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Introduction

The formation of new C-C and C-heteroatom bonds through
transition-metal catalyzed cross-coupling reactions (i.e., Suzuki,
Kumada, and Negishi reactions) is currently one of the most
powerful tools in organic chemistry.'> In this context, noble
metal-based systems are the more commonly used catalysts for
these transformations, due to their widely understood
mechanism.*” For example, Pd-catalyzed reactions usually occur
via Pd°/Pd" catalytic cycles and mostly involve diamagnetic inter-
mediate species, which makes their characterization more feas-
ible.® In contrast, the mechanisms of Ni-catalyzed cross-coupling
reactions are far less understood since this first-row transition
metal can easily undergo both one- and two-electron redox pro-
cesses, often involving paramagnetic intermediate species that
lead to more complex mechanistic pathways.”™" Although tra-
ditionally Ni-catalyzed cross-coupling reactions have been
reported to involve Ni’ Ni' and Ni" intermediates,”” ™ recent
studies suggest that high-valent Ni'™" and Ni'V species are key
intermediates in the C-C/C-heteroatom bond-forming step.*>>*
Pyridinophanetetradentate ligands have been shown to
stabilize uncommon high-valent organometallic nickel com-
plexes. Indeed, in the past several years, Mirica and co-workers
have employed a series of tetradentatepyridinophane ligands
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1(15),11,13-triene, PyNMes, is used to isolate and structurally characterize well-defined organometallic
Ni(1) and Ni(i) complexes bearing the cycloneophyl fragment, an alkyl/aryl C-donor ligand. Furthermore,
spectroscopic and cryo-mass spectrometry studies suggest the formation of a transient Ni(iv) organo-
metallic complex, and its relevance to C-C and C-O bond formation reactivity studies is discussed.

with different amine N-substituents (N4 ligands, R = Me, Ts,
'Pr, ‘Bu, and Np) as well as the tridentate 1,4,7-trimethyl-1,4,7-
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Fig. 1 (a) Isolated organometallic nickel complexes bearing tridentate
or tetradentate N-donor ligands and cycloneophyl as the C-donor
ligand; (b) spectroscopically characterized high-valent iron-oxo inter-
mediate species relevant for O, activation chemistry bearing the tetra-
dentate N-based PyNMes ligand, and (c) synthesis of well-defined
organometallic nickel complexes bearing the PyNMez and cycloneophyl
ligands and their C—C and C-O bond formation reactivity.
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C-C/C-heteroatom bond formation reactions.? *°Recently, a
macrocyclic N-based tetradentate ligand PyNMe; has been
employed by Costas, Company and co-workers to stabilize
high-valent intermediate species and has proved to be success-
ful to trap Fe™V-oxo species (Fig. 1b) and dinuclear Cu" side-
on peroxo species.*'**> However, the use of the PyNMe; ligand
has never been employed to explore the reactivity of organo-
metallic Ni complexes.

Herein we report the synthesis, characterization, and initial
reactivity studies of a series of organometallic Ni", Ni'" and
Ni"V complexes supported by the PyNMej; ligand and contain-
ing the cycloneophyl fragment, an alkyl/aryl C-donor ligand
(Fig. 1c). The cycloneophyl ligand was developed by Carmona
et al. as an ancillary ligand to isolate organonickel complexes,
since the resulting Ni(cycloneophyl) complexes are less prone
to reductive elimination or p-hydride elimination.**™*® In
addition, the cycloneophyl moiety has been widely and suc-
cessfully employed together with N-based ligands indepen-
dently by Sanford and Mirica in order to study C-C and
C-heteroatom bond forming reactions.* %% The current
study reports the reactivity of the isolated [(PyNMe;)Ni"(cycl)]
complex with oxidants to promote C-C or C-O reductive elim-
ination through Ni'V intermediate species.

Results and discussion

Our first attempt to isolate organometallic nickel complexes
bearing the PyNMe; ligand consisted of the in situ oxidative
addition of 1-bromo-4-fluorobenzene using Ni(cod),. The puta-
tive [(PyNMe;)Ni"(pF-Ph)(Br)] complex could not be isolated
due to fast decomposition and rapid ligand exchange that
leads to the formation of 0.5 equiv. of [(PyNMe;)Ni"Br,] (1-Br)
and 0.5 equiv. of [(PyNMe;)Ni"(pF-Ph),]. The latter di-aryl
complex then undergoes reductive elimination to afford the
homocoupled product pF-Ph-Ph-pF (as detected via GC-MS),
free ligand and Ni(0) (Fig. 2a). In addition, the reaction of
[(PyNMe;)Ni"(Cl),] (1-Cl) with MeMgCl in THF at—50 °C led to
an intractable mixture due to the fast decomposition of the
desired nickel(ir)-dimethyl complex (Fig. 2b). Nonetheless, the
putative [(PyNMe;)Ni"(Me),] species could be detected via 'H
NMR, which revealed two singlets below 0 ppm that integrated
to three protons each and presumably corresponded to the two
inequivalent methyl groups directly attached to the Ni center
(Fig. S17).

