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Abstract

The ECH capacities are a sequence of real numbers associated to any sym-
plectic four-manifold, which are monotone with respect to symplectic embed-
dings. It is known that for a compact star-shaped domain in R*, the ECH
capacities asymptotically recover the volume of the domain. We conjecture,
with a heuristic argument, that generically the error term in this asymptotic
formula converges to a constant determined by a “Ruelle invariant” which mea-
sures the average rotation of the Reeb flow on the boundary. Our main result
is a proof of this conjecture for a large class of toric domains. As a corollary, we
obtain a general obstruction to symplectic embeddings of open toric domains
with the same volume. For more general domains in R*, we bound the error
term with an improvement on the previously known exponent from 2/5 to 1/4.

1 Introduction

1.1 Asymptotics of ECH capacities

Given a symplectic 4-manifold (X, w), possibly noncompact or with boundary, there
is associated a sequence of real numbers

0=co(X,w) <c(X,w) <c(X,w) < < oo, (1.1)

called the ECH capacities of (X,w). These were defined in [19] using embedded
contact homology; see [20] for a survey. Some basic properties of ECH capacities
proved in [19] are:

e (Monotonicity) If there exists a symplectic embedding of (X,w) into (X', w’)
then
k(X w) < Ck(X,,UJ/) (1.2)

for all k.

e (Conformality) If » > 0 then

(X, rw) = reg (X, w). (1.3)



e (Disjoint unions) Given a (possibly finite) sequence! of symplectic 4-manifolds
{(X;,wi)}, we have

Cl (H(X“wl)> = sup chi(Xi,wi). (1.4)

7 i ki=k
e (Balls) If a > 0, define the ball
B(a) = {z € C? | 2> <a}.

Then
ck(B(a)) = da (1.5)

where d is the unique nonnegative integer such that

d*> +d <2k < d*+3d.

e (Volume property) If X is a compact domain in R* with piecewise smooth
boundary, then

X 2
lim L( )

k—o0

= 4vol(X). (1.6)

Here for domains in R* = C? we always take the restriction of the standard sym-

plectic form
2
w= Z dx; dy;.
i=1

The symplectic embedding obstructions resulting from the monotonicity prop-
erty (1.2) are sharp in some cases, for example when X and X’ are ellipsoids in R*,
as shown by McDuff [25], or more generally when X is a “concave toric domain”
and X' is a “convex toric domain”, as shown by Cristofaro-Gardiner [8].

Define a “nice star-shaped domain” to be a compact domain in R* whose bound-
ary is smooth and transverse to the radial vector field. If X is a nice star-shaped
domain, then the asymptotic formula (1.6) is a special case of a more general re-
sult about the asymptotics of the “ECH spectrum” of a contact three-manifold,
which was proved in [11] using Seiberg-Witten theory. The formula (1.6) for nice
star-shaped domains corresponds to the case when the contact three-manifold is the
boundary of X, which of course is diffeomorphic to S2, together with an induced
contact form (see (1.12) below) whose kernel is the tight contact structure.

The ECH spectrum of a contact three-manifold is defined in terms of the periods
of certain Reeb orbits, and as a result the asymptotic formula for the ECH spectrum

n [19] it was assumed that the sequence of symplectic manifolds {(X;,w;)} is finite, and in
that case one has ‘max’ instead of ‘sup’ in (1.4). The countable case follows directly from the finite
case using the definition of ECH capacities in [19)].



has various applications to dynamics. In particular, [9] deduces the existence of at
least two simple Reeb orbits; [10] proves the existence of either two or infinitely many
simple Reeb orbits under certain hypotheses; [23, 4] obtain C*° generic density of
Reeb orbits and periodic orbits of Hamiltonian surface diffeomorphisms, see also the
survey [18]; and [22, 31] obtain relations between periodic orbits of area preserving
disk or annulus diffeomorphisms and the Calabi invariant.

Returning to symplectic embedding problems, the asymptotic formula (1.6) im-
plies that for k large, the symplectic embedding obstruction (1.2) recovers the obvi-
ous volume constraint vol(X) < vol(X’). Additional embedding obstructions arise
from the deviation of ¢;(X) from the asymptotics in (1.6). More precisely, define
the “error term”

€k(X) = Ck(X) -2 ]{ZVOI(X) (1.7)

It is then interesting to try to understand the size of this error term and its geometric
significance.
A result of Sun [29] implies that if X is a nice star-shaped domain, then

ex(X) =0 (k125/252> '

The exponent was improved by Cristofaro-Gardiner and Savale [13] to 2/5. Both
of these results for nice star-shaped domains are special cases of general results on
the asymptotics of the ECH spectrum of a contact three-manifold, proved using
Seiberg-Witten theory.

We use more elementary arguments to further improve the exponent for domains
in R*:

Theorem 1.1. (proved in §4) If X is a compact domain in R* with smooth boundary
(not necessarily star-shaped), then

en(X) =0 <k1/4> .
In fact, ex(X) is O(1) in all examples for which it has been computed.

Example 1.2. Let X be the ball B(a). We have vol(B(a)) = a?/2, see (1.14)
below. By (1.5), we then have

ex(B(a)) = (4~ V) o,
where d is the unique nonnegative integer such that
d* +d <2k < d*+3d.
It follows from the above two lines that

3
lim inf ex(B(a)) = —za, (1.8)
k—o0 2
1
lim sup ex(B(a)) = —5a

k—00



More generally, [32, Thm. 1.1] implies that for certain “lattice convex toric
domains”, e is also O(1) with a more complicated oscillating behavior.

1.2 The Ruelle invariant

We now formulate a general conjecture about the limiting behavior of the error term
ex. This requires a digression to define the “Ruelle invariant” of a contact form on a
homology three-sphere, which can be regarded as a measure of the average rotation
rate of the Reeb flow. (One can also define the Ruelle invariant more generally for
volume-preserving vector fields.)

