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ABSTRACT
Personalized item search has become an essential tool for online
platforms—where users interact with a large corpus of items (e.g.,
click, purchase, like) via a search query—to provide their users with
a more satisfactory search experience. The record (or history) of
users’ past interactions serves as a valuable asset to achieve per-
sonalization. While user history data can span over a long period
of time, only a part of the history is relevant to a user’s current
search intent. Moreover, since historical interactions take place
at aperiodic points in time, modeling their relevance to the cur-
rent search query entangles complex temporal dependencies. We
propose multi-resolution attention to address these challenges for
personalized item search. Our approach captures higher-order tem-
poral relations between user queries and their history across several
temporal subspaces (i.e., resolutions), each corresponding to distinct
temporal ranges with adaptive time boundaries that are also learned
directly from data. We achieve this by coupling the conventional
multi-head attention module with a differentiable soft-thresholding
mechanism, which essentially operates as a masking function in the
temporal domain. Comparisons with strong baselines on an open-
source benchmark dataset confirm the efficacy of our approach.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • In-
formation systems → Information retrieval.
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1 INTRODUCTION
Recent years have seen rapid growth in popularity and complexity
of online e-commerce and content-sharing platforms (e.g. music
streaming [3], video streaming [6], photo sharing [12]). Conse-
quently, developing a high-quality search engine has become one
of the key objectives of these online platforms with millions of ac-
tive users. Despite their contextual differences, all of these platforms
bear the common challenge of retrieving suitable contents from a
large searchable database to satisfy their users’ search intents.

Users interact with such platforms in highly personalized ways
[29]. The same search query entered by different users is likely
to carry different search intentions, due to the diverse nature of
personal taste and preferences [33, 35]. To that extent, historical
interactions of users serve as a great asset for the problem of per-
sonalized item search to improve users’ search experiences. For
example, one can look for relevant signals within the user history
that can inform users’ intent behind their search query. The idea
of utilizing users’ history to better understand their search needs
has been widely studied in the literature and proven valuable for
various domains including product search [1, 2, 14], web search
[27, 34], microblog search [39], and video search [10, 22].

Researchers have explored various directions to model user his-
tory, most of which are naturally formulated as a sequencemodeling
problem, since user history data often originate as a sequence of
(ordered) interactions (e.g. purchases, watches, likes). Amongst the
previously proposed mechanisms, self-attention [38] has gradually
become a key component in sequence modeling tasks, leading to
state-of-the-art results across many domains, including natural lan-
guage processing [11], speech recognition [9], and recommender
systems [19]. The self-attention mechanism has also proven useful
in personalized item search, thanks to its ability to detect attention
weights from the input event sequence with respect to the given
context (in this case, search query). Such attention weight distribu-
tion intrinsically carries a notion of relevance between the search
query and user history, leading to contextualized personalization.

Most of the self-attention based and other sequential models by
design account for sequential signals rather than temporal signals.
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However, the latter aspect has significant implications for personal-
ized item search. Since the user interactions take place at aperiodic
points in time [7], there can be gaps between the sequential patterns
and temporal patterns of user behaviors (as illustrated in Figure 1b).
This entangles different explanatory factors unique to personalized
item search. Intrinsically, the time spans between the search query
and user history items directly affect their degree of relevance (e.g.,
interaction occurred a day ago vs. a month ago). While there are
emerging efforts to incorporate temporal information into neural
sequential recommendation models [17, 23, 41, 43, 44], where the
goal is to recommend items that are likely to be of interest to users
solely based on their past interactions (without the existence of
a search query), this research direction has not been adequately
studied for the setting of personalized item search.

In this work, we propose multi-resolution attention for person-
alized item search. Multi-resolution attention effectively retrieves
relevant items for users while accounting for higher-order temporal
dependencies between their search query and item history. The key
innovative idea behind our method is to compute the relevance be-
tween the search query and the history items over various temporal
regions (or subspaces), which in turn can recognize and incorporate
users’ interests from various temporal resolutions. We achieve this
by a novel multi-head attention formulation that explicitly enforces
different attention heads to cover parts of the sequence that belong
to distinct temporal regions with adaptive time boundaries, which
are also learned jointly with the rest of the model. Our approach
comes in two variants, each designed to accommodate different
temporal densities of real-world data.

We evaluate the proposed approach on a public benchmark
dataset and compare it with strong baseline approaches, including
the adaptations of two state-of-the-art temporal models [23, 41]
originally proposed for the sequential recommendation task. Our
experiments showcase that multi-resolution attention consistently
achieves superior performance across five different domains, out-
performing the best baseline by up to 4.7%. Moreover, our method is
a parameter efficient alternative to existing embedding-based [23]
and kernel-based [41] methods, providing a new perspective on
modeling the complex temporal nature of user history.

2 RELATED WORK
Personalized item search is a generic concept aiming to improve
users’ search experience by retrieving personalized items from a
large searchable database. Conceivably, the most popular applica-
tion domain for personalized item search is online e-commerce,
wherein the term product is generally used as a substitute for the
term item. Studies on personalized product search [1, 2, 4, 5, 14, 25,
42] essentially aim to link search queries with products (often via
their contextual information) while taking into account the users’
previous action logs within the platform.

Being the earliest study to investigate personalization in product
search, authors in [2] proposed a hierarchical embedding model to
learn latent semantic representations of users, products and queries
with their associated language data (e.g. review), and retrieve prod-
ucts according to the similarities directly measured in this latent
space. In another study [14], authors proposed a technique con-
sisting of two attention networks, each designed to independently
capture short and long-term user interests. However, their method

defines the short/long-term interest solely based on the sequential
order of interactions (e.g. last𝑚 interactions), which can not cap-
ture the rich temporal patterns found in data. Considering that the
previous studies often model user history and their search query
as separate signals, authors in [1] more recently argued that the
two signals are tightly connected, and investigated the potential of
personalization with respect to query characteristics. While their
findings highlight the need for query-aware personalization in prod-
uct search, their method essentially treats all previous interactions
as a set, ignoring their order, let alone temporal dynamics.

