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Abstract—Pufferfish privacy (PP) is an appealing generaliza-
tion of differential privacy (DP), that offers flexibility in specify-
ing sensitive information and integrating domain knowledge into
the privacy definition. Inspired by the illuminating equivalent
formulation of DP in terms of mutual information proposed by
Cuff and Yu [1], this work explores PP through the lens of infor-
mation theory. We provide an equivalent information-theoretic
formulation of PP as the conditional mutual information between
the mechanism and the secret, given the public information. This
formulation lends well for an information-theoretic analysis, and
we use it to prove convexity, composability, and post-processing
properties for PP mechanisms. We also leverage our formulation
to derive noise levels for the Gaussian PP mechanisms. The
obtained mechanisms are applicable under relaxed assumptions
and provide improved noise levels in some regimes, compared to
existing approaches,

I. INTRODUCTION

The increased amount of personal data shared online, along

with developments in data mining techniques pose serious

privacy threats. Statistical privacy frameworks seek to address

these threats in a principled manner with formal guarantees.

Differential privacy (DP) [2] is perhaps the most popular

statistical privacy framework, which enables answering ag-

gregate queries about a database while keeping individual

records private. However, DP only accounts for one type of

private information (namely, individual records modeled by

rows of the data matrix), and does not allow to encode domain

knowledge into the framework. To address these limitations, a

versatile generalization of DP, termed Pufferfish Privacy (PP),

was proposed in [3]. PP allows to customize what information

is regarded as private, and explicitly integrates distributional

assumptions into the definition (see also [4]).

Furnishing connections between statistical privacy and in-

formation theory has gained increasing interest in the past

decade [1], [5]–[9]. Such connections serve as a fertile ground

for research, enabling to borrow tools and ideas from one

discipline to make progress in the study of the other. In

particular, [1] established an equivalent characterization of DP

in terms of the conditional mutual information between the

mechanism and any individual record, given the rest of the

database. This reformulation lends well for an information-

theoretic analysis of DP and poses it in terms of a common

currency (namely, mutual information) through which privacy-

utility tradeoffs may be examined [10]. It was also leveraged

in [11] to study fundamental privacy-utility tradeoffs in linear

regression problems. Inspired by the above, herein we target

an information-theoretic characterization of PP, using which

we shall explore various properties and novel mechanisms.

We consider a specialized PP framework, where private and

public information is modeled as pairs of functions of the

database that are coupled via a bipartite graph. This setup

captures various privacy notions, from DP [2] to attribute pri-

vacy (AP) [12], as special cases. We provide an information-

theoretic characterization of this PP framework via the condi-

tional mutual information between the mechanism and the se-

cret function given the public one. Specifically, the mutual in-

formation PP criteria is shown to be sandwiched between ǫ-PP

and (ǫ, δ)-PP in terms of strength. The proof relies on repre-

senting PP constraints as bounds on appropriate divergences,1

and comparing those to the Kullback-Leibler (KL) divergence

(and thus mutual information) via monotonicity, Pinsker’s

inequality, and the minimax redundancy capacity theorem.

We then leverage the information-theoretic characterization

to derive properties of PP mechanisms, including convexity,

post-processing, and composability. Our composability results

for mutual information PP offer greater flexibility than the

counterparts for the classic PP framework [3]. Next, we study

the Gaussian mechanism for achieving mutual information

PP and derive sufficient conditions on the injected noise

parameters. The derivation relies on controlling mutual in-

formation via maximum entropy arguments and the entropy

power inequality. We obtain parameter bounds in terms of the

conditional variance of the query, which differs from classic

results that typically depend on the ℓ1- or ℓ2-sensitivity of

the query (cf. e.g., [13], [14]). Variance-based bounds are

particularly desirable under the PP framework as it encodes

prior knowledge on the data distribution. Indeed, it may be

the case that sensitivity explodes (e.g., for unbounded query

functions) but variance is finite due to concentration properties

of the distribution class.

II. NOTATIONS

Sets are denoted by calligraphic letters, e.g. X . For k, n ∈
N, we use Xn×k for the database space of n × k matrices

(columns correspond to different attributes while rows to

different individuals). The (i, j)th entry of x ∈ Xn×k is

x(i, j). The ith row and jth column of x are x(i, ·) and x(·, j),
respectively. The image of a function g : Xn×k → R

d is

denoted by Im(g). We use ‖·‖p for the ℓp, p ≥ 1, norm in R
d.