Let %(2) denote the universal cover of the group Sp(2) of 2 x 2 symplectic
matrices. There is a standard “rotation number” function

rot : §f>(2) — R

defined as follows. Let A € Sp(2), and let A € Sp(2) be a lift of A, represented by
a path {A¢}e(o1) in Sp(2) with Ag = I and A; = A. If v is a nonzero vector in
R?, then the path of vectors {Atv}te[o,u rotates by some angle which we denote by
27p(v) € R. We then define

rot (g) = nll_}H;O % z”: p <Ak_lv> .
k=1

This does not depend on the choice of nonzero vector v. For example, if A is
conjugate to rotation by angle 276, then rot (ﬁ) is a lift of @ from R/27Z to R.

The rotation number is a quasimorphism: if B is another element of gf)(Z), then

rot (ZE) — rot (X) — rot <§>’ < L (1.9)

Now let Y be a homology three-sphere, and let A be a contact form on Y with
associated contact structure & and Reeb vector field R. Fort e R, let ¢, : Y — Y
denote the diffeomorphism given by the time ¢ Reeb flow. For each y € Y, the
derivative of ¢, restricts to a linear map

dde : &y — Eg,(y) (1.10)

which is symplectic with respect to dA\. Now fix a symplectic trivialization of &,
consisting of a symplectic linear map 7 : £, — R? for each y € Y. Then for y € Y
and t € R, the composition

R 5 6, 9 g o R



is a symplectic matrix which we denote by A7 ;. In particular, if y € Y and T" > 0,

then the path of symplectic matrices {A7 ;}c(o,7) defines an element of §f)(2) We
denote its rotation number by

rot,(y,T) = rot ({A;,t}te[O,T]) eR.
As explained by Ruelle [28], see also [14, §3.2], one can use the quasimorphism
property (1.9) to show that for almost all y € Y, the limit
(4) = Jim rot.(y, )
= lim — rot,(y,
Py T—oo T y
is well defined and independent of 7, and the function p is integrable.

Definition 1.3. If Y is a homology three-sphere and A is a contact form on Y,
define the Ruelle invariant

Ru(Y, \) = /Yp)\/\d)\. (1.11)

If X is a nice star-shaped domain in R*, then the standard Liouville form

2

1

restricts to a contact form on 0.X.

Definition 1.4. If X is a nice star-shaped domain in R*, then we define
Ru(X) = Ru (9X, Mlax) -
We can now state our main conjecture:

Conjecture 1.5. If X is a generic nice star-shaped domain in R*, then

lim ex(X) = —%Ru(X). (1.13)

k—o00

Example 1.6. The ball B(a) from Example 1.2 does not satisfy the above conjec-
ture (hence the word “generic” in the conjecture), since er(B(a)) does not cov-
erge. However we will see below that Ru(B(a)) = 2a, so it is still true that
(—1/2) Ru(B(a)) is between the lim inf and lim sup of ex(B(a)). One might conjec-
ture that for any nice star-shaped domain, not necessarily generic, ej is O(1) and
the Ruelle invariant is between the lim inf and the lim sup.



1.3 Results for toric domains

Given a domain 2 in the nonnegative quadrant of R?, we define an associated toric
domain

Xo={zeC? | m(|21)?, |22]%) € Q} .
The factor of 7 ensures among other things that
vol(Xgq) = area(f2). (1.14)

Definition 1.7. A nice toric domain is a toric domain X which is also a nice
star-shaped domain, meaning that 9Xgq is a smooth hypersurface transverse to the
radial vector field. This implies that 9 consists of the line segment from (0,0) to
(a,0) for some a > 0, the line segment from (0,0) to (0,b) for some b > 0, and a
smooth curve from (0,b) to (a,0) which is transverse to the radial vector field on
R2. We denote the numbers a and b by a(2) and b(Q2), and the smooth curve from
(0,b) to (a,0) by 0.

Example 1.8. Suppose 2 is the triangle with vertices (0,0), (a,0), and (0,b). Then
Xq is the ellipsoid

2 2
E(a,b) = {z ez |mal | =l 1}.

a b

This is a nice toric domain.

Definition 1.9. A strictly convex toric domain is a nice toric domain Xq in which
04+ is the graph of a function f : [0,a] — [0,b] with f(0) = b, f/(0) <0, f" <0
everywhere, and f(a) = 0.

A strictly concave toric domain is a nice toric domain X¢q in which 0,2 is the
graph of a function f : [0,a] — [0,b] with f(0) = b, f” > 0 everywhere, and
f(a) =0.

We can now state one of the main results of this paper:

Theorem 1.10. (proved in §3) Equation (1.13) holds whenever X is a strictly
convezx or strictly concave toric domain®.

To clarify what this theorem says, we have:

Proposition 1.11. (proved in §2) Let Xq be a nice toric domain such that 04+
has negative slope’ everywhere. Then

Ru(Xq) = a(Q) + ().

2Tt is shown in [33] that Theorem 1.10 generalizes to (not necessarily strictly) convex and concave
toric domains such that 0+ has no edges of rational slope.

3For nice toric domains in R*, the condition that 8. has negative slope is equivalent to
dynamical convexity by [16, Prop. 1.8]. In fact, the negative slope hypothesis can be removed from
Proposition 1.11 by a more careful argument [17].




Remark 1.12. Equation (1.13) also holds for ellipsoids E(a, b) with a/b irrational,
by [12, Lem. 2.2].

It is quite possible that equation (1.13) is special to toric domains and that
Conjecture 1.5 is false more generally. Nonetheless, the toric case already gives an
application to symplectic embedding problems:

Corollary 1.13. Let Xq and Xq be nice toric domains satisying (1.13), e.g. strictly
convex or strictly concave toric domains, or irrational ellipsoids. Suppose that
vol(Xq) = vol(Xq) and that there ezists a symplectic embedding int(Xq) — Xqr.
Then

a(Q) +b(Q) > a() + b(Y).

