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ABSTRACT

Finding an appropriate representation of dynamic activities in the
brain is crucial for many downstream applications. Due to its highly
dynamic nature, temporally averaged fMRI (functional magnetic
resonance imaging) can only provide a narrow view of underly-
ing brain activities. Previous works lack the ability to learn and
interpret the latent dynamics in brain architectures. This paper
builds an efficient graph neural network model that incorporates
both region-mapped fMRI sequences and structural connectivities
obtained from DWI (diffusion-weighted imaging) as inputs. We
find good representations of the latent brain dynamics through
learning sample-level adaptive adjacency matrices and perform-
ing a novel multi-resolution inner cluster smoothing. We also at-
tribute inputs with integrated gradients, which enables us to infer
(1) highly involved brain connections and subnetworks for each
task, (2) temporal keyframes of imaging sequences that characterize
tasks, and (3) subnetworks that discriminate between individual
subjects. This ability to identify critical subnetworks that charac-
terize signal states across heterogeneous tasks and individuals is
of great importance to neuroscience and other scientific domains.
Extensive experiments and ablation studies demonstrate our pro-
posed method’s superiority and efficiency in spatial-temporal graph
signal modeling with insightful interpretations of brain dynamics.

CCS CONCEPTS

- Computing methodologies — Learning latent representa-
tions; « Applied computing — Imaging.

KEYWORDS

fMRI time series, graph neural networks, feature attribution

ACM Reference Format:

Sikun Lin, Shuyun Tang, Scott T. Grafton, and Ambuj K. Singh. 2022. Deep
Representations for Time-varying Brain Datasets. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
"22), August 14-18, 2022, Washington, DC, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3534678.3539301

KDD °22, August 14-18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539301

This work is licensed under a Creative Commons Attribution
International 4.0 License.

999

Shuyun Tang
University of California, Santa Barbara
Santa Barbara, CA, USA
shuyun@ucsb.edu

Ambuj K. Singh
University of California, Santa Barbara
Santa Barbara, CA, USA
ambuj@cs.ucsb.edu

1 INTRODUCTION

Neuroimaging techniques such as fMRI (functional magnetic res-
onance imaging) and DWI (diffusion-weighted imaging) provide
a window into complex brain processes. Yet, modeling and un-
derstanding these signals has always been a challenge. Network
neuroscience [1] views the brain as a multiscale networked system
and models these signals in their graph representations: nodes rep-
resent brain ROIs (regions of interest), and edges represent either
structural or functional connections between pairs of regions.

With larger imaging datasets and developments in graph neural
networks, recent works leverage variants of graph deep learning,
modeling brain signals with data-driven models and getting rid
of Gaussian assumptions that typically existed in linear models
[15, 38]. These methods are making progress on identifying physio-
logical characteristics and brain disorders: In [9], authors combine
grad-CAM [23] and GIN [35] to highlight brain regions that are
responsible for gender classification with resting-state fMRI data.
Others [16] propose to use regularized pooling with GNN to iden-
tify fMRI biomarkers. However, these works use time-averaged
fMRI, losing rich dynamics in the temporal domain. They also do
not incorporate structural modality that can provide additional con-
nectivity information missing in the functional modality. Another
work [18] embeds both topological structures and node signals of
fMRI networks into a low-dimensional latent representations for
better identification of depression, but it combines nodes’ temporal
and feature dimensions instead of handling them separately, lead-
ing to a suboptimal representation (as discussed in section 3.2). To
overcome these issues, we propose ReBraiD (Deep Representations
for Time-varying Brain Datasets), a graph neural network model
that jointly models dynamic functional signals and structural con-
nectivities, leading to a more comprehensive deep representation
of brain dynamics.

To simultaneously encode signals along spatial and temporal
dimensions, some works in traffic prediction and activity recogni-
tion domains such as Graph WaveNet [34] alternate between TCN
(temporal convolution network) [13] and GCN (graph convolu-
tional network) [11]. Others [17, 26] use localized spatial-temporal
graph to embed both domains’ information in this extended graph.
Some proposed methods also incorporate gated recurrent networks
for the temporal domain such as [21, 24]. We choose to alternate
TCN with GCN layers for ReBraiD, as it is more memory and time-
efficient and can support much longer inputs. On top of this design,
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we propose novel “sample-level adaptive adjacency matrix learn-
ing” and “multi-resolution inner cluster smoothing,” both of which
learn and refine latent dynamic structures. With the choice of the
temporal layer, our model is more efficient than other baselines
while having the highest performance.

We perform extensive ablation studies to examine individual
components of the model. We also explore the best option when
alternating spatial and temporal layers for encoding brain activities.
After quantitatively showing the representation ability of our model,
we utilize IG (integrated gradients) [27] to identify how brain ROIs
participate in various processes. This can lead to better behavioral
understanding, discovery of biomarkers, and characterization of
individuals or groups. We also make the novel contribution of
identifying temporally important frames with graph attribution
techniques; this can enable more fine-grained temporal analysis
around keyframes when combined with other imaging modalities
such as EEG (electroencephalogram). In addition, our subject-level
and group-level attribution studies unveil heterogeneities among
ROlIs, tasks, and individuals.

In summary, the main contributions of our work are as follows:

We present ReBraid, an efficient graph neural network model
that jointly models both structural and dynamic functional brain
signals, providing a more comprehensive representation of brain
activities when compared to the current fMRI literature.

Unlike typical spatial-temporal GCNs that learn a universal latent
structure, we propose sample-level latent adaptive adjacency ma-
trix learning based on input snippets. This captures the evolving
dynamics of a task better.

We propose multi-resolution inner cluster smoothing, which
effectively encodes long-range node relationships while keeping
the graph structure, enabling the model to leverage structural and
latent adjacency matrices throughout the process. Together with
subject SC and sample-level adjacency matrix learning, the inner
cluster smoothing learns and refines latent dynamic structures
on limited signal data.