1∞-Rényi divergence for ǫ-PP and total variation distance for (0, δ)-PP.
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We denote by (Ω,F ,P) the underlying probability space

on which all random variables (RVs) are defined, with E

designating expectation. RVs are denoted by upper case letters,

e.g., X , with PX representing the corresponding probability

law. For X ∼ PX , we interchangeably use supp(X) and

supp(PX) for the support. Conventions for n×k-dimensional

random variables are the same as for deterministic elements.

The space of all Borel probability measures on S ⊆ R
d is

denoted by P(S). We write P ≪ Q to denote that P is

absolutely continuous with respect to (w.r.t.) Q. The n-fold

product measure of P ∈ P(S) is P⊗n.

The mutual information between X and Y is denoted

by I(X;Y ), while h(X) is the differential entropy of X;

conditional versions thereof given Z are denoted by I(X;Y |Z)
and h(X|Z), respectively. The KL divergence between P,Q ∈
P(X ) with P ≪ Q is DKL(P‖Q), while ‖P−Q‖TV designates

the total variation (TV) distance. Both KL divergence and

TV distance are jointly convex in (P,Q), which will be

used subsequently. KL divergence and TV are related to one

another via Pinsker’s inequality [15], whereby ‖P −Q‖TV ≤
√

0.5DKL(P‖Q). Also recall that I(X;Y ) can be expressed in

terms of KL divergence as I(X;Y ) = DKL(PXY ‖PX ⊗PY ),
where PX and PY are the respective marginals of X and Y .

III. PUFFERFISH PRIVACY AND MUTUAL INFORMATION

This section establishes the mutual information based char-

acterization of PP, where secrets and public information are

modeled as arbitrary collections of functions of the database.

Domain knowledge is integrated into the framework by re-

stricting the set of data distributions.

A. Pufferfish Privacy

For a data space Xn×k, the Pufferfish framework [3]

consists of three components: (i) a set of secrets S , that

contains measurable subsets of Xn×k; (ii) a set of secret pairs

Q ⊆ S × S that needs to be statistically indistinguishable in

the (ǫ, δ) sense (see (1)); and (iii) a class of data distributions

Θ ⊆ P(Xn×k), that captures prior beliefs or domain knowl-

edge about potential adversaries. As formulated next, the goal

of PP is to make all secret pairs in Q indistinguishable w.r.t.

those prior beliefs PX ∈ Θ.

Definition 1 (Pufferfish privacy [3], [12]). Fix ǫ, δ > 0.

A randomized mechanism M : Xn×k → Y is (ǫ, δ)-private in

the pufferfish framework (S,Q,Θ) if for all PX ∈ Θ, secret

pairs (R, T ) ∈ Q with PX(R), PX(T ) > 0, and measurable

sets A ⊆ Y , we have

P
(

M(X) ∈ A
∣

∣R
)

≤ eǫ P
(

M(X) ∈ A
∣

∣T
)

+ δ. (1)

A randomized mechanism is described by a (regular) con-

ditional probability distribution given the data, i.e., PM |X .

In this work we focus on a special case of the general

framework, where pairs (R, T ) ∈ Q are decomposed into

a private part (on which they should be indistinguishable)

and a common one (interpreted as public information). In

Remark 1 we demonstrate how the considered formulation

n

k

gi(x) = x(i, ·)

wi(x) =
(

x(j, ·)
)

j 6=i

(private portion)

(public portion)

x ∈ Xn×k

Fig. 1. Function pairs for DP: The ith row of x ∈ Xn×k is the private
portion, while the rest of the database is the corresponding public part.

reduces to popular privacy notions like DP [2] and AP [12].

Our formulation is constructed as follows:

1) Private/public functions: Let G and W be finite sets of

sizes K and L, respectively, containing functions on Xn×k.

For g ∈ G, we interpret g(X) as a private feature of the dataset

X ∼ PX ∈ Θ, while w(X), w ∈ W , represents publicly

available information.

2) Function pairs: To encode which private-public function

pairs constitute a secret (i.e., an element of S) we use a

bipartite graph. Namely, consider the graph (G,W, E), where

E is a given edge set between the two partitions G and W .

We write g ∼ w if {g, w} ∈ E for some g ∈ G and w ∈ W .

