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Deeper learning in electrocatalysis: realizing 
opportunities and addressing challenges 
John A Keith1, James R McKone1, Joshua D Snyder2 and  
Maureen H Tang2   

Emerging techniques in deep learning have created exciting 
opportunities for next-generation electrochemical technologies. 
While deep learning has been revolutionizing many research 
!elds, strategies for its implementation for electrocatalysis 
remain nascent. This Opinion calls on the electrocatalysis 
community to join together and introduce a paradigm shift by 
establishing standards for reporting and sharing data from 
electrocatalysis investigations. We speculate on a possible 
future where crowd-sourced and standardized data from 
experimental and computational researchers can be analyzed 
collectively to better understand fundamental electrochemistry, 
yielding unprecedented insights for the development of new 
electrocatalysts. We identify key barriers to realizing this 
opportunity and how they might be overcome. 
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Introduction 
Arti!cial intelligence and machine learning (AIML) 
have made important contributions for the development 
and applications in the chemical sciences [1•]. AIML 
allows the extraction of useful and insightful physical 
relationships from large and convoluted data sets. There 
are growing numbers of examples of AIML-guided de-
sign of materials [2,3] and molecules [4,5] where insights 

have been gleaned from large datasets comprising ex-
perimental and computational !ndings. 

The high complexity of electrochemical environments 
and the large number of researchers producing data 
make electrocatalysis a ripe !eld for AIML. 
Electrocatalytic methods are widely considered to be 
attractive for generating fuels and chemicals from re-
newable feedstocks and driving global decarbonization  
[6•]. Moreover, efforts to address long-standing chal-
lenges in electrocatalysis are often enhanced by com-
position–activity relationships obtained through 
synergistic experimental and computational work [7•]. 
There is ample evidence that AIML tools are in place to 
advance the theories and practices of electrocatalysis, 
but we also recognize that common practices for ex-
perimental and computational research in this area are 
often inadequate for productive and insightful AIML 
studies. 

One problematic issue pertains to the standards for how 
macroscale catalyst properties in their respective ex-
periments are reported. For example, it is customary for 
measurements of electrochemical current "ow to be 
converted to current densities by normalizing to one of 
several physical parameters, including the super!cial 
area of the electrode, the microscopic or electro-
chemically-active surface area of the catalytic material, 
the mass of the catalyst used, or the number of putative 
active sites [8–10•]. Each of these treatments can yield 
useful information, but experimental reports often use 
only one convention and do not include enough in-
formation to convert to another normalization scheme. 
Similarly, one can often !nd inconsistent treatments of 
transport limitations, reference electrode calibrations, 
and ohmic resistance across the literature. Many of these 
inconsistencies can be identi!ed and reconciled by 
trained practitioners, but it is much more dif!cult to do 
so algorithmically, which makes the associated data less 
valuable for AIML applications. 

A second issue is the dif!culty of measuring and con-
trolling the actual chemical composition of a catalyst 
material interacting with its local environment. For ex-
ample, it is dif!cult to generate atomically precise cata-
lyst materials with well-controlled compositions, and it is 
also challenging to measure the precise composition of a 
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practical electrocatalyst under ambient reaction condi-
tions — this amounts to the electrochemical version of 
the well-known ‘materials gap’ [11] in heterogeneous 
catalysis. Similar challenges extend to understanding the 
nature of the local environment around the catalyst, for 
example, the atomic scale of electrode substrates and 
electrolytes, as well as the ways in which the experi-
mental con!guration in"uences observed reaction rates, 
for example, via nonuniform current densities across 
electrodes [12,13]. Accordingly, studies that deploy well- 
characterized analytical apparatuses and intentionally 
modulate the local environment around an electro-
catalyst would be especially useful for AIML-integrated 
research. 

