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Abstract: Optical coherence tomography (OCT) has seen widespread success as an in vivo
clinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology,
and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth
penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D
microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required
to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction
tomography (OCRT), a computational extension of OCT which synthesizes an incoherent contrast
mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a
resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free
computational 3D microscope features a novel optical design incorporating a parabolic mirror
to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over
up to ±75◦ without moving the sample. We demonstrate that 3D OCRT reveals 3D features
unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples.

© 2022 Optica Publishing Group

1. Introduction

First introduced 30 years ago, optical coherence tomography (OCT) [1] has since evolved
into a broad class of 3D imaging techniques based on low-coherence interferometry that has
impacted a variety of fields, including ophthalmology, cardiology, and gastroenterology. OCT
owes much of its success to its coherent detection mechanism, attaining near shot-noise-limited
imaging performance and enabling high-rate 3D volumetric imaging with millimeter-scale depth
penetration in scattering tissues without optical clearing [2, 3].
However, this same detection strategy is also the source of OCT’s most notable limitations –

poor lateral resolution due to its tradeoff with the depth of focus (DOF), and coherent speckle
noise that can be similar in magnitude to the desired signal [4], arising in part from the band-pass
transfer function of OCT in 3D :-space [5]. Existing DOF-extension approaches, such as beam-
shaping [6–9], suffer from loss in signal-to-noise ratio (SNR) due to backcoupling inefficiencies.
Further, digital refocusing techniques, such as interferometric synthetic aperture microscopy
(ISAM) [10], also lose SNR away from the nominal focus and, as coherent synthesis techniques,
require phase-stable measurements. On the other hand, previous angular compounding speckle
reduction approaches [11] have incorporated only limited angular ranges, thus restricting their
effectiveness. Furthermore, wavefront-modulation approaches [12] can degrade resolution and
SNR. These longstanding limitations of OCT degrade the interpretability and effectiveness of its
contrast mechanism, compared to incoherent microscopy techniques, and ultimately limit the
diagnostic utility of OCT.



Here, we present 3D optical coherence refraction tomography (OCRT), a new computational
volumetric microscopy technique that extends OCT, featuring a multi-angle incoherent :-space
synthetic reconstruction algorithm. 3D OCRT thus not only exhibits the coherent detection
sensitivity advantages of OCT, but also exhibits a speckle-free incoherent contrast mechanism
analogous to that of incoherent microscopy, together with multifold enhanced lateral resolution
over an extended 3D field of view (FOV). The key innovations of 3D OCRT are two-fold. First,
we experimentally demonstrate a novel optomechanical design featuring a parabolic mirror as the
imaging objective, with which we were able to acquire OCT volumes from multiple views over
up to ±75◦ without moving the sample. More generally, our approach is the first experimental
demonstration of a more general class of conic mirror-based methods that can in principle acquire
images from multiple views over up to ±90◦ across two rotation axes using low-inertia scanners
(e.g., galvanometers) as the only moving parts [13]. Existing approaches have achieved much
smaller angular ranges [14] or required mechanically rotating the imaging optics [15]. Our work
is thus a generalization of our previous work on 2D OCRT, which demonstrated substantial
improvements over conventional OCT in 2D through single-axis sample rotation [16]. Here,
we demonstrate the capture of 5D plenoptic datasets (3D space + 2D angle) without moving
the sample itself, generating a wealth of data from which new sources of 3D contrast can be
computationally synthesized.
To handle these large 5D datasets, our second key innovation is a novel computationally

efficient 3D reconstruction algorithm that leverages differentiable programming frameworks
(i.e., TensorFlow [17]) and optimization techniques developed in the deep learning community
for solving inverse optimization and image registration problems. In particular, our approach
allows dense 3D reconstruction from simultaneous participation of all multi-angle OCT volumes
across arbitrarily large 5D datasets (in our case, ∼90 GB), using a single memory-limited
graphics processing unit (GPU). This algorithm is a substantial improvement over our 2D OCRT
reconstruction algorithm [16], whose large memory requirement precluded GPU use, even on
datasets that were several orders of magnitude smaller (∼100 MB).