The operational meaning of an edge g ∼ w is that g(X) must

be concealed even if the adversary has access to w(X) (e.g.,

for DP we take gi(x) = x(i, ·) as a specific row of the dataset

and wi(x) =
(

x(j, ·)
)

j 6=i
as the rest of the data matrix, where

i = 1, . . . , n), and set G = {gi}ni=1, W = {wi}ni=1, and

E =
{

{gi, wi}
}n

i=1
, as depicted in Figure 1.)

3) Secret event: Each secret event (namely, an element of

S) corresponds to a pair of specific values that a private-public

function pair takes, i.e., for G ∋ g ∼ w ∈ W , a ∈ Im(g), and

c ∈ Im(w), we define Ag,w(a, c) :=
{

g(X) = a, w(X) = c
}

.

4) Secret event pairs: Elements of Q ⊆ S×S are pairs that

share the same public information (i.e., the value for w(X))
but differ in their private portions (the value of g(X)).

We are now in position to define the considered PP framework.

Definition 2 (Specialized PP framework). Fix ǫ, δ > 0 and

consider a bipartite graph (G,W, E) with sets of functions G
and W as above. A randomized mechanism M : Xn×k →
Y is (ǫ, δ)-private in the specialized pufferfish framework

(G,W, E ,Θ) if it satisfies Definition 1 with

S :=
{

Ag,w(a, c) : G ∋ g ∼ w ∈ W, a ∈ Im(g), c ∈ Im(w)
}

Q :=
{

{Ag,w(a, c),Ag,w(b, c)
}

: G ∋ g∼w ∈ W, c ∈ Im(w),

a, b ∈ Im(g), a 6= b
}

and as set of data distributions Θ ⊆ P(Xn×k).

Remark 1 (Reductions to DP and AP). The specialized PP

framework presented above captures various special cases of

practical importance, such as DP [2] and AP [12]. Specif-

ically, DP corresponds to Θ = P(Xn×k), private functions

gi(x) = x(i, ·), public functions wi(x) =
(

x(j, ·)
)

j 6=i
, where
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i = 1, . . . , n, and an edge set E =
{

{gi, wi}
}n

i=1
. Following

the AP setup of [2], we take gj(x) = g̃j
(

x(·, j)
)

, for j =
1, . . . , k, where g̃j is the considered function of the jth column

of the database. As AP includes no public information we

further take W = E = ∅ and set Θ as the class of distributions

of interest. Alternatively, one may consider a variant of AP

with public information, in the spirit of DP, where W contains

functions wj(x) =
(

x(·, i)
)

i6=j
, where j = 1, . . . , k, and the

edge set is E =
{

{gj , wj}
}k

j=1
.

B. Information-Theoretic Characterization

We provide an information-theoretic characterization of the

specialized PP framework, in the spirit of the DP characteriza-

tion of [1]. To that end, we first define mutual information PP.

Definition 3 (ǫ-mutual-information PP). Let (G,W, E) be a

bipartite graph as in Definition 2 and Θ ⊆ P(Xn×k). A ran-

domized mechanism M : Xn×k → Y is ǫ-mutual-information

PP, abbreviated ǫ-MI PP, in the framework (G,W, E ,Θ) if

sup
PX∈Θ,

g∈G,w∈W:
g∼w

I
(

g(X);M(X)|w(X)
)

≤ ǫ.

Remark 2 (Reduction to ǫ-mutual-information DP, ab-

breviated ǫ-MI DP). ǫ-MI PP as defined above recovers

information-theoretic formulation of DP proposed in [1] by

taking (G,W, E ,Θ) as described in Remark 1.

The following theorem states the equivalence between the

specialized PP framework from Definition 2 and the ǫ-MI PP

above. More precisely, our result shows that ǫ-MI PP sits right

between (ǫ, 0)-PP and (ǫ, δ)-PP in terms of its strength.

Theorem 1 (Equivalent formulations). consider the special-

ized (ǫ, δ)-PP framework (G,W, E ,Θ) from Definition 2. For

any ǫ, ǫ′ > 0, the following chain of implications holds:

(ǫ, 0)-PP =⇒ ǫ-MI PP =⇒ (ǫ′,
√
2ǫ)-PP.