A third issue revolves around data quality and curation. 
Within electrocatalysis, even simple statistical analyses 
such as replicates and error bars are routinely over-
looked. Meanwhile, there is growing emphasis on en-
suring that scienti!c data are FAIR (Findable, 
Accessible, Interoperable, Reusable) [14] Mendes et al. 
recently reviewed the challenges of applying FAIR 
principles to catalysis research [15]. They found that 
catalysis and, more generally engineering, greatly lagged 
biological sciences in applying FAIR data practices. 
Electrocatalysis may be more amenable to data-sharing 
practices than catalysis as a broader !eld because the 
current, voltage, and time are recorded directly by a 
potentiostat and do not require unique calibrations as, 
for example, a gas chromatograph does. Recent sys-
tematic efforts to apply FAIR data practices across 
European battery research laboratories support the 
amenability of electrochemistry to best practices for data 
storage and sharing [16]. 

To instigate a new epoch of AIML-driven electro-
catalysis efforts, we call on the community to establish a 
new set of consistent and standardized expectations for 
how to report analytical data from experimental and 
computational electrocatalysis studies. Such an endeavor 
would require more effort than retaining the status quo, 
but we see signi!cant opportunities where adopting 
uniform standards would enable the use of AIML to 
enhance and accelerate electrocatalysis research. 

Big data in electrocatalysis: current practices 
and immediate opportunities 
In contemporary electrocatalysis research, researchers 
report steady-state performance. For example, the 
oxygen reduction reaction (ORR) catalysis researchers 
generally report the kinetic current density per cm2 on 
Pt at 0.9 V versus the RHE. Water-splitting catalyst 
studies often document the overpotential at 10 mA/cm2 

geometric current density. Reports on the CO2 reduction 
reaction describe the faradaic selectivity for CO, H2, and 
other products as a function of potential, where each 

data point is averaged over a !xed time interval — ty-
pically 1 hour. The ‘holy grail’ of AIML would use this 
type of performance data to develop models that predict 
optimal material properties from an array of composi-
tions and structures, thus alleviating the need to syn-
thesize and test many compounds. However, training 
data-driven models require large amounts of high- 
quality data across samples and researchers, which is 
challenging to acquire considering the intrinsic limita-
tions of material synthesis and the practical issues de-
scribed above. 

A more tractable application of AIML in the near term is 
to use machine learning tools to classify reaction net-
works, extract kinetic parameters, and optimize reactor 
conditions using large datasets collected from a single 
study or research group. This approach can be seen as a 
natural extension of the types of continuum-scale 
models that chemical engineers routinely construct for 
electrochemical systems to diagnose limiting behavior, 
optimize parameters, and specify materials design. 
Indeed, researchers have found recently that applying 
AIML tools to such models of batteries [17•] and 
electro-organic synthesis [18] can !t kinetic and trans-
port parameters more quickly and accurately than tra-
ditional methods. 

An even greater opportunity for AIML in electrocatalysis 
lies in extracting useful information from data that are 
uniquely straightforward to collect with electrochemical 
apparatus, such as transient responses to electrical per-
turbations. Potential and current provide real-time con-
trol and measurement, respectively, of reaction rates. 
The ease of modulating potential and/or current, com-
pared with temperature and/or pressure, opens the door 
to rapid acquisition of dynamic reaction data for model 
training. Incorporating generator–collector techniques 
such as the rotating ring–disk electrode or interdigitated 
electrode arrays [19] allow researchers to acquire mega-
bytes or gigabytes of transient reaction data with very 
little additional effort compared with routine steady- 
state measurements. Addition of ancillary techniques 
such as differential or online electrochemical mass 
spectrometry can further provide complementary real- 
time chemical analysis. 