The pursuit of personalization has also become one of the main
pillars in the development of search engines for content-sharing
platforms [13, 18]. The diverse contextual nature of such platforms
imposes unique representational challenges. In the lack of descrip-
tive information, authors in [18] combined the discrete user history
signal with the corresponding provider information to perform
personalized item retrieval. Another work [13] utilizes multiple
in-session (clicks, contacts) and meta-data signals to jointly learn
user and listing embeddings for personalized home listing search.

Despite their great success, the aforementioned studies for per-
sonalized item search do not leverage the rich temporal signals
found in data. Being the first to address this problem, our work
aims to recognize and capture higher-order temporal dependen-
cies between users’ search queries and item history using a novel
multi-resolution attention mechanism.

Sequential recommendation is another line of related work to
ours, with a prominent difference that the users can not specify their
information needs explicitly. Therefore, the goal is to recommend
items that are likely to be of interest to users solely based on their
history. Amongst the pioneer studies, authors in [19] leveraged
the self-attention mechanism for adaptive summarization of user
history. Memory networks are adopted in [8] to memorize the
anchor items that drive future user actions. Another study [26]
proposed a hierarchical gating network to adaptively control which
latent features of items will contribute to the downstream task.

There have been recent studies to model the temporal aspect of
user history in the context of sequential recommendation [17, 23,
41, 43, 44]. Amongst these studies, authors in [23] proposed a time-
aware self-attention module, which—in addition to relative position
representations [32]— learns relative time interval representations
to jointly capture both the sequential and the temporal nature of
user interactions. The idea of modeling time intervals between
user interactions is also studied in a recent work [41], wherein the
authors instead employed a combination of different time kernels
to calibrate the attention weights between user interactions based
on their relative time intervals.

These studies fundamentally differ from the setting of personal-
ized item search because the presence of a search query marks a
pivotal point in time, which has distinct indications in modeling
the temporal signals with respect to user history. Needless to say,
different search queries entered by users have varying temporal re-
lations to their interaction history, the extent of which also depends
on the context of the query (e.g. “sports watch" vs “Fitbit Versa 3").
Nonetheless, our experiments include adaptations of the aforemen-
tioned temporal recommendation models [23, 41] as baselines to (1)
better assess the efficacy of our proposed approach, and (2) bridge
the methodological gap between the two problem settings.
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(a) Histogram of time intervals between consecutive interactions of users.
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(b) Last thirty interactions of the same set of five users who actively interact
with both categories. Y axis represents the users’ interactions in chronological
order, while the X axis represents the time period (in days) with respect to
their latest interaction.

Figure 1: An analysis on temporal resolution of user interactions
with two broad categories: Home and Kitchen, Kindle Store.

3 TEMPORAL RESOLUTION OF USER
INTERACTIONS

We first provide insights into the complex temporal dynamics of
user interactions observed in a real-world setting [7] and further
draw connections to key motivations behind our proposed method.

In the context of personalized item search, there exist numerous
factors contributing to the relationship between a search query and
the recorded user interactions (i.e., history). Such relationships are
often tightly connected to the temporal aspect of the user histories
[20, 21, 23, 24], as well as the users’ search intents [1] (which,
in turn, are reflected on their query formulations [15, 33]). For
instance, while some search queries (e.g. “action movies”) might
exhibit longer-term dependencies on user histories, some others
(e.g. “humidifier”) are triggered by users’ short-term interests, hence
might not depend on their longer-term history data. Moreover, such
dependencies might display strong periodic patterns, as in the case
of recurrent purchases of grocery products or cleaning supplies.

To study the complex and non-linear nature of these temporal
dependencies in data, one needs to examine the temporal dynamics

of user interactions. Figure 1a plots the histogram of time inter-
vals between two consecutive interactions (of the same user) for
two broad product categories, showing that the users’ interaction
patterns vary depending on the context of their search. Further-
more, to observe users’ interaction patterns more closely for both
categories, we also plot the most recent interactions of the same
set of five active users, together with the temporal information of
their interactions. Figure 1b shows that even the same user might
exhibit vastly different temporal patterns when interacting with
different categories (e.g., users 3 and 4), revealing one of the major
challenges in personalized item search. We also observe that user
interactions tend to be concentrated (or grouped) over multiple
temporal spans, each corresponding to a relatively narrow time
period (e.g. 2-3 days). On the other hand, the gaps between such
grouped interactions can be very large (e.g., over a year). For the
remaining of this paper, we refer to such grouped temporal patterns
as the temporal resolutions of user interactions.

We further argue that the potential for personalization differs
across these resolutions. With that being our key intuition, we
propose a novel approach (multi-resolution attention) that can (i)
adaptively recognize such temporal resolutions and (ii) accurately
model the diverse dependency patterns between search queries and
user histories across these resolutions. The next section explains
the details of our method, which is illustrated in Figure 2.