Proof. The interior of Xq has the same ECH capacities as Xg; see [19, §4.2]. Thus,
by the monotonicity of the ECH capacities (1.2), the definition of the error term
(1.7), and the hypothesis that vol(Xq) = vol(X¢q), we have

ek(XQ) S ek(XQ/)
for all k. Since X and X¢ satisfy (1.13), it follows from Proposition 1.11 that

—(a(®) +5()) _ —(a(®) + ()
2 = 2

O]

Remark 1.14. Corollary 1.13 is not vacuous; there are examples of symplectic
embeddings of an open toric domain into another (nonsymplectomorphic) toric do-
main of the same volume, including many cases when the domains are ellipsoids.
For example, it is shown in [27] that if a > (17/6)2, then the interior of the ellipsoid
E(1,a) symplectically embeds into a ball* of the same volume, namely E( /a, /a).

Remark 1.15. The examples of nice star-shaped domains X discussed here seem
to have ex(X) negative for all & > 0. However there also exist examples of nice
star-shaped domains X C R* with e;(X) positive. The reason is that if X is a nice
star-shaped domain, then by the definition of ECH capacities, ¢1(X) > Apin(X),
where Apin(X) denotes the minimum symplectic action (period) of a Reeb orbit on
0X. Now define the systolic ratio

Amin (X)2

¥s(X) = S el

It then follows from (1.7) that

e1(X) <0 = sys(X) <2.

4Although Corollary 1.13 is not applicable here because the ball does not satisfy (1.13), the
conclusion of Corollary 1.13 is still true in this example since 1+ a > 2+/a.



However it is shown in [1] that there exist nice star-shaped domains with systolic
ratio greater than 2 (in fact arbitrarily large), so these must have e; positive.

On the other hand, in the dynamically convex case, the best known examples [2]
have systolic ratio 2 —e. A reasonable conjecture would be that if X is dynamically
convex then e (X) < 0 for all & > 0.

1.4 Outline of the rest of the paper

In §2 we prove Proposition 1.11, computing the Ruelle invariant of some toric do-
mains, by direct calculation.

In §3 we prove the main result, Theorem 1.10. To do so, we use two formulas
for the ECH capacities of concave toric domains proved in [7]: one in terms of the
“weight expansion”, and one in terms of lattice paths. We also use two similar
formulas for the ECH capacities of convex toric domains from [8]. By carefully
estimating using all four of these formulas and combining the results with Proposi-
tion 1.11, we obtain the theorem.

In §4 we prove Theorem 1.1. The idea is to estimate the ECH capacities of a
region by packing it with cubes in a naive way. The estimates we get in this case
are not as good as in the case of toric domains, because concave toric domains can
be packed “more efficiently” with balls coming from the weight expansion.

In §5 we give a heuristic discussion of why we expect Conjecture 1.5 to be
true, by comparing the definition of the ECH index to Arnold’s asymptotic linking
number and relating this to a conjecture by Irie on equidistribution properties of
ECH capacities. While this is far from a proof, we do see the volume and Ruelle
invariant emerge naturally.

Acknowledgments. Thanks to Alberto Abbondandolo, Julian Chaidez, and Um-
berto Hryniewicz for explaining the Ruelle invariant; to Dusa McDuff for explaining
Lemma 3.6; and to Dan Cristofaro-Gardiner for discussions about the asymptotics of
ECH capacities. Partially supported by NSF grant DMS-1708899 and a Humboldt
Research Award.

2 The Ruelle invariant of toric domains

We now prove Proposition 1.11, computing the Ruelle invariant of a nice toric
domain Xgq such that 9, has everywhere negative slope.

To start, we denote the Euclidean coordinates on the plane in which 2 lives by
w1 and pa. Define two functions

a,f:0:.0 —R

as follows: Given (i1, u2) € 045, the tangent line to 01 through (u;, o) intersects
the axes at the points (a(p1, p2),0) and (0, B(u1, p2))-



Proposition 1.11 now follows from the two lemmas below:

Lemma 2.1. If Xq is a nice toric tomain such that 048} has everywhere negative
slope, then

Ru(Xe) = [ © L8 dnn i) (2.1)

o, af
where 0482 is oriented as a curve from (a(§2),0) to (0,b(£2)).

Lemma 2.2. If~ is a differentiable plane curve from (a,0) to (0,b) with everywhere
negative slope, where a,b > 0, and if o and B are defined as above, then

af

Proof. Write Y = 0Xq C C2, and let Y; denote the set of z € Y such that z;, 2o # 0.
For z = (21,22) € Yy, write p; = 7|2|?, and let §; denote the argument of z;. In
these coordinates, the standard Liouville form (1.12) is given by

o+
/ ﬁ(#ldmfﬂzdm) =a+b.
v

1
Ao = o (1 dOy + po dbs) . (2.2)

We have
T.Y = span (0y, , Og,, 0y, — B0,) .
Thus the contact plane £, is spanned by the vectors
V' = p20g, — 1110p,,
W = ady, — B0,,.
The Reeb vector field is then given by

n— 2T (6891 + a892)
af

. (2.3)

Note here that A\g(R) = 1 because

Bt + apz = af (2.4)

by the definition of o and . Equation (2.4) also implies that we have a symplectic
trivialization 7" of |y, given by

—2rW
n—1
=(V,—|.
= (v 20

Since R preserves pi and pa, we have [R,V] = 1, so in the notation (1.10) we
have d¢;V = V. This implies that

rot./(y,T) =0



for all y € Yy and T' > 0. However we cannot use the trivialization 7/ to compute
the Ruelle invariant because this trivialization does not extend over Y \ Yy. In
particular, if 7 is a trivialization of & over all of Y, then as one moves around a
circle in Yp in which either 0; or 6y rotates once around S, the vector V rotates
once around S' with respect to 7. It follows that on Y we have