Gratifyingly, the combination of PyNMe; and cycloneophyl
(-CH,CMe,-0-C¢H,—, or cycl) as ligands allows the stabilization
and isolation of complex [(PyNMe;)Ni"(cycl)] (2) in 67% yield.
The complex was synthesized via ligand exchange of the Ni(u)
precursor [(py),Ni"(cycl)] with an equimolar amount of
PyNMe; in 1:1 toluene/pentane, for 16 hours at room temp-
erature under a nitrogen atmosphere (Fig. 3a). The X-ray struc-
ture revealed a square planar geometry around the Ni(n)
center, with the PyNMe; ligand coordinated in a bidentate
fashion (Fig. 3b). This new system allows for the observation of
the trans influence of the ligands. Interestingly, the PyNMe;
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Fig. 2 (a) Attempt to synthesize [(PyNMe;s)Ni"(PhF)(Br)] via oxidative
addition at nickel(0), and (b) attempt to synthesize [(PyNMez)Ni'"(Me),]
via transmetallation at the nickel(i)—chloride precursor, 1-Cl.
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Fig. 3 (a) Synthesis and characterization of complex [(PyNMes)

Ni"(cycl)l, 2; (b) ORTEP representation of 2 (50% probability thermal
ellipsoids; hydrogen atoms have been omitted for clarity; selected dis-
tances (A): Ni-C24, 1.888(2); Ni-C15, 1.932(2); Ni-N2, 2.0535(19); Ni-
N1, 1.9923(19), and c) CV of 2 in 0.1 M NBu4(PFg)/MeCN at a scan rate of
100 mVs™ (Ag wire as a reference electrode).
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ligand coordinates to the Ni(u) center through the pyridine
moiety which is trans to the alkyl ligand, and one of the adja-
cent amines trans to the phenyl group. This type of coordi-
nation could not be observed with the previously reported
systems bearing symmetric pyridinophane type ligands (*N4).
In addition, the "H-NMR spectrum confirms that 2 is a low-
spin diamagnetic Ni(u) complex. Detailed NMR experiments
were used to assign all proton and carbon peaks for 2 (Fig. S2—-
S91).The broadness of the peaks, especially the methylene
protons on the PyNMe; ligand, is likely due to the rapid ligand
exchange of the four types of N donors. Furthermore, the
unusual Ni(u) structure allows for an anagostic interaction of
the methylene protons vicinal to the tertiary amine and the Ni
metal center, with a Ni---H distance of 2.40 A and a Ni---H-C9
angle of 170°. The cyclic voltammogram (CV) of 2 in 0.1 M
(nBuyN)PFs/MeCN reveals a quasi-reversible redox event at
Ey;, = 250 mV vs. ferrocene (Fc), followed by another quasi-
reversible oxidation at E;,, = 630 mV (Fig. 3c). These observed
pseudo-reversible oxidations are presumably assigned to the
Ni"™" and Ni™™ redox couples, respectively. This result
suggests accessible Ni(m) and Ni(v) species, likely due to the
stabilizing effect of the two anionic chelating C donors from
the cycloneophyl ligand, as well as the tetradentate PyNMe;
ligand, as reported previously for high-valent
species.””?337

In fact, 2 was rapidly oxidized with 1 equiv. of ferrocenium
hexafluorophosphate (FcPFg) in MeCN at —35 °C to yield the
reddish product [(PyNMe;)Ni"(cycl)](PFs), 3 (Fig. 4a). The EPR
spectrum of 3 in 1:3 MeCN/PrCN is consistent with a Ni(m) d”
complex and exhibits a pseudoaxial signal with superhyperfine
coupling to two nitrogen atoms in the g, direction (A,x = 13.7
G), indicating that two I = 1 nitrogen atoms, presumably from
the ligand and/or solvent, coordinate to the Ni(m) center
(Fig. 4b). Luckily, complex 3 was stable and isolated at low
temperature in 73% yield.

