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Abstract—Pufferfish privacy (PP) is an appealing generaliza-
tion of differential privacy (DP), that offers flexibility in specify-
ing sensitive information and integrating domain knowledge into
the privacy definition. Inspired by the illuminating equivalent
formulation of DP in terms of mutual information proposed by
Cuff and Yu [1], this work explores PP through the lens of infor-
mation theory. We provide an equivalent information-theoretic
formulation of PP as the conditional mutual information between
the mechanism and the secret, given the public information. This
formulation lends well for an information-theoretic analysis, and
we use it to prove convexity, composability, and post-processing
properties for PP mechanisms. We also leverage our formulation
to derive noise levels for the Gaussian PP mechanisms. The
obtained mechanisms are applicable under relaxed assumptions
and provide improved noise levels in some regimes, compared to
existing approaches,

I. INTRODUCTION

The increased amount of personal data shared online, along
with developments in data mining techniques pose serious
privacy threats. Statistical privacy frameworks seek to address
these threats in a principled manner with formal guarantees.
Differential privacy (DP) [2] is perhaps the most popular
statistical privacy framework, which enables answering ag-
gregate queries about a database while keeping individual
records private. However, DP only accounts for one type of
private information (namely, individual records modeled by
rows of the data matrix), and does not allow to encode domain
knowledge into the framework. To address these limitations, a
versatile generalization of DP, termed Pufferfish Privacy (PP),
was proposed in [3]. PP allows to customize what information
is regarded as private, and explicitly integrates distributional
assumptions into the definition (see also [4]).

Furnishing connections between statistical privacy and in-
formation theory has gained increasing interest in the past
decade [1], [5]-[9]. Such connections serve as a fertile ground
for research, enabling to borrow tools and ideas from one
discipline to make progress in the study of the other. In
particular, [1] established an equivalent characterization of DP
in terms of the conditional mutual information between the
mechanism and any individual record, given the rest of the
database. This reformulation lends well for an information-
theoretic analysis of DP and poses it in terms of a common
currency (namely, mutual information) through which privacy-
utility tradeoffs may be examined [10]. It was also leveraged
in [11] to study fundamental privacy-utility tradeoffs in linear
regression problems. Inspired by the above, herein we target
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an information-theoretic characterization of PP, using which
we shall explore various properties and novel mechanisms.

We consider a specialized PP framework, where private and
public information is modeled as pairs of functions of the
database that are coupled via a bipartite graph. This setup
captures various privacy notions, from DP [2] to attribute pri-
vacy (AP) [12], as special cases. We provide an information-
theoretic characterization of this PP framework via the condi-
tional mutual information between the mechanism and the se-
cret function given the public one. Specifically, the mutual in-
formation PP criteria is shown to be sandwiched between e-PP
and (e, 6)-PP in terms of strength. The proof relies on repre-
senting PP constraints as bounds on appropriate divergences,’
and comparing those to the Kullback-Leibler (KL) divergence
(and thus mutual information) via monotonicity, Pinsker’s
inequality, and the minimax redundancy capacity theorem.

We then leverage the information-theoretic characterization
to derive properties of PP mechanisms, including convexity,
post-processing, and composability. Our composability results
for mutual information PP offer greater flexibility than the
counterparts for the classic PP framework [3]. Next, we study
the Gaussian mechanism for achieving mutual information
PP and derive sufficient conditions on the injected noise
parameters. The derivation relies on controlling mutual in-
formation via maximum entropy arguments and the entropy
power inequality. We obtain parameter bounds in terms of the
conditional variance of the query, which differs from classic
results that typically depend on the ¢'- or ¢?-sensitivity of
the query (cf. e.g., [13], [14]). Variance-based bounds are
particularly desirable under the PP framework as it encodes
prior knowledge on the data distribution. Indeed, it may be
the case that sensitivity explodes (e.g., for unbounded query
functions) but variance is finite due to concentration properties
of the distribution class.

II. NOTATIONS

Sets are denoted by calligraphic letters, e.g. X. For k,n €
N, we use X"** for the database space of n X k matrices
(columns correspond to different attributes while rows to
different individuals). The (i,j)th entry of 2 € &A"™*F ig
x(4, 7). The ith row and jth column of x are x(¢, -) and z(-, j),
respectively. The image of a function g : X™*F — R? is
denoted by Im(g). We use || - ||, for the ¢, p > 1, norm in R<.

oo-Rényi divergence for e-PP and total variation distance for (0, §)-PP.
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We denote by (2, F,P) the underlying probability space
on which all random variables (RVs) are defined, with E
designating expectation. RVs are denoted by upper case letters,
e.g., X, with Px representing the corresponding probability
law. For X ~ Py, we interchangeably use supp(X) and
supp(Px) for the support. Conventions for n x k-dimensional
random variables are the same as for deterministic elements.
The space of all Borel probability measures on S C R? is
denoted by P(S). We write P < @ to denote that P is
absolutely continuous with respect to (w.r.t.) (). The n-fold
product measure of P € P(S) is P®".

