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ABSTRACT

Finding an appropriate representation of dynamic activities in the

brain is crucial for many downstream applications. Due to its highly

dynamic nature, temporally averaged fMRI (functional magnetic

resonance imaging) can only provide a narrow view of underly-

ing brain activities. Previous works lack the ability to learn and

interpret the latent dynamics in brain architectures. This paper

builds an efficient graph neural network model that incorporates

both region-mapped fMRI sequences and structural connectivities

obtained from DWI (diffusion-weighted imaging) as inputs. We

find good representations of the latent brain dynamics through

learning sample-level adaptive adjacency matrices and perform-

ing a novel multi-resolution inner cluster smoothing. We also at-

tribute inputs with integrated gradients, which enables us to infer

(1) highly involved brain connections and subnetworks for each

task, (2) temporal keyframes of imaging sequences that characterize

tasks, and (3) subnetworks that discriminate between individual

subjects. This ability to identify critical subnetworks that charac-

terize signal states across heterogeneous tasks and individuals is

of great importance to neuroscience and other scientific domains.

Extensive experiments and ablation studies demonstrate our pro-

posed method’s superiority and efficiency in spatial-temporal graph

signal modeling with insightful interpretations of brain dynamics.

CCS CONCEPTS

• Computing methodologies→ Learning latent representa-

tions; • Applied computing → Imaging.
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1 INTRODUCTION

Neuroimaging techniques such as fMRI (functional magnetic res-

onance imaging) and DWI (diffusion-weighted imaging) provide

a window into complex brain processes. Yet, modeling and un-

derstanding these signals has always been a challenge. Network

neuroscience [1] views the brain as a multiscale networked system

and models these signals in their graph representations: nodes rep-

resent brain ROIs (regions of interest), and edges represent either

structural or functional connections between pairs of regions.

With larger imaging datasets and developments in graph neural

networks, recent works leverage variants of graph deep learning,

modeling brain signals with data-driven models and getting rid

of Gaussian assumptions that typically existed in linear models

[15, 38]. These methods are making progress on identifying physio-

logical characteristics and brain disorders: In [9], authors combine

grad-CAM [23] and GIN [35] to highlight brain regions that are

responsible for gender classification with resting-state fMRI data.

Others [16] propose to use regularized pooling with GNN to iden-

tify fMRI biomarkers. However, these works use time-averaged

fMRI, losing rich dynamics in the temporal domain. They also do

not incorporate structural modality that can provide additional con-

nectivity information missing in the functional modality. Another

work [18] embeds both topological structures and node signals of

fMRI networks into a low-dimensional latent representations for

better identification of depression, but it combines nodes’ temporal

and feature dimensions instead of handling them separately, lead-

ing to a suboptimal representation (as discussed in section 3.2). To

overcome these issues, we propose ReBraiD (Deep Representations

for Time-varying Brain Datasets), a graph neural network model

that jointly models dynamic functional signals and structural con-

nectivities, leading to a more comprehensive deep representation

of brain dynamics.

To simultaneously encode signals along spatial and temporal

dimensions, some works in traffic prediction and activity recogni-

tion domains such as Graph WaveNet [34] alternate between TCN

(temporal convolution network) [13] and GCN (graph convolu-

tional network) [11]. Others [17, 26] use localized spatial-temporal

graph to embed both domains’ information in this extended graph.

Some proposed methods also incorporate gated recurrent networks

for the temporal domain such as [21, 24]. We choose to alternate

TCN with GCN layers for ReBraiD, as it is more memory and time-

efficient and can support much longer inputs. On top of this design,
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we propose novel “sample-level adaptive adjacency matrix learn-

ing” and “multi-resolution inner cluster smoothing,” both of which

learn and refine latent dynamic structures. With the choice of the

temporal layer, our model is more efficient than other baselines

while having the highest performance.

We perform extensive ablation studies to examine individual

components of the model. We also explore the best option when

alternating spatial and temporal layers for encoding brain activities.

After quantitatively showing the representation ability of ourmodel,

we utilize IG (integrated gradients) [27] to identify how brain ROIs

participate in various processes. This can lead to better behavioral

understanding, discovery of biomarkers, and characterization of

individuals or groups. We also make the novel contribution of

identifying temporally important frames with graph attribution

techniques; this can enable more fine-grained temporal analysis

around keyframes when combined with other imaging modalities

such as EEG (electroencephalogram). In addition, our subject-level

and group-level attribution studies unveil heterogeneities among

ROIs, tasks, and individuals.