4 PROPOSED METHOD
4.1 Problem Setting
We start with formally introducing our problem and the notations
used in this paper. Let I denote the set of items,U denote the set
of users. For each user 𝑢 ∈ U, we are given the following inputs:
(i) a recent search query 𝑞𝑢 , (ii) a time-ordered list of previously
interacted items 𝑆𝑢 = (𝑣𝑢1 , · · · , 𝑣

𝑢
|𝑆𝑢 |) where 𝑣

𝑢
𝑖
∈ I, and (iii) a list of

timestamps 𝑇𝑢 = (𝑡𝑢1 , · · · , 𝑡
𝑢
|𝑇𝑢 |) corresponding to each interaction,

where 𝑡𝑢1 ≤ · · · ≤ 𝑡𝑢|𝑆𝑢 | ≤ 𝑡𝑞𝑢 , with 𝑡𝑞𝑢 being the timestamp of 𝑞𝑢 ,
and |𝑆𝑢 | (or |𝑇𝑢 |) denoting the number of interactions the user 𝑢
previously hadwith the system. Our goal is to predict the ( |𝑆𝑢 |+1)th
item that the user 𝑢 will interact with.

The main notations used in our paper are summarized in Table 1.

Notation Description
I,U item and user set
𝑄𝑢 user 𝑢’s query sequence (in chronological order)
𝑆𝑢 user 𝑢’s item sequence (corresp. to𝑄𝑢 )
𝑇𝑢 user 𝑢’s timestamp sequence (corresp. to𝑄𝑢 , 𝑆𝑢 )
𝑁 maximum sequence length
𝑑,𝑑𝑞 latent dimensions
ℎ number of attention heads
q,w query and word embedding vectors, respectively
M, P item and position embedding matrices, respectively
T relative time interval matrix
Ê input embeddings (corresp. to 𝑆𝑢 )
E(𝑙 ) input embeddings after (𝑙)th self-attention block
Eq query embeddings (corresp. to𝑄𝑢 )
Eh input history encoding
Eqh query-aware history encoding
H output representation of the model
Δ𝑖 time boundary for 𝑖th attention head

Table 1: Main notations used in this paper.
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Figure 2: An illustration of our proposed method architecture. The left side shows the high-level components of our method, while the right
part shows the proposed multi-resolution attention variants: overlapping (top) and non-overlapping (bottom).

4.2 Preliminaries
This section introduces preliminary techniques that serve as the
building blocks of our framework, which are explained in the con-
text of recommender systems to maintain contextual consistency.

The self-attention mechanism [38] aims to capture the im-
portance (attention) weights of the sequential inputs (in our case,
items) that are identified through the inner products of item rep-
resentations. The items with higher attention weights have more
contributions to the final output representation, and consequently,
to the final downstream task. Such mechanism in principle assumes
that the output of a given sequential input is relevant to only part
of the sequence, which makes it a natural and desired instrument
for recommendation tasks [1, 8, 19, 23, 36]. It is formally defined as:

Attention(𝑄,𝐾,𝑉 ) = Softmax( 𝑄𝐾
⊤

√
𝑑𝑎𝑡𝑡𝑛

)𝑉 (1)

where𝑄 , 𝐾 , and𝑉 respectively denote the queries, keys, and values
of items in the sequence. Here it is important to note that the above
term “query” is domain-agnostic, i.e., it is not tied to the notion of
“search query” in the context of our work. This mechanism relies on
the positional embeddings to recognize and capture the sequential
order of items. Hence, in applications, the vector representation for
each position is combinedwith the corresponding item embeddings.
Causality.Due to the nature of our problem, the model should only
take into account the previous items when predicting the next item.
Therefore, we need to prevent leftward information flow (leak) in
self-attention computation. This is achieved by masking the upper
triangular entries of 𝑄𝐾⊤, that is, (𝑄𝐾⊤)𝑖, 𝑗 = −∞ ∀𝑖 < 𝑗 .

The self-attention block (SAB) is defined as a combination of
self-attention and point-wise feed-forward network (FFN) layers:

SAB(𝑋 ) = FFN(Attention(𝑋𝑊𝑄 , 𝑋𝑊𝐾 , 𝑋𝑊𝑉 )) (2)

where𝑊𝑄 ∈ R𝑑×𝑑𝑎𝑡𝑡𝑛 ,𝑊𝐾 ∈ R𝑑×𝑑𝑎𝑡𝑡𝑛 ,𝑊𝑉 ∈ R𝑑×𝑑 are the (linear)
projection weight matrices. FFN is essentially a two-layer MLP with
ReLU activation, applied independently to each position of the input.

4.3 Query-Aware Personalization
This section focuses on building the base of our architecture by
leveraging several neural components introduced in Section 4.2.
The subsequent section is dedicated to the novel components of
our method, explaining how we leverage the temporal signal.

For training purposes, we transform the input sequence of each
user into a fixed-length sequence of𝑁 interactions 𝑆𝑢=(𝑣𝑢1 , · · · , 𝑣

𝑢
𝑁
).

If the input sequence has more than 𝑁 items, we only consider the
most recent 𝑁 interactions and omit the remaining items, while
if the sequence length is less than 𝑁 , we left pad the sequence
until it reaches the length 𝑁 . Same procedure is also applied to the
corresponding sequence of timestamps 𝑇𝑢 = (𝑡𝑢1 , · · · , 𝑡

𝑢
𝑁
) and the

sequence of queries 𝑄𝑢 = (𝑞𝑢1 , · · · , 𝑞
𝑢
𝑁
). Each query 𝑞𝑢

𝑖
results in

interaction with item 𝑣𝑢
𝑖
. For simplicity, we assume that both 𝑞𝑢

𝑖
and

𝑣𝑢
𝑖
have the same timestamp (𝑡𝑢

𝑖
), hence once can define an event

𝑒𝑢
𝑖

= (𝑞𝑢
𝑖
, 𝑣𝑢
𝑖
, 𝑡𝑢
𝑖
). Here we note that the 𝑄𝑢 is formed solely for

notational convenience, and our method (1) does not require each
history item to be associated with a particular query, and (2) does
not consider the previous query signals in its next item predictions.