The mutual information between X and Y is denoted
by I(X;Y), while h(X) is the differential entropy of X;
conditional versions thereof given Z are denoted by |(X;Y'|Z)
and h(X|Z), respectively. The KL divergence between P, () €
P(X) with P < Q is Dk (P||Q), while || P—Q||Tv designates
the total variation (TV) distance. Both KL divergence and
TV distance are jointly convex in (P, @), which will be
used subsequently. KL divergence and TV are related to one
another via Pinsker’s inequality [15], whereby ||P — Q||tv <
1/0.5Dk (P]|Q). Also recall that I(X;Y") can be expressed in
terms of KL divergence as |(X;Y) = Dk.(Pxy|[Px® Py),
where Px and Py are the respective marginals of X and Y.

III. PUFFERFISH PRIVACY AND MUTUAL INFORMATION

This section establishes the mutual information based char-
acterization of PP, where secrets and public information are
modeled as arbitrary collections of functions of the database.
Domain knowledge is integrated into the framework by re-
stricting the set of data distributions.

A. Pufferfish Privacy

For a data space X nxk  the Pufferfish framework [3]
consists of three components: (i) a set of secrets S, that
contains measurable subsets of X™*F; (ii) a set of secret pairs
Q C S x S that needs to be statistically indistinguishable in
the (¢, d) sense (see (1)); and (iii) a class of data distributions
© C P(X"*k), that captures prior beliefs or domain knowl-
edge about potential adversaries. As formulated next, the goal
of PP is to make all secret pairs in Q indistinguishable w.r.t.
those prior beliefs Px € ©.

Definition 1 (Pufferfish privacy [3], [12]). Fix €, > 0.
A randomized mechanism M : X™** — Y is (e, §)-private in
the pufferfish framework (S, Q,0) if for all Px € O, secret
pairs (R,T) € Q with Px(R), Px(T) > 0, and measurable
sets A C Y, we have

P(M(X) € A|R) < e P(M(X) € A|T) +4. (1)

A randomized mechanism is described by a (regular) con-
ditional probability distribution given the data, i.e., Pys x.

In this work we focus on a special case of the general
framework, where pairs (R,7) € Q are decomposed into
a private part (on which they should be indistinguishable)
and a common one (interpreted as public information). In
Remark 1 we demonstrate how the considered formulation

T e ank

gi(x) = x(7,-)

(private pm'tion)\_

wi(z) = (x(j7 ‘))#i >
(public portion)

v

< >
< >

Fig. 1. Function pairs for DP: The ith row of z € X™*¥ is the private
portion, while the rest of the database is the corresponding public part.

reduces to popular privacy notions like DP [2] and AP [12].
Our formulation is constructed as follows:

1) Private/public functions: Let G and W be finite sets of
sizes K and L, respectively, containing functions on X"™**
For g € G, we interpret g(X) as a private feature of the dataset
X ~ Px € 0O, while w(X), w € W, represents publicly
available information.

2) Function pairs: To encode which private-public function
pairs constitute a secret (i.e., an element of S) we use a
bipartite graph. Namely, consider the graph (G, W, £), where
£ is a given edge set between the two partitions G and W.
We write g ~ w if {g,w} € £ for some g € G and w € W.
The operational meaning of an edge g ~ w is that g(X) must
be concealed even if the adversary has access to w(X) (e.g.,
for DP we take g;(x) = (i, ) as a specific row of the dataset
and w;(z) = (z(j, ~))j# as the rest of the data matrix, where
i=1,...,n), and set G = {g;}1-y, W = {w;}}_,, and
&= {{giﬂvi}}?:l, as depicted in Figure 1.)

3) Secret event: Each secret event (namely, an element of
S) corresponds to a pair of specific values that a private-public
function pair takes, i.e., for G > g ~w € W, a € Im(g), and
c € Im(w), we define Ay, (a,c) :== {g(X) = a, w(X) = c}.

4) Secret event pairs: Elements of Q C & x S are pairs that
share the same public information (i.e., the value for w(X))
but differ in their private portions (the value of g(X)).