We carry out extensive ablation studies and model comparisons
to show ReBraid’s superiority in representing brain dynamics. We
also leverage integrated gradients to attribute and interpret the
importance of both spatial brain ROIs and temporal keyframes,
as well as heterogeneities among brain ROIs, tasks, and subjects.
These can open up new opportunities for identifying biomarkers
for different tasks or diseases and markers for other complex
scientific phenomena.

2 METHOD

2.1 Preliminaries

We utilize two brain imaging modalities mapped onto a same co-
ordinate: SC (structural connectivity) from DWI scans, and time-
varying fMRI scans. We represent them as a set of L graphs G;
(A5, X;) withi € [1,L]. A; € RN*N represents normalized adja-

cency matrix with an added self-loop: A; = B;C%iséiﬁ;c%i, SC; =
SCi+In and Dsc; = X.,,(SCi)ow is the diagonal node degree matrix.
Graph signal matrix obtained from fMRI scans of the ith sample
is represented as X; € RN*T, Here N is the number of nodes, and
each node represents a brain region; T is the input signal length
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Figure 1: The proposed ReBraiD model for integrating brain struc-
ture and dynamics (the architecture shown is for classification). For
each batch with batch size B, input X has a dimension of (B,1,N,T)!,
and A, A,qp both have the dimension (B, N, N). The encoder (green
part) encodes temporal and spatial information alternately, produc-
ing a latent representation in (B, djatent, N, 1). These embeddings are
followed by linear layers for pooling and classification. The final
output has a dimension of (B,C).

on each node. We refine our representation using the task of classi-
fying brain signals G; into one of C task classes through learning
latent graph structures.

2.2 Model

ReBraiD takes (A, X) as inputs and outputs task class predictions.
The overall model structure is shown in fig. 1. For the i? sample
X; € RN*IXT | the jnitial 1 X 1 convolution layer increases its hidden
feature dimension to dj, outputting (N, dp;, T). The encoder then
encodes temporal and spatial information alternately, and generates
a hidden representation of size (N, dp,,1). The encoder is followed
by two linear layers to perform pooling on node embeddings and
two MLP layers for classification. Cross entropy is used as the loss
function: Lcg = - Y; y;log §;, where y; € RE is the one-hot vector
of ground truth task labels and #); € R€ is the model’s predicted
distribution. We now explain the different components of the model.

(I) Learning sample-level latent graph structures. Structural
scans serve as our graph adjacency matrices. However, they remain
fixed across temporal frames and across tasks. In contrast, FC (func-
tional connectivities) are highly dynamic, resulting in different
connection patterns across both time and tasks. To better capture
dynamic graph structures, we learn an adaptive adjacency matrix
from each input graph signal. Unlike other works such as [34] that
use a universal latent graph structure, our model does not assume
that all samples share the same latent graph. Instead, our goal is
to give each sample a unique latent structure that can reflect its
own signaling pattern. This implies that the latent adjacency matrix
cannot be directly treated as a learnable parameter as a part of the
model. To solve this, we minimize the assumption down to a shared
projection ©,q, that projects each input sequence into an embed-
ding space and use this embedding to generate the latent graph
structure. Projection ©,4p, can be learned in an end-to-end manner.

The generated adaptive adjacency matrix for the i’ h sample can be
written as follows (Softmax is applied column-wise):

Ay adp = Softmax (ReLU ((Xi@)adp ) (XiOadp )T)) ,Ougp € R0 (1)

! Axis order follows PyTorch conventions. Dimension at the second index is the ex-
panded feature dimension.
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(IT) Gated TCN (Temporal Convolutional Network). To en-
code signal dynamics, we use the gating mechanism as in [19] in
our temporal layers:

HD = tanh (TCNemb(H(l))) oo (TCNgate(H(”)) , @)

where H)' ¢ RNXd% 5 one sample’s activation matrix of the
Ith layer, © denotes the Hadamard product, and o is the Sigmoid
function. In contrast to TCNs that are generally used in sequence to
sequence models that consist of dilated Conv1d and causal padding
along the temporal dimension ([31]), we simply apply Conv1d with
kernel = 2 and stride = 2 as our TCNep}, and TCNgate to embed
temporal information. The reason is twofold: first, for a sequence
to sequence model with a length-T output, y; should only depend
on x; <7 to avoid information leakage and causal convolution can
ensure this. In contrast, our model’s task is classification, and the
goal of our encoder along the temporal dimension is to embed
signal information into the feature axis while reducing the temporal
dimension to 1. The receptive field of this single temporal point
(with multiple feature channels) is meant to be the entire input
sequence. Essentially, our TCN is the same as the last output node
of a kernel-two causal TCN whose dilation increases by two at each
layer (fig. 8). Second, from a practical perspective, directly using
strided non-causal TCN works the same as taking the last node
of dilated causal TCNs, as discussed above, while simplifying the
model structure and reducing training time to less than a quarter.
(IIT) Graph Network layer. In our model, every set of [ temporal
layers (appendix B.1 studies the best I to choose) is followed by a
spatial layer to encode signals with the graph structure. Building
temporal and spatial layers alternately helps spatial modules to
learn embeddings at different temporal scales, and this generates
better results than placing spatial layers after all the temporal ones.
To encode spatial information, [11] uses first-order approxima-
tion of spectral filters to form the layer-wise propagation rule of
a GCN layer: H!*) = GEN(HW) = fF(AHD WD), It can be un-
derstood as spatially aggregating information among neighboring
nodes to form new node embeddings. In the original setting with-
out temporal signals, HY) € RN*4 s the activation matrix of [/
layer, A € RN*N denotes the normalized adjacency matrix with
self-connections as discussed in section 2.1, W) e R9d" is learn-
able model parameters, and f is a nonlinear activation function of
choice. Parameters d and d” are the number of feature channels.
We view a GCN layer as a local smoothing operation followed
by an MLP, and simplify stacking K layers to AKH as in [33]. In
ReBraiD, every graph network layer aggregates information from
each node’s K-hop neighborhoods based on both brain structural
connectivity and the latent adaptive adjacency matrix: thus, we
have both AXH® Wy and A; ,4,K HY Wy 4, for input HD we
also gather different levels (from 0 to K) of neighbor information
with concatenation. In other words, one graph convolution layer
here corresponds to a small module that is equivalent to K simple
GCN layers with residual connections. We can write our layer as:

HI+D — gaND (Hu))
= MLP [COncat’,le (H(l),ReLU(AikH(l)),ReLU(Ai_adpkH(I)))] 3)

Note that in eq. (3), A; € RNV and H() e RN*4%! and as a result
their product € RN*@xt_Qutputs of different GNN() layers are
parameterized and then skip connected with a summation. Since

1001

KDD ’22, August 14-18, 2022, Washington, DC, USA

the temporal lengths of these outputs are different because of TCNS,
max-pooling is used before each summation to make the lengths
identical.