4.3.1 Embedding Layer: Next, we create sets of learnable em-
beddings for items, positions, and search queries, which are then
processed by a series of self-attention blocks.
Item Embeddings. An item embedding matrix is denoted as M ∈
R |I |×𝑑 . The row vectorMv ∈ R𝑑 represents the embedding of an
item 𝑣 ∈ 𝐼 . Zero vector is used for the padding items.
Position Embeddings. A learnable position embedding matrix
is denoted as P ∈ R𝑁×𝑑 . The row vector Pk ∈ R𝑑 represents the
embedding of a position 𝑘 ∈ [1, · · · , 𝑁 ].
Query Embeddings. One of the standard ways to form a query
embedding is to compute the average of its word embeddings [40]:
q =

∑
𝑤∈𝑞 w
|𝑞 | , where q ∈ R𝑑𝑞 and w ∈ R𝑑𝑞 respectively denote the

query and word embeddings, and |𝑞 | is the length of the query 𝑞.

4.3.2 Input Layer: Given an input sequence of interacted items
𝑆𝑢 = (𝑣𝑢1 , · · · , 𝑣

𝑢
𝑁
) and queries 𝑄𝑢 = (𝑞𝑢1 , · · · , 𝑞

𝑢
𝑁
), we first right
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shift the item sequence by one index 𝑆𝑢 = (<𝑝𝑎𝑑>, 𝑣𝑢1 , · · · , 𝑣
𝑢
𝑁−1)

and then map both sequences to their embedding forms. For 𝑆𝑢 , we
combine the embeddings of items and their absolute positions to
form input embeddings (̂E):

Ê =


0 + P1

Mvu1 + P2
· · ·

MvuN−1
+ PN

 , Eq =


qu1
qu2
· · ·
quN

 (3)

where Ê ∈ R𝑁×𝑑 , and 0 is the padding vector. Eq ∈ R𝑁×𝑑 represents
the query embedding matrix.

4.3.3 History Encoding Layer: Next, to capture item-item rela-
tions, a stack of 𝐿 self-attention blocks are employed to transform
the input embeddings (̂E) to another latent representation Eh:

E(0) = Ê

E(l+1) = SAB(E(l) ), ∀ 𝑙 ∈ [0, · · · , 𝐿 − 1]

Eh = E(L) + Ê

(4)

where Eh ∈ R𝑁×𝑑 is the output of the 𝐿th self-attention block with
skip connection to the input embeddings. Being referred as the
item history encoding, it is essentially a non-linear transformation
of input embeddings, where the 𝑘th representation (Ehk ∈ R𝑑 ) can
be seen as a compact summary of the first 𝑘 interactions, and be
used to predict the (𝑘 + 1)th interacted item [19]. However, such
representation alone is not sufficient to fully capture the user intent,
since it is still unaware of the search query.

4.3.4 Query-Aware History Encoding Layer: Our next com-
ponent summarizes the query-relevant parts of user history by
capturing query-item relations rooted in data. It consists of an
additional attention module, in which the attention weights over
the outputs of the history encoding are computed with respect
to the search queries. Specifically, we employ a multi-head atten-
tion layer [38], which learns attention distributions in ℎ different
𝑑/ℎ-dimensional representation subspaces:

Eqh = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)

where ℎ𝑒𝑎𝑑𝑖 = Attention(Eq𝑊𝑄

𝑖
, Eh𝑊𝐾

𝑖 , E
h𝑊𝑉

𝑖 )
(5)

where 𝑊𝑄

𝑖
∈ R𝑑𝑞×(𝑑/ℎ) , 𝑊𝐾

𝑖
∈ R𝑑×(𝑑/ℎ) , 𝑊𝑉

𝑖
∈ R𝑑×(𝑑/ℎ) are

projection matrices for each head, and ℎ is the number of atten-
tion heads. Eqh ∈ R𝑁×𝑑 is called query-aware history encoding,
summarizing the parts of the interaction history that are most rel-
evant to the search query. Note that we further extend this layer
in Section 4.4 to incorporate temporal information using a novel
multi-resolution attention module.

4.3.5 Prediction Layer: Leveraging all the components intro-
duced so far, we now can predict the next item based on the previ-
ous 𝑘−1 items and the 𝑘th search query. In more detail, we combine
the representations of the query, the query-aware history encoding
and the item history encoding to form a final latent representation:

H = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑐𝑎𝑡 (Eq, Eqh, Eh))𝑊𝐻 (6)

where the weight matrix𝑊𝐻 ∈R(𝑑𝑞+2𝑑)×𝑑 projects the combined
representation back into 𝑑 dimensions. Finally, we measure the

relevance score (𝑟𝑘,𝑣𝑖 ∈R) of the 𝑘th interacted item being 𝑣𝑖∈I by:

𝑟𝑘,𝑣𝑖 = HkM
⊤
vi (7)

where Hk ∈ R𝑑 is the 𝑘th row vector of H, andMvi ∈ R𝑑 is the em-
bedding of item 𝑣𝑖 . Intuitively, items with higher relevance scores
are more likely to be interacted, thus we can generate recommen-
dations by ranking the items based on their relevance scores.