Furthermore, if
∣

∣ supp
(

M(X)
)∣

∣ < ∞ or maxg∈G |Im(g)| <
∞, then the inverse implication holds:

(ǫ, δ)-PP =⇒ ǫ⋆-MI PP

with

ǫ⋆=2hb(δ
′

)+2δ
′

log

(

min
{∣

∣supp
(

M(X)
)∣

∣,max
g∈G

|Im(g)|+1
}

)

where hb is the binary entropy function in nats and δ
′ ∈ [0, 1]

with δ
′

= 1− 2(1− δ)/(eǫ + 1).

Theorem 1 is proven in Section V-A by reformulating

(ǫ, 0)-PP in terms of the ∞-Rényi divergence and using

information-theoretic inequalities.

IV. PROPERTIES AND MECHANISMS

While the original PP definition is somewhat hard to manip-

ulate, we next show that the information-theoretic formulation

lands itself well for analysis, enabling the derivation of various

properties and explicit noise-injection mechanisms.

A. Properties of Pufferfish Mechanisms

Modern guidelines for privacy frameworks [16] pose prop-

erties such as convexity and post-processing (also known as

transformation invariance) as fundamental axioms. Compos-

ability is another important property that requires the joint

distribution of the outputs of (possibly adaptively chosen)

privacy mechanisms is in itself private. These properties are

shown to hold for the general (ǫ, 0)-PP framework in [3]. The

next theorem states the ǫ-MI PP possess all these properties.

Theorem 2 (Properties of ǫ-MI PP). The following hold:

1) Convexity: Let ǫ > 0, p ∈ [0, 1], and M1,M2 be ǫ-MI

PP mechanisms. Then the mechanism that equals M1 with

probability (w.p.) p and M2 w.p. 1− p is also ǫ-MI PP.

2) Composability: Let M1, . . . ,Mk be sequentially

and adaptively chosen ǫ1 . . . , ǫk-MI PP mechanisms, i.e.,

supPX ,w∼g I
(

g(X);Mi(X)
∣

∣w(X),M1, ...,Mi−1

)

≤ ǫi, for

all i = 1, . . . , k. Then Mk satisfies
(
∑k

i=1 ǫi
)

-MI PP.

3) Post-processing: If mechanism M : Xn×k → Y satisfies

ǫ-MI PP, then for any randomized function A : Y → Z , the

processed mechanism A ◦M also satisfies ǫ-MI PP.

Theorem 2 is proven in Section V-B based on elementary

properties of mutual information, such as its nullification

under independence, the chain rule, and the data processing

inequality. The simplicity of the argument highlights the virtue

of the information-theoretic formulation of the PP framework.

Remark 3 (Non-adaptive composition). Non-adaptive compo-

sition refers to mechanisms that are conditionally independent

given the database, i.e., PM1,...,MK |X =
∏k

i=1 PMi|X . For PP

frameworks where pairs of secrets (R, T ) ∈ Q corresponds to

pairs of databases (in other words, R and T are singletons;

see Definition 1), both ǫ-MI PP and regular ǫ-PP mechanism

compose under this setting. The general non-adaptive setting,

without assuming that secrets specify databases, was studied

in [3], where it was shown that composability does not hold

in general. [3] then identified a (rather restrictive) sufficient

condition on the class of distributions Θ, termed universally

composable (UC) distributions, under which non-adaptive

composability holds for ǫ-PP. Similarly, non-adaptive compo-

sition of ǫ-MI PP also holds when all feasible distributions

are UC. The UC condition is, however, unstable for ǫ-PP: if

Θ contains all UC distribution, adding even a single non-UC

distribution to this set will compromise the composability of

the classic PP framework. ǫ-MI PP is more robust in that

sense, as composability of ǫ-PP mechanisms is still ǫ-MI PP

even after adding non-UC distributions to Θ, so long that all

UC distributions are there (e.g., when Θ = P(Xn×k)).

B. Noise-Injection Pufferfish Mechanisms

Despite the practical importance of tractable privacy mech-

anisms, designing them for the general PP framework seems

challenging. In [4], the Wasserstein PP mechanism was pro-

posed, but it is computationally burdensome as it requires

computing the ∞-Wasserstein distance between all pairs of

conditional distributions of the published query result given

2022 IEEE International Symposium on Information Theory (ISIT)
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any pair of secrets from Q. This sections shows that the

information-theoretic formulation of PP allows bridging this

gap, giving rise to (Gaussian and Laplace) noise-injection

mechanisms whose noise level is specified in terms of elemen-

tary quantities. By virtue of Theorem 1, any of the following

ǫ-MI PP mechanisms is also (ǫ′,
√
2ǫ)-PP in the classic sense

(see Definition 2).