(IV) Multi-resolution inner cluster smoothing. While GNN
layers can effectively pass information between neighboring nodes,
long-range relationships among brain regions that neither appear
in SC nor learned by latent A,q, can be better captured using soft
assignments, similar to DIFFPooL[36]. To generate the soft assign-
ment tensor S that assigns N nodes into ¢ clusters (¢ chosen
manually), we use GNNLQDI that obeys the same propagation rule
asin eq. (3), followed by Softmax along c. This assignment is applied
to ZW | the output of GNNil,Lb which carries out the spatial embed-

ding for the I layer input H) | producing clustered representation
A0,
S® = Softmax (GNN(I) (H(()) , 1) € RN>ext
pool

70 = GNNU (HD) e rNxxe (@)

H(l) - S(I)Tz(l) € chdxt

The additional temporal dimension allows nodes to be assigned
to heterogeneous clusters at different frames. We find that using
coarsened A" = sOTAD () ¢ Rexe a5 the graph adjacency
matrix leads to worse performance compared to using SC-generated
Aj and learned A; ,qp (comparison in section 3.1). In addition, if the
number of nodes is changed, residual connections coming from the
beginning of temporal-spatial blocks can not be used, impacting
the overall performance. To continue using A; and A; .4, as graph
adjacency matrices and to allow residual connections, we reverse-
assign H®Y with assignment tensor obtained from applying Softmax
on ST along N, so that the number of nodes is kept unchanged:

SO = Softmax (S<1)T, 1) € REXNxt

5
gD = S(Z)Tg(l) € RIVxdxt ©)

In fact, eqs. (4) and (5) perform signal smoothing on nodes within
each soft-assigned cluster. With the bottleneck ¢ < N, the model is
forced to pick up latent community structures. This inner cluster
smoothing is carried out at multiple spatial resolutions: as the
spatial receptive field increases with more graph layers, we decrease
cluster number c for the assignment operation. As these GNN layers
alternate with TCN layers, the inner cluster smoothing also learns
the community information across multiple temporal scales.

2.3 Attribution with IG (Integrated Gradients)

As one approach to model interpretability, attribution assigns cred-
its to each part of the input, assessing how important they are
to the final predictions. [32] gives an extensive comparison be-
tween different graph attribution approaches, in which IG [27]
is top-performing and can be applied to trained models without
any alterations of the model structure. IG also has other desirable
properties, such as implementation invariance that other gradient
methods lack. It is also more rigorous and accurate than obtaining
explanations from attention weights or pooling matrices that span
multiple feature channels. Intuitively, IG calculates how real in-
puts contribute differently compared to a selected baseline; it does
so by aggregating model gradients at linearly interpolated inputs
between the real and baseline inputs.
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In order to apply IG, we calculate attributions at each point of
both input A € RN*N and X € RN*T for each sample:

M oF (gIntr l) 1
ATTRg,,, = (Gow — Ghww) X LN
w ow ow mzzll aglntrplvw M (6)

G=(AX). Gup=6+3:x(G-6)

F(G) here represents our signal classification model, M is the
step number when making Riemann approximation of the path
integral, and G’ is the baselines of G (see section 3.3 for more
details). Note that eq. (6) calculates the attribution of one edge or
one node on one sample. The process is repeated for every input
point, so attributions ATTR4, ATTRx have identical dimensions as
inputs A, X. To obtain the brain region importance of a task, we
aggregate attributions across multiple samples of that task.

3 EXPERIMENTS

We use fMRI signals from the CRASH dataset [12] for our experi-
ments. The model classifies input fMRI into six tasks: resting state,
VWM (visual working memory task), DYN (dynamic attention task),
MOD (math task), DOT (dot-probe task), and PVT (psychomotor
vigilance task). We preprocess 4D voxel-level fMRI images into
graph signals G = (A, X) by averaging voxel activities into regional
signals with the 200-ROI cortical parcellation (voxel to region map-
ping) specified by [22]. We also standardize signals for each region
and discard scan sessions with obvious abnormal spikes that may
be caused by head movement, etc. DWI scans are mapped into the
same MNI152 coordinate and processed into adjacency matrices
with the same parcellation as fMRI. Our processed data contains
1940 scan sessions from 56 subjects. Session length varies from 265
frames to 828 frames (see table 1 for details). TR (Repetition Time)
is 0.91s.

The 1940 scan sessions from CRASH are separated into training,
validation, and test sets with a ratio of 0.7-0.15-0.15 (subject-wise
split does not lead to any noticeable difference). Each split receives
a proportional number of samples for each class. Hyperparameters
including dropout rate, learning rate, and weight decay are selected
using grid search based on validation loss. All results reported in
this section are obtained from the test set. For each scan session,
we use a stride-10 sliding window to generate input sequences (in
the following experiments T € {8,16,32, 64,128, 256}) and feed
them to the model. To encode temporal and spatial information
alternately, we find stacking two TCN layers per one GNN layer
leads to better performance most times (see appendix B.1 (I)). We
tested hugp = 2,5,10 in eq. (1) for our experiments, and 5 appears to
be the best; so we use this value for all the following experiments.
K = 1,2,3 in eq. (3) were tested on a few settings, and K = 2,
3 have a similar performance, both outperforming K = 1. Since
smaller values of K have smaller computation needs, we use K = 2
for all experiment settings, meaning each GNN layer aggregates
information from 2-hop neighbors based on the provided adjacency
matrices. We evaluate our model with weighted F1 as the metric
in order to account for the imbalance in the number of samples in
each task. Our models are written in PyTorch, trained with Google
Colab GPU runtimes, and 30 epochs are run for each experiment
setting. Code is publicly available 2.