We are now in position to define the considered PP framework.

Definition 2 (Specialized PP framework). Fix €¢,0 > 0 and
consider a bipartite graph (G, W, E) with sets of functions G
and W as above. A randomized mechanism M : X"*F —
Y is (e,0)-private in the specialized pufferfish framework
(G, W, E,0) if it satisfies Definition 1 with

S:={Agw(a,c):G3g~weW,aclm(g), cecIm(w)}

Q:= {{Ag,w(a, c), Agw(b, c)} :Gog~weW, ¢ e lm(w),
a,b €Im(g), a # b}

and as set of data distributions © C P(X™*k),

Remark 1 (Reductions to DP and AP). The specialized PP

framework presented above captures various special cases of

practical importance, such as DP [2] and AP [12]. Specif-

ically, DP corresponds to © = P(X"*k), private functions
g9i(x) = a(i,-), public functions w;(x) = (z(j, -))j#, where

Authorized licensed use limited to: Cornell University Library. Downloadz&lﬁﬁanuary 02,2023 at 20:11:40 UTC from IEEE Xplore. Restrictions apply.



2022 IEEE International Symposium on Information Theory (ISIT)

i =1,...,n, and an edge set £ = {{gi,wi}}jzl. Following
the AP setup of [2], we take g;(x) = g;(z(-, 7)), for j =
1,...,k, where §; is the considered function of the jth column
of the database. As AP includes no public information we
further take W = € = () and set © as the class of distributions
of interest. Alternatively, one may consider a variant of AP
with public information, in the spirit of DP, where VW contains
functions w;(x) = (Jc(,z))#] where j = 1,...,k, and the

. k
edge set is £ = {{gj,wj}}jzl.
B. Information-Theoretic Characterization

We provide an information-theoretic characterization of the
specialized PP framework, in the spirit of the DP characteriza-
tion of [1]. To that end, we first define mutual information PP.

Definition 3 (e-mutual-information PP). Let (G, W, &) be a
bipartite graph as in Definition 2 and © C P(X"*¥). A ran-
domized mechanism M : X™*% - Y is e-mutual-information
PP, abbreviated e-MI PP, in the framework (G, W,E,0) if

sup  1(g(X); M(X)|w(X)) <e.

X €O,
gEG,WEW:
g~w

Remark 2 (Reduction to e-mutual-information DP, ab-
breviated e-MI DP). e-MI PP as defined above recovers
information-theoretic formulation of DP proposed in [1] by
taking (G, W, E,©) as described in Remark 1.

The following theorem states the equivalence between the
specialized PP framework from Definition 2 and the ¢-MI PP
above. More precisely, our result shows that e-MI PP sits right
between (¢, 0)-PP and (¢, §)-PP in terms of its strength.

Theorem 1 (Equivalent formulations). consider the special-
ized (¢,0)-PP framework (G, W, &, ©) from Definition 2. For
any €,€' > 0, the following chain of implications holds:

(¢,0)-PP = &MIPP = (¢, v/2¢)-PP.

Furthermore, if | supp (M(X))| < oo or maxgeg [Im(g)| <
o0, then the inverse implication holds:

(¢,0)-PP = ¢*-MI PP

with
" =2hy (8 )+26 log <min{ |supp (M (X))], max Im(g)| +1})
9

where hy is the binary entropy function in nats and § € [0,1]
with 8 =1 —2(1—0)/(ef + 1).

Theorem 1 is proven in Section V-A by reformulating
(¢,0)-PP in terms of the oo-Rényi divergence and using
information-theoretic inequalities.

IV. PROPERTIES AND MECHANISMS

While the original PP definition is somewhat hard to manip-
ulate, we next show that the information-theoretic formulation
lands itself well for analysis, enabling the derivation of various
properties and explicit noise-injection mechanisms.

A. Properties of Pufferfish Mechanisms

Modern guidelines for privacy frameworks [16] pose prop-
erties such as convexity and post-processing (also known as
transformation invariance) as fundamental axioms. Compos-
ability is another important property that requires the joint
distribution of the outputs of (possibly adaptively chosen)
privacy mechanisms is in itself private. These properties are
shown to hold for the general (e, 0)-PP framework in [3]. The
next theorem states the e-MI PP possess all these properties.

Theorem 2 (Properties of e-MI PP). The following hold:

1) Convexity: Let € > 0, p € [0,1], and My, My be e-MI
PP mechanisms. Then the mechanism that equals My with
probability (w.p.) p and Ms w.p. 1 — p is also e-MI PP.