In summary, the main contributions of our work are as follows:

• We present ReBraid, an efficient graph neural network model

that jointly models both structural and dynamic functional brain

signals, providing a more comprehensive representation of brain

activities when compared to the current fMRI literature.

• Unlike typical spatial-temporal GCNs that learn a universal latent

structure, we propose sample-level latent adaptive adjacency ma-

trix learning based on input snippets. This captures the evolving

dynamics of a task better.

• We propose multi-resolution inner cluster smoothing, which

effectively encodes long-range node relationships while keeping

the graph structure, enabling the model to leverage structural and

latent adjacency matrices throughout the process. Together with

subject SC and sample-level adjacency matrix learning, the inner

cluster smoothing learns and refines latent dynamic structures

on limited signal data.

• We carry out extensive ablation studies and model comparisons

to show ReBraid’s superiority in representing brain dynamics.We

also leverage integrated gradients to attribute and interpret the

importance of both spatial brain ROIs and temporal keyframes,

as well as heterogeneities among brain ROIs, tasks, and subjects.

These can open up new opportunities for identifying biomarkers

for different tasks or diseases and markers for other complex

scientific phenomena.

2 METHOD

2.1 Preliminaries

We utilize two brain imaging modalities mapped onto a same co-

ordinate: SC (structural connectivity) from DWI scans, and time-

varying fMRI scans. We represent them as a set of 𝐿 graphs G𝑖 =
(𝐴𝑖 , 𝑋𝑖 ) with 𝑖 ∈ [1, 𝐿]. 𝐴𝑖 ∈ R𝑁×𝑁

represents normalized adja-

cency matrix with an added self-loop: 𝐴𝑖 = 𝐷̃
− 1

2

SC𝑖

˜SC𝑖 𝐷̃
− 1

2

SC𝑖
, ˜SC𝑖 =

SC𝑖 + 𝐼𝑁 and 𝐷̃SC𝑖
=
∑
𝑤 ( ˜SC𝑖 )𝑣𝑤 is the diagonal node degree matrix.

Graph signal matrix obtained from fMRI scans of the 𝑖𝑡ℎ sample

is represented as 𝑋𝑖 ∈ R𝑁×𝑇
. Here 𝑁 is the number of nodes, and

each node represents a brain region; 𝑇 is the input signal length

Figure 1: The proposed ReBraiD model for integrating brain struc-

ture and dynamics (the architecture shown is for classification). For

each batch with batch size 𝐵, input𝑋 has a dimension of (𝐵, 1, 𝑁 ,𝑇 )1,
and 𝐴,𝐴

adp
both have the dimension (𝐵, 𝑁, 𝑁 ) . The encoder (green

part) encodes temporal and spatial information alternately, produc-

ing a latent representation in (𝐵,𝑑
latent

, 𝑁 , 1) . These embeddings are

followed by linear layers for pooling and classification. The final

output has a dimension of (𝐵,𝐶) .

on each node. We refine our representation using the task of classi-

fying brain signals G𝑖 into one of 𝐶 task classes through learning

latent graph structures.

2.2 Model

ReBraiD takes (𝐴,𝑋 ) as inputs and outputs task class predictions.

The overall model structure is shown in fig. 1. For the 𝑖𝑡ℎ sample

𝑋𝑖 ∈ R𝑁×1×𝑇
, the initial 1× 1 convolution layer increases its hidden

feature dimension to 𝑑ℎ1, outputting (𝑁,𝑑ℎ1,𝑇 ) . The encoder then
encodes temporal and spatial information alternately, and generates

a hidden representation of size (𝑁,𝑑ℎ2, 1) . The encoder is followed
by two linear layers to perform pooling on node embeddings and

two MLP layers for classification. Cross entropy is used as the loss

function: 𝐿𝐶𝐸 = −∑
𝑖 𝑦𝑖 log 𝑦̂𝑖 , where 𝑦𝑖 ∈ R𝐶 is the one-hot vector

of ground truth task labels and 𝑦𝑖 ∈ R𝐶 is the model’s predicted

distribution. We now explain the different components of the model.