We first describe how a noise-injection mechanism operates.

Let f : Xn×k → R
d be the query so that our goal is to

publish the value f(X), for X ∼ PX ∈ Θ, under the ǫ-MI PP

framework from Definition 3. The noise-injection mechanism

perturbs the published value as M(X) = f(X) + Z, where

(in this paper) Z follows a Gaussian or Laplace distribution

whose parameters are chosen so that ǫ-MI PP holds.

1) Gaussian mechanism: We characterize parameter values

for the Gaussian mechanism that are sufficient for ǫ-MI PP.

Theorem 3 (Gaussian mechanism). Fix ǫ > 0 and a special-

ized PP framework (G,W, E ,Θ). Let f : Xn×k → R
d and

consider the Gaussian mechanism MG(X) := f(X) + ZG,

where ZG ∼ N (0, σ2Id) is a d-dimensional isotropic Gaussian

of parameter σ > 0. If

σ2 ≥ sup
PX∈Θ, w∈W⋆

∑d
j=1 E

[

Var
(

fj(X)
∣

∣w(X)
)]

d(e
2ǫ

d − 1)
,

where fj(X) is the jth entry of f(X) =
(

f1(X), . . . , fd(X)
)

and W⋆ = {w ∈ W : ∃ g ∈ G, g ∼ w}, then MG is ǫ- MI PP.

The derivation of Theorem 3 is presented in Section V-C

and relies, among other things, on the fact that the Gaussian

distribution maximizes differential entropy subject to a second

moment constraint. Theorem 3 can be specialized to ǫ-MI DP

under the setup from Remark 1.

Corollary 1 (Gaussian mechanism for DP). Under the setup

of Theorem 3, the Gaussian mechanism with

σ2 ≥ ∆2
2(f)

2d(e
2ǫ

d − 1)
,

is ǫ-MI DP, where ∆2(f) := maxx∼x′ ‖f(x)− f(x′)‖2 is the

ℓ2-sensitivity and x ∼ x′ denotes neighboring databases that

differ by (at least one entry of) a single row, that is x(i, ·) 6=
x′(i, ·) for some i = 1, . . . , n, and agree on all other rows.

Remark 4 (Classic Gaussian mechanisms). ǫ-MI DP implies

regular (ǫ′,
√
2ǫ)-DP, for any ǫ′ ≥ 0 (Theorem 1). For compar-

ison, the classical Gaussian mechanism achieves (ǫ′,
√
2ǫ)-DP

with σ2 ≥ 2 log(1.25/
√
2ǫ)∆2

2(f)/ǫ
′2 for ǫ′ ≤ 1 [13]. It can

be shown that our mechanism requires a lower noise level than

the classic one whenever ǫ′ < 2
(

(e2ǫ−1) log(1.25/
√
2ǫ)

)1/2
.

Remark 5 (Domain knowledge for DP). A main advantage of

our approach compared to sensitivity-based classic Gaussian

mechanisms is that the bound in Theorem 3 depends on the

variance of f and allows to incorporate domain knowledge.

Consider the product Gaussian family

ΘG(m, s) =
{

n
∏

i=1

θi : θi = N (µi, σ
2
i ), |µi| ≤ m, σ2

i ≤ s
}

,

and let f(X) = n−1
∑n

i=1 Xi be the average of the database

entries (the argument holds for any other linear query). Then,

the noise derived from our mechanism is (eǫ−1)−1(s/n)−1/2,

which is finite as the variance is bounded. On the other hand,

∆2(f) = ∞ here since X has unbounded support. Thus, the

sensitivity-based mechanisms are vacuous for this case, while

our bound provides feasible noise levels.

Remark 6 (Laplace mechanism). Under the setup of Theorem

3, it can be shown that the Laplace mechanism ML(X) :=
f(X) + ZL, where ZL ∼ Lap(0, b)⊗d is a d-dimensional

isotropic Laplace distribution with the scale parameter b > 0,

is ǫ-MI PP if

b ≥ sup
PX∈Θ, w∈W⋆

∑d
j=1 E

[√

Var
(

fj(X)|w(X)
)

]

d(e
ǫ

d − 1)
.

This follows from the fact that the Laplace distribution maxi-

mizes differential entropy subject to an expected absolute devi-

ation constraint in a similar fashion to the proof of Theorem 3.