4.3.6 Optimization: Recall that we convert the input sequence
𝑆𝑢 into a fixed 𝑁 -length sequence, shifted to the right by one index;
𝑆𝑢 = (<𝑝𝑎𝑑>, 𝑣𝑢1 , · · · , 𝑣

𝑢
𝑁−1) with the expected output (prediction)

sequence being 𝑂𝑢 = 𝑆𝑢 = (𝑣𝑢1 , · · · , 𝑣
𝑢
𝑁
). In order to learn accurate

relevance scores of expected outputs, we use the cross-entropy loss
with 100 negative samples at each step:

L = −
∑

{E𝑢 |𝑢∈U}

𝑁∑
𝑘=2

[
𝑙𝑜𝑔(𝜎 (𝑟𝑘,𝑂𝑢

𝑘
)) +

∑
𝑣𝑗∉𝑂

𝑢

𝑙𝑜𝑔(1−𝜎 (𝑟𝑘,𝑣𝑗 ))
]
(8)

where 𝜎 is the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function and E𝑢 = (𝑆𝑢 , 𝑄𝑢 ,𝑇𝑢 ,𝑂𝑢 ) includes
the model inputs and expected output for user 𝑢. Note that we
ignore the first index due to padding. More details on training and
implementation are provided in Section 5.3.

4.4 Multi-Resolution Attention
Modeling input sequences as a combination of item ids and their ab-
solute positions assumes a homogenous temporal resolution across
the entire sequence, i.e., time intervals between all adjacent items
are the same. However, this is rarely the case in real-world applica-
tions [23] as we also demonstrated in Figure 1b. Motivated by these
observations, we now propose a novel approach to incorporate the
rich temporal resolution of user history in the setting of person-
alized item search. To emphasize, we are interested in temporal
dependencies between the search query and the past interacted
items, unlike the query-less setting where the temporal dependen-
cies are studied solely within the item domain [23, 24, 41, 43, 44].

We introduce a new attention layer—MultiResAttn—that is de-
signed to capture asymmetric query-item relations across multiple
time resolutions. The main intuition behind our approach is to ex-
plicitly guide multiple attention heads to focus on parts of the item
sequence that belong to distinct temporal ranges (i.e., resolutions).

We first define an attention function 𝐴̃ (an adaption of Eq. 1) as:

𝐴̃(𝑄,𝐾,𝑉 ,𝐶) = Softmax(𝑄𝐾
⊤ +𝐶

√
𝑑𝑎𝑡𝑡𝑛

)𝑉 (9)

where 𝐶 ∈ R𝑁×𝑁 is an additive input to the softmax function,
allowing flexibility for controlling (or scaling) the attention weights
between queries and items. Note that all upper triangular elements
of 𝐶 are set to −∞ by default to avoid future information leakage.
We now explain how we leverage this adaption in our query-aware
history encoding layer by modifying Equation 5 to take the form:

Eqh = 𝑀𝑢𝑙𝑡𝑖𝑅𝑒𝑠𝐴𝑡𝑡𝑛(Eq, Eh, Eh,T)
where𝑀𝑢𝑙𝑡𝑖𝑅𝑒𝑠𝐴𝑡𝑡𝑛(𝑄,𝐾,𝑉 ,𝑇 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)

and ℎ𝑒𝑎𝑑𝑖 = 𝐴̃(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ,Φ𝑖 (T))

(10)

with Φ𝑖 : R𝑁×𝑁 −→ R𝑁×𝑁 and T ∈ R𝑁×𝑁 . T is a lower triangular
matrix including relative time intervals between the search queries
and the items; T𝑘,𝑗 = 𝑡

𝑞

𝑘
− 𝑡𝑣

𝑗
(when 𝑘 ≥ 𝑗 ), with 𝑡𝑞

𝑘
and 𝑡𝑣

𝑗
being
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the timestamps of 𝑘th query and 𝑗th item, respectively. Recall that
𝑡
𝑞

𝑘
= 𝑡𝑣

𝑘+1,∀𝑘 ∈ [1, ..., 𝑁 − 1], due to shifted item sequence (Eq. 3).
With the help of Φ𝑖 (·) function, we can enforce certain con-

straints on ℎ𝑒𝑎𝑑𝑖 ’s attention distribution, based on T. To this end,
we consider two different variants: (i) non-overlapping and (ii)
overlapping multi-resolution attention. These variants are also
illustrated in Figure 2 (right). As the names suggest, for the former
variant, the time ranges that attention heads cover do not coin-
cide, i.e., ℎ𝑒𝑎𝑑1 covers [Δ0, Δ1), ℎ𝑒𝑎𝑑2 covers [Δ1,Δ2) and so on.
For the latter variant, each head instead covers an extended range,
i.e., ℎ𝑒𝑎𝑑1 covers [Δ0,Δ1), ℎ𝑒𝑎𝑑2 covers [Δ0,Δ2) and ℎ𝑒𝑎𝑑ℎ covers
[Δ0,Δℎ). The following Φ𝑖 (T) function achieves this by masking
the items that are out of the desired temporal ranges for ℎ𝑒𝑎𝑑𝑖 :

overlapping : Φ𝑖 (T)𝑘,𝑗 =
{
0 Δ0 ≤ T𝑘,𝑗 < Δ𝑖

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(11)

non-overlapping : Φ𝑖 (T)𝑘,𝑗 =
{
0 Δ𝑖−1 ≤ T𝑘,𝑗 < Δ𝑖

−∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12)

s.t. Δ𝑖−1 < Δ𝑖 , ∀𝑖 ∈ [1, ..., ℎ] and Δ0 = 0

where Φ𝑖 (T)𝑘,𝑗 represents the (𝑘, 𝑗)th entry of Φ𝑖 (T). Note that the
time boundaries of attention heads (Δ𝑖 ) can be seen as temporal
cut-off points in time, which in turn decides on how much repre-
sentational power is allocated to the respective temporal ranges.
A natural choice is to favor most recent interactions with shorter
ranges from the search query since they tend to carry a higher
influence on users’ next interactions [23]. This can be achieved by
computing Δs using some form of an exponential function, such
as Δ𝑖 = 𝑎𝑏𝑖 , where the hyper-parameters 𝑎, 𝑏 ∈ R+ are of the same
time units as T (e.g. hours, days). While such formulation complies
with the exponentially decaying influence phenomenon commonly
observed in the literature [28, 41], by varying {𝑎, 𝑏}, one can adapt
Δs to different domains with varying temporal resolutions.