(I) Learning sample-level latent graph structures. Structural

scans serve as our graph adjacency matrices. However, they remain

fixed across temporal frames and across tasks. In contrast, FC (func-

tional connectivities) are highly dynamic, resulting in different

connection patterns across both time and tasks. To better capture

dynamic graph structures, we learn an adaptive adjacency matrix

from each input graph signal. Unlike other works such as [34] that

use a universal latent graph structure, our model does not assume

that all samples share the same latent graph. Instead, our goal is

to give each sample a unique latent structure that can reflect its

own signaling pattern. This implies that the latent adjacency matrix

cannot be directly treated as a learnable parameter as a part of the

model. To solve this, we minimize the assumption down to a shared

projection Θ
adp

that projects each input sequence into an embed-

ding space and use this embedding to generate the latent graph

structure. Projection Θ
adp

can be learned in an end-to-end manner.

The generated adaptive adjacency matrix for the 𝑖𝑡ℎ sample can be

written as follows (Softmax is applied column-wise):

𝐴𝑖_adp = Softmax

(
ReLU

( (
𝑋𝑖Θadp

) (
𝑋𝑖Θadp

)⊤))
,Θ

adp
∈ R𝑇×ℎadp (1)

1
Axis order follows PyTorch conventions. Dimension at the second index is the ex-

panded feature dimension.

 

1000



Deep Representations for Time-varying Brain Datasets KDD ’22, August 14–18, 2022, Washington, DC, USA

(II) Gated TCN (Temporal Convolutional Network). To en-

code signal dynamics, we use the gating mechanism as in [19] in

our temporal layers:

𝐻 (𝑙+1) = tanh

(
TCN

emb
(𝐻 (𝑙 ) )

)
⊙ 𝜎

(
TCNgate (𝐻 (𝑙 ) )

)
, (2)

where 𝐻 (𝑙) ∈ R𝑁×𝑑×𝑡
is one sample’s activation matrix of the

𝑙𝑡ℎ layer, ⊙ denotes the Hadamard product, and 𝜎 is the Sigmoid

function. In contrast to TCNs that are generally used in sequence to

sequence models that consist of dilated Conv1d and causal padding

along the temporal dimension ([31]), we simply apply Conv1d with

kernel = 2 and stride = 2 as our TCN
emb

and TCNgate to embed

temporal information. The reason is twofold: first, for a sequence

to sequence model with a length-𝑇 output, 𝑦𝜏 should only depend

on 𝑥𝑡 ≤𝜏 to avoid information leakage and causal convolution can

ensure this. In contrast, our model’s task is classification, and the

goal of our encoder along the temporal dimension is to embed

signal information into the feature axis while reducing the temporal

dimension to 1. The receptive field of this single temporal point

(with multiple feature channels) is meant to be the entire input

sequence. Essentially, our TCN is the same as the last output node

of a kernel-two causal TCN whose dilation increases by two at each

layer (fig. 8). Second, from a practical perspective, directly using

strided non-causal TCN works the same as taking the last node

of dilated causal TCNs, as discussed above, while simplifying the

model structure and reducing training time to less than a quarter.

(III) GraphNetwork layer. In ourmodel, every set of 𝑙 temporal

layers (appendix B.1 studies the best 𝑙 to choose) is followed by a

spatial layer to encode signals with the graph structure. Building

temporal and spatial layers alternately helps spatial modules to

learn embeddings at different temporal scales, and this generates

better results than placing spatial layers after all the temporal ones.

To encode spatial information, [11] uses first-order approxima-

tion of spectral filters to form the layer-wise propagation rule of

a GCN layer: 𝐻 (𝑙+1) = GCN(𝐻 (𝑙 ) ) = 𝑓 (𝐴𝐻 (𝑙 )𝑊 (𝑙 ) ) . It can be un-

derstood as spatially aggregating information among neighboring

nodes to form new node embeddings. In the original setting with-

out temporal signals, 𝐻 (𝑙 ) ∈ R𝑁×𝑑
is the activation matrix of 𝑙𝑡ℎ

layer, 𝐴 ∈ R𝑁×𝑁
denotes the normalized adjacency matrix with

self-connections as discussed in section 2.1, 𝑊 (𝑙 ) ∈ R𝑑×𝑑′ is learn-

able model parameters, and 𝑓 is a nonlinear activation function of

choice. Parameters 𝑑 and 𝑑 ′ are the number of feature channels.