2. 3D OCRT

2.1. Incoherent 3D :-space synthesis with OCRT

While the 3D OCRT reconstruction algorithm operates in real space, it is more straightforward to
explain the theory of 3D OCRT via transfer functions in Fourier space (or :-space [5]). Although
OCT is a coherent imaging modality characterized by a band-pass coherent transfer function
(CTF) [5], OCRT differs from 2D [18, 19] and 3D [20] coherent synthetic aperture techniques in
that the multi-angle OCT volumes are combined incoherently, that is, by discarding the phase
and only operating on intensity (Fig. 1f). As a result, the band-pass CTF effectively becomes
demodulated down to a low-pass [5], which can be understood via the Wiener-Khinchin theorem,
by which the magnitude-squaring of the OCT image in real-space corresponds to autocorrelation
in :-space. As a result, the complex exponentials windowed by the band-pass OCT CTF are
rephased to a common origin (i.e., DC), so that OCRT doesn’t have the phase stability requirement
that many other coherent synthetic aperture approaches have.

Since these demodulated CTFs, or incoherent transfer functions (ITF), overlap at the :-space
origin, they can be combined to form an expanded ITF when the OCT resolution is anisotropic
(Fig. 1f). This is often the case, as the lateral resolution is typically >10 µm, while the
axial resolution can essentially be tuned independently via the source properties and can be
submicrometer [21]. Thus, the lateral resolution increases monotonically with angular coverage
(Fig. S1). In the limit of full angular coverage (≥180◦), the synthesized ITF is isotropic and
given by the original OCT axial resolution (or lateral resolution, whichever is better [22]). Finally,
because the observed speckle pattern decorrelates as a function of angular separation, we observe
significant speckle reduction because of the incoherent angular compounding.
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Fig. 1. Novel parabolic-mirror-based imaging system enables multi-view imaging over
wide angular ranges for OCRT. (a-b) Schematic of our parabolic-mirror-based OCRT
imaging system, featuring a 2D translating probe that angularly scans a collimated
beam with galvanometers (G). The sample is placed at the center of a water-filled glass
optical dome. (c) The same result can be achieved without 2D translation using another
set of galvanometers. (d) 3D visualization of the angular coverage by a parabolic mirror
via the local optical axis for each of the 96 lateral probe positions that we used in our
experiments. Rays are color-coded by order of acquisition, from purple to red. (e) The
corresponding azimuthal and inclination angles of each ray in (d). (f) k-space theory of
OCRT. (g) Example en face projections of a 5D OCRT dataset of a fruit fly, color-coded
by incidence angle, consistent with (d) and (e). The lateral FOV of each projection is
∼1.3×1.3 mm2.

2.2. Plenoptic imaging with parabolic mirrors

To obtain this resolution enhancement, we require OCT volumes acquired over a very wide
angular range, ideally without requiring sample rotation to maximize the generality of OCRT.
To this end, we replaced the more typical refractive convex imaging objective with a reflective
concave parabolic mirror, which allows independent 4D control of sample-incident the 2D lateral
position and 2D angle (azimuthal and inclination) via scanners placed conjugate and anticonjugate
to the sample [14] (Fig. 1a-c). Parabolic mirrors are infrequently used for imaging because of
their tilt-induced aberrations that restrict FOV, often necessitating sample translation [23, 24].
However, we have exploited the quadratic dependence of FOV on lateral spot size when imaging
in an off-axis configuration [13] to obtain millimetric FOVs with a lateral resolution of ∼15
µm, consistent with conventional OCT systems. We note that this quadratic scaling with lateral



resolution is identical to that of the DOF, meaning that tilt aberrations of parabolic mirrors do
not add additional FOV constraints on top of the lateral-resolution-DOF tradeoff we seek to
circumvent [13]. Our experimental setup also features a water-filled optical dome placed at the
mirror’s focus, where the sample is positioned (Figs. 1a,b, S2), to substantially reduce spherical
aberrations that would otherwise occur when a focused beam refracts obliquely across a flat RI
discontinuity (e.g., coverslip) interface [13].

To test the feasibility of this novel use of parabolic mirrors and optical domes, we translated an
angularly scanning collimated beam across the mirror’s half aperture to vary the sample-incidence
angle (Fig. 1a,b), noting that the same effect can be achieved rapidly with another pair of
galvanometers (Fig. 1c). With this setup, we were able to obtain plenoptic measurements of the
samples, resulting in 5D datasets consisting of approximately 1.3 × 1.3 × 1.65 mm3 volumes
over ±75◦ and ±25◦ about the H- and G-axes, respectively (Fig. 1d,e). Example en face OCT
images from a 5D dataset of a fruit fly, projected across the I dimension, are shown in Fig. 1g.