Zhttps://github.com/sklin93/ReBraiD
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Table 1: fMRI scan details for six tasks.

Tasks | Rest VWM DYN DOT MOD PVT | (Total)
Valid sessions | 209 514 767 155 138 157 1940
Frames / Scan | 321 300 265 798 828 680 —
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Figure 2: Ablation studies on different input length (please see table 3
in appendix for numerical values of weighted F1 under each setting).

3.1 Model components

Ablation studies on graph adjacency matrices. For each input
sample Gi, we test different options to provide graph adjacency
matrices to the GNN layer. They include (i) our proposed method:
using both adaptive adjacency matrix A; .4, and SC-induced A;,
(ii) only using Aj;, (iii) only using A; aqp, (iv) replacing A; 4qp in
setting i with A; rc derived from functional connectivity, and (v)
only using random graph adjacency matrices with the same level of
sparsity as real A’s. The results under different settings are reported
in fig. 2 (and table 3 in appendix for numerical values).

From the results of setting (ii) plotted in fig. 2, we see that re-
moving the adaptive adjacency matrix impacts the performance
differently at different input lengths: the gap peaks for signals of
length 64-128, and becomes smaller for either shorter or longer
sequences. This could suggest the existence of more distinct latent
states of brain signals of this length that structural connectivities
cannot capture. On the other hand, removing SC (setting (iii)) seems
to have a more constant impact on the model performance, with
shorter inputs more likely to see a slightly larger drop. In general,
only using A,q, leads to a smaller performance drop than only
using SC, indicating the effectiveness of A,qp in capturing useful
latent graph structures. More detailed studies below show that A,4;,
learns distinct representations not captured by A.

As mentioned in section 2, our motivation behind creating sample-
level adaptive adjacency matrices is FC’s highly dynamic nature.
Therefore, for setting (iv), we test directly using adjacency matrices
A;_rc obtained from FC instead of the learned A; ,qp- In particular,

Ajpc = D;C%i Féibggli € R200%200 where (FC;)ow = corr((X;)o, (Xi)w).
FC; = FC;+IN and Dpci =3 (FC)) o Fig. 2 shows A; pc constantly
underperforms A; ,4p, except for being really close for length-8
inputs. Larger performance gaps are observed for longer inputs,
where Corr((X;)o, (Xi)w) struggles to capture the changing dynam-
ics in the inputs. This demonstrates that our input-based latent
Aj_adp has better representation power than input-based FC. We
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also notice batch correlation coefficients calculation for A; pc re-
sults in a slower training speed than computing A; ,dp.

An interesting result comes from setting (v), where we use ran-
domly generated Erdés-Rényi graphs with the edge creation prob-
ability the same as averaged edge existence probability of A’s. Its
performance is similar to or even better than settings (ii) and (iii).
We examine this further in section 3.3.

Latent adaptive adjacency matrix A,qp,. The above results
demonstrate latent A,qp can complement the task- and temporal-
fixed A. We now show that the learned A;_,qp, is sparse for each sam-
ple, has evident task-based patterns, and provides new information
beyond A;. The sparsity of A; ,q, can be seen from fig. 11a in ap-
pendix: each input only gets a few important columns (information-
providing nodes in GNN). These columns vary from one sample to
another, indicating A,qp’s ability to adapt to changing inputs within
the same task. However, when we look into inputs generated by
consecutive sliding windows (not shuffled) from the same scan ses-
sion as in fig. 11b, we can see the latent structures change smoothly.
In addition, when we aggregate samples inside each task, noticeable
task-based patterns emerge (fig. 11c). These patterns are different
from Attry in fig. 4, suggesting that A,qp embeds dynamics not
captured by A.

Quantitatively, A; ,qp entry values range between (0, 1) because
of the Softmax, and only around 2% of entries in A; ,q, have values
larger than 0.05. As a reference, the largest entry value is larger
than 0.99. A similar sparsity pattern is found when using synthetic
data on the same model, indicating that the sparsity is more due to
the model than the underlying biology. Given how A; ,qp, is used in
GNN layers, each column of it represents a signal-originating node
during message passing. We hypothesize that the model learns the
most effective hubs that pass information to their neighbors. A
related idea is information bottleneck [29]: deep learning essen-
tially compresses the inputs as much as possible while retaining
the mutual information between inputs and outputs. In a sense,
Aj_adp represents the compressed hubs for a given input signal. We
also note that this sparsity emerges even without any additional
constraints. In fact, adding L; constraints on A,q;, does not change
the model performance or the A; ,4p sparsity level. We hypothe-
size that the naturally trained A; ,qp is sparse enough, and further
sparsification is unnecessary.

We visualize the projected inputs X;0,4, in fig. 11d, which
clearly shows the task, node and subject heterogeneities. Different
tasks have varied representations in the latent space for the same
node, but DOT, MOD, PVT has similar embedding patterns across
individuals and most nodes. Indeed, when looking at the confusion
matrix across models (fig. 12 in appendix), the misclassifications
mostly cluster between these three tasks, indicating their natural
similarity. We want to note here that adding a learnable bias to
X©,gp does not separate the task embeddings further, nor does it
improve overall performance. Subjects also exhibit heterogeneity:
the same pair of nodes during the same task can have different
embedding distances, thus graph edge weights, for each individual.

Multi-resolution inner cluster smoothing. To verify the ca-
pability of inner cluster smoothing operation in capturing latent
graph dynamics, we test the following settings: (vi) using our pro-
posed model and inputs, except removing paralleled GNN,,,,; and
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Table 2: Model comparisons with length-256 inputs.