1
= —R(0 05).
p 27TR(1+ 2)

By equation (2.3), we conclude that

a+
aff

p =
Now by equation (2.2), we have

1
(p1 dpg — po dpy) dfy dy

)\QAd)\OZH

on Yy. So by equations (1.11) and (2.5) we have

1 a+
RU(XQ) = H /Y Tﬂ(,ul dug — U2 dﬂl) d91 d92.
0

Integrating out 67 and 05 then gives (2.1). O

Proof of Lemma 2.2. Choose an oriented parametrization of the curve v as (u1(t), p2(t))
for t € [to,t1]. Then

a+p _ [Ma+tB
A of (mduz—mdul)—/to of Adt (2.6)

where we use the notation

A = pypy — phpa.
By the definition of o and 3, we have

a=A/ H/27
B=—A/u.
The integrand in (2.6) is then
a+p
The lemma now follows from the fundamental theorem of calculus. O

10



3 Bounds on ECH capacities of toric domains

3.1 The Ruelle invariant and the weight expansion

To relate the Ruelle invariant to ECH capacities, we need to recall the definition of
the “weight expansion” of a concave toric domain following [7].

Definition 3.1. A concave toric domain is a toric domain X¢q such that

Q:{(M17H2)|OSHISQ7 OgluQSf(/”‘l)}

where f : [0,a] — [0,b] is a convex function® for some a,b > 0 with f(0) = b and
f(a) = 0. Write a(Q) = a and b(2) = b, and denote the graph of f by 0,.

For ¢ > 0, let A(c) denote the triangle in the plane with vertices (0,0), (c,0),
and (0,¢). Also, define an integral affine transformation to be a map R? — R? given
by the composition of an element of SLo Z with a translation. We say that two sets
in R? are integral affine equivalent if one is the image of the other under an integral
affine transformation.

Definition 3.2. If X is a concave toric domain, we inductively define a canonical
countable set 7(Q) of triangles in R? such that:

(i) Each triangle in 7 () is affine equivalent to A(c) for some c.

(ii) Two different triangles in 7 (£2) intersect only along their boundaries.

To start defining 7 (€2), let ¢ be the largest real number such that the triangle
Ac) C Q.

Now 94 A(c) coincides with 9, on the line segment from (¢, c—t') to (t”,c—t")
for some t' < ¢". If t/ > 0, let ' denote the closure of the component of 2\ A(c)
with 1 < t'; otherwise let Q' = (. If ¢ < ¢, let Q” denote the closure of the
component of Q\ A(c) with g > t”; otherwise let Q" = ).

Let ¢' : R? — R? denote the integral affine transformation defined by

&' (1, p2) = (pa1, pa + p2 — c).

If 0 is nonempty, then Xgr(ey 1s a concave toric domain. Likewise, let ¢" denote
the integral affine transformation defined by

¢" (1, p2) = (p1 + p2 — ¢, p2).

This is more general than a strictly concave toric domain as in Definition 1.9. For a strictly
concave toric domain, the function f must furthermore be smooth and strictly convex, and must
satisfy additional conditions near 0 and a to ensure that 0 Xq is smooth.

11



If Q" is nonempty then Xy (qr) is a concave toric domain.
We now inductively define

T ={aCtuv || @*'@u || @)@,
TET(&() TeT(9" (@)

Here we interpret the terms involving Q' or Q" to be the empty set when Q' or Q"
are empty.

Properties (i) and (ii) above are immediate from the construction. It also follows
from the construction that each triangle in 7 () is a subset of Q2. One can prove the
rest of property (iii) by elementary arguments with a bit more work; or as overkill
one can use equation (3.1) below and the volume property of ECH capacities (1.6).

Definition 3.3. If X is a concave toric domain, choose an ordering 7 () =
{T1,T5, ...} where T; is integral affine equivalent to A(a;) and a; > a;11 for each i.
The (possibly finite) sequence (aj, a9, ...) is the weight expansion of Xq, which we
denote by W (€2).

The significance of the weight expansion is:

Theorem 3.4. [7, Thm. 1.4 and Rmk. 1.6] If Xq is a concave toric domain with
weight expansion W (Q) = (a1, ...), then its ECH capacities are given by

%M@:%(UB@Q. (3.1)

Note that by properties (i)—(iii) above, we have
1
vol(Xq) = area(Q2) = 3 Za?.
(2

It turns out that ), a; is also finite, and can be described explicitly as follows.

Definition 3.5. Given a line segment L in the plane, define its affine length
lag(L) € R as follows. Let v = (a,b) be the vector given by the difference be-
tween the endpoints of L.

e If a/b¢ QU {oo}, define lag(L) = 0.

e If a/b € QU {00}, let d be the largest real number such that (a/d,b/d) € Z2,
and define {pg(L) = d.

If v is an injective continuous path in the plane including line segments Lq,...,
define its affine length

lag(y) = Z Cag(Lg).

12



Lemma 3.6. [26] If Xq is a concave toric domain with weight expansion W () =
(ai,...), then

Zai = a(Q) 4+ b(Q) — Lag(04Q). (3.2)

Proof. Following the construction in Definition 3.2, we inductively define a sequence
of domains ), for k¥ > 1 such that Xq, is a concave toric domain, €, C 41, and
Ui Q% = ©, as follows. Using the notation of Definition 3.2:

[ ] Ql = A(C)

e If k > 1, then
Q= A() U (¢") (' ()k—1) U (¢") (" (Q")k-1)-

Here we omit the terms corresponding to Q' or Q” when those domains are
empty.

Observe that Xq, has a finite weight expansion with at most 2% —1 terms. Moreover
these are all terms in the weight expansion of Xq; and if S(£2) denotes the sum of
the terms in the weight expansion W (), then limg_,o, S(2%) = S(Q).