Finding good Δs by hyper-parameter tuning can be challenging
and may require excessive computational effort. Next, we take our
idea a step further and propose a more flexible and adaptive ap-
proach. Our goal is to learn Δs jointly with the rest of the model.
However, the hard-thresholding mechanism (Eq. 11 & 12) is not
differentiable and prevents the model from learning Δs through
back-propagation. To sidestep this issue, we propose the following
softer-thresholding reparameterization, which remains differen-
tiable with respect to Δs:

Φ𝑖 (T)𝑘,𝑗 =
{
𝑙𝑜𝑔(𝜎 ( Δ𝑖−T𝑘,𝑗

𝜏 )) overlapping
𝑙𝑜𝑔(𝜎 ( Δ𝑖−T𝑘,𝑗

𝜏 )) + 𝑙𝑜𝑔(𝜎 ( T𝑘,𝑗−Δ𝑖−1
𝜏 )) non-overlapping

(13)
where 𝑙𝑜𝑔 and 𝜎 denote the natural logarithm and the sigmoid
function, while 𝜏 ∈ R+ is the temperature scaling parameter.

Taking a closer look into the overlapping variant, the respective
item is masked when Δ𝑖 − T𝑘,𝑗<< − 𝜏 (that is, 𝜎 ( Δ𝑖−T𝑘,𝑗

𝜏 )≈0 and
𝑙𝑜𝑔(𝜎 ( Δ𝑖−T𝑘,𝑗

𝜏 ))≈− inf). Conversely, it is kept when Δ𝑖 − T𝑘,𝑗>>𝜏

(that is, 𝜎 ( Δ𝑖−T𝑘,𝑗
𝜏 )≈1 and 𝑙𝑜𝑔(𝜎 ( Δ𝑖−T𝑘,𝑗

𝜏 ))≈0). In other words, the
items that are far from Δ𝑖 are either kept or masked based on
whether they fall inside or outside of the corresponding boundary.

We note that 𝜕ℎ𝑒𝑎𝑑𝑖/𝜕Δ𝑖≈0 for such items, hence they do not con-
tribute to the learning of Δ𝑖 . On the other hand, the “near boundary"
items (i.e. |Δ𝑖 − T𝑘 𝑗, |∼𝜏) may or may not be masked depending on
their contribution to the final loss, which in turn generates either
a pull or a push force on Δ𝑖 . Furthermore, it is straightforward to
apply the same logic to the non-overlapping variant, where the
second term further masks the items that are already covered by the
previous head with boundary Δ𝑖−1. Lastly, some attention heads
may have no coverage for certain users who have no interactions
within (or near) the respective temporal regions (see Figure 1b).
In such cases, we set ℎ𝑒𝑎𝑑𝑖 to zero vector to indicate the lack of
interactions for that particular resolution.

In practice, we initialize Δs using the aforementioned exponen-
tial function for faster adaptation and further update them during
training. That said, the proposed module is generic and one can
choose any increasing function for initializing Δs. More details on
training and hyper-parameters are given in Section 5.3.

5 EXPERIMENTS
This section introduces our experimental setup, and presents an
empirical analysis of our proposed approach. The experiments aim
at quantitatively evaluating the contributions of each introduced
model component (illustrated in Figure 2), as well as comparing
our proposed variants with alternative techniques in the literature.

5.1 Datasets and Evaluation
Datasets:We evaluate the performance of our method on an open-
source benchmark dataset from Amazon [30]. The 5-core version
of the dataset is used, where all users and items with less than 5
reviews are removed. Following [2, 19], we treat the presence of
a review as an interaction and use the respective timestamps to
determine the temporal order of interactions. All other contextual
information of items is disregarded. We follow the common practice
(outlined in [2, 37]) to extract realistic queries for each user-item
interaction based on the respective items’ hierarchical category
information. Although these queries are shown to be similar to real
user query formulations in e-commerce platforms [31], we observe
that they lead to memorization issues in our setting because each
item is always associated with the same query across all users. To
alleviate this issue and make the problem more challenging, we
randomly drop 50% of the words from the associated query for
each user-item interaction recorded in data, leading to more diverse
query formulations of the same item across different users.

The following diverse range of categories are employed in our
experiments: Home and Kitchen, Kindle Store, Movies and TV, Pet
Supplies, Grocery and Food. Due to computational constraints, we
further remove items with less than 15 interactions for Home and
Kitchen and less than 10 interactions for Grocery and Food cate-
gory. Dataset statistics are given in Table 2. We follow the same
prepossessing steps mentioned in [19]. For users who interacted
with at least three items, we use their second last interaction for
validation and their last interaction for testing, while the remaining
interactions are used for training.
Evaluation Metrics: We evaluate ranking performance by com-
puting Hit@K and NDCG@K with 𝐾 ∈ {3, 10}. Hit@K is a recall-
focused metric measuring the percentage of times that the ground-
truth next item is among the top K items, while NDCG@K is a

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

513



Home &
Kitchen

Kindle
Store

Movies
& TV

Pet
Supplies

Grocery
& Food

Number of users 229,210 161,790 250,893 243,690 147,474
Number of items 97,100 153,242 65,860 71,457 44,672
Number of query words 2,946 151 650 1,644 951
Avg. interactions per user 12.94 14.48 10.33 8.62 7.67
Avg. words per query 6.65 4.82 3.39 5.90 4.21

Table 2: Statistics of dataset categories.

position-aware metric which assigns larger weights on higher po-
sitions. Following [16, 36], for each user, we sample 100 negative
items based on their popularity—excluding the previously inter-
acted items—and rank them together with the ground-truth item.