2) Composability: Let My,...,My be sequentially
and adaptively chosen € ...,ex-MI PP mechanisms, i.e.,
SupPX’ng |(g(X), Ml(X) |w(X), ]\4-17 ceey Mi—l) S €y fOV
all i=1,...,k. Then MP* satisfies (Zle ei)-MI PP.

3) Post-processing: If mechanism M : X"** — Y satisfies
e-MI PP, then for any randomized function A : Y — Z, the
processed mechanism A o M also satisfies e-MI PP.

Theorem 2 is proven in Section V-B based on elementary
properties of mutual information, such as its nullification
under independence, the chain rule, and the data processing
inequality. The simplicity of the argument highlights the virtue
of the information-theoretic formulation of the PP framework.

Remark 3 (Non-adaptive composition). Non-adaptive compo-
sition refers to mechanisms that are conditionally independent
given the database, i.e., Py, . vy x = Hle Py, x. For PP
frameworks where pairs of secrets (R,T) € Q corresponds to
pairs of databases (in other words, R and T are singletons;
see Definition 1), both e-MI PP and regular €-PP mechanism
compose under this setting. The general non-adaptive setting,
without assuming that secrets specify databases, was studied
in [3], where it was shown that composability does not hold
in general. [3] then identified a (rather restrictive) sufficient
condition on the class of distributions ©, termed universally
composable (UC) distributions, under which non-adaptive
composability holds for e-PP. Similarly, non-adaptive compo-
sition of €-MI PP also holds when all feasible distributions
are UC. The UC condition is, however, unstable for e-PP: if
© contains all UC distribution, adding even a single non-UC
distribution to this set will compromise the composability of
the classic PP framework. €-MI PP is more robust in that
sense, as composability of e-PP mechanisms is still e-MI PP
even after adding non-UC distributions to ©, so long that all
UC distributions are there (e.g., when © = P(X™*F)),

B. Noise-Injection Pufferfish Mechanisms

Despite the practical importance of tractable privacy mech-
anisms, designing them for the general PP framework seems
challenging. In [4], the Wasserstein PP mechanism was pro-
posed, but it is computationally burdensome as it requires
computing the co-Wasserstein distance between all pairs of
conditional distributions of the published query result given
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any pair of secrets from Q. This sections shows that the
information-theoretic formulation of PP allows bridging this
gap, giving rise to (Gaussian and Laplace) noise-injection
mechanisms whose noise level is specified in terms of elemen-
tary quantities. By virtue of Theorem 1, any of the following
e-MI PP mechanisms is also (¢/,v/2¢)-PP in the classic sense
(see Definition 2).

We first describe how a noise-injection mechanism operates.
Let f : A"k — R? be the query so that our goal is to
publish the value f(X), for X ~ Px € ©, under the e-MI PP
framework from Definition 3. The noise-injection mechanism
perturbs the published value as M (X) = f(X) + Z, where
(in this paper) Z follows a Gaussian or Laplace distribution
whose parameters are chosen so that e-MI PP holds.

1) Gaussian mechanism: We characterize parameter values
for the Gaussian mechanism that are sufficient for e-MI PP.

Theorem 3 (Gaussian mechanism). Fix ¢ > 0 and a special-
ized PP framework (G,W,E,0). Let f : X™*F — R? and
consider the Gaussian mechanism Mg(X) = f(X) + Zg,
where Zg ~ N(0,0%1,) is a d-dimensional isotropic Gaussian
of parameter o > 0. If

25 Z?:l E [Var(fj(X)‘w(X))]
o’ > sup - ,
Px €0, weW* dled —1)

where f;(X) is the jth entry of f(X) = (f1(X),..., fa(X))
and W*={w eW: 3geg, g~ w}, then Mg is ¢- MI PP.

The derivation of Theorem 3 is presented in Section V-C
and relies, among other things, on the fact that the Gaussian
distribution maximizes differential entropy subject to a second
moment constraint. Theorem 3 can be specialized to e-MI DP
under the setup from Remark 1.

Corollary 1 (Gaussian mechanism for DP). Under the setup
of Theorem 3, the Gaussian mechanism with

s B3

2d(ed —1)
is e-MI DP, where As(f) := maxg. || f(x) — f(2')||2 is the
PP-sensitivity and © ~ ' denotes neighboring databases that
differ by (at least one entry of) a single row, that is x(i,-) #
a'(i,-) for some i = 1,...,n, and agree on all other rows.