We view a GCN layer as a local smoothing operation followed

by an MLP, and simplify stacking K layers to 𝐴𝐾𝐻 as in [33]. In

ReBraiD, every graph network layer aggregates information from

each node’s K-hop neighborhoods based on both brain structural

connectivity and the latent adaptive adjacency matrix: thus, we

have both 𝐴𝑖
𝐾𝐻 (𝑙 )𝑊𝐾 and 𝐴𝑖_adp

𝐾𝐻 (𝑙 )𝑊𝐾_adp
for input 𝐻 (𝑙)

. We

also gather different levels (from 0 to 𝐾) of neighbor information

with concatenation. In other words, one graph convolution layer

here corresponds to a small module that is equivalent to K simple

GCN layers with residual connections. We can write our layer as:

𝐻 (𝑙+1) = GNN
(𝑙 )

(
𝐻 (𝑙 )

)
= MLP

[
Concat

𝐾
𝑘=1

(
𝐻 (𝑙 ) , ReLU(𝐴𝑖𝑘𝐻 (𝑙 ) ), ReLU(𝐴𝑖_adp𝑘𝐻 (𝑙 ) )

)]
(3)

Note that in eq. (3), 𝐴𝑖 ∈ R𝑁×𝑁
and 𝐻 (𝑙 ) ∈ R𝑁×𝑑×𝑡

, and as a result

their product ∈ R𝑁×𝑑×𝑡
. Outputs of different GNN

(𝑙)
layers are

parameterized and then skip connected with a summation. Since

the temporal lengths of these outputs are different because of TCNs,

max-pooling is used before each summation to make the lengths

identical.

(IV) Multi-resolution inner cluster smoothing. While GNN

layers can effectively pass information between neighboring nodes,

long-range relationships among brain regions that neither appear

in SC nor learned by latent 𝐴
adp

can be better captured using soft

assignments, similar to DiffPool[36]. To generate the soft assign-

ment tensor 𝑆 (𝑙) that assigns 𝑁 nodes into 𝑐 clusters (𝑐 chosen

manually), we use GNN
(𝑙 )
𝑝𝑜𝑜𝑙

that obeys the same propagation rule

as in eq. (3), followed by Softmax along 𝑐 . This assignment is applied

to 𝑍 (𝑙)
, the output of GNN

(𝑙 )
𝑒𝑚𝑏

which carries out the spatial embed-

ding for the 𝑙𝑡ℎ layer input𝐻 (𝑙)
, producing clustered representation

𝐻̃ (𝑙)
:

𝑆 (𝑙 ) = Softmax

(
GNN

(𝑙 )
𝑝𝑜𝑜𝑙

(
𝐻 (ℓ )

)
, 1

)
∈ R𝑁×𝑐×𝑡

𝑍 (𝑙 ) = GNN
(𝑙 )
𝑒𝑚𝑏

(
𝐻 (𝑙 )

)
∈ R𝑁×𝑑×𝑡

𝐻̃ (𝑙 ) = 𝑆 (𝑙 )⊤𝑍 (𝑙 ) ∈ R𝑐×𝑑×𝑡

(4)

The additional temporal dimension allows nodes to be assigned

to heterogeneous clusters at different frames. We find that using

coarsened 𝐴
(𝑙+1)
𝑖

= 𝑆 (𝑙 )⊤𝐴(𝑙 )
𝑖

𝑆 (𝑙 ) ∈ R𝑐×𝑐 as the graph adjacency

matrix leads to worse performance compared to using SC-generated

𝐴𝑖 and learned𝐴𝑖_adp (comparison in section 3.1). In addition, if the

number of nodes is changed, residual connections coming from the

beginning of temporal-spatial blocks can not be used, impacting

the overall performance. To continue using 𝐴𝑖 and 𝐴𝑖_adp as graph

adjacency matrices and to allow residual connections, we reverse-

assign 𝐻̃ (𝑙)
with assignment tensor obtained from applying Softmax

on 𝑆 (𝑙)⊤ along 𝑁 , so that the number of nodes is kept unchanged:

𝑆 (𝑙 ) = Softmax

(
𝑆 (𝑙 )⊤, 1

)
∈ R𝑐×𝑁×𝑡

𝐻 (ℓ+1) = 𝑆 (𝑙 )⊤𝐻̃ (𝑙 ) ∈ R𝑁×𝑑×𝑡
(5)

In fact, eqs. (4) and (5) perform signal smoothing on nodes within

each soft-assigned cluster. With the bottleneck 𝑐 < 𝑁 , the model is

forced to pick up latent community structures. This inner cluster

smoothing is carried out at multiple spatial resolutions: as the

spatial receptive field increases with more graph layers, we decrease

cluster number 𝑐 for the assignment operation. As theseGNN layers

alternate with TCN layers, the inner cluster smoothing also learns

the community information across multiple temporal scales.