The single crystal X-ray structure of 3 confirmed the six-
coordinate Ni(m) center in a distorted octahedral geometry
where the 6 coordination positions are occupied by the
PyNMe; and cycloneophyl ligands, thus confirming the EPR
data (Fig. 4c). Intriguingly, both the Ni-N and Ni-C distances
in 3 are longer than those in 2, as previously observed for
similar complexes, and are likely due to the change in the
coordination number from 4 to 6 upon oxidation.**?’
Moreover, cryo-ESI-mass spectrometry at —40 °C was per-
formed to further characterize this Ni(u1) complex. The MS
spectrum showed a major monocharged peak with m/z =
438.2289 and an isotopic pattern fully consistent with the cal-
culated values for 3%, [(C;4H,4N4)Ni"™(CyoH1,)]" (Fig. 4d).

Attempts to synthesize the corresponding Ni(iv) complex
were conducted through a stepwise oxidation of 2. The oxi-
dation of 2 to obtain 3 was monitored by low-temperature UV/
vis spectroscopy (Fig. 5a and b). This experiment was per-
formed at—40 °C using a 0.5 mM solution of 2 in MeCN. An
initial spectrum was recorded for the starting Ni(u) complex,
which exhibited an absorption band with 1,,x = 462 nm. For
the one-electron oxidation of each complex monitored by low-

iron-oxo
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Fig. 4 (a) Synthesis and characterization of complex [(PyNMes)

Ni"'(cycl)l(PFg), 3; (b) ORTEP representation of 3 (50% probability
thermal ellipsoids; hydrogen atoms have been omitted for clarity;
selected distances (A): Ni-C1, 1.9492 (12); Ni-C2, 1.9693 (14); Ni—-N1,
1.9944 (11); Ni-N2, 2.2543 (13); Ni—N3, 2.1463 (12); Ni-N4, 2.2470 (12);
(c) EPR spectra of complex 3 at 77 K in 1: 3 MeCN/PrCN (black: experi-
mental; red: simulated); and (d) cryo-HR-MS of 3 showing the mono-
cationic peak (3%) at m/z = 438.2289 (top) and the simulation of its
isotopic pattern (bottom).

temperature UV/vis, NO(SbF¢) was used as an oxidant in order
to obtain a cleaner spectrum, since Fc' exhibits two absorption
bands at 325 nm and 440 nm that could interfere with the
detection of new species. Thus, the addition of 1 equiv.of NO*
to 2 immediately yields 3, which exhibits an absorption band
with Amax = 513 nm. Afterwards, another equivalent of the
same oxidant was added to generate the new Ni(iv) complex, 4.
Upon addition of the second equivalent of the oxidant, the UV/
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Fig. 5 (a) Step-wise one-electron oxidation to nickel(iv) from 2 using NO(SbFg) as an oxidant; (b) UV-vis characterization of complexes 2, 3 and 4

obtained by the consecutive one-electron oxidation of 2 with NO(SbFg),
m/z = 219.1120 (top) and simulation of its isotopic pattern (bottom).

vis spectrum instantly changed and showed the formation of two
absorption bands with a . of 384 nm and 470 nm, and a
shoulder at 620 nm (Fig. 5b). The subsequent injection of an
aliquot into the cryo-ESI-mass spectrometer confirmed the gene-
ration of species 4 with a dicationic major peak with a mass value
of m/z = 219.1120 and an isotopic pattern fully consistent with
the calculated value for [(Cy4HauN,Ni™(CyoHo)*" (Fig. 5¢). This
novel complex was further characterized by NMR spectroscopy,
where a stepwise injection of 2 equiv. of NO" resulted in the
observation of a new Ni(v) species (Fig. S10 and S117).

In line with the UV-vis results, monitoring the oxidation by
NMR provided complementary information. A color change
from orange to red-pink was observed upon the addition of 1
equiv. of oxidant in CD;CN at —35 °C, while the obtained para-
magnetic NMR spectrum supported the formation of a Ni(u)
species. Interestingly, a second equivalent of oxidant allowed
the formation of a new diamagnetic species, tentatively
assigned as a Ni(iv) complex. The inherent broadness of the
NMR spectrum of the putative Ni(wv) species was likely caused
by the residual Ni(ur), which made peak assignment difficult.
However, the obtained Ni(iv) spectrum closely resembles those
of the recently reported Ni"V-cycloneophyl complexes sup-
ported by the N-based ligands pyridinophane (*°N4) and tri-
azacyclononane (““tacn).***” Due to the highly electrophilic
nature of the Ni(v) species, a key structural feature observed in
both °N4 and ™°tacnNi"-cyclonephyl systems was a large
shift of the Ni"*~CH,- protons from ~2.10 ppm in their Ni'-
CH,-counterparts to 5.33 ppm and 5.50 ppm, respectively. A
similar shift was observed with 4, in which the Ni"V-CH,-
protons shifted to 5.29 ppm, similar to what was observed for
(Metacn)Ni"(cycl).*?