5.2 Baselines
We experiment with a variety of baseline methods ranging from (i)
rather simple non-personalized methods to (ii) more sophisticated
deep learning based methods for personalized item search, and to
(iii) state-of-the-art temporal models adapted from the sequential
recommendation literature. These methods are listed below:
POP𝑖 : A simple statistical model that ranks items according to their
popularity in the training split across all users.
Query only (Q): A query-only approach that ranks items solely
based on their respective query embeddings (Eq). We refer to this
non-personalized approach as Q for simplicity.
SasRec (H) [19]: A position-based self-attention model [19] that
ranks items solely based on the item history encodings (Eh). Since
it only leverages the user history, it is referred as H for simplicity.
SasRec+Q (HQ): A query-aware approach that ranks items based
on the combined signals of history encodings and query embed-
dings, simply referred as HQ (Equation 6 without Eqh).

The next set of baseline approaches target the modeling of query-
aware history encoding (E𝑞ℎ), each extending the HQ variant men-
tioned above. To that end, we employ two strong approaches [1, 38]
for personalized item search and adapt two recently proposed tem-
poral models [23, 41] for sequential recommendation:
HQw/MultiHeadAttn [38]:A benchmark approach that employs
standard multi-head attention layer [38].
HQ w/ZeroAttn [1]: An approach that employs zero attention
mechanism [1] to provide the model with the flexibility of ignoring
the user history, allowing for more adaptive personalization.
HQ w/TiSasRec [23]: An adaptation of recently proposed TiSas-
Rec [23] model. We combine learnable relative time interval embed-
dings with history encodings prior to computing attention weights
between the user query and the user history.
HQ w/Dejavu [41]: An adaptation of Dejavu [41] model, which
is the state-of-the-art for temporal sequential recommendation.
Following [41], we employ a mix of time kernels to calibrate the
influence (attention weights) of historical actions with respect to
the search query, based on the temporal gaps between the two.

As for the proposed approach, we experiment with the following
two variants introduced in Section 4.4:
HQw/MultiResAttn−O:Amulti-resolution attention variantwhere
attention heads cover overlapping temporal ranges (Eq. 11).
HQ w/MultiResAttn: A multi-resolution attention variant where
attention heads cover non-overlapping temporal ranges (Eq. 12).

5.3 Model Configurations
We implement the proposedmethods and all the baseline approaches
using Tensorflow. The following settings are applied to eachmethod
for fair comparisons. The parameters are learned using mini-batch
SGD with Adam optimizer. The {batch size, learning rate, sequence
length (𝑁 ), latent dimensions (𝑑,𝑑𝑞)} are set to {128, 1e-3, 50, 60},
respectively. The vocab size of search queries is determined based
on statistics shown in Table 2. The unit of time is set to days for
all applicable methods. For the proposed variants, we set the Δ
initialization parameters {𝑎, 𝑏} to {1,5} and the temperature scal-
ing parameter 𝜏 to 5, which are observed to work well across all
datasets. Furthermore, we apply a grid search over the following
hyper-parameters on all datasets and applicable methods: number
of self-attention blocks (𝐿) in {1,2}, number of attention heads (ℎ)
in {1,2,3,4,5}, the vocab size of time embeddings (for TiSasRecAttn)
in {256,512}, and the number of exponential decay time kernels (for
Dejavu) in {3,5,10}. The remaining hyper-parameters for baseline
approaches are set based on the suggestions made by the authors
in their respective papers. Lastly, the best models are selected by
early stopping based on the NDCG@10 score on the validation set,
with a patience of 20 epochs. All results are reported on the test set.

5.4 Experimental Results
Table 3 shows the overall performance of baselines and our pro-
posed method variants on all five dataset categories. In this section,
unless otherwise stated, the relative performancemeasures between
methods are computed with respect to the NDCG@3 metric.

Ablation results. The first set of four baselines—H, Q, HQ, HQ
w/MulHeadAttn—helps to assess the incremental contributions of
each model component presented in Section 4.3, while providing in-
sights into the characteristics of each dataset category. We observe
that the query signal alone is more valuable to our task than the
user history signal for four of the categories, except Kindle Store.
Combining the user history and query signals (see HQ baseline)
leads to major improvements compared to the strongest signal of
the two across all categories. The largest gain is 13.8% for Movies
and TV, while the average gain is 6.4%. HQ w/MulHeadAttn base-
line leads to further improvements with up to 8.9% relative gain
compared to the HQ variant, while the average gain across all cate-
gories is 4.1%. This rather sophisticated approach serves as a strong
baseline, granted it does not take the temporal aspect of user inter-
actions into account. These results demonstrate the importance of
query-aware history summarization for personalized item search
and motivate us to investigate further gains when the temporal
aspect is considered. For the remaining, we drop the term ‘HQ w/’
in our referrals to the corresponding methods for simplicity.