Model Weighted F1 Tr(‘;“/n:;i z;gle

GCN [11] 42.84 713

GAT V2 [2] 50.36 1142

GConvGRU [24] 56.05 9886

GraphSAGE (8] 61.87 1048

Graph Transformer [25] 66.11 1890
MVTS Transformer [37] 88.16 39
ReBraiD (proposed: TCN + GNN) 90.85 298
ReBraiD (TCN only) 71.98 119
ReBraiD (TCN + CNN) 75.79 124

inner cluster smoothing module; (vii) previous setting (v) but re-
move GNN,,,0; and inner cluster smoothing module; (viii) keep
GNN,,00;, but using coarsened graph instead of smoothing (essen-
tially performing DirrPoor with an added temporal dimension). In
this last setting, we hierarchically pool and reduce the graph to a
single node, and we keep the total number of GNN layers the same
as our other settings. Values of soft-assigned cluster number c are
chosen to be halved per smoothing module (e.g., N/2, N/4, - - -) for
our experiments. Different choices of ¢ affect the model conver-
gence rate but only have a minor impact on the final performance
(see appendix B.1 (II)). Results are reported in fig. 2 (and table 3
in appendix). Apart from these three settings, we also test adding
pooling regularization terms (described in appendix A.2) into the
loss function, but they do not lead to much of a difference.

The above results demonstrate that both setting (vi) and (vii)
outperforms (viii) by a large margin, indicating the importance of
keeping the original node number when representing brain signals.
In addition, all three settings underperform our proposed method.
They are also mostly worse than changing graph adjacency matrices
as in settings (ii)—(v): this shows the inner cluster smoothing module
has a more significant impact in learning latent graph dynamics.
We also find using adaptive adjacency matrices and inner cluster
smoothing can stabilize training, making the model less prone to
over-fitting and achieving close-to-best performance over a larger
range of hyperparameters (see fig. 10).

3.2 Model Comparisons

Since we adopt a network view to studying the brain, where brain
regions are treated as graph nodes, we source our baselines from
graph models. To do so, we examined all models in PyTorch Geomet-
ric (PyG) ? and its temporal extension (PyG-T) * as they contain the
most up-to-date and well-organized open-source graph neural net-
work model implementations. In particular, we compare our model
with the vanilla GCN from [11], Chebyshev Graph Convolutional
Gated Recurrent Unit (GConvGRU) from [24], GraphSAGE from [8],
GAT V2 from [2] and Graph Transformer as in [25]. Baseline mod-
els are constructed similar to ours: each has four graph encoding
layers taking in both signals and adjacency matrices, followed by
two linear layers along the node axis and two linear layers for the
final classification. We train baseline models with the same input,

3https://pytorch-geometric.readthedocs.io/
4https://pytorch-geometric-temporal.readthedocs.io/
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loss, optimizer, and epoch settings (all models are well-converged).
Grid search is used to optimize the rest of the hyperparameters. We
compare weighted F1 and training time per epoch in table 2; we
also plot our model and Graph Transformer’s confusion matrices
in fig. 12.

Our model shows significant performance gains and requires
less training time than graph baselines. We believe the most critical
reason is that the models in PyG treat temporal signals as feature
vectors instead of placing them into a separate temporal dimen-
sion. Without sequence modeling on the temporal dimension, even
the state-of-the-art graph attention models (GAT-v2 and graph
Transformer) cannot perform well. In addition, almost all models
in PyG-T assume one common graph for the inputs (application
scenarios are traffic network forecasting, link predictions, etc.),
whereas we need to feed different SC for every sample. Out of them,
we were able to choose one model (GConvGRU) that supports differ-
ent adjacency matrices, but it didn’t give a satisfactory result. Our
proposed ideas of sample-level adaptive adjacency matrix learning
and multi-resolution inner cluster smoothing help capture latent
brain dynamics and improve the performance. The higher model
performance here reflects a better encoding ability of brain signals,
which can benefit different downstream tasks such as disease and
trait prediction.

In addition to graph baselines, we also tested the state-of-the-art
model for multivariate time series classification (MVTS Transformer
[37]), which has comparable performance to ours. This stresses
the critical role of temporal modeling when dealing with dynamic
signals, so we tested our model without GNN layers. We experiment
both removing GNN layers altogether and replacing them with
1 X 1 CNN layers: both outperform graph models that focus on the
spatial modeling aspect. Although these results demonstrate that
temporal modeling is crucial, adding graph modeling that includes
signals’ spatial relationships as proposed can further improve the
performance. Since the MVTS Transformer model has projections
to generate queries, keys, and values from the input sequence, it can
also implicitly learn spatial relationships between variables (nodes).
On the other hand, explicitly adding graph components allows the
model to utilize prior structures (e.g., SC). The attribution of graph
models can also provide better interpretability of brain networks,
such as identifying critical region connections.

3.3 Interpretation with IG

This section studies the contributions of different brain ROIs and
subnetworks defined by their functionalities. For the subnetwork
definition, we choose to use the 17 networks specified in [28], which
has a mapping from our previous 200-ROI parcellation®. To select
baseline inputs, we follow the general principle for attribution meth-
ods: when the model takes in a baseline input, it should produce a
near-zero prediction, and Softmax(outputs) should give each class
about the same probability in a classification model. All-zero base-
lines A’ and X’ can roughly achieve this for our model, so we
choose them as our baseline inputs. Step number M is set to 30.
The IG computation is done on 900 inputs for each task to get an
overall distribution.

Shttps://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation
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Figure 3: (a) Temporal importance sanity check of IG results on two
pieces of inputs with a large overlap period. Attribution maps are
offset aligned. (b) ATTRx distributions across 17 brain subnetworks
(defined as in [28]) for VWM.

The extracted high-attribution regions and connections should
be reproducible across different initializations to be used for down-
stream tasks. Since the overall problem is non-convex, we empir-
ically test and confirm the attribution reproducibility with two
randomly initialized models before proceeding to the following
analyses. In addition, [32] demonstrates IG’s consistency (repro-
ducibility among a range of hyperparameters) and faithfulness
(more accurate attribution can be obtained with better performing
models). Since our model has higher performance with longer in-
puts, we compute IG attributions of a model trained on length-256
input signals in this section.