2.3 Attribution with IG (Integrated Gradients)

As one approach to model interpretability, attribution assigns cred-

its to each part of the input, assessing how important they are

to the final predictions. [32] gives an extensive comparison be-

tween different graph attribution approaches, in which IG [27]

is top-performing and can be applied to trained models without

any alterations of the model structure. IG also has other desirable

properties, such as implementation invariance that other gradient

methods lack. It is also more rigorous and accurate than obtaining

explanations from attention weights or pooling matrices that span

multiple feature channels. Intuitively, IG calculates how real in-

puts contribute differently compared to a selected baseline; it does

so by aggregating model gradients at linearly interpolated inputs

between the real and baseline inputs.
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In order to apply IG, we calculate attributions at each point of

both input 𝐴 ∈ R𝑁×𝑁
and 𝑋 ∈ R𝑁×𝑇

for each sample:

AttrG𝑣𝑤 =
(
G𝑣𝑤 − G′

𝑣𝑤

)
×

𝑀∑︁
𝑚=1

𝜕𝐹
(
G
Intrpl

)
𝜕G

Intrpl𝑣𝑤

× 1

𝑀
,

G = (𝐴,𝑋 ), G
Intrpl

= G′ + 𝑚

𝑀
×
(
G − G′) (6)

𝐹 (G) here represents our signal classification model, 𝑀 is the

step number when making Riemann approximation of the path

integral, and G′
is the baselines of G (see section 3.3 for more

details). Note that eq. (6) calculates the attribution of one edge or

one node on one sample. The process is repeated for every input

point, so attributions Attr𝐴,Attr𝑋 have identical dimensions as

inputs 𝐴,𝑋 . To obtain the brain region importance of a task, we

aggregate attributions across multiple samples of that task.

3 EXPERIMENTS

We use fMRI signals from the CRASH dataset [12] for our experi-

ments. The model classifies input fMRI into six tasks: resting state,

VWM (visual working memory task), DYN (dynamic attention task),

MOD (math task), DOT (dot-probe task), and PVT (psychomotor

vigilance task). We preprocess 4D voxel-level fMRI images into

graph signals G = (𝐴,𝑋 ) by averaging voxel activities into regional
signals with the 200-ROI cortical parcellation (voxel to region map-

ping) specified by [22]. We also standardize signals for each region

and discard scan sessions with obvious abnormal spikes that may

be caused by head movement, etc. DWI scans are mapped into the

same MNI152 coordinate and processed into adjacency matrices

with the same parcellation as fMRI. Our processed data contains

1940 scan sessions from 56 subjects. Session length varies from 265

frames to 828 frames (see table 1 for details). TR (Repetition Time)

is 0.91s.

The 1940 scan sessions from CRASH are separated into training,

validation, and test sets with a ratio of 0.7-0.15-0.15 (subject-wise

split does not lead to any noticeable difference). Each split receives

a proportional number of samples for each class. Hyperparameters

including dropout rate, learning rate, and weight decay are selected

using grid search based on validation loss. All results reported in

this section are obtained from the test set. For each scan session,

we use a stride-10 sliding window to generate input sequences (in

the following experiments 𝑇 ∈ {8, 16, 32, 64, 128, 256}) and feed

them to the model. To encode temporal and spatial information

alternately, we find stacking two TCN layers per one GNN layer

leads to better performance most times (see appendix B.1 (I)). We

tested ℎ
adp

= 2, 5, 10 in eq. (1) for our experiments, and 5 appears to

be the best; so we use this value for all the following experiments.

𝐾 = 1, 2, 3 in eq. (3) were tested on a few settings, and K = 2,

3 have a similar performance, both outperforming K = 1. Since

smaller values of K have smaller computation needs, we use 𝐾 = 2

for all experiment settings, meaning each GNN layer aggregates

information from 2-hop neighbors based on the provided adjacency

matrices. We evaluate our model with weighted F1 as the metric

in order to account for the imbalance in the number of samples in

each task. Our models are written in PyTorch, trained with Google

Colab GPU runtimes, and 30 epochs are run for each experiment

setting. Code is publicly available
2
.