Remark 4 (Classic Gaussian mechanisms). e-MI DP implies
regular (¢',\/2€)-DP, for any € > 0 (Theorem 1). For compar-
ison, the classical Gaussian mechanism achieves (€', \/ﬂ) -DP
with 02 > 210g(1.25/v/2€)A2(f)/€? for € <1 [13]. It can
be shown that our mechanism requires a lower noise level than
the classic one whenever € < 2((e**—1)log(1.25//2¢)) V2,

Remark 5 (Domain knowledge for DP). A main advantage of
our approach compared to sensitivity-based classic Gaussian
mechanisms is that the bound in Theorem 3 depends on the
variance of [ and allows to incorporate domain knowledge.
Consider the product Gaussian family

Oc(m, s) = {ﬁel« 0= N (i, 02), il <m, o < s},
=1

and let f(X)=n"1'3Y" | X; be the average of the database
entries (the argument holds for any other linear query). Then,
the noise derived from our mechanism is (e€ —1)~'(s/n)~1/2,
which is finite as the variance is bounded. On the other hand,
As(f) = oo here since X has unbounded support. Thus, the
sensitivity-based mechanisms are vacuous for this case, while
our bound provides feasible noise levels.

Remark 6 (Laplace mechanism). Under the setup of Theorem
3, it can be shown that the Laplace mechanism M (X) :=
f(X) + Z., where Z_ ~ Lap(0,b)®? is a d-dimensional
isotropic Laplace distribution with the scale parameter b > 0,
is e-MI PP if

d
S E [/ Var(f; (0w (X))
d(ed —1) '
This follows from the fact that the Laplace distribution maxi-

mizes differential entropy subject to an expected absolute devi-
ation constraint in a similar fashion to the proof of Theorem 3.

b > sup
Px €O, weWwW*

2) Gaussian mechanism with dependence on G: The noise
levels derived in Theorem 3 depends on the secret function
class G only through WW*. While this is sufficiently fine for DP,
where there is a one-to-one correspondence between private
and public functions, generally it may be desirable to capture
the dependence on G explicitly. This is particularly relevant
when there is no public information (e.g., the AP framework
from [12], described in Remark 1) or if there is a single public
function w corresponding to all private g € G. Noise levels
derived from the following theorem takes this into account.

Theorem 4 (Gaussian mechanism with dependence on G).
Under the setup from Theorem 3 and assuming

infgegwew: h(f(X)’g(X), w(X)) > —oo, the Gaussian
mechagnifvﬂm Mg achieves e- MI PP, if

2> sup ma 7A—de2€/dB 0
o ‘ X ,0 ¢,
= o, d(e 7 =1)
geEG,WEW:
grow
where A = Z?,IE[Var(fj(X)’w(X))} and B =

Lexp (2h(f(X)[g(X), w(X)) —1).

In addition to maximum entropy arguments, the proof of
Theorem 4 uses the entropy power inequality. We may replace
the conditional entropy in B by any lower bound that may be
easier to compute (cf. e.g., [17]), and e-MI PP will still hold.

Remark 7 (Comparisons with Gaussian AP mechanism). The
AP Gaussian mechanism was considered [12]. The setup
assumes W = (), and that for all g € G and Px € ©, the query
output f(X) conditioned on g(X) is Gaussian with a constant
variance, i.e., Var(f(X)|g(X) = a) = Var(f(X)[g(X) =
b), Sor all a,b € Tm(g). Assuming d = 1 for simplicity, the
noise level from Theorem 4 under this setup reduces to:

wup max { Var(f(X)) = e*Var(f(X)|g(X) = a) 70} |

Pxeco, e —1

IS4
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The noise level derived in [12], to achieve (€,0)-AP is

Piuep&rrla’;\x{(C’e_lAAp(f))2 — Var(f(X)’g(X) = a),O} ,
geg

where C' = +/21log(1.25/§) and

Ae(f)= max [E[J(X)]g(X)=a] ~E[f(X)]g(X)=t]|

Under a multivariate extension of the product Gaussian family
from Remark 5 (i.e., where each 0; is a multivariate Gaussian)
and for f and g linear functions of columns of the database
(e.g., average of the column entries), App(f) diverges to
infinity while the variance-based bound is finite and feasible.

