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Emerging techniques in deep learning have created exciting
opportunities for next-generation electrochemical technologies.
While deep learning has been revolutionizing many research
fields, strategies for its implementation for electrocatalysis
remain nascent. This Opinion calls on the electrocatalysis
community to join together and introduce a paradigm shift by
establishing standards for reporting and sharing data from
electrocatalysis investigations. We speculate on a possible
future where crowd-sourced and standardized data from
experimental and computational researchers can be analyzed
collectively to better understand fundamental electrochemistry,
yielding unprecedented insights for the development of new
electrocatalysts. We identify key barriers to realizing this
opportunity and how they might be overcome.
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Introduction

Artificial intelligence and machine learning (AIML)
have made important contributions for the development
and applications in the chemical sciences [1¢]. AIML
allows the extraction of useful and insightful physical
relationships from large and convoluted data sets. There
are growing numbers of examples of AIML-guided de-
sign of materials [2,3] and molecules [4,5] where insights

Check for

have been gleaned from large datasets comprising ex-
perimental and computational findings.

The high complexity of electrochemical environments
and the large number of researchers producing data
make electrocatalysis a ripe field for AIML.
Electrocatalytic methods are widely considered to be
attractive for generating fuels and chemicals from re-
newable feedstocks and driving global decarbonization
[6e]. Moreover, efforts to address long-standing chal-
lenges in electrocatalysis are often enhanced by com-
position—activity ~ relationships  obtained  through
synergistic experimental and computational work [7e].
There is ample evidence that AIML tools are in place to
advance the theories and practices of electrocatalysis,
but we also recognize that common practices for ex-
perimental and computational research in this area are
often inadequate for productive and insightful AIML
studies.

One problematic issue pertains to the standards for how
macroscale catalyst properties in their respective ex-
periments are reported. For example, it is customary for
measurements of electrochemical current flow to be
converted to current densities by normalizing to one of
several physical parameters, including the superficial
arca of the electrode, the microscopic or electro-
chemically-active surface area of the catalytic material,
the mass of the catalyst used, or the number of putative
active sites [8—10¢]. Each of these treatments can yield
useful information, but experimental reports often use
only one convention and do not include enough in-
formation to convert to another normalization scheme.
Similarly, one can often find inconsistent treatments of
transport limitations, reference electrode calibrations,
and ohmic resistance across the literature. Many of these
inconsistencies can be identified and reconciled by
trained practitioners, but it is much more difficult to do
so algorithmically, which makes the associated data less
valuable for AIML applications.

A second issue is the difficulty of measuring and con-
trolling the actual chemical composition of a catalyst
material interacting with its local environment. For ex-
ample, it is difficult to generate atomically precise cata-
lyst materials with well-controlled compositions, and it is
also challenging to measure the precise composition of a
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practical electrocatalyst under ambient reaction condi-
tions — this amounts to the electrochemical version of
the well-known ‘materials gap’ [11] in heterogeneous
catalysis. Similar challenges extend to understanding the
nature of the local environment around the catalyst, for
example, the atomic scale of electrode substrates and
electrolytes, as well as the ways in which the experi-
mental configuration influences observed reaction rates,
for example, via nonuniform current densities across
electrodes [12,13]. Accordingly, studies that deploy well-
characterized analytical apparatuses and intentionally
modulate the local environment around an electro-
catalyst would be especially useful for AIML-integrated
research.

A third issue revolves around data quality and curation.
Within electrocatalysis, even simple statistical analyses
such as replicates and error bars are routinely over-
looked. Meanwhile, there is growing emphasis on en-
suring that scientific data are FAIR (Findable,
Accessible, Interoperable, Reusable) [14] Mendes et al.
recently reviewed the challenges of applying FAIR
principles to catalysis research [15]. They found that
catalysis and, more generally engineering, greatly lagged
biological sciences in applying FAIR data practices.
Electrocatalysis may be more amenable to data-sharing
practices than catalysis as a broader field because the
current, voltage, and time are recorded directly by a
potentiostat and do not require unique calibrations as,
for example, a gas chromatograph does. Recent sys-
tematic efforts to apply FAIR data practices across
European battery research laboratories support the
amenability of electrochemistry to best practices for data
storage and sharing [16].

To instigate a new epoch of AIML-driven electro-
catalysis efforts, we call on the community to establish a
new set of consistent and standardized expectations for
how to report analytical data from experimental and
computational electrocatalysis studies. Such an endeavor
would require more effort than retaining the status quo,
but we see significant opportunities where adopting
uniform standards would enable the use of AIML to
enhance and accelerate electrocatalysis research.