2
https://github.com/sklin93/ReBraiD

Table 1: fMRI scan details for six tasks.

Tasks Rest VWM DYN DOT MOD PVT (Total)

Valid sessions 209 514 767 155 138 157 1940

Frames / Scan 321 300 265 798 828 680 —

Figure 2: Ablation studies on different input length (please see table 3

in appendix for numerical values of weighted F1 under each setting).

3.1 Model components

Ablation studies on graph adjacency matrices. For each input

sample G𝑖 , we test different options to provide graph adjacency

matrices to the GNN layer. They include (i) our proposed method:

using both adaptive adjacency matrix 𝐴𝑖_adp and SC-induced 𝐴𝑖 ,

(ii) only using 𝐴𝑖 , (iii) only using 𝐴𝑖_adp, (iv) replacing 𝐴𝑖_adp in

setting i with 𝐴𝑖_FC derived from functional connectivity, and (v)

only using random graph adjacency matrices with the same level of

sparsity as real𝐴’s. The results under different settings are reported

in fig. 2 (and table 3 in appendix for numerical values).

From the results of setting (ii) plotted in fig. 2, we see that re-

moving the adaptive adjacency matrix impacts the performance

differently at different input lengths: the gap peaks for signals of

length 64–128, and becomes smaller for either shorter or longer

sequences. This could suggest the existence of more distinct latent

states of brain signals of this length that structural connectivities

cannot capture. On the other hand, removing SC (setting (iii)) seems

to have a more constant impact on the model performance, with

shorter inputs more likely to see a slightly larger drop. In general,

only using 𝐴
adp

leads to a smaller performance drop than only

using SC, indicating the effectiveness of 𝐴
adp

in capturing useful

latent graph structures. More detailed studies below show that𝐴
adp

learns distinct representations not captured by 𝐴.

Asmentioned in section 2, ourmotivation behind creating sample-

level adaptive adjacency matrices is FC’s highly dynamic nature.

Therefore, for setting (iv), we test directly using adjacency matrices

𝐴𝑖_FC obtained from FC instead of the learned 𝐴𝑖_adp. In particular,

𝐴𝑖_FC = 𝐷̃
− 1

2

FC𝑖

˜FC𝑖 𝐷̃
− 1

2

FC𝑖
∈ R200×200, where (FC𝑖 )𝑣𝑤 = corr( (𝑋𝑖 )𝑣, (𝑋𝑖 )𝑤 ) ,

˜FC𝑖 = FC𝑖+𝐼𝑁 and 𝐷̃FC𝑖
=
∑
𝑤 ( ˜FC𝑖 )𝑣𝑤 . Fig. 2 shows𝐴𝑖_FC constantly

underperforms 𝐴𝑖_adp, except for being really close for length-8

inputs. Larger performance gaps are observed for longer inputs,

where Corr( (𝑋𝑖 )𝑣, (𝑋𝑖 )𝑤 ) struggles to capture the changing dynam-

ics in the inputs. This demonstrates that our input-based latent

𝐴𝑖_adp has better representation power than input-based FC. We
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also notice batch correlation coefficients calculation for 𝐴𝑖_FC re-

sults in a slower training speed than computing 𝐴𝑖_adp.

An interesting result comes from setting (v), where we use ran-

domly generated Erdős-Rényi graphs with the edge creation prob-

ability the same as averaged edge existence probability of 𝐴’s. Its

performance is similar to or even better than settings (ii) and (iii).

We examine this further in section 3.3.

Latent adaptive adjacency matrix 𝐴
adp

. The above results

demonstrate latent 𝐴
adp

can complement the task- and temporal-

fixed𝐴. We now show that the learned𝐴𝑖_adp is sparse for each sam-

ple, has evident task-based patterns, and provides new information

beyond 𝐴𝑖 . The sparsity of 𝐴𝑖_adp can be seen from fig. 11a in ap-

pendix: each input only gets a few important columns (information-

providing nodes in GNN). These columns vary from one sample to

another, indicating𝐴
adp

’s ability to adapt to changing inputs within

the same task. However, when we look into inputs generated by

consecutive sliding windows (not shuffled) from the same scan ses-

sion as in fig. 11b, we can see the latent structures change smoothly.