max
a,b€Im(g

Remark 8 (Free e-MI PP regime). The bound in Theorem 4
suggests that if A < de*/“B over the entire optimization
domain, e-MI PP holds without noise injection (i.e., o = 0). It
can be shown that A > dB for any Px € P(X) and functions
f, g, and w. The free privacy regime therefore corresponds to
cases where ¢ is large compared to d/2. Since large € values
are rarely of interest in practice, we conclude that a positive
noise level is generally needed for e-MI PP. For fixed ¢ and
d, the above condition is related to how correlated the query
and the secret are, given the public information. For instance,
ifd=1and f(X), g(X), and w(X) are jointly Gaussian,
we have A < de?/?B if the conditional correlation coeffi-
cient between f(X) and g(X) given {w(X) = ¢} satisfies
p(f(X),g(X)’w(X) = ¢) < /(e* —1)e=2<. Accordingly,
weak correlation may lead to free privacy since the query
leaks little information about the secret to begin with.

V. PROOFS
A. Proof of Theorem 1
For the first implication, note that e-PP implies that
P(M(X) € A|R)
sup log
A P(M(X) € A|T)
The left-hand side above is the infinite order Rényi divergence.

By monotonicity of Rényi divergences w.r.t. their order [18],
we have DKL (PJM(X)\R”PM(X)\T) § €. Then,

1(g(X);:M(X)|w(X))
< E [Dre (Par(x0)1g(x),w(x) [ Pa(x) 19 () ()]

) <e, V(R T)eQ.

where the inequality uses convexity of KL divergence,
with ¢(X)" as an iid. copy of g(X). Recalling that
under the specialized PP framework secret pairs are
(Agw(a,c), Agw(b,c)), with Ag,(a,c) = {g(X) =
a, w(X) = c}, e-MI PP follows by the KL divergence bound.

For the second implication, by the minimax redundancy
capacity theorem [19], I(g(X); M (X)|w(X) = c) is rewrit-
ten as ian max, DKL(PM(X)|g(X):a,w(X):cHQ)- Letting Q*
achieve the infimum above, since M is e-MI PP by assump-
tion, we have DKL(P]\/[(X)\g(X):a,w(X):c||Q*) < ¢, for all
a € Im(g). Applying Pinsker’s inequality together with the
triangle inequality, we obtain

[ Par (3 9(x) a0 ()= = Par()1g(x)=bw(x)=c|lry < V26,

which implies that M is (0, v/2¢)-PP and hence (€', v/2¢)-PP.

For the last implication, adapting Property 3 in [1] from
DP to PP, we have that (e,8)-PP implies (0,8 )-PP, with
§ =1—2(1—6)/(e +1). With this reduction, we follow
the argument from the proof of Lemma 3 in [1] to show that
if | supp (M (X))| < oo or maxgeg |Im(g)| < oo, then (0, 6)-
PP implies ¢*-MI PP with €* as stated in Theorem 1.

B. Proof of Theorem 2

For (1), let B ~ Ber(p1), set po = 1 — p;, and define
@ = 2— B. By independence of @ from (X, M;(X), M2(X))
and since M; and M, satisfy e-MI PP, we have

1(g(X); Mg (X)|w(X)) < 1(9(X); Mg(X)|w(X), Q)

< Zpil(g(X)§Mi(X)|w(X)) <e

i=1

Claims (2) and (3) are direct consequences of the mutual
information chain rule and the data processing inequality.

C. Proof of Theorem 3
h(f(X) + Zg|w(X))
(a

1
< / 3 log ((27re)d |Zf(X)\w(X):c + 0214)|)dpw(X)(C)

d
< [ Ftoe | 2 T] (as(e) + 0%) | dPury(e)

Jj=1

INS
CIR-¥

d
log | 2me Z]E [Var (f;(X)|w(X))] + o° ,

2

SR

where (a) follows from the Gaussian distribution maxi-
mizing differential entropy subject to a variance constant,
with |K| denoting the determinant of K; (b) denotes
aj(c) = Var(fj(X)lw(X) = ¢) and uses |K| <
H;l:1 K (j,7), which applies to any positive semidefinite ma-
trix; and (c) from concavity of z +— log .

Combining (2) with h(f(X)+Zg|g(X),w(X)) >h(Zg), up-
per bounds |(g(X); Mg(X)|w(X)) which is further bounded
by e. Solving for o2 concludes the proof.

D. Proof of Theorem 4

Similar to the proof of Theorem 3, but using the bounds
A 2
h(f(X) + Ze|w(X)) < 0.5dlog ( 2e S to
h(f(X) + Zg|g(X),w(X)) > 0.5dlog (2me(B + 0%)),

where the latter follows from entropy power inequality, with
A and B specified in the theorem statement.
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