This journal is © the Partner Organisations 2022

respectively, and (c) cryo-HR-MS of 4 showing the dicationic peak (42%) at

Next, we focused on the reactivity of 3 and 4 in C-C or C-O
bond formation reactions. First, we exposed the Ni'" species 3
to high temperatures (80 °C) to evaluate its stability, and it was
found that the compound decomposed to an intractable
mixture, which contained ~15% of the protodemetalation
product ¢-butylbenzene, and yet no reductive elimination pro-
ducts were obtained. Then, since the Ni(v) complex 4 was
metastable, we studied its reactivity by generating it in situ
through the oxidation of 2 with a variety of two-electron oxi-
dants such as XeF,, 1-fluoro-2,4,6-trimethylpyridinium triflate
(NFTPT), and PhI(OAc),, and yet no appreciable amount of any
reductive elimination products were observed. In contrast,
promising results were obtained when exploring its reactivity
with green oxidants such as O,, H,0,, and ‘BuOOH (Fig. 6).

In these reactions, only a trace amount (<1%) of the proto-
demetalation product ¢-butylbenzene, B, was observed in
GC-MS, indicating a nearly full conversion of 2 into the corres-
ponding Ni""/Ni" species. The reaction of 2 with 2 equiv. of

C S0

)

ot
N <N|

oxidant

| "N 2-MeTHF, -78 °C to 82 °C
—
N
2 \ Entry  Oxidant D
1 0, 59 % 0% 6% 2%
2 H,0, 9% 1% 1% 2%
3 BuO,H 3% 1% 8% 3%

GC-Ms

Fig. 6 Reactivity studies of 2 with different two-electron oxidants, and
the quantification of the respective organic products by GC-MS.
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H,0, in 2-MeTHF results in the formation of 11% C and 9% A
as the primary organic products. The reaction of 2 with
‘BUOOH shows a similar distribution of products. On the
other hand, the reaction of 2 with dioxygen generated up to
59% of C-C coupled product A, exhibiting an appreciable C-C
bond formation reactivity, which is proposed to occur via the
intermediacy of the Ni(wv) species 4. It is important to note
that this tetradentate PyNMe; ligand system displays a
different reactivity from the structurally related pyridinophane
®N4 system,”® where C-O reductive elimination was greatly
enhanced. In this case, it is likely that a Ni"~hydroxo transi-
ent, yet metastable intermediate was generated and led to com-
peting C-C/C-O reductive elimination steps, which has been
observed for M™complexes (M = Pt, Pd) bearing ligands that
are prone to reductive elimination.****By contrast, the
[(PyNMe;)Ni(cycl)] system seems to favor the C-C bond for-
mation reactivity over the formation of any oxygen-containing
products, possibly because the PyNMe; ligand is flexible
enough to strongly bind to the Ni(wv) species and complete the
octahedral coordination geometry, without allowing the
coordination of any additional oxidant-derived, O-donor
ligand.

Conclusion

In summary, we have been able to explore the rich organo-
metallic redox chemistry of Ni by characterizing spectroscopi-
cally Ni" (2), Ni"" (3) and Ni" (4) complexes supported by the
tetradentate N-donor ligand PyNMe;. 2 features a square-
planar geometry with two pendant aliphatic amine moieties,
which enter into the coordination sphere of the metal upon
oxidation to a Ni(m), 3, that features a distorted octahedral
geometry. Further reaction of 3 with another equivalent of
oxidant affords the putative Ni(iv) complex 4. Reactivity studies
indicated that the in situ formed Ni(v) complex, [(PyNMes)
Ni™(cycl)](SbFs), (4), promotes C-C coupling over C-O coup-
ling despite the use of O-based oxidants, in contrast to the
related pyridinophane R®N4 systems.** Overall, this new
PyNMe; ligand system provides important insight for under-
standing at the molecular level the electronic properties of dis-
symmetric macrocyclic ligands on well-defined Ni"" (2), Ni'" (3)
and Ni'V (4) organometallic complexes and their role in C-C
and C-O bond formation transformations.
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