Temporal importance. On the single input level, we can at-
tribute which parts of the inputs in G; are more critical in predicting
the target class by looking into (ATTRx);. This attribution map not
only shows which brain regions contribute more but also reveals
the important signal frames. One critical drawback of fMRI imaging
is its low temporal resolution, but if we know which part is more
important, we can turn to more temporally fine-grained signals
such as EEG to see if there are any special activities during that time.
To confirm that the attributions we get are valid and consistent,
we perform a sanity check of IG results on two overlapped inputs
with an offset 7: the first input is obtained from window [#o, ty + T]
and the second is obtained from window [ty + 7, to + 7 + T]. Offset
aligned results are shown in fig. 3a, in which the attributions agree
with each other quite well.

Spatial importance. We examine the connection importance
between brain ROIs by looking at ATTR4. In particular, columns
in ATTR4 with higher average values are sender ROIs of high-
contributing connections, which is what matters in the GNN opera-
tion. We also explore why using random graph adjacency matrices
(setting (v) in section 3.1) can produce a similar result for length-256
inputs compared to using both SC-induced A; and A; .4, (setting
(i)). By examining ATTR4 under both settings (fig. 4), we see that
the column averages of ATTR4 under these two settings are similar
for almost all tasks, meaning the model can learn the important sig-
nal sending regions relatively well even without explicit structures.
We credit this ability primarily to multi-resolution inner cluster
smoothing, as the performance drops notably without it (setting
(vii)). However, using ground truth SC not only gives us higher
performance for shorter inputs but also provides the opportunity
to interpret brain region connections better. We can directly use
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task-averaged ATTR4 as the weighted adjacency matrix to plot
edges between brain ROIs, just as in fig. 5. Important brain regions
obtained from ATTR4 mostly comply with the previous literature
(see appendix B.3 for details).

In addition to ATTR4, ATTRx can also provide insights on spa-
tial importance when the attribution maps are aggregated along
the temporal dimension. But it does so from another perspective:
based on how the model takes in the inputs, larger ATTR4 implies
critical structural connections between brain regions, meaning that
information passing between those regions is deemed essential in
classifying task states. In contrast, larger ATTRx reveals regions
or subnetworks that are sources of the important signals: it does
not matter if the signal activities propagate from one region to
another. Instead, the signals themselves are crucial for differenti-
ating between task states. We notice that signal-important ROIs
are not necessarily the same as connection-important ROIs: top-
ranked subnetworks for resting state are DefaultA and DefaultB
by ATTRy4, and VisCent and DorsAttnA by ATTRx; although they
do coincide with each other for tasks like VMN. This disparity is
reflected in fig. 5 as edge and node differences. Another observation
is that DYN and PVT have similar ATTR4 patterns; both have a
high attribution on connections originating from visual, control,
and somatomotor systems. But when looking at ATTRx, DYN and
PVT are extreme opposites. For example, PVT has a very high
ATTRY for a few ROIs in LH_SomMotA, DorsAttnA_TempOcc, and
RH_VisCent_ExStr, while DYN has very low ATTRy for them. This
suggests that the model uses these ROIs’ activities to distinguish
between the two tasks. Therefore, the attributions are not abso-
lute but relative to what they are compared against. As a result,
when identifying biomarkers with attribution, it is crucial to have
contrasts—for example, different tasks, different disease states, etc.

In fig. 3b, we plot the distribution of time-averaged and subnetwork-
averaged (mapping 200 ROIs into 17 subnetworks) ATTRy during
the VWM task. We can see the clear dominance of VisCent, Dor-
sAttnA, and ContA subnetworks (numbered as 1, 5, 11), indicating
signals from these regions are useful for the model to decide if the
input is from the VWM task. More informative than the rankings is
the distribution itself: even though VisCent, DorsAttnA, and ContA
ranked top 3 for both resting state and VWM for signal attributions,
their relative importance and attribution distribution variances are
drastically different. In a sense, the distribution can act as a task
fingerprint based on brain signal states.

Group, session, and region heterogeneity. Average variances
of attributions are very different across tasks, especially those of
ATTRY: VWM and DYN have much smaller attribution variances
compared to other tasks. This can be caused by either task dynamics
when certain tasks have more phase transitions and brain status
changes, or/and group heterogeneity when individuals carry out
specific tasks more differently than the others. We investigate this
by examining three subjects that have multiple scan sessions for
every task.

We report the following findings: (1) Even only aggregating at-
tributions over a single subject’s sessions, attribution variances
of the other four tasks are still larger than VWM and DYN. And
these variance values are comparable to that of aggregating over
many subjects. This means the large variances are not mainly due
to group heterogeneity; rather, some tasks have more states than
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others. (2) There is still group heterogeneity apart from different
task dynamics, and the group heterogeneity is also more evident for
tasks with more dynamics (high attribution variances). We can see
from fig. 6 that attributions for VMM are much more concentrated
and universal across subjects than that of MOD. (3) Flexibility of
different subnetworks varies: subnetworks with small distribution
IQR (interquartile range) of the same subject’s different sessions are
also more consistent across subjects. One example is that subnet-
work 18 during the MOD task has both higher within-subject IQR
and more significant across-subject differences than subnetwork
19. This indicates that for a particular task, some subnetworks are
more individual and flexible (may activate differently across time),
while others are more collective and fixed. In summary, we can find
both critical regions that a particular task must rely on and regions
that can characterize individual differences during tasks.

3.4 Simulation study

To validate the results of our interpretations, we perform simulation
studies with known ground truth. All graphs are generated with
SBM (stochastic block model) using the same community structure
(200 nodes, 10 communities), but each graph has its own adjacency
matrix. This generation process mimics brain structures in that
samples share similar community structures but have distinct struc-
tural connectivities. Fig 7a shows a typical adjacency matrix of
a synthetic graph. All adjacency matrices are binary. Time-series
on each node are then generated with code adapted from pytorch-
gnn repository °. In particular, the value at each time step of each
node is a small temporal Gaussian random noise plus signals from
neighbors’ (a small spatial Gaussian noise is added to the adjacency
matrix) previous step.