Big data in electrocatalysis: current practices
and immediate opportunities

In contemporary electrocatalysis research, researchers
report steady-state performance. For example, the
oxygen reduction reaction (ORR) catalysis researchers
generally report the kinetic current density per cm? on
Pt at 0.9 V versus the RHE. Water-splitting catalyst
studies often document the overpotential at 10 mA/cm?
geometric current density. Reports on the CO, reduction
reaction describe the faradaic selectivity for CO, H,, and
other products as a function of potential, where each

data point is averaged over a fixed time interval — ty-
pically 1 hour. The ‘holy grail’ of AIML would use this
type of performance data to develop models that predict
optimal material properties from an array of composi-
tions and structures, thus alleviating the need to syn-
thesize and test many compounds. However, training
data-driven models require large amounts of high-
quality data across samples and researchers, which is
challenging to acquire considering the intrinsic limita-
tions of material synthesis and the practical issues de-
scribed above.

A more tractable application of AIML in the near term is
to use machine learning tools to classify reaction net-
works, extract kinetic parameters, and optimize reactor
conditions using large datasets collected from a single
study or research group. This approach can be seen as a
natural extension of the types of continuum-scale
models that chemical engineers routinely construct for
electrochemical systems to diagnose limiting behavior,
optimize parameters, and specify materials design.
Indeed, researchers have found recently that applying
AIML tools to such models of batteries [17¢] and
electro-organic synthesis [18] can fit kinetic and trans-
port parameters more quickly and accurately than tra-
ditional methods.

An even greater opportunity for AIML in electrocatalysis
lies in extracting useful information from data that are
uniquely straightforward to collect with electrochemical
apparatus, such as transient responses to electrical per-
turbations. Potential and current provide real-time con-
trol and measurement, respectively, of reaction rates.
The ease of modulating potential and/or current, com-
pared with temperature and/or pressure, opens the door
to rapid acquisition of dynamic reaction data for model
training. Incorporating generator—collector techniques
such as the rotating ring—disk electrode or interdigitated
electrode arrays [19] allow researchers to acquire mega-
bytes or gigabytes of transient reaction data with very
little additional effort compared with routine steady-
state measurements. Addition of ancillary techniques
such as differential or online electrochemical mass
spectrometry can further provide complementary real-
time chemical analysis.

Some examples of this transient approach can be found
in the literature. Electrochemical noise analysis has been
used to good effect in corrosion science [20], and these
techniques are increasingly being deployed to analyze
electrochemical energy conversion devices [21]. Oscil-
lating potentials are known to impact Faradaic se-
lectivity, and electrochemical parameters such as pulse
frequency and duty cycle can optimize selectivity and/or
conversion [22,23]. Recent interest in the e-refinery has
renewed interest in dynamic voltammetry for energy
conversion [24-26], and has even shown that a data-
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driven approach can predict the optimal reaction condi-
tions [27¢¢]. Outside the electrocatalysis field, electro-
chemical sensor arrays (‘electronic tongues’) have
improved in their ability to classify the absence or pre-
sence of analytes by incorporating transient responses
into training data [28]. Very recently, researchers applied
deep learning to transient spectroscopy data to classify
between 103 different kinetic models [29¢¢]. Applying
similar approaches to electrocatalysis systems could
identify transport and kinetic mechanisms that lead to
more efficient material development.

From the i si/ico arena, it is now commonplace for
computational chemistry practitioners to be engaged in
providing accompanying details about atomic scale re-
action mechanisms. The past literature has seen many
instances of purported computational validations of re-
action mechanisms, but detailed justifications for the
approximations themselves are harder to find. At best,
we speculate that such details are often considered un-
interesting and/or too specialized for a general audience,
and thus they are not reported even though they should
be. Journals are providing explicit guidance by setting
baseline standards for how researchers should ideally
demonstrate insights from computational research [30].
Computational data can be highly sensitive to the choice
of model or underlying theoretical assumptions, and
there is growing interest in explicitly understanding
uncertainties associated with different computational
procedures themselves [31-34].

Recommendations for cross-laboratory
aggregation

Turning now to the broader challenge of harvesting data
from numerous electrocatalysis research reports for
AIML studies, we see two main challenges:

1. It is difficult to aggregate and make direct compar-
isons between different data sets due to disparities
and ambiguities in data acquisition.

2. The statistical validity of existing literature data is
often uncertain due to the lack of acquisition stan-
dards.

In theory, the solution to this is straightforward: there
should be full disclosure of @// experimental and compu-
tational details in a searchable SI document that includes
rigorous statistical analysis. This is challenging at best to
fully implement, but we note that computational groups
have been implementing protocols that prioritize lucidity
and reproducibility of computational data [35-38].
Here, we suggest a potential path forward.