2.3. Large-scale, joint OCT volume registration and computational 3D reconstruction

Given this 5D plenoptic dataset, the goal of 3D OCRT is to register and superimpose the multi-
angle volumes to realize the incoherent 3D :-space synthesis and speckle reduction described
earlier. The registration algorithm jointly optimizes two sets of parameters: 1) sample-extrinsic,
or those describing the positions and orientations of the sample-incident rays, as governed by
the imaging system, and 2) sample-intrinsic, or those describing deformation of ray trajectories
within the sample, as governed by its spatially varying RI and the ray equation. Note that the 3D
RI distribution is distinct from the backscatter-based 3D reconstruction, the latter of which is not
optimized by gradient descent but by an iterative backprojection algorithm, as we will see shortly.
In theory, the sample-extrinsic parameters are determined by the parabolic mirror’s sole

parameter (i.e, its focal length), the entry positions across the mirror aperture, and the angular
scan amplitude (for lateral scanning across the sample), and can thus be modeled through
analytical ray tracing. In practice, we account for imperfections or misalignments by allowing
a separate set of optimizable parameters for each multi-angle OCT volume, controlling the
sample-incident angle, telecentricity, lateral scan range, and field curvature, among others (see
Supplementary Note 1). The sample-extrinsic parameters generate the boundary conditions,
r0 = (G0, H0, I0) and u0 = (DG,0, DH,0, DI,0), associated with every A-scan. These rays are
propagated through the sample’s 3D RI distribution, =(r), which is coaligned with the 3D
backscatter-based reconstruction, '(r), where r = (G, H, I) is the 3D spatial coordinate.
Because the sample is roughly index-matched via water immersion, we assume that the rays

do not change direction upon propagation, but rather only get delayed. This approximation
significantly reduces the computational costs of the full solution to the ray equation, as the spatial
partial derivatives are no longer needed. Thus, given the boundary conditions, r0 and u0, ray
propagation through the inhomogeneous RI distribution yields the trajectory of the A-scan; that
is, the position of the 8th pixel of the A-scan is given by

r8 = r8−1 +
ΔI

=(r8−1)
u0, (1)

where ΔI is the axial pixel sampling period in air.
Since we cannot fit all the A-scans in the 5D OCRT datasets in GPU memory, we use stratified

random batching of the A-scans and their corresponding boundary conditions, whereby the same
number of A-scans, =batch, from each OCT volume are randomly selected. Each iteration thus
processes =point = =� × =batch × =vol points in 3D, where =� is the length of an A-scan and =vol
is the number of multi-angle OCT volumes. Upon propagation of all =batch × =vol rays in the
stratified batch according to Eq. 1, we obtain a collection of 3D points, rbatch

9
(i.e., a flattened

matrix of dimensions =point × 3), which is associated with Abatch
9

(i.e., a vector of length =point),



containing the corresponding OCT A-scan measurement data. We also optimize a global A-scan
background, Aback, a length-=� vector that is subtracted from every A-scan from every volume,
to account for residual background noise stemming, for example, from the OCT source spectrum:

Abatch
9 ← Abatch

9 − Aback . (2)

Then, initializing the reconstruction to a 3D tensor of zeros, '0 (r), whose size depends on the
target 3D FOV reconstruction volume and the voxel size, the weighted moving average estimate
of the reconstruction at the 9 th iteration is given by

' 9 (r) ← ' 9−1 (r)
' 9 (rbatch

9−1 ) ← <' 9−1 (rbatch
9−1 ) + (1 − <)A

batch
9−1 ,

(3)

where 0 < < < 1 is a momentum hyperparameter that tunes how quickly to update the
moving average reconstruction for each batch. 1 − < should be on the order of the fraction
of all A-scans that are in one batch. Since ' 9 (r) is discretized, the nearest 2 × 2 × 2 voxel
neighborhood surrounding each continuous point in rbatch

9−1 is assigned a value according to the
trilinear interpolation weights. This update rule is similar to one we recently proposed for
parallax-aware image stitching for photogrammetry [25], except the relative batch is much smaller
here. As a result, earlier estimates of the reconstruction will be significantly biased towards the
zeros initialization, especially since < should be close to 1 in memory-limited settings. This
is a similar problem encountered and addressed by the Adam optimizer [26], one of the most
commonly used variants of stochastic gradient descent for deep learning applications and the
one that we use for our inverse optimization, described below. In our case, instead of correcting
the bias in the reconstruction, which would lead to noisy earlier estimates, we correct it in the
forward prediction,

