→ XΩ 679

which fills the volume of XΩ. It follows from the Monotonicity 680

property that 681

ck(XΩ) ≥ ck

(∐
i≤k

B4(ai)

)
. 682
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By the Ball and Disjoint Union properties, we have683

ck

(∐
i≤k

B4(ai)

)
= cECH

k

(∐
i≤k

B4(ai)

)
.684

It is shown in (37, §2) by a combinatorial calculation that685

cECH
k

(∐
i≤k

B4(ai)

)
≥ max{`Ω(Λ) | Ľ(Λ) = k}.686

By Remark 16 and Theorem 12, the above inequalities are687

equalities.688

We now consider some closed symplectic manifolds. Given689

a > 0, let CP 2(a) denote CP 2 with the Fubini-Study form,690

scaled so that a line has symplectic area a. Let S2(a) denote691

S2 with a symplectic form of area a.692

Theorem 17. Let a, b > 0 and let k be a nonnegative integer.693

(a) ck(CP 2(a)) = da where d is the unique nonnegative inte-694

ger with d2 + d ≤ 2k ≤ d2 + 3d.695

(b) ck(S2(a) × S2(b)) = min{am + bn | m,n ∈ Z≥0, (m +696

1)(n+ 1) ≥ k + 1}.697

To prepare for the proof of this theorem, if (X,ω) is a closed698

symplectic four-manifold with b+2 (X) = 1, and if A ∈ H2(X),699

let SW (X,ω,A) ∈ Z/2 denote the mod 2 Seiberg-Witten700

invariant of X, for the spin-c structure determined by ω and701

A, in the symplectic chamber; see the review in (38, §2). Define702

the ECH index703

I(A) = A ·A+ 〈c1(TX), A〉 ∈ Z.704

Lemma 18. Let (X,ω) be a closed symplectic four-manifold∗∗
705

with b+2 (X) = 1 and let A ∈ H2(X). If SW (X,ω,A) 6= 0 and706

I(A) = 2k, then ck(X,ω) ≤ 〈[ω], A〉.707

Proof. If J ∈ J (X,ω) and x1, . . . , xk ∈ X are generic, then it708

follows from Taubes’s “Seiberg-Witten = Gromov” theorem709

(39) that there exists a J-holomorphic curve (possibly with710

disconnected domain) in the homology class A passing through711

the points x1, . . . , xk. Thus712

inf
u∈MJ (X;x1,...,xk)

E(u) ≤ 〈[ω], A〉713

when J, x1, . . . , xk are generic. A Gromov compactness argu-714

ment shows that the supremum in the definition of ck(X,ω)715

in Eq. (4) is realized for generic J, x1, . . . , xk.716

Proof of Theorem 17. (a) Let d be the integer in the statement717

of the theorem. Then by Eq. (12) and the Conformality, Mono-718

tonicity, and Increasing properties, we have ck(CP 2(a)) ≥ da.719

On the other hand, by Eq. (14) and the Conformality, Mono-720

tonicity, and Increasing properties, we have ck(CP 2(a)) ≤ da.721

The latter inequality also follows from Lemma 18 and the722

Increasing property, because if A ∈ H2(CP 2) is d times the723

homology class of a line, then I(A) = d2 + 3d, and as reviewed724

in (38, §2.4) we have SW (A) 6= 0.725

(b) Let L denote the right hand side of the equation in726

(b). If m and n are nonnegative integers, and if A = (m,n) ∈727

∗∗ If b+
2 (X) > 1 then the lemma is also true (now the Seiberg-Witten invariant does not depend

on a choice of chamber), but vacuous, because in this case one of the corollaries of Taubes’s
“Seiberg-Witten = Gromov” theorem in (39) is that SW (X,ω,A) 6= 0 implies I(A) = 0.