2) Gaussian mechanism with dependence on G: The noise

levels derived in Theorem 3 depends on the secret function

class G only through W⋆. While this is sufficiently fine for DP,

where there is a one-to-one correspondence between private

and public functions, generally it may be desirable to capture

the dependence on G explicitly. This is particularly relevant

when there is no public information (e.g., the AP framework

from [12], described in Remark 1) or if there is a single public

function w corresponding to all private g ∈ G. Noise levels

derived from the following theorem takes this into account.

Theorem 4 (Gaussian mechanism with dependence on G).

Under the setup from Theorem 3 and assuming

infg∈G,w∈W:
g∼w

h
(

f(X)
∣

∣g(X), w(X)
)

> −∞, the Gaussian

mechanism MG achieves ǫ- MI PP, if

σ2 ≥ sup
PX∈Θ,

g∈G,w∈W:
g∼w

max

{

A− d e2ǫ/dB

d(e2ǫ/d − 1)
, 0

}

,

where A =
∑d

j=1 E
[

Var
(

fj(X)
∣

∣w(X)
)]

and B =
1
2π exp

(

2
dh

(

f(X)
∣

∣g(X), w(X)
)

− 1
)

.

In addition to maximum entropy arguments, the proof of

Theorem 4 uses the entropy power inequality. We may replace

the conditional entropy in B by any lower bound that may be

easier to compute (cf. e.g., [17]), and ǫ-MI PP will still hold.

Remark 7 (Comparisons with Gaussian AP mechanism). The

AP Gaussian mechanism was considered [12]. The setup

assumes W = ∅, and that for all g ∈ G and PX ∈ Θ, the query

output f(X) conditioned on g(X) is Gaussian with a constant

variance, i.e., Var
(

f(X)
∣

∣g(X) = a
)

= Var
(

f(X)
∣

∣g(X) =
b
)

, for all a, b ∈ Im(g). Assuming d = 1 for simplicity, the

noise level from Theorem 4 under this setup reduces to:

sup
PX∈Θ,
g∈G

max

{

Var(f(X))− e2ǫVar
(

f(X)
∣

∣g(X) = a
)

e2ǫ − 1
, 0

}

.
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The noise level derived in [12], to achieve (ǫ, δ)-AP is

sup
PX∈Θ,
g∈G

max
{

(

Cǫ−1∆AP(f)
)2 −Var

(

f(X)
∣

∣g(X) = a
)

, 0
}

,

where C =
√

2 log(1.25/δ) and

∆AP(f)= max
a,b∈Im(g)

∣

∣E
[

f(X)
∣

∣g(X)=a
]

−E
[

f(X)
∣

∣g(X)=b
]∣

∣.

Under a multivariate extension of the product Gaussian family

from Remark 5 (i.e., where each θi is a multivariate Gaussian)

and for f and g linear functions of columns of the database

(e.g., average of the column entries), ∆AP(f) diverges to

infinity while the variance-based bound is finite and feasible.

Remark 8 (Free ǫ-MI PP regime). The bound in Theorem 4

suggests that if A ≤ d e2ǫ/dB over the entire optimization

domain, ǫ-MI PP holds without noise injection (i.e., σ = 0). It

can be shown that A ≥ dB for any PX ∈ P(X ) and functions

f , g, and w. The free privacy regime therefore corresponds to

cases where ǫ is large compared to d/2. Since large ǫ values

are rarely of interest in practice, we conclude that a positive

noise level is generally needed for ǫ-MI PP. For fixed ǫ and

d, the above condition is related to how correlated the query

and the secret are, given the public information. For instance,

if d = 1 and f(X), g(X), and w(X) are jointly Gaussian,

we have A ≤ d e2ǫ/dB if the conditional correlation coeffi-

cient between f(X) and g(X) given {w(X) = c} satisfies

ρ
(

f(X), g(X)
∣

∣w(X) = c
)

≤
√

(e2ǫ − 1)e−2ǫ. Accordingly,

weak correlation may lead to free privacy since the query

leaks little information about the secret to begin with.

V. PROOFS

A. Proof of Theorem 1

For the first implication, note that ǫ-PP implies that

sup
A

log

(

P
(

M(X) ∈ A
∣

∣R
)

P
(

M(X) ∈ A
∣

∣T
)

)

≤ ǫ, ∀(R, T ) ∈ Q.

The left-hand side above is the infinite order Rényi divergence.