Some examples of this transient approach can be found 
in the literature. Electrochemical noise analysis has been 
used to good effect in corrosion science [20], and these 
techniques are increasingly being deployed to analyze 
electrochemical energy conversion devices [21]. Oscil-
lating potentials are known to impact Faradaic se-
lectivity, and electrochemical parameters such as pulse 
frequency and duty cycle can optimize selectivity and/or 
conversion [22,23]. Recent interest in the e-re!nery has 
renewed interest in dynamic voltammetry for energy 
conversion [24–26], and has even shown that a data- 
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driven approach can predict the optimal reaction condi-
tions [27••]. Outside the electrocatalysis !eld, electro-
chemical sensor arrays (‘electronic tongues’) have 
improved in their ability to classify the absence or pre-
sence of analytes by incorporating transient responses 
into training data [28]. Very recently, researchers applied 
deep learning to transient spectroscopy data to classify 
between 103 different kinetic models [29••]. Applying 
similar approaches to electrocatalysis systems could 
identify transport and kinetic mechanisms that lead to 
more ef!cient material development. 

From the in silico arena, it is now commonplace for 
computational chemistry practitioners to be engaged in 
providing accompanying details about atomic scale re-
action mechanisms. The past literature has seen many 
instances of purported computational validations of re-
action mechanisms, but detailed justi!cations for the 
approximations themselves are harder to !nd. At best, 
we speculate that such details are often considered un-
interesting and/or too specialized for a general audience, 
and thus they are not reported even though they should 
be. Journals are providing explicit guidance by setting 
baseline standards for how researchers should ideally 
demonstrate insights from computational research [30]. 
Computational data can be highly sensitive to the choice 
of model or underlying theoretical assumptions, and 
there is growing interest in explicitly understanding 
uncertainties associated with different computational 
procedures themselves [31–34]. 

Recommendations for cross-laboratory 
aggregation 
Turning now to the broader challenge of harvesting data 
from numerous electrocatalysis research reports for 
AIML studies, we see two main challenges:  

1. It is dif!cult to aggregate and make direct compar-
isons between different data sets due to disparities 
and ambiguities in data acquisition.  

2. The statistical validity of existing literature data is 
often uncertain due to the lack of acquisition stan-
dards. 

In theory, the solution to this is straightforward: there 
should be full disclosure of all experimental and compu-
tational details in a searchable SI document that includes 
rigorous statistical analysis. This is challenging at best to 
fully implement, but we note that computational groups 
have been implementing protocols that prioritize lucidity 
and reproducibility of computational data [35–38]. 
Here, we suggest a potential path forward. 

The most glaring omission in the current electrocatalysis 
literature is a statistical standard for the reporting of 
electrocatalyst performance data. The problem this 

poses for AIML researchers is not knowing whether re-
ported data are valid — that is, whether the materials, 
conditions and experimental and/or computational 
parameters were controlled and documented well en-
ough for others to reproduce the result. This issue is 
made more critical when the data are gathered by trai-
nees that may not have suf!cient experience to know 
how to minimize error when making a measurement or 
when to exclude data. Speci!c ‘engineering controls’ 
have been previously proposed, including requiring new 
students to replicate a published experiment, data ac-
quisition, or synthesis from their own group or another 
group within the !eld [39•–41]. This is a valuable 
practice that should be widely adopted, but it is not 
enforceable without a governing body equipped to cer-
tify the competency of every trainee. A more practical 
solution may be to develop best practices with respect to 
statistical rigor that can be adopted as requirements for 
publication. This includes setting a standard for the 
number of replicates that constitutes a statistically re-
levant data set and formulating standards that de!nes 
the bounds of relevance, that is, how do we identify and 
eliminate outliers without eliminating valuable data 
points? These standards could then be incentivized by 
journal editors requiring them. Although this may re-
quire a signi!cant shift in culture for the electrocatalysis 
research community, we emphasize that this type of 
statistical rigor is already common practice in, that is, the 
biomedical !eld [42]. 

An example of a speci!c requirement might be that a 
viable data set must include at least the minimum 
number of replicates to produce an error bound that is 
not more than 50% of the measured value. Even better 
would be statistical treatments that explicitly differ-
entiate the catalyst under study from a reasonable con-
trol. For example, can a researcher provide 95% 
con!dence that a new binary catalyst is different in ac-
tivity than either of its constituent components alone? 
We note that if the difference is large, as few as three 
measurements may be suf!cient, but if the difference is 
very small, many dozens of measurements may be 
needed. 