We will prove by induction on k that for every concave toric domain Xq, we

have
S(Qk) = G(Qk) -+ b(Qk) — gAﬁ‘(a_A'_Qk). (33)

The lemma then follows by fixing Q and taking the limit of (3.3) as k — co.

If k =1, then both sides of equation (3.3) are equal to ¢ above.

Now suppose that k& > 1. For simplicity we assume that both Q' and Q" are
nonempty; the other cases work similarly. By induction we can assume that

S(Q_1) = a(Q_1) +0(Q_ 1) — Lag(04,_1),
S(Qy_1) = a(Qy_1) +b(Q_1) — Lag(0+ ).

By construction we have

S(Q) = ¢+ S(Q_q) + S(Q_1),

Combining the above equations, we obtain

S() = a(Q) = b(Q) = —c+ a(Q, ) + DU _y) — Lag (04 1) — Lag (042 ).
(3.4)
Now observe that 94 consists of the following:

e The curve (¢')1(04+9), ) from (0,c+ b(2,_,)) to (a(,_,),c—a(S._,)).

13



e The line segment from the latter point to (¢ — b(Q2_,),b(2_,)).
e The curve (¢”)~1(049Q}_,) from the latter point to (c + a(2}_,),0).
Since affine length is invariant under integral affine transformations, it follows that
O (04%) = lag (04_1) + (c— a (Q_y) — b (1)) + lag (0+Q%_1) -
Combining this last equation with (3.4) proves (3.3). O

As a corollary, we obtain a relation between the weight expansion and the Ruelle
invariant in the strictly concave case:

Corollary 3.7. If Xq is a strictly concave toric domain (or more generally any
concave toric domain such that 018 does not contain any line segments of rational
slope) with weight expansion W (Q2) = (a1, ...), then

Z ai = a(Q) + b(Q). (3.5)

Proof. This follows from Lemma 3.6 because 04} contains no line segments of
rational slope, so its affine length is zero. O
3.2 An estimate from the weight expansion

Lemma 3.8. Let (a;)i=1,.. be a (possibly finite) sequence of positive real nubers with

Soia; < o0o. Write X =[], B(a;) and V =vol(X) = 33, a2. Then

lim sup (ck (X)— 2\/W> < —;Zai.

k—o0

Corollary 3.9. If Xq is a concave toric domain such that 0+ does not contain
any line segments of rational slope, then

lim sup eg(Xq) < —M.

k—o00 2

Proof. This follows from Lemma 3.8 by plugging in equations (1.7), (3.1), (1.14),
and (3.5). O

Proof of Lemma 3.8. By equations (1.4) and (1.5), we have

ck(X) = sup {Z a;d;

where the d; are nonnegative integers. Now if we put the sequence (a;) in non-
increasing order, then in the above supremum, we can restrict to the case where

D+ di) < 2k} (3.6)

)

14



d; = 0 for i > k. There are then only finitely many possibilities, so we can write
‘max’ instead of ‘sup’ in (3.6).

For each k, choose a sequence d(k) = {d(k);}i=1,.. realizing the maximum in
(3.6). In particular, we have

Z aid(k); = cp(X), (3.7)
Zz(d(k)? +d(k);) < 2k. (3.8)

%

By (3.8) and the Cauchy-Schwarz inequality, for each k we have

Z ai/d(k)2 + d(k); < V2V 2k,

Combining this with (3.7), we have

(X)) —2VEkV < — Zai < d(k)? +d(k); — d(k)l> . (3.9)
To complete the proof, it is enough to show that for fixed ¢ we have
lim d(k); = oo, (3.10)
k—o0
so that )
lim ( d(/{?)? + d(k)Z — d(k‘)z> = —.
k—o0 2

To prove (3.10), suppose to the contrary that liminfy ,~ d(k); < oco. Then it
follows similary to (3.9) that

1
lim inf (ck(X)—2,/k<V—a?)> <0.
k—o00 2

X 2
lim inf o (X)

k—o00 k

Thus

<4vol(X \ B(a;)) -

However the argument in [19, Prop. 8.4] shows that X satisfies the volume property
(1.6), which is a contradiction. O

3.3 Lattice point estimates

If © is a domain in the nonnegative quadrant of R?, define
Q= {(p1, 12) € R? | (|mal, lp2]) € Q.
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Definition 3.10. A convex toric domain is a toric domain X¢q such that Q is com-
pact and convex with nonempty interior. Let a(€2) and b(2) denote the intersections
of O with the positive p;-axis and positive ps-axis, and let 94 €2 denote the closure
of the part of dg not on the axes; this is a path from (0,5(2)) to (a(£2),0).

We now prove the following estimate, which is similar to Corollary 3.9 but proved
by different methods:

Lemma 3.11. Let Xq be a convex toric domain such that 0+ is the graph of a
strictly concave C? functionS. Then

lim sup eg(Xq) < —M.

k—o00 2

To prove this lemma, we need to recall some material from [21]. Let © be a
domain as in Definition 3.10. If v is a vector in R?, define

o]l = max {(v,w) |we ﬁ} .

Note that || - ||§ is a norm; it is the dual of the norm with unit ball Q. Ifv: o, 8] >
R? is a continuous, piecewise differentiable parametrized curve, define its Q-length
by

B
to(r) = / 17/ (0) e (3.11)

where J = (? _01> The Wulff isoperimetric inequality [5, 34] implies that if v is

the boundary of a compact region R, then
lo(v)? > 4 Area(Q) Area(R), (3.12)

with equality if and only if R is a scaling and translation of Q. Below we just need
to know that equality holds in (3.12) when R is a scaling of 2, which follows by
direct calculation.

Definition 3.12. A convez integral path is a polygonal path A in the nonnegative
quadrant from the point (0,b) to the point (a,0), for some nonnegative integers a
and b, with vertices at lattice points, such that if R denotes the region bounded
by A and the line segments from (0,0) to (a,0) and from (0,0) to (0,b), then R
is convex. Define £(A) to be the number of lattice points in R, including lattice
points on the boundary.