By monotonicity of Rényi divergences w.r.t. their order [18],

we have DKL

(

PM(X)|R‖PM(X)|T

)

≤ ǫ. Then,

I
(

g(X);M(X)|w(X)
)

≤ E
[

DKL

(

PM(X)|g(X),w(X)‖PM(X)|g(X)′,w(X)

)]

where the inequality uses convexity of KL divergence,

with g(X)′ as an i.i.d. copy of g(X). Recalling that

under the specialized PP framework secret pairs are
(

Ag,w(a, c), Ag,w(b, c)
)

, with Ag,w(a, c) =
{

g(X) =
a, w(X) = c

}

, ǫ-MI PP follows by the KL divergence bound.

For the second implication, by the minimax redundancy

capacity theorem [19], I
(

g(X);M(X)|w(X) = c
)

is rewrit-

ten as infQ maxa DKL

(

PM(X)|g(X)=a,w(X)=c

∥

∥Q
)

. Letting Q⋆

achieve the infimum above, since M is ǫ-MI PP by assump-

tion, we have DKL

(

PM(X)|g(X)=a,w(X)=c

∥

∥Q⋆
)

≤ ǫ, for all

a ∈ Im(g). Applying Pinsker’s inequality together with the

triangle inequality, we obtain
∥

∥PM(X)|g(X)=a,w(X)=c − PM(X)|g(X)=b,w(X)=c

∥

∥

TV
≤

√
2ǫ,

which implies that M is (0,
√
2ǫ)-PP and hence (ǫ′,

√
2ǫ)-PP.

For the last implication, adapting Property 3 in [1] from

DP to PP, we have that (ǫ, δ)-PP implies (0, δ
′

)-PP, with

δ
′

= 1 − 2(1− δ)/(eǫ + 1). With this reduction, we follow

the argument from the proof of Lemma 3 in [1] to show that

if
∣

∣ supp
(

M(X)
)∣

∣ < ∞ or maxg∈G |Im(g)| < ∞, then (0, δ)-
PP implies ǫ⋆-MI PP with ǫ⋆ as stated in Theorem 1.

B. Proof of Theorem 2

For (1), let B ∼ Ber(p1), set p2 = 1 − p1, and define

Q = 2−B. By independence of Q from
(

X,M1(X),M2(X)
)

and since M1 and M2 satisfy ǫ-MI PP, we have

I
(

g(X);MQ(X)
∣

∣w(X)
)

≤ I
(

g(X);MQ(X)
∣

∣w(X), Q
)

≤
2

∑

i=1

piI
(

g(X);Mi(X)
∣

∣w(X)
)

≤ ǫ.

Claims (2) and (3) are direct consequences of the mutual

information chain rule and the data processing inequality.

C. Proof of Theorem 3

h(f(X) + ZG|w(X))

(a)

≤
∫

1

2
log

(

(2πe)d
∣

∣Σf(X)|w(X)=c + σ2Id)
∣

∣

)

dPw(X)(c)

(b)

≤
∫

1

2
log



(2πe)d
d
∏

j=1

(

aj(c) + σ2
)



 dPw(X)(c)

(c)

≤ d

2
log



2πe





1

d

d
∑

j=1

E
[

Var
(

fj(X)
∣

∣w(X))
]

+ σ2







 ,

(2)

where (a) follows from the Gaussian distribution maxi-

mizing differential entropy subject to a variance constant,

with |K| denoting the determinant of K; (b) denotes

aj(c) = Var
(

fj(X)|w(X) = c
)

and uses |K| ≤
∏d

j=1 K(j, j), which applies to any positive semidefinite ma-

trix; and (c) from concavity of x 7→ log x.

Combining (2) with h
(

f(X)+ZG

∣

∣g(X),w(X)
)

≥h(ZG), up-

per bounds I
(

g(X);MG(X)
∣

∣w(X)
)

which is further bounded

by ǫ. Solving for σ2 concludes the proof.

D. Proof of Theorem 4

Similar to the proof of Theorem 3, but using the bounds

h
(

f(X) + ZG

∣

∣w(X)
)

≤ 0.5d log

(

2πe

(

A

d
+ σ2

))

h
(

f(X) + ZG

∣

∣g(X), w(X)
)

≥ 0.5d log
(

2πe(B + σ2)
)

,

where the latter follows from entropy power inequality, with

A and B specified in the theorem statement.
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