Ãbatch
9−1 =

' 9 (rbatch
9−1 )

1 − <̃ 9
, (4)

where <̃ is the effective momentum that may differ from <, depending on the voxel size of the
reconstruction. Given this forward prediction, we quantify how well the current batch of A-scans
is registered to the current estimate of the reconstruction via the mean squared error (MSE),

MSE 9 =
1
=�
| |Ãbatch

9−1 − Abatch
9−1 | |

2. (5)

Both the sample-intrinsic and sample-extrinsic parameters are optimized via stochastic gradient
descent by minimizing Eq. 5, as well as regularization terms operating on the 3D RI distribution
to promote smoothness and enforce object support (see Supplementary Note 1 for details).
Optimization was performed using TensorFlow 2.2 [17] on a Google Cloud Platform virtual
machine with 6 vCPUs, 32 GB of RAM, and a 16-GB Nvidia Tesla T4 GPU.

This inverse optimization algorithm of OCRT differs from that of many other inverse problems
in that the resolution-enhanced, speckle-reduced reconstruction, '(r), is not itself a directly
optimizable parameter, but rather it is generated through superposition of all OCT volumes, akin
to the backprojection algorithm of X-ray computed tomography (CT). However, since requiring
joint participation of the entire 5D dataset at every gradient descent iteration, though possible in
our original 2D implementation [16], would be computationally infeasible, we have proposed
a stratified batching approach that incrementally accumulates the A-scan contributions to the
reconstruction voxels jointly with the registration (Eq. 3). Thus, for example, in some cases,
the parameters may already be fully optimized and OCT volumes registered before '(r) is
completely formed.
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Fig. 2. OCRT enhances resolution and reduces interference artifacts (e.g., speckle) of
OCT. (a) Scanning electronmicroscopy of a d = 5-µm, hexagonally-arrangedmicrostamp
sample [27]. (b) Sub-resolution differences in pillar heights lead to interference. (c)
En face OCT simulation of hexagonal lattice under various tilts predicts interference
artifacts. See Fig. S3 for additional simulations. (d) En face OCT image (bilinearly
upsampled to match OCRT) does not resolve the pillars and exhibits interference
artifacts. (e) 3D OCRT reduces the artifacts and better resolves the pillars. (f) Log
power spectral density (PSD) of OCT (black circles: fundamental frequency, 1/23;
red circles: second harmonics, 1/3 and

√
3/23). (g) Log PSD of OCRT. (h) Kernel

density estimate (KDE) of (d) exhibits a broad distribution of intensity values due
to interference artifacts. (i) KDE of (e), however, exhibits a tight distribution due to
speckle reduction. (j) Averaged 1D cross sections of (f) and (g) along green arrows. (k)
Averaged 1D cross sections of (f) and (g) along blue arrows. Scale bars, 10 µm in (a),
100 µm in (d), (e).

3. Results

3.1. Validation of lateral resolution enhancement and speckle reduction

We first validated the resolution-enhancing and speckle-reducing capabilities of 3D OCRT by
imaging a polydimethylsiloxane (PDMS) microstamp sample, consisting of hexagonally-arranged,
5-µm-diameter, 5-µm-tall cylindrical micropillars with an edge-to-edge spacing of 5 µm (Fig.
2a). Since our OCT system had an axial resolution of 2.1 µm and lateral resolutions of 15.3 (G)
and 14.6 (H) µm (or an anisotropy of ∼0.14) from a single view, it does not laterally resolve the
5-µm pillars (Fig. 2d). Furthermore, this OCT image exhibits interference artifacts due to the
fact that multiple pillars are probed by the PSF volume (Fig. 2b), consistent with simulated OCT



responses to a hexagonal array as a function of tilt (Fig. 2c). Specifically, depending on the
local sample tilt or non-telecentricity of the lateral scanning, the resultant axial separation of
the pillars can lead to constructive or destructive interference (Fig. 2c), a direct consequence of
the axial modulation in the 3D OCT PSF [5]. See also Fig. S3 for OCT predictions matching
experimental data, based on fitting-based estimates of microstamp surface normals. This is the
same mechanism that underlies speckle formation, which is the interference result of a large
number of sub-resolution scatterers.