This is slighty more general than a “strictly convex toric domain”, because Xq might not be
smooth.
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We now have the following theorem?, proved in [21, Prop. 5.6, as a special case
of [8, Cor. A.5]:

Theorem 3.13. Let X be a convex toric domain. Then
cp(X) =min{lq(A) | L(A) >k + 1}. (3.13)
Here the minimum is over convex integral paths A.

Proof of Lemma 3.11. Given a positive integer k, let r be the smallest real number
such that the scaling r{) contains at least k + 1 lattice points. The boundary of
the convex hull of 7Q N Z? consists of a segment on the j-axis, a segment on the
po-axis, and a convex integral path A with £(A) > k + 1. Thus by Theorem 3.13,
we have

ex(Xa) < fa(A). (3.14)

Next observe that
lo(A) < Lo(0, (192)). (3.15)

The reason is that A can be obtained from 9 (rQ2) by a finite sequence of opera-
tions, each of which replaces a portion of a curve by a line segment with the same
endpoints. These operations do not increase §2-length since || - |5, is a norm.

By the equality case of Wulff’s isoperimetric inequality (3.12), we have

(04 (rQ)) = 2¢/Area(Q) Area(rQ).

By (1.14), we can rewrite the above as

la(94 (1)) = 2¢/vol(Xq) Area(rQ). (3.16)

Next, a classical result of van der Korput, see the refinement by Chaix [6], asserts
that if R is a region in the plane with C? strictly convex boundary, then

||R N Z?| — Area(R)| < 10000(1 + M)*/3,

where M denotes the maximum radius of curvature of OR. Taking ¢ > 0 small
and applying this result to R = (r — ¢)Q, with the intersections with the axes
appropriately smoothed, we find that there is a constant C', depending only on {2

and not on the positive integer k, such that

Area(r)) < k — g(a(Q) +B(Q)) + Or¥3,

"The statement in [21] looks slightly different, writing £(A) = k + 1 instead of £(A) > k41 in
(3.13). However this makes no difference, as any convex integral path A with £(A) > k+ 1 can be
“shrunk” to a convex integral path with £(A) = k + 1 without increasing Q-length; see the proof
of Lemma 3.11 below.
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In particular, since Area(rQ)) = r2vol(Xgq), we get

k
r= m—i—o(\/%).

Putting this into the previous inequality, we get

a(Q) + b(Q)
Area(rQ) < k — <2VO1(XQ)> Vk + o(VEk). (3.17)

Combining (3.14), (3.15), (3.16), and (3.17), we obtain

a(Q) + b(Q)
en(Xa) < 2,] vol(Xq) (k - (M)I(XQ)> Vi + o(\/E)>

— 2\ /vol(Xa)k — W +o(1).

By equation (1.7), the lemma follows. O
We also have a “dual” version of Lemma 3.11 for concave toric domains.

Lemma 3.14. Let Xq be a concave toric domain (see Definition 3.1) such that
0. is the graph of a strictly convex C? function®. Then

a(®) + ()

lim inf e (Xg) > —
m inf ex(Xo) 2 2

Proof. This is proved similarly to Lemma 3.11, but with inequalities going in the
reverse direction.
To start, there is a counterpart of Theorem 3.13, proved in [7, Thm. 1.21], which
reads
ck(Xq) = max{lqo(A) | L(A) < k}.

Here A is a concave integral path, which is a polygonal path with vertices at lattice
points from (0,b) to (a,0) with a,b > 0 which is the graph of a convex function.
In this context the Q-length ¢o(A) is defined as in (3.11), but with the norm | - ||
replaced by the “anti-norm” given by

[v] = min{(v, w)|w € 04+Q}.

Finally, £(A) now denotes the number of lattice points in the region enclosed by A
and the axes, this time not including lattice points on A.

Given a positive integer k, let 7 be the supremum of the set of real numbers such
that the scaling r2 contains at most k lattice points. The boundary of the convex

8 Again, this is a bit more general than a “strictly concave toric domain”.
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hull of the set of lattice points in the nonnegative quadrant but not in (r — )2 then
consists of rays along the axes, together with a concave integral path A satisfying
L(A) < k. Thus

ck(Xa) > la(A).

The rest of the proof now parallels the proof of Lemma 3.11. O

3.4 Completing the proof of the main theorem

Proof of Theorem 1.10. Let Xq be a strictly convex or strictly concave toric do-
main. By Proposition 1.11, what we need to show is that

a() +b(Q)

5 (3.18)

lim e (Xq) = —
k—o0
In the strictly concave case, this follows from Corollary 3.9 and Lemma 3.14.
In the strictly convex case, by Lemma 3.11, we just need to show that

a(Q) +b(Q)

5 (3.19)

lim inf ex(Xq) > —
k—oo
To do so, recall the notation A(c) from §3.1, and let ¢ be the smallest positive
real number such that Q@ C A(c). Then 0, intersects 04 A(c) in a unique point
(t,c —t). Suppose that 0 < ¢t < ¢. (The cases where t = 0 or ¢ = ¢ are simpler and
will be omitted.)
Let €' denote the closure of the component of A(c) \ Q with u1 < ¢, and let Q”
denote the closure of the component of A(c) \ ©Q with p; > ¢. Define integral affine
transformations ¢, ¢" : R2 — R? by

¢ (1, p2) = (¢ — py — pi2, ),
¢"(u1, p2) = (p2, ¢ — p1 — pa).
Then X' = Xy () and X" = Xy (qr) are concave toric domains satisfying the

hypotheses of Corollary 3.9 and Lemma 3.14, so that they satisfy (3.18). Observe
also that

a(¢'()) = ¢ — b(Q),
b(¢'()) = t,
a(¢"(Q") = c—t,
b(¢" (")) = ¢ — a(Q)
By [8, Thm. A.1], we have
cx(Xa) = inf (cpirar(Ble)) — ep(X') — epr(X")) . (320)

