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ABSTRACT 

Binder jet three-dimensional (3D) printing is a scalable, potentially low-cost 

additive manufacturing route able to process materials not attainable to other 

techniques, especially nonweldable materials. It relies on postprocess sintering 

to achieve final properties but encounters problems with distortion and cracking 

during sintering. The present work seeks to understand how part design 

geometry and 3D printing build orientation influence cracking during sintering, 

with the goal of mitigating the problem. In situ monitoring experiments reveal 

how sinter-cracks initiate and grow in 3D-printed notched panel specimens 

during densification. Different design geometries and build directions are tested 

to identify sinter-crack-resistant regimes. 
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Materials and Methods 

SAMPLE PREPARATION 

figure 1



94 STP 1637 On Progress in Additive Manufacturing 2020 

FIG. 1 (A) Front profile of the notched panel specimen placed in the stainless steel 

restraining fixture. The open slot at the top prevents stress buildup due to 

thermal expansion. (B) Side profile of the specimen and fixture. 
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Variation of Notch Geometry 

Variation of Build Direction 
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figure 2

*7100037CL, ExOne, North Huntingdon, PA. 
{
The binder saturation level is based on the estimated powder packing density and is defined as the volume 

of applied binder normalized by the volume of porosity in the powder bed.1 
{
CU-601, Atlantic Equipment Engineers, Upper Saddle River, NJ. 
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FIG. 2 (A) Orientation of samples in the build box. The axes indicate the build direction 

as well as the directions of recoater and printhead travel. (B) Cross-sectional 

views of the samples showing orientation of the build layers with respect to the 

notch, indicated by overlaid black lines: (1) crack arrester, (2) crack divider, and 

(3) short transverse geometries. 

 

 
 

 

IN SITU MONITORING EXPERIMENTS 

figure 1

o

o

x 

IMAGE ANALYSIS 

q

  

¼ 

q ¼ 

q ¼ q



96 STP 1637 On Progress in Additive Manufacturing 2020 

(A) (B) (C) (D) (E) 

Results and Discussion 

VARIATION OF NOTCH GEOMETRY 

figure 3

FIG. 3 In situ images of samples prior to (top row) and after (bottom row) 10 h of 

densification. (A) Control sample with no notch. (B–E) Notched samples 

possessing Ktg of 3.0, 5.7, 3.8, and 13.9, respectively. Scale bars are 2 mm. 
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Figure 4 
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FIG. 4 Relative density versus time as measured from the in situ images. Sample 

geometries are indicated by Ktg next to each curve (the control is represented 

as 1.0). The temperature profile (T) is shown above. 
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figure 5
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q ¼ 

¼ 

q 

_ 

q q 

_ ¼ 

FIG. 5 Crack length versus relative density for the large circular (Ktg ¼ 3.8) and large 

elliptical (Ktg ¼ 13.9) notches, as measured from the in situ images. The X 

indicates the point of complete fracture. 
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VARIATION OF BUILD ORIENTATION 

figure 6
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fig. 6B

figure 6B

fig. 6C

fig. 6D

figure 7
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FIG. 6 In situ images of sinter-crack evolution in the build orientation samples: (A) 

notch geometry prior to densification; (B) crack arrester; (C) crack divider; and 

(D) short transverse build orientations. The times elapsed from the onset of 

densification until the end of experiment shown in (B), (C), and (D) are 15, 2, and 

4 h, respectively. Scale bars are 2 mm. 
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FIG. 7 Crack length versus relative density for the different build orientations: crack 

divider, short transverse, and crack arrester. The X symbol indicates the point of 

complete rupture. 

 

 
 
 

_ ¼ q ¼ 

_ ¼ 

¼ q ¼ 

q ~ 

_ 

q 

figures 6 7 



102 STP 1637 On Progress in Additive Manufacturing 2020 

figure 6B 

figure 6 

Conclusion 
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