Simulation (I) We create two classes for this simulation. In class
one, only the first three communities (nodes 1-60) generate small
temporal noises, and other nodes are only affected by neighbors.
In class two, only the last three communities (nodes 141-200) gen-
erate small temporal noises, and other nodes are only affected by
neighbors. We visualize the task aggregated Attrx and A,q, and
in figs. 7b and 7c. The signals are characterized well in Attry. For
the generated series, signals are more important in node 1-60 for
class 1 and 141-200 for class 2: A,qgp finds this pattern and helps
propagate signals in these regions better. We notice that Attr,4 is
mostly random, with no apparent patterns. This is consistent with
the graph signal generation: when aggregating information from
neighbors, all connected edges are weighted the same (binary); thus,
the connections do not affect generated signals. We perform the
following study to understand the opposite effect.

Simulation (II) We again create two classes for the simulation:
in class one, connections from nodes 61-100 are strengthened; in
class two, connections from nodes 101-140 are strengthened. The
weights of strengthened edges are increased from 1 to 5 during
signal generation. However, the model still takes in binary adja-
cency matrices as inputs (processed as mentioned in section 2.1
before feeding to the model). We visualize the task aggregated A,qp
and Attry4 in fig. 7d. This time the connection differences are re-
flected in Attr,4. Signals in node 61-100 for class 1 or 101-140 for
class 2 are less important because stronger connections can send

®https://github.com/alelab-upenn/graph-neural-networks
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Figure 4: Column averages of task-averaged ATTR4 (mapped into 34 subnetworks defined by the 17-network parcellation with left, right
hemispheres). Top row is obtained from real SC induced A and bottom rows is obtained from random SC induced A,,,4. Attributions are
normalized to [0, 1]. Tasks are: Rest, VWM, DYN, DOT, MOD, PVT from left to right.

Figure 5: ROI attributions from ATTR4 and ATTRX. (Task order is the same as fig. 4). Edge color and width are based on task-averaged
ATTR, € R?0X200 and node color and size are based on task and temporal-averaged ATTRy € R?. For visualization, only edges with highest
attributions are shown (the resulting sparsity reduces to 0.009 from 0.196).
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Figure 6: 34 subnetworks’ ATTRx distributions of 3 subjects perform-
ing the VWM task (left) and the MOD task (right). Outliers that go
beyond [Q1-1.5IQR, Q3+ 1.5IQR] are omitted. VWM has a much
smaller average attribution variance than MOD.

these signals out: this results in smaller values for corresponding
columns in A,gp. Combined with the previous simulation results,
this suggests that strong signal sending regions or regions with
weak connections that are over-reflected in the graph adjacency
matrix tend to have higher A,qp values. In other words, A,qg, com-
plements both signals and connections to encode latent dynamics,
while attributions obtained from IG are better at interpreting the
modalities separately.

4 CONCLUSIONS

This paper proposes ReBraiD, a high-performing and efficient graph
neural network model that embeds both structural and dynamic
functional signals for a more comprehensive representation of brain
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Figure 7: (a) A typical adjacency matrix for simulated graph signals.
(b) Task averaged Attrx of simulation (I). Attribution values are
normalized. (c) Task averaged A,q, of simulation (I) and its entry
averages per column. (d) Task averaged A,qp and task averaged Attra
of simulation (II). Attribution values are normalized.

dynamics. To better capture latent structures, we propose sample-
level adjacency matrix learning and multi-resolution inner cluster
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smoothing. Apart from quantitative results showing ReBraiD’s su-
periority in representing brain activities, we also leverage integrated
gradients to attribute and interpret the importance of both spatial
brain regions and temporal keyframes. The attribution also reveals
heterogeneities among brain regions (or subnetworks), tasks, and
individuals. These findings can potentially reveal new neural basis,
biomarkers of tasks or brain disorders when combined with be-
havioral metrics. They can also enable more fine-grained temporal
analysis around keyframes when combined with other imaging
techniques and extend to different scientific domains with sample
(subject) heterogeneity.
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A MODELS

A.1 Choice of temporal layers
Fig. 8 explains the choice of TCN layers.
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Figure 8: Comparison of strided non-causal TCN (left) and dilated
causal TCN (right). For a causal TCN, the causal aspect is achieved
through padding (kernel_size — 1) X dilation number of zeros to the
layer’s input. The resulting y always has the same length as input
X, in which y; only depends on inputs x;<,. We can view strided
non-causal TCN as the rightmost node of a dilated causal TCN.

A.2 Regularization terms for soft-assignment

For each soft assignment matrix S € RNXEXZ i eq. (4), we test three
regularization terms:

e Similar to DiFrPoOL, to ensure a more clearly defined node as-
signment, namely each node is only assigned to few clusters (the
closer to one the better), we minimize the entropy of single node
assignments: Lg, = % 25 H(S).

o To ensure a representation separation among nodes, meaning
the assignment should not assign all the nodes a same way, we
maximize the entropy of node assignment patterns across all
nodes: Lg, = —% P H(Z;.l:l Sij)-

o To make the assignment along temporal axis smoother, we penal-
ize assignment variances within a small time window [£, f + 7]:
Lt = tTlf Z;;g O'(S”j +T]), where o represents standard devia-
tion.

Together with cross entropy classification loss Lcg, the final loss
function of the model becomes:

Lreg = ae1Llcg + a2Lg, + asLg, + a4lT, Z a; =1 7)
i

B EXPERIMENTS
B.1 Ablation studies

Numerical values of fig. 2 are reported in table 3. Training time
ranges from 51 seconds / epoch for length-8 inputs to 298 seconds /
epoch for length-256 inputs. Models converges to a relatively stable
loss level within 20 epochs.

Table 3: Weighted F1 of ablation study settings.