The most glaring omission in the current electrocatalysis
literature is a statistical standard for the reporting of
electrocatalyst performance data. The problem this
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poses for AIML researchers is not knowing whether re-
ported data are valid — that is, whether the materials,
conditions and experimental and/or computational
parameters were controlled and documented well en-
ough for others to reproduce the result. This issue is
made more critical when the data are gathered by trai-
nees that may not have sufficient experience to know
how to minimize error when making a measurement or
when to exclude data. Specific ‘engineering controls’
have been previously proposed, including requiring new
students to replicate a published experiment, data ac-
quisition, or synthesis from their own group or another
group within the field [39¢—41]. This is a valuable
practice that should be widely adopted, but it is not
enforceable without a governing body equipped to cer-
tify the competency of every trainee. A more practical
solution may be to develop best practices with respect to
statistical rigor that can be adopted as requirements for
publication. This includes setting a standard for the
number of replicates that constitutes a statistically re-
levant data set and formulating standards that defines
the bounds of relevance, that is, how do we identify and
eliminate outliers without eliminating valuable data
points? These standards could then be incentivized by
journal editors requiring them. Although this may re-
quire a significant shift in culture for the electrocatalysis
research community, we emphasize that this type of
statistical rigor is already common practice in, that is, the
biomedical field [42].

An example of a specific requirement might be that a
viable data set must include at least the minimum
number of replicates to produce an error bound that is
not more than 50% of the measured value. Even better
would be statistical treatments that explicitly differ-
entiate the catalyst under study from a reasonable con-
trol. For example, can a researcher provide 95%
confidence that a new binary catalyst is different in ac-
tivity than either of its constituent components alone?
We note that if the difference is large, as few as three
measurements may be sufficient, but if the difference is
very small, many dozens of measurements may be
needed.

Another critical aspect here is to only remove true out-
liers but retain any measurements that might point to-
ward new insights. There remains a risk, particularly for
data used to report performance metrics, that excuses
could be made to remove any data point that would
lower the average value, artificially inflating reported
average performance. For this reason, specific proce-
dures for identifying outliers should be adopted. Two
possibilities are using a Z-test and identifying outliers as
those that are outside of a 95% confidence interval or
using an interquartile range with graded outlier fences to
identify minor and major outliers.

www.sciencedirect.com

Current Opinion in Chemical Engineering 36 (2022) 100824



4 Reaction Engineering and Catalysis

In addition to statistical relevance, the accuracy of any
conclusions drawn from data harvesting is predicated on
the viability of the comparisons being made. If the
variability of the experimental or computational proto-
cols used to obtain the mined data is too high, then any
conclusions drawn from aggregating that data could be
called into question. This can be remedied in part by
requiring the detailed disclosure of all aspects of the
experimental/computational protocols in a searchable
supporting information document. Ideally, this in-
formation would be collected as a matter of course as an
experiment is performed, for example, via standardized
entries in electronic lab notebooks or within digital data
files (analogous to CIF and VAMAS file formats for X-ray
and surface science measurements, respectively). This
will help to ensure that the data were acquired with
the best practices and allow for categorization during
data mining to ensure accurate comparisons. This can
only go so far, however. Even with full disclosure, if
mistakes were made that introduce systematic error or
bias, then inaccuracies can be propagated during data
aggregation even after accounting for random error with
statistical analysis. A shift in the culture from an em-
phasis on novelty to one on reproducibility can help
here. In electrocatalysis, common mistakes that can hurt
data reproducibility and introduce systematic error are
myriad and include: incorrect calibration of reference
electrodes; incorrect measurement of catalyst mass or
active area; deposition of precious metals from the
counter electrode onto the working electrode; inaccurate
measurement of catalyst composition; variability in am-
bient temperatures that are documented as ‘room tem-
perature;” incomplete saturation of electrolyte with
reactant gas or incomplete deaerating of electrolyte;

Box 1 Experimental best practices

incorrect iR compensation; and potential sweep rates
that are too fast. For computational data, reproducibility
can likewise be impacted by typographical errors or
unnoticed bugs in code. The fact that researchers are
rarely obliged to provide all atomic-scale coordinates
and/or openly provide codes and scripts used in data
analysis does not help this cause. Improving reproduci-
bility and the accuracy of aggregated comparisons re-
quires the adoption of a standardized set of ‘best
practices’ that will begin to bridge these experimental
disparities. We have provided examples herein that can
be used to motivate further discussion across the re-
search community (Box 1 and Box 2).