The 3D OCRT reconstruction much better resolves the pillars and eliminates the interference
artifacts of OCT (Fig. 2e). The lateral resolution improvement over OCT can be further
appreciated in the power spectra (Fig. 2f,g), in which more of the expected hexagonally-spaced
peaks appear in OCRT than OCT, especially the second-harmonic peaks corresponding to the
5-µm features (red circles in Fig. 2f,g). Fig. 2j,k show averaged 1D cross-sections of Fig. 2f,g
along the blue and green arrows, with the expected Fourier peaks indicated with vertical lines.
From these 1D plots, it is clear that OCRT contains the expected second-harmonic peaks, while
OCT does not. The reduction of interference artifacts is also apparent, as Fig. 2f exhibits strong
low-frequency artifacts that are absent in Fig. 2g. Interference artifact reduction by OCRT is
further quantified in Fig. 2h, i, which show the distribution of intensity values of Fig. 2d,e, where
that of OCRT is ∼6.5× narrower than that of OCT.
The resolution enhancement results are consistent with theoretical predictions based on Fig.

S1. In particular, we expected synthesized G and H lateral resolutions of ∼2.4 µm and ∼6.6 µm,
corresponding to ±75◦ and ±25◦, respectively, indicating that our 3D OCRT reconstruction
should resolve the 5-µm pillars in the G dimension, but not in the H dimension. Indeed, in Fig.
2g, the red-circled peaks (corresponding to 5-µm features) closer to the :G-axis are stronger than
those closer to the :H-axis.

3.2. Biological results

To demonstrate the generality of our new 3DOCRT implementation, we imaged and reconstructed
several fixed samples: a zebrafish larva at 2 days post fertilization (dpf) (Fig. 3, Visualization
1), the head of an adult fruit fly (Fig. 4, Visualization 2), and various mouse tissue (Figs. 5, 6;
Visualizations 3, 4). All samples were embedded in 2% agarose (w/v) and immersed in water to
immobilize the sample throughout data acquisition.

In all cases, the 3D OCRT reconstructions offered substantial improvements over conventional
OCT, owing not only to both the lateral resolution enhancement and speckle reduction, but also
enhanced penetration depth, despite our imaging system not having access to both sides of the
sample (in contrast to our original demonstration [16]). Even in relatively transparent samples
like zebrafish larvae, the speckle noise in OCT obscures many features that are revealed in
OCRT (Fig. 3, Visualization 1). The improvements are especially apparent in the en face slices
through the head and yolk sac of the zebrafish larvae, whose original OCT resolution is poor
in both dimensions (Fig. 3d-g). Fine reticular structures in the yolk sac unresolvable by OCT
are apparent in 3D OCRT. OCT also exhibits strong shadowing from the eye, as most directly
apparent in Fig. 3b,h,j. This results in artifacts such as a dark ring around and below the base of
the 2-dpf zebrafish larva’s eye (Fig. 3d,f) that is recovered by OCRT (Fig. 3e,g). OCRT also
reveals retinal layers and the optic nerve head (Fig. 3e,i,l), which are not apparent in OCT (Fig.
3d,h). Visualization 1 shows a full flythrough comparison of the 3D OCRT and OCT volumes.
Finally, the reconstructed RI maps of OCRT indicate a highly refractive (n > 1.5) lens (Figs.
3m-o), consistent with previous findings [28].
OCRT applied to an adult fruit fly (Figs. 4, S4, S5; Visualization 2) also shows substantial

improvement over OCT. Thanks to the speckle reduction and lateral resolution enhancement, the
hexagonal packing of the individual micro lenslets (ommatidia) of the compound eye (see Fig. S5
and Supplementary Note 2) and the bristles (hairs) and aristae (branched bristles extending from
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Fig. 3. Comparison of conventional OCT and 3D OCRT reconstruction of a 2-dpf
zebrafish larva. (a) 3D rendering of OCRT, with color-coded slice locations of cross-
sections in subsequent panels. (b-c) Comparison of a HI slice. (d-g) Comparison of GH
slices at two different depths. (h-k) Comparison of GI slices at two different H positions.
(l) Zoom-in of the eye in (i). NFL: nerve fiber layer, GCL: ganglion cell layer, IPL:
inner plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer
nuclear layer, RPE: retinal pigment epithelium, ONH: optic nerve head. All OCT slices
are histogram-matched to the corresponding OCRT slices. (m-o) Maximum intensity
projections of the OCRT RI map. Scale bars, 100 µm. See Visualization 1 for a full 3D
comparison.