Input length (frames) 8 16 32 64 128 256
(i): SC + adp 66.19 70.18 75.87 76.14 8291 90.85
(if): SC only 64.54 6558 71.79 7031 73.63 89.79
(iii): adp only 6432 6520 74.01 7142 80.63 89.46
(iv): SC + FC 66.10 67.58 70.26 75.02 7691 84.68
(v): random adj 62.17 66.25 7230 73.72 76.58 89.22
(vi): (i) without smoothing | 63.57 62.82 70.19 6582 7291 79.65
(vii): (v) without smoothing | 56.88 64.08 7227 62.72 75.16 83.75
(viii): coarsened graph 37.92 4223 4618 5212 57.17 64.25
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Figure 9: Choosing number of GNN to TCN layer ratio for different
input lengths. In most cases, two TCN layers per GNN layer results
in the best model performance in terms of F1.

(I) Number of GNN layers. The total number of temporal layers
depends on the input signal length since each strided TCN layer
reduces the temporal length by a factor of two: if the input length
is 2/, there need to be i temporal layers. But is alternating every
TCN with GNN the best strategy, or do we only need to follow one
GNN after a few TCNs? We study this question with different input
lengths.

Model weighted F1 are plotted in fig. 9 for all possible GNN to
total TCN ratios (e.g. length-256 inputs requires 8 TCN layers. The
possible ratios are %, %, %, 1 since we can insert one GNN per 8, 4, 2,
1 TCN layers). The figure shows alternating every layer rarely yields
the highest performance and the best ratio lies around one GNN
per two TCN layers for our dataset. We repeat the experiment for
K = 1,3 (in eq. (3)) to rule out the possibility that this result is related
to how many neighbors one GNN layer can reach; we find they
have roughly the same pattern as the K = 2 case. We hypothesize
that a lower GNN to TCN ratio does not capture enough spatial
context, while higher ones might be overfitting. We leave exploring
the relationship between this ratio and the number of nodes N to a
future study.

The best GNN to TCN ratio also depends on whether model
incorporates latent adjacency matrices or not: without A,qp, length-
128 signals achieves its relative best (among all ratios) when having
one GNN per two TCNs, but it only needs one GNN per three
TCNs if using A,qp- This shows learning latent structures A,qp not
only improves overall model accuracy but can also reduce model
parameters, thus complexity, in achieving better results.

(IT) Effects of soft-assignment cluster numbers. During our
experiments, we find that as long as the smoothing module is used,
the final performance will be close to each other, only the con-
vergence rates are different. Fig. 10b shows how validation loss
converges with different ¢ (cluster number) or when there is no
smoothing module. From it, we can observe that halving the num-
bers (100-50-25-12) is the most helpful setting, and we use it for
our other experiments; decreasing the numbers (160-120-80-40) or
all larger numbers (all 100) works better than increasing the num-
bers (12-25-50-100) or all smaller numbers (all 12). With the inner
cluster smoothing module, all cluster number settings converge to
around 0.23 at their smallest when trained for 30 epochs; their test
weighted F1 range from 89.47 (model with 12-25-50-100) to 90.85
(model with 100-50-25-12).
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Figure 10: (a) adding inner cluster smoothing or input-dependent
adaptive adjacency matrix makes the model more stable across var-
ious learning rates (results shown are from length-16 inputs). (b)
Validation loss v.s. training epochs. Input length is 256, and four
smoothing modules are used. Legends are the soft-assignment clus-
ter numbers of the four smoothing modules. Our other experiments
use decreasing cluster numbers that halved at each module, corre-
sponding to the 100-50-25-12 choice here.

On the contrary, if no smoothing module is used, the model
overfits easily, and the validation loss can only reach about 0.4
before going up (with the best set of learning rate and weight decay
parameters found with grid search). Understandably, the model is
prone to overfitting given the complexity of GNN and the relatively
small dataset size. However, our added inner cluster smoothing
module effectively counters the effect and further brings the loss
down in a stable manner.

B.2 Model comparisons

We plot confusion matrices of ReBraiD, the model from ablation
study setting (viii), and the best performing graph baseline in fig. 12.
Misclassification pairs clustered at the first three tasks (resting,
VWM, DYN) and the latter three (DOT, MOD, PVT). Shown con-
fusion matrices are from models trained on length-256 inputs. We
note that these misclassification pairs may differ for models trained
on other input lengths (like 128-frame, etc.).

B.3 Attributions

Many discriminatory regions obtained from Attr4 are consistent
with existing literature:

Resting state: The top attributed ROIs belong to the default mode
network, which is regarded salient during the resting state [20].
VWM: The dominant attributions are from visual regions and pos-
terior parietal regions, which complies with [30].

DYN: Attributions from our model suggest regions along cingulate
gyrus (defaultA-SalValAttnB-ContA-ContC-defaultC), as well as
peripheral visual and somatomotor regions. Literature suggests
anterior cingulate cortex (ACC) to be active [10] and posterior cin-
gulate cortex (PCC) to be inactive [14] during visual attention tasks.
This means both regions provide discriminative information about
the DYN states, which is what our attribution method votes for.
DOT: Important ROIs from our analysis are located in control net-
works, in particular both ACC and PCC, as well as in the peripheral
visual system. In the literature, dorsal and rostral regions of the
ACC are proved to be involved with dot-probe performance [3, 4].
MOD: Our important ROIs are mostly in temporal-parietal regions
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Figure 11: Learned latent adaptive adjacency matrices. (a) A; ,qp of
3 randomly sampled inputs during the DOT task. (b) A; ,qp of 3
consecutive inputs from a same session during the DOT task. (c)
column averages of task-averaged A,qp for resting state, VWM, DYN,
DOT, MOD, PVT. (d) left two: t-SNE of X ("°de-2.156)@_,  in six tasks
of one subject; right two: t-SNE of X (node-155, 156)®adp during the
resting state of two subjects (multiple sessions are aggregated).
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Figure 12: Confusion matrices of: (a) ReBraiD (our proposed model),
(b) model with coarsened graph (setting (viii)), (c) Graph Transformer
(best graph baseline). Tasks are 1-Rest, 2-VWM, 3-DYN, 4-DOT, 5-
MOD, 6-PVT.

and default mode network (anatomically frontoparietal), and litera-
ture suggests similar regions: parietal [7] and prefrontal [6].
PVT: Our top attributed ROIs belong to control networks, attention
networks, and somatomotor regions. This is similar to [5], where
both attention and motor systems are considered important.
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