H2(S2×S2), then I(A) = 2(mn+m+n). As reviewed in (38, 728

§2.4), we have SW (A) 6= 0. It follows from Lemma 18 and 729

the Increasing property that 730

ck(S2(a)× S2(b)) ≤ L. 731

To prove the reverse inequality, consider the polydisk 732

P (a, b) =
{
z ∈ C2 ∣∣ π|z1|2 ≤ a, π|z2|2 ≤ b

}
. [24] 733

A calculation using Theorem 9 shows that 734

ck(P (a, b)) = L. 735

Since the interior of P (a, b) symplectically embeds into S2(a)× 736

S2(b), we are done by Monotonicity. 737

Remark 19. Theorem 17 shows that the capacities ck are the 738

same for CP 2(a) and the ball B4(a); and likewise they are the 739

same for S2(a)× S2(b) and the polydisk P (a, b). This means 740

that if the capacities ck obstruct a symplectic embedding of a 741

symplectic four-manifold (X,ω) into B4(a) or P (a, b) respec- 742

tively, then a symplectic embedding of (X,ω) into CP 2(a) or 743

S2(a) × S2(b) respectively is not possible either. The same 744

statement is true for the ECH capacities cECH
k when X is a 745

star-shaped domain by (38, Thm. 1.4). 746

An even simpler definition of capacities 747

To conclude, we now define an even simpler series of symplectic 748

capacities, for symplectic manifolds of any dimension. 749

If (X,ω) is a symplectic manifold, let J (X,ω) denote the 750

set of ω-compatible almost complex structures on X. Given 751

J ∈ J (X,ω), let PJ (X) denote the set of proper holomorphic 752

maps 753

u : (S, j) −→ (X, J) 754

where (S, j) is a one-dimensional complex manifold (not nec- 755

essarily compact or connected), and we assume that the re- 756

striction of u to each component of S is nonconstant. Note 757

that regarded as a two-dimensional real manifold, S does not 758

have boundary. Given u as above, define the energy 759

E(u) =
∫
S

u∗ω ∈ [0,∞]. 760

Note that the energy is well-defined because u∗ω is point- 761

wise nonnegative. If x1, . . . , xk ∈ X are distinct, let 762

PJ(X;x1, . . . , xk) denote the set of proper maps u as above 763

such that x1, . . . , xk ∈ u(S). 764

Definition 20. Let (X,ω) be a compact symplectic manifold 765

(possibly disconnected and/or with boundary), and let k be a 766

nonnegative integer. Define 767

ĉk(X,ω) = sup
J∈J (X,ω)

x1, . . . , xk ∈ int(X) distinct

inf
u∈PJ (int(X);x1,...,xk)

E(u) ∈ [0,∞].
[25] 768

Remark 21. It follows immediately from the definition that 769

the capacities ĉk satisfy the Conformality, Increasing, Disjoint 770

Union, and Sublinearity properties in Theorem 6. 771

We can also quickly show that they satisfy Monotonicity 772

under symplectic embeddings ϕ : (X,ω)→ (X ′, ω′) between 773

symplectic manifolds of the same dimension, without using 774
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Gromov compactness. This is because since X is compact,775

any J ∈ J (X,ω) can be extended to J ′ ∈ J (X ′, ω′) with776

J ′|ϕ(X) = ϕ∗J .777

One can now further deduce that each ĉk is a C0-continuous778

function on the set of star-shaped domains in R2n.779

Remark 22. When k = 1, the capacity ĉ1 is very similar††
780

to the “symplectic width” defined by Gromov in (40, §4.1).781

In particular, ĉ1(B2n(a)) = a. The symplectic width should782

not be confused with the Gromov width cGr defined in the783

introduction. The Monotonicity property of ĉ1 implies that784

cGr ≤ ĉ1.785

In a sense the capacities ĉk are more natural than the ck,786

because for domains that are not Liouville domains, they are787

defined directly, without taking a supremum over symplectic788

embeddings as in Definition 4. However the price for this is that789

we have to consider holomorphic curves without nice boundary790

conditions, which makes computations more difficult.791

Remark 23. Suppose that dim(X) = 4. If X is closed, then792

ĉk(X,ω) = ck(X,ω) by definition. If (X,ω) is a Liouville793

domain, then we have794

ĉk(X,ω) ≤ ck(X,ω). [26]795

This is because if ε > 0, then any almost complex structure796

J ∈ J (X,ω) can be extended to an ω-compatible almost797

complex structure on X whose restriction to [ε,∞)×Y agrees798

with an eελ-compatible almost complex structure on R× Y .799

It follows from this as in Eq. (6) that800

ĉk(X,ω) ≤ eεck(X,ω).801

We can choose ε > 0 arbitrarily small, and this proves Eq. (26).802

We conjecture that in fact ĉk(X,ω) = ck(X,ω) when (X,ω)803

is a four-dimensional Liouville domain.804

Example 24. The simplest example of ĉk that we do not805

know how to compute is ĉ3 of a four-dimensional ball. We806

currently just know that807

3
2 ≤ ĉ3(B4(1)) ≤ 2.808

Here the first inequality holds because three copies of809

int(B4(1/2)) can be symplectically embedded into B4(1), and810

the second inequality holds because int(B4(1)) can be sym-811

plectically embedded into CP 2(1).812
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