These best practices are to: (1) ensure that data are
obtained properly, (2) report all relevant parameters
governing the acquisition of that data so that valid
comparisons can be made, and (3) validate accuracy
through reproducibility. Implementation of this, how-
ever, requires an overhaul of how data are acquired and
how results are reported. The onus of much of this will
fall on research journals via editorial practices and peer
review. Here again, there is a clear path forward in the
recent implementation of specific reporting/experi-
mental requirements for publication, such as the battery
checklists adopted by Joule and ACS Energy Letters
[43]. These checklists guide researchers to adopt a va-
luable measure of uniformity in their practices. Organi-
zation of these reporting requirements into an Al-
friendly SI format will significantly lower the barrier to
mining data for AIML studies. Here, we take a first at-
tempt at establishing an equivalent checklist for elec-
trocatalysis, which we also submit for external scrutiny
and discussion (Box 3).

1. Voltammetric assessment of catalytic electrode before and after activity measurements

. Proper selection of counter electrode material and surface area

. Statistically significant numbers of replicates
. Post-mortem analysis of catalytic electrodes (TEM, XPS, XRD)

. Accurate measure of pH and ionic concentration of electrolyte

© 00 N o o A~ W N

respectively)

. Calibration of reference electrode after running each measurement to be reported externally (include calibration data in Sl)

. Slow sweep rates for activity measurements (i.e., ideally with validation data demonstrating equivalence to steady-state behavior)

. Secondary measurements of catalyst loading and composition (e.g., via thermogravimetry or elemental analysis)

. Sufficient saturation of electrolyte with reactant or purge gas (validated with measurements of diffusion-limited currents or background currents,

10. Establishing specific figures of merit for specific electrocatalytic reactions

11. Ensure proper iR compensation by reporting measured cell resistance

12. All performance metrics for new materials should be compared to an established -IJstandard material;-i e.g., Umicore or TKK Pt/C for oxygen

reduction

18. Use of a fully documented break-in protocol until a steady-state response is obtained
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Box 2 Computational best practices
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1. Input files containing all salient keywords that defined calculation methods employed.

2. Salient XYZ coordinate files provided in a standard format with corresponding calculated energies and/or properties.

3. Appropriate demonstration of convergence of k-points and kinetic energy cutoffs when appropriate.

4. Appropriate demonstration that atomic-scale equilibration was reached during molecular simulations.

5. Explicit inclusion of any non-standard forcefields, auxiliary basis sets, and/or pseudopotential files.

6. Computational data and numerical analyses explicitly provided using clearly written code (e.g. Jupyter notebooks)

Box 3 Electrocatalysis checklist

Experimental details provided:
[ Echem cell material

[1 Echem cell design

[] Reference electrode type

[ Counter electrode type

[ Electrolyte composition (ionic concentration, pH)

[0 Method of reference electrode calibration (with calibration data included in the Sl)

[1 Pre-conditioning protocol

[ Electrode geometry (e.g. RDE, flowcell, h-cell, etc)
[ Catalyst loading

[ Catalyst binder material and loading

[ Bulk catalyst composition

[ Electrolyte temperature

[0 Magnitude of compensated series resistance

Computational details provided:

[ Brief narrative summary of computational work (including software version numbers and hardware configurations used).

[ Any non-commercial codes and/or code modifications that were used for data production and/or analysis.

[ All XYZ coordinates and/or unit cell parameters for any static structures or states mentioned in the text.

[ A reasonably truncated trajectory file consisting of structures obtained from Monte Carlo or molecular dynamics simulations.

[ Explicit details about the calculation method, spin states / magnetic moments, system charge, etc.

[ Copies of input files and auxiliary files with keywords used for simulations.

[ Evidence of self-consistency of computational models (e.g. explicit data showing convergence in k-point sampling and kinetic energy cutoffs

and/or equilibration of molecular simulations).

In summary, the straightforward and high-resolution nature
of electrochemical measurements may be uniquely
amenable to big-data approaches. However, realizing the
promise of AIML in electrocatalysis requires aggregating
data across researchers and laboratories with commonly
accepted experimental and computational best practices to
ensure data fidelity. A concerted effort by leaders in the
research community, and particularly by journal editors,
will help to incentivize the adoption of best practices and
statistical rigor. Funding agencies also play a natural role in
incentive structures and can facilitate efforts towards re-
producibility and FAIR data practices. For example, stan-
dard metrics for reproducibility, in addition to existing
metrics for mass activity or stability, could be created.

Agencies could also provide resources specifically devoted
to developing data infrastructures such as those described
in Castelli et al. [16]. Ultmately, implementing such
changes can enable deep learning techniques to reach their
fullest potential for electrocatalytic reaction engineering
and material discovery.
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