In addition, when we aggregate samples inside each task, noticeable

task-based patterns emerge (fig. 11c). These patterns are different

from Attr𝐴 in fig. 4, suggesting that 𝐴
adp

embeds dynamics not

captured by 𝐴.

Quantitatively, 𝐴𝑖_adp entry values range between (0, 1) because

of the Softmax, and only around 2% of entries in𝐴𝑖_adp have values

larger than 0.05. As a reference, the largest entry value is larger

than 0.99. A similar sparsity pattern is found when using synthetic

data on the same model, indicating that the sparsity is more due to

the model than the underlying biology. Given how𝐴𝑖_adp is used in

GNN layers, each column of it represents a signal-originating node

during message passing. We hypothesize that the model learns the

most effective hubs that pass information to their neighbors. A

related idea is information bottleneck [29]: deep learning essen-

tially compresses the inputs as much as possible while retaining

the mutual information between inputs and outputs. In a sense,

𝐴𝑖_adp represents the compressed hubs for a given input signal. We

also note that this sparsity emerges even without any additional

constraints. In fact, adding 𝐿1 constraints on 𝐴adp
does not change

the model performance or the 𝐴𝑖_adp sparsity level. We hypothe-

size that the naturally trained 𝐴𝑖_adp is sparse enough, and further

sparsification is unnecessary.

We visualize the projected inputs 𝑋𝑖Θadp
in fig. 11d, which

clearly shows the task, node and subject heterogeneities. Different

tasks have varied representations in the latent space for the same

node, but DOT, MOD, PVT has similar embedding patterns across

individuals and most nodes. Indeed, when looking at the confusion

matrix across models (fig. 12 in appendix), the misclassifications

mostly cluster between these three tasks, indicating their natural

similarity. We want to note here that adding a learnable bias to

𝑋Θ
adp

does not separate the task embeddings further, nor does it

improve overall performance. Subjects also exhibit heterogeneity:

the same pair of nodes during the same task can have different

embedding distances, thus graph edge weights, for each individual.

Multi-resolution inner cluster smoothing. To verify the ca-

pability of inner cluster smoothing operation in capturing latent

graph dynamics, we test the following settings: (vi) using our pro-

posed model and inputs, except removing paralleled GNN𝑝𝑜𝑜𝑙 and

Table 2: Model comparisons with length-256 inputs.

Model Weighted F1

Training time

(s / epoch)

GCN [11] 42.84 713

GAT V2 [2] 50.36 1142

GConvGRU [24] 56.05 9886

GraphSAGE [8] 61.87 1048

Graph Transformer [25] 66.11 1890

MVTS Transformer [37] 88.16 39

ReBraiD (proposed: TCN + GNN) 90.85 298

ReBraiD (TCN only) 71.98 119

ReBraiD (TCN + CNN) 75.79 124

inner cluster smoothing module; (vii) previous setting (v) but re-

move GNN𝑝𝑜𝑜𝑙 and inner cluster smoothing module; (viii) keep

GNN𝑝𝑜𝑜𝑙 , but using coarsened graph instead of smoothing (essen-

tially performing DiffPool with an added temporal dimension). In

this last setting, we hierarchically pool and reduce the graph to a

single node, and we keep the total number of GNN layers the same

as our other settings. Values of soft-assigned cluster number 𝑐 are

chosen to be halved per smoothing module (e.g., 𝑁 /2, 𝑁 /4, · · · ) for
our experiments. Different choices of 𝑐 affect the model conver-

gence rate but only have a minor impact on the final performance

(see appendix B.1 (II)). Results are reported in fig. 2 (and table 3

in appendix). Apart from these three settings, we also test adding

pooling regularization terms (described in appendix A.2) into the

loss function, but they do not lead to much of a difference.

The above results demonstrate that both setting (vi) and (vii)

outperforms (viii) by a large margin, indicating the importance of

keeping the original node number when representing brain signals.

In addition, all three settings underperform our proposed method.

They are alsomostly worse than changing graph adjacencymatrices

as in settings (ii)–(v): this shows the inner cluster smoothingmodule

has a more significant impact in learning latent graph dynamics.

We also find using adaptive adjacency matrices and inner cluster

smoothing can stabilize training, making the model less prone to

over-fitting and achieving close-to-best performance over a larger

range of hyperparameters (see fig. 10).

3.2 Model Comparisons

Since we adopt a network view to studying the brain, where brain

regions are treated as graph nodes, we source our baselines from

graphmodels. To do so, we examined all models