the antennae) are better resolved by 3D OCRT. OCT, however, exhibits artificially bright and
dark signals in the bristles and ommatidia, which are coherent interference artifacts not present
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(pseudotracheae) of the labellum and arista (i,j). Scale bar, 100 µm. See Visualization
2 for a full 3D comparison.

in OCRT. OCRT also resolves the pseudotracheae on the labellum (tip of the extension from the
mouth) (Fig. 4f).

3D OCRT also offers significant improvements over OCT in mouse tissue, such as esophagus
(Fig. 5, Visualization 3). Notably, OCRT reveals the muscle fibers of the muscularis externa
(ME), which consists of two layers – the outer longitudinal muscle layer (LML) and the inner
circular muscle layers (CML), which can be distinguished in the en face depth slices in Figs. 5j
and 5l by the change in muscle fiber orientations. These two layers are also visible in the GI
cross-sections (Fig. 5d,f,h). This enhanced visualization is attributable to both speckle reduction
and resolution enhancement, as obliquely-oriented fibers cannot be resolved by poor OCT lateral
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(c-h) Comparison of various GI slices. (i-l) Comparison of GH slices st two depths,
corresponding to the LML and CML. (m-n) Comparison of HI slices. All OCT slices
are histogram-matched to the corresponding OCRT slices. Scale bars, 100 µm. See
Visualization 3 for a full 3D comparison.

resolutions. Below the ME, we can identify the muscularis mucosae (MM), epithelium, and
lumen, especially in the cross-sectional cuts of the esophagus shown in Fig. 5d,f,h,n, consistent
with hematoxylin and eosin (H&E)-stained histological sections (Fig. 5b). The MM is the thin
hyperreflective layer in between the CML and the epithelium. All of these layers are very difficult
to identify in the OCT images (Fig. 5c,e,g,i,k,m). The improvement of OCRT over OCT is
especially obvious in the flythroughs in Visualization 3, in which the difference in muscle fiber
orientations of the LML and CML is very clear for OCRT.
3D OCRT also offers substantial improvements over conventional OCT on mouse trachea

(Fig. 6), revealing several layers not readily apparent in OCT, most notably the hyaline cartilage
rings, featuring lacunae or small cavities. We can also identify the outer adventitial layer
(hyperreflective) as well as the submucosal (hyporeflective) and epithelial layers. The large
speckle grains in OCT obscure these layers. Visualization 4 shows a full flythrough comparison
between 3D OCRT and OCT.
Finally, while all the 3D OCRT reconstructions presented so far were formed by taking the

mean backscattered signal across all multi-angle views, other operations on the 5D OCRT datasets
can yield new label-free information about the sample, which we discuss in Supplementary
Note 3. For example, computing the variance across the angular dimensions yields a 3D OCRT
reconstruction with orientational contrast [29], highlighting structures within the yolk sac of the
zebrafish, muscle fibers in the mouse esophagus, and cartilage in the mouse trachea (Fig. S6).
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Fig. 6. Comparison of OCT and 3D OCRT of mouse trachea. (a) 3D rendering of
OCRT, with color-coded slice locations of cross-sections in subsequent panels. (b)
H&E-stained histological section. The subsequent panels compare HI slices (c,d),
GH slices (e-h), and GI slices (i,j). All OCT slices are histogram-matched to the
corresponding OCRT slices. Scale bars, 100 µm. See Visualization 4 for a full 3D
comparison.

4. Discussion

Wehave presented 3DOCRT, a new computational volumetric imaging technique that substantially
improves the image quality of OCT volumes through lateral resolution enhancement and speckle
reduction. Furthermore, we have demonstrated a novel use of parabolic mirrors for multi-view
imaging over very wide angular ranges without rotating the sample. Although parabolic mirrors
are well known to exhibit “perfect” focusing only when the incident beam is parallel to the mirror’s
optic axis due to tilt aberrations, and therefore rarely used as imaging objectives, we demonstrated
millimetric FOVs using the weakly-focused, long-DOF beams preferred in OCT. Since the 3D
FOV generated by multi-view imaging would be limited by the DOF anyway, the limited lateral
FOV of parabolic mirrors, having the same quadratic scaling with lateral resolution as the DOF,
do not further restrict the 3D FOV. Thus, OCRT has a resolution advantage compared to optical
projection tomography (OPT) for the same 3D FOV, because OCRT decouples resolution from
the DOF or FOV.
These improvements over conventional OCT make OCRT competitive with other incoherent