K k">0
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By (3.18) for X’ and X" we get, as functions of k¥’ and k",

cp (X)) = 24/K - vol(X') + b§Y) —c—t +o(1),
a(Q)2— 2c+1 (3:21)
e (X") = 24/K" - vol(X") + S E— +o(1).
By (1.8), we have
Ck+k/+k//(B(C)) > 2\/(I€ + K+ k”) VOI(B(C)) — % + 0(1). (3.22)

Now since vol(B(c)) = vol(Xq) + vol(X’) 4+ vol(X"”), by the Cauchy-Schwarz
inequality (for three-component vectors) we have

V(k+E + E)vol(B(c)) > /kvol(Xq) + /K vol(X') + /E" vol(X").  (3.23)
Combining (3.20), (3.21), (3.22), and (3.23), we obtain

-3 —b(Q) t  —al) 2c —t
ex(Xq) > 2C—I- ( );C+ + o );_ ¢ +o(1)

(Note that while the o(1) terms in (3.21) are as functions of k¥’ and k", we do get
o(1) terms as functions of k above, since when k is large, we must also have k" and
k" large when close to the infimum in (3.20), as in the proof of Lemma 3.8.) This
proves (3.19) for our strictly convex toric domain Xq and thus completes the proof
of the theorem. O

4 Improving the exponent in the general case

In this section we prove Theorem 1.1, estimating ex(X) for a general compact
domain X C R* with smooth boundary.
To prepare for this, if a,b > 0, define the polydisk

P(a,b) ={z € c? | m|z1|? < a2, wlz? < b2}.

It was shown in [19] (and also follows directly from the more general Theorem 3.13)
that the ECH capacities of a polydisk are given by

cx(P(a,b)) =min{am +bm | (m+1)(n+1) > k+1} (4.1)
where m,n are nonnegative integers. We now need two simple estimates.

Lemma 4.1. e;(P(a,a)) > —2a for all k.
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Proof. For each nonnegative integer k, there is a unique nonnegative integer d such
that
d> <k < d*+2d.

It follows from (4.1) that
2d —1)a, d*><k<d?+d,

ck(P(a,a)) = { ( o2da,  d®+d<k<d?®+2d. (4.2)

On the other hand, vol(P(a,a)) = a?, so
ex(P(a,a)) = cx(Pla,a)) — 2aVk. (4.3)
In the first line of (4.2) we have vk < d 4 1/2, and in the second line of (4.2) we
have vk < d + 1. The lemma then follows from (4.2) and (4.3). O

Lemma 4.2. Let X be a bounded domain in R, and suppose there are disjoint
open subsets Py, Py, ... C X such that P; is symplectomorphic to int(P(a;, a;)). Let
k be a positive integer. Let

I, ={i| a? > vol(X)/k}

and write
Vi=>Y a;=vol| | JP
i€l 1€l
Then
er(X) = -2v2> a; + o Ve = vollX)) e (4.4)
i vol(X)

Proof. For each i define a positive real number

2
~ a;

k= k)
vol(X)

Note that k; > 0 if and only if ¢ € 1.
By the disjoint union property of ECH capacities (1.4) and the definition of the
error term (1.7), we have

(X)) > chi(P(ai,ai))
= Z (2&1-\/1674- er(P(a;, ai)))

and define a nonnegative integer

i€l
= zz;aﬁ+§; (2% (WE— ﬁ) + ek(P(ai,a,»))> .
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By the definition of //c\,-, we have

~ Vi,
S anhi = vol(X) v

i€l

And for each i € Iy, by Lemma 4.1 and the fact that k; > 1, we have

2a; <\/k;7-— \/k:j> + ex(P(ai, a;) > —2v2a;.

Combining the above three lines gives

ck(X) > —2\[22 a; + L\/E

i vol(X)
The lemma now follows from the definition of the error term (1.7). O

Proof of Theorem 1.1. We first prove the inequality
en(X) > —Ck/4, (4.5)

Here and below, C' denotes a positive constant which depends only on X, but which
may change from one line to the next.

To do so, we inductively define a sequence Py, Ps, ... as in (4.4) as follows. Step
1 is to add all open cubes whose vertices are consecutive points on the half-integer
lattice %Z4 that are contained in X. For n > 1, Step n is to add all open cubes
whose vertices are consecutive points in the scaled lattice 27"Z* that are contained
in X but not contained in any of the cubes added in the first n — 1 steps. Each
cube added in Step n is symplectomorphic to the open polydisk int(P(47",47")).

Let X,, denote the closure of the union of all cubes added in Steps 1 to n. Then
we have

vol(X'\ X)) <C-27" (4.6)

The reason is that by construction, any point in X \ X,, is within distance 2'="
of 0X. And since 90X is assumed smooth, it follows that the volume of the set of
points within distance d of X is at most C - d when d is small.

Let m,, denote the number of cubes obtained in Step n. Since these cubes are
disjoint and each have volume 16~", it follows from (4.6) that

my, < C-8". (4.7)
Now suppose that
k
16" < 16", 4.
6 _vol(X)< 6 (4.8)
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Then in the notation of Lemma 4.2, the set I} consists of the indices of the cubes
added in the first n steps. By (4.7), we have

Zai <C-2",
i€y,

And by (4.6), we have
Vk — VO](X)
vol(X)

Putting the above three lines into (4.4) gives

>—-C-27".

ep(X) > —-C-2".

By (4.8), we obtain (4.5).
To complete the proof of the theorem, we need to prove the reverse inequality

en(X) < C- kYA

To do so, we choose a large cube W containing X, divide the complement W \ X
into cubes as above, and use a similar agument. (Compare [19, Prop. 8.6].) O

5 Heuristics for the conjecture

We now review some facts from embedded contact homology, and then use these to
give a heuristic discussion of why we expect Conjecture 1.5 to be true.