Another critical aspect here is to only remove true out-
liers but retain any measurements that might point to-
ward new insights. There remains a risk, particularly for 
data used to report performance metrics, that excuses 
could be made to remove any data point that would 
lower the average value, arti!cially in"ating reported 
average performance. For this reason, speci!c proce-
dures for identifying outliers should be adopted. Two 
possibilities are using a Z-test and identifying outliers as 
those that are outside of a 95% con!dence interval or 
using an interquartile range with graded outlier fences to 
identify minor and major outliers. 
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In addition to statistical relevance, the accuracy of any 
conclusions drawn from data harvesting is predicated on 
the viability of the comparisons being made. If the 
variability of the experimental or computational proto-
cols used to obtain the mined data is too high, then any 
conclusions drawn from aggregating that data could be 
called into question. This can be remedied in part by 
requiring the detailed disclosure of all aspects of the 
experimental/computational protocols in a searchable 
supporting information document. Ideally, this in-
formation would be collected as a matter of course as an 
experiment is performed, for example, via standardized 
entries in electronic lab notebooks or within digital data 
!les (analogous to CIF and VAMAS !le formats for X-ray 
and surface science measurements, respectively). This 
will help to ensure that the data were acquired with 
the best practices and allow for categorization during 
data mining to ensure accurate comparisons. This can 
only go so far, however. Even with full disclosure, if 
mistakes were made that introduce systematic error or 
bias, then inaccuracies can be propagated during data 
aggregation even after accounting for random error with 
statistical analysis. A shift in the culture from an em-
phasis on novelty to one on reproducibility can help 
here. In electrocatalysis, common mistakes that can hurt 
data reproducibility and introduce systematic error are 
myriad and include: incorrect calibration of reference 
electrodes; incorrect measurement of catalyst mass or 
active area; deposition of precious metals from the 
counter electrode onto the working electrode; inaccurate 
measurement of catalyst composition; variability in am-
bient temperatures that are documented as ‘room tem-
perature;’ incomplete saturation of electrolyte with 
reactant gas or incomplete deaerating of electrolyte; 

incorrect iR compensation; and potential sweep rates 
that are too fast. For computational data, reproducibility 
can likewise be impacted by typographical errors or 
unnoticed bugs in code. The fact that researchers are 
rarely obliged to provide all atomic-scale coordinates 
and/or openly provide codes and scripts used in data 
analysis does not help this cause. Improving reproduci-
bility and the accuracy of aggregated comparisons re-
quires the adoption of a standardized set of ‘best 
practices’ that will begin to bridge these experimental 
disparities. We have provided examples herein that can 
be used to motivate further discussion across the re-
search community (Box 1 and Box 2). 

These best practices are to: (1) ensure that data are 
obtained properly, (2) report all relevant parameters 
governing the acquisition of that data so that valid 
comparisons can be made, and (3) validate accuracy 
through reproducibility. Implementation of this, how-
ever, requires an overhaul of how data are acquired and 
how results are reported. The onus of much of this will 
fall on research journals via editorial practices and peer 
review. Here again, there is a clear path forward in the 
recent implementation of speci!c reporting/experi-
mental requirements for publication, such as the battery 
checklists adopted by Joule and ACS Energy Letters  
[43]. These checklists guide researchers to adopt a va-
luable measure of uniformity in their practices. Organi-
zation of these reporting requirements into an AI- 
friendly SI format will signi!cantly lower the barrier to 
mining data for AIML studies. Here, we take a !rst at-
tempt at establishing an equivalent checklist for elec-
trocatalysis, which we also submit for external scrutiny 
and discussion (Box 3). 