Temporal component. Our results reveal a clear trend of ap-
proaches with temporal flavor outperforming others that purely
rely on sequential patterns. Moreover, our proposed approach con-
sistently achieves best performance across all categories and eval-
uation metrics. To put this in perspective, among the time-aware
methods, our proposed approach outperforms TiSaSRecAttn by up
to 4.9% and Dejavu by up to 6.5%. When compared to MultiHea-
dAttn, we achieve up to 12.9% improvement on ranking performance
(MultiResAttn-𝑂 on Kindle Store). When our best performing vari-
ant for each dataset is considered, they collectively provide 6.9%
improvement on average compared to MultiHeadAttn, which is
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Baselines Ours

Datasets Metrics POP𝑖
SasRec
(H)

Query
only (Q)

SasRec+Q
(HQ)

HQ w/
MultiHeadAttn

HQ w/
ZeroAttn

HQ w/
TiSasRec

HQ w/
Dejavu

HQ w/
MultiResAttn

HQ w/
MultiResAttn−O

Home and
Kitchen

Hit@3 0.018 0.117 0.553 0.572 0.578 0.583 0.582 0.594 0.584 0.601
Hit@10 0.067 0.227 0.688 0.715 0.713 0.725 0.720 0.733 0.717 0.730
NDCG@3 0.013 0.096 0.471 0.487 0.497 0.505 0.499 0.508 0.506 0.519
NDCG@10 0.031 0.134 0.521 0.540 0.547 0.557 0.550 0.559 0.555 0.564

Kindle
Store

Hit@3 0.037 0.484 0.225 0.513 0.542 0.574 0.579 0.572 0.585 0.596
Hit@10 0.107 0.668 0.405 0.728 0.742 0.766 0.764 0.773 0.777 0.785
NDCG@3 0.026 0.408 0.175 0.422 0.447 0.482 0.481 0.474 0.490 0.505
NDCG@10 0.051 0.475 0.239 0.501 0.520 0.552 0.550 0.548 0.561 0.573

Movies
and TV

Hit@3 0.035 0.290 0.522 0.583 0.625 0.643 0.639 0.636 0.663 0.655
Hit@10 0.118 0.447 0.778 0.815 0.832 0.842 0.847 0.846 0.852 0.848
NDCG@3 0.025 0.244 0.420 0.478 0.521 0.538 0.536 0.533 0.556 0.553
NDCG@10 0.053 0.301 0.514 0.564 0.597 0.611 0.614 0.610 0.627 0.623

Pet
Supplies

Hit@3 0.022 0.236 0.528 0.566 0.575 0.579 0.591 0.581 0.592 0.602
Hit@10 0.074 0.392 0.714 0.753 0.759 0.776 0.777 0.766 0.771 0.783
NDCG@3 0.015 0.201 0.436 0.471 0.480 0.483 0.496 0.484 0.497 0.506
NDCG@10 0.034 0.256 0.505 0.539 0.548 0.556 0.564 0.553 0.563 0.573

Grocery
and Food

Hit@3 0.019 0.240 0.675 0.695 0.711 0.720 0.713 0.719 0.728 0.734
Hit@10 0.073 0.354 0.842 0.859 0.865 0.875 0.874 0.872 0.880 0.883
NDCG@3 0.014 0.205 0.570 0.591 0.601 0.619 0.610 0.616 0.625 0.631
NDCG@10 0.033 0.245 0.631 0.652 0.657 0.676 0.671 0.673 0.681 0.686

Table 3: The ranking performance of baseline and proposed approaches on all five categories. The best performance is highlighted in boldface,
while the second best performance is underlined. Results show that our proposed variants consistently outperform the baselines.
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Figure 3: Learned time boundaries (Δs) with two proposed variants:
MultiResAttn-𝑂 (left) and MultiResAttn (right), both with ℎ = 4.
Time boundaries are plotted on log5 scale.
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Figure 4: Effect of attention head count on ranking performance.

more than two times the average improvements achieved by Ti-
SasRecAttn (3.1%) and Dejavu (2.7%) baselines across all datasets.
Despite ignoring the temporal signal, ZeroAttn overall shows com-
parable performance to TiSasRecAttn andDejavu. Furthermore, both
proposed variants also outperform ZeroAttn in every comparison.
Between the two proposed variants, MultiResAttn−𝑂 performs

the best for four categories. Movies and TV is the only category
where MultiResAttn variant achieves a slightly higher ranking. To
further investigate the potential motives behind our findings, we
take a closer look into the temporal resolutions captured by our
proposed variants. Figure 3 plots the time boundaries learned by
both variants (with ℎ=4) across all categories. We observe higher
variations in the learned boundaries for attention heads covering
the most recent history (e.g., Heads 1 and 2). In particular, the first

time boundary ranges from less than a day (for Pet Supplies) to over
a month (for Kindle Store). Moreover, the non-overlapping variant
(right) tends to learn slightly longer temporal spans compared to
the overlapping variant (left). We conclude that different categories
have varying temporal dynamics and densities, and our approach
can adaptively recognize such temporal differences found in data.

Sensitivity analysis. Figure 4 shows the performance of pro-
posed variants based on the number of attention heads (ℎ). We
also include the MultiHeadAttn baseline in our analysis for better
comparison. For the Movies and TV, the highest score is obtained
by the MultiResAttn variant with ℎ=3, suggesting that the tempo-
ral dependencies are better captured across non-overlapping time
spans. On the other hand, the Pet Supplies category favors the
MultiResAttn−𝑂 variant with larger ℎ, implying that the temporal
dependencies reach gradually longer time spans that overlap, pre-
sumably due to the recurring user needs for this particular category.

6 CONCLUSION
We propose a Multi-Resolution Attention model for personalized
item search. The key component of our architecture is the query-
aware history encoding layer, which enables our method to exploit
higher-order temporal dependencies between users’ search queries
and item history. This is achieved by a novel attention module
consisting of multiple attention heads, each assigned to recognize
and capture users’ interests within designated temporal resolutions.
The proposed method comes in two variants (overlapping and non-
overlapping) to accommodate different temporal densities of real-
world data. Both proposed variants are thoroughly examined by
experiments using a large real-world dataset with five different item
category domains. Our findings not only demonstrate the efficacy
of Multi-Resolution Attention but also provide insights into the
varying temporal dynamics captured across different domains.
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