(e.g., fluorescence-based) 3D microscopy approaches, such as multiphoton [30] and light-
sheet [31, 32] microscopy, offering complementary label-free structural contrast. OCRT also
inherits many other advantages of OCT, such as near-shot-noise-limited detection sensitivities and
the longer near-infrared wavelengths typically used, which have higher penetration depths into



scattering tissue. Further, while other point-scanning techniques rely on the narrow DOF of high-
NA objectives for optical sectioning (e.g., confocal gating), OCT uses coherence gating, which
has been shown to more strongly reject out-of-focus and light and therefore have better optical
sectioning capabilities [33]. Thus, high-NA objectives are not necessary for high-resolution 3D
imaging with OCRT, potentially allowing for longer working distances and less sensitivity to
aberrations. Specifically, even though in theory similar rays are used by both high-NAmicroscopy
and OCRT, the former requires all multi-angle rays to be present at the same time to constructively
interfere to form a focus. Any rays distorted in amplitude or phase (e.g., by occlusions and
aberrations) would thwart the formation of such a focus. However, OCRT uses multi-angle rays
sequentially, relying far less on their interference. Thus, OCRT’s imaging depth is less affected
by occlusions and aberrations, as evidenced in the zebrafish reconstructions below the highly
scattering eye (Fig. 3).

Our method, as an extension of our previous work [16], also estimates the 3D RI distribution
of the sample and is thus related to the more recent advances in optical diffraction tomography
(ODT) [34–37]. While our method uses a ray-based optical model, ODT uses wave-based
models, which enable higher spatial resolution. At the same time, ODT is generally restricted to
thinner samples (up to ∼100 µm), due to challenges of accurately modeling multiple scattering,
though recent works have begun to push this limit [37]. In contrast, the penetration of OCRT
is at least as deep as OCT (up to ∼1 mm). Another difference is that while OCRT operates in
reflection, ODT typically operates in transmission, thus making in vivo tissue imaging more
difficult. However, Ledwig & Robles recently demonstrated RI tomography in epi-mode by
utilizing multiple scattering to create a virtual transmissive source inside thick tissue samples [36].
It would thus be useful to compare with these methods in future studies.
Finally, because we are analyzing OCT and OCRT incoherently using ray-based models, we

draw connections to concepts developed in the computer vision community, thus potentially
opening new lines of investigations. For example, the 5D OCRT dataset has some similarities to
5D plenoptic function [38] from the field of light field imaging, which the describes the radiance
as a function of two angular dimensions across 3D space. One difference is that the plenoptic
function is often used to describe imaging of passively illuminated objects, as in photography,
whereas OCT actively illuminates the object and observes the 180◦-backscattered light. As such,
the 5D OCRT dataset also bears resemblance to the 6D spatially-varying bidirectional reflectance
distribution function (SV-BRDF) [39], which measures radiance as a function of input and output
illumination angles (2D each) across an opaque 2D manifold surface. OCRT, however, measures
a degenerate version version of the SV-BRDF for the case of equal input and output angles, thus
losing two dimensions, while gaining another dimension by measuring this information over
3D instead of 2D space. The two output angle dimensions can be obtained by modifying the
OCT system to angle-resolve the back-scattered light, as is done in angle-resolved low-coherence
interferometry [40]. Thus, a method based on our parabolic mirror imaging system or other
conic-section mirror-based imaging system [13] could lead to faster methods to acquire plenoptic
light field or SV-BRDF data for other computational imaging applications.
In summary, 3D OCRT is a new label-free, computational microscopy technique that yields

a resolution-enhanced, speckle-reduced reconstruction and a coaligned 3D RI map that reveal
new information not apparent in conventional OCT in a wide variety of biological samples.
With conceptually straightforward improvements, in particular using faster sources, replacing
2D translation with anti-conjugate galvanometers, and deriving new forms of image contrast
from the multi-angle data, 3D OCRT could see wide use in vivo biomedical imaging for basic
scientific and diagnostic applications.
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