Box 1 Experimental best practices  

1. Voltammetric assessment of catalytic electrode before and after activity measurements 

2. Calibration of reference electrode after running each measurement to be reported externally (include calibration data in SI) 

3. Proper selection of counter electrode material and surface area 

4. Slow sweep rates for activity measurements (i.e., ideally with validation data demonstrating equivalence to steady-state behavior) 

5. Secondary measurements of catalyst loading and composition (e.g., via thermogravimetry or elemental analysis) 

6. Statistically signi!cant numbers of replicates 

7. Post-mortem analysis of catalytic electrodes (TEM, XPS, XRD) 

8. Accurate measure of pH and ionic concentration of electrolyte 

9. Suf!cient saturation of electrolyte with reactant or purge gas (validated with measurements of diffusion-limited currents or background currents, 
respectively) 

10. Establishing speci!c !gures of merit for speci!c electrocatalytic reactions 

11. Ensure proper iR compensation by reporting measured cell resistance 

12. All performance metrics for new materials should be compared to an established -Ĳstandard material;-İ e.g., Umicore or TKK Pt/C for oxygen 
reduction 

13. Use of a fully documented break-in protocol until a steady-state response is obtained   
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In summary, the straightforward and high-resolution nature 
of electrochemical measurements may be uniquely 
amenable to big-data approaches. However, realizing the 
promise of AIML in electrocatalysis requires aggregating 
data across researchers and laboratories with commonly 
accepted experimental and computational best practices to 
ensure data !delity. A concerted effort by leaders in the 
research community, and particularly by journal editors, 
will help to incentivize the adoption of best practices and 
statistical rigor. Funding agencies also play a natural role in 
incentive structures and can facilitate efforts towards re-
producibility and FAIR data practices. For example, stan-
dard metrics for reproducibility, in addition to existing 
metrics for mass activity or stability, could be created. 

Agencies could also provide resources speci!cally devoted 
to developing data infrastructures such as those described 
in Castelli et al. [16]. Ultimately, implementing such 
changes can enable deep learning techniques to reach their 
fullest potential for electrocatalytic reaction engineering 
and material discovery. 
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Box 2 Computational best practices  

1. Input !les containing all salient keywords that defined calculation methods employed. 

2. Salient XYZ coordinate !les provided in a standard format with corresponding calculated energies and/or properties. 

3. Appropriate demonstration of convergence of k-points and kinetic energy cutoffs when appropriate. 

4. Appropriate demonstration that atomic-scale equilibration was reached during molecular simulations. 

5. Explicit inclusion of any non-standard force!elds, auxiliary basis sets, and/or pseudopotential !les. 

6. Computational data and numerical analyses explicitly provided using clearly written code (e.g. Jupyter notebooks)   

Box 3 Electrocatalysis checklist  

Experimental details provided: 

□ Echem cell material 

□ Echem cell design 

□ Reference electrode type 

□ Counter electrode type 

□ Electrolyte composition (ionic concentration, pH) 

□ Method of reference electrode calibration (with calibration data included in the SI) 

□ Pre-conditioning protocol 

□ Electrode geometry (e.g. RDE, "owcell, h-cell, etc) 

□ Catalyst loading 

□ Catalyst binder material and loading 

□ Bulk catalyst composition 

□ Electrolyte temperature 

□ Magnitude of compensated series resistance 

Computational details provided: 

□ Brief narrative summary of computational work (including software version numbers and hardware con!gurations used). 

□ Any non-commercial codes and/or code modi!cations that were used for data production and/or analysis. 

□ All XYZ coordinates and/or unit cell parameters for any static structures or states mentioned in the text. 

□ A reasonably truncated trajectory !le consisting of structures obtained from Monte Carlo or molecular dynamics simulations. 

□ Explicit details about the calculation method, spin states / magnetic moments, system charge, etc. 

□ Copies of input !les and auxiliary !les with keywords used for simulations. 

□ Evidence of self-consistency of computational models (e.g. explicit data showing convergence in k-point sampling and kinetic energy cutoffs 
and/or equilibration of molecular simulations).   
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