5.1 Facts

We first briefly review some notions from embedded contact homology. Let Y be a
homology 3-sphere, and let A be a nondegenerate contact form on Y.

Definition 5.1. An ECH generator is a finite set of pairs a = {(«a;, m;)} where:
e The «; are distinct simple Reeb orbits.
e The m; are positive integers.

e If ; is hyperbolic (meaning that the linearized return map of the Reeb flow
along «; has real eigenvalues) then m; = 1.

Define the symplectic action of « to be the real number
Ala) = ZmiA(ai).
i
Here A(«;) denotes the symplectic action, or period, of the Reeb orbit «;.
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Let 7 be a trivialization of the contact structure &; this trivialization exists and
is unique up to homotopy by our assumption that Y is a homology sphere. If «y is
a Reeb orbit, define its rotation number

0(v) = rot-(y, A7) = A(7)p(y)-

where y is a point on the image of ~.

Definition 5.2. If a = {(a;,m;)} is an ECH generator, define’ its ECH index to
be the integer

I(a) =) ~misl(a;) + > mimil(ai,a;) + Y i (|kO(cw)| + [kO(a)]).  (5.1)
i i#] i k=1

Here (v, aj) denotes the linking number of «; and «;; and sl(c;) denotes the self-
linking number of the transverse knot «;, which is the linking number of «; with a
pushoff in the direction 7, see [15, §3.5.2].

If (Y, €) is diffeomorphic to S% with the tight contact structure, then one can
define the ECH spectrum of (Y, ), which is a sequence of real numbers c;(Y,\)
indexed by nonnegative integers k. The relevance for our discussion is that if X is
a nice star-shaped domain in R4, then its ECH capacities are defined by

ck(X) = cp(0X, Aolax)-
And the key fact we need to know is that
ex(Y, ) = Ala), (5.2)
where « is a certain ECH generator with ECH index
I(«) = 2k,

selected by a “min-max” procedure using the ECH chain complex.

We now want to look at the index formula (5.1) more closely. To prepare for
this we need a bit more background. Choose an auxiliary metricon Y. If y € Y
and T' > 0, we can form a loop 7, r by starting with the path given by the time
t Reeb flow from y to ¢r(y), and then appending a length-minizing geodesic from
or(y) back to y. (If this geodesic is not unique, pick one arbitrarily.) If y;,yo are
distinct, define the asymptotic linking number by

f(yla y2) = lim é(nyth ) 77y2,T2)a

Ty, To—00 T1T2

9This is a special case of the general definition of the ECH index in [20, Def. 3.5]. The relative
first Chern class term there is not present here because we are using a global trivialization 7.
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when this limit exists. Here of course £(ny, 7, 1y, 15) is defined only when the loops
Ny, 1y and ny, 7, are disjoint. By a result of Arnold [3] and Vogel [30] (which applies
to more general volume-preserving vector fields), the function f is defined almost
everywhere on Y X Y and integrable, and

/ £ = vol(Y, 2. (5.3)
Y XY

Here we are integrating with respect to the measure on Y x Y given by the product
of the contact volume forms A A d\, and we define vol(Y,\) = [,, A A dA.

For example, if y; and yo are on distinct simple Reeb orbits v and ~2, then it
follows from the definition that

1
fy1,y2) = ma%a%)-

If y; and y2 are on the same simple Reeb orbit v, then f(y1,y2) is not defined;
however it is natural to extend the definition in this case to set

F () = Af,y) (S1(7) + 6(~) -

Using the above formulas, we can rewrite the index formula (5.1) as

I(a) = Zmimin«Ajfi,j - Zm?Aipi + Z 2 ([kAipi] + [kAipi]).  (5.4)

2 i i k=1
Here we write A; = A(wy); we let f; ; denote f(y;,y;) for y; in the image of a; and
y; in the image of a;; and p; denotes p(y) for y in the image of o.

5.2 A new definition

Definition 5.3. If @ = {(a;, m;)} is an ECH generator, then using the notation of
(5.4), define its approrimate ECH index to be the real number

Lapprox(0) = Y mimj AiAifij + > miAip;. (5.5)
0] i
We can bound the error in this approximation as follows:
Lemma 5.4. |Liprox() — I(a)| < >, m,.
Proof. 1t follows from (5.4) and (5.5) that

Lapprox(a) — I(a) = Z ZZ: (2kA;p; — |kAipi| — [kAipi]) .

1 k=1

The lemma then follows since
120 — |z] — [#] | <1

for every real number z. O
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We can now suggestively rewrite (5.5) as

Lapprox(a) = /a Xaf+ /a p (5.6)

where the integral is with respect to the measure given by the Reeb vector field,
multiplied by m; on each orbit «;.

5.3 Heuristics

A conjecture of Irie [24], of which a version has been verified for convex and concave
toric domains, asserts that if A is generic, then ECH generators « realizing cx (Y, \)
as in (5.2) are equidistributed in Y as k — oo. This means that if U C Y is an
open set, then the symplectic action of o N U divided by the symplectic action
of a converges to vol(U)/vol(Y). If we assume a very favorable version of this
equidistribution, then by Lemma 5.4 and equation (5.6) we can approximate

_ Ia) . _Ala)? Ale)
2k = I(a) = Lapprox () ~ W /YXY U m /Y 4

Here we are not discussing the size of the error in the approximation since this is
just a heuristic. Comparing with (1.11) and (5.3), we obtain

2k - vol(Y, \) = A(a)? + A(a) Ru(Y, \).

Since A(a) = ¢ (Y, A), we then get

1
(Y, \) = /2k -vol(Y, \) — 3 Ru(Y, A).

When X is a nice star-shaped domain, we have vol(0X, A\olsx) = 2vol(X) by
Stokes’s theorem, so we obtain

cx(X) = 23/k - vol(X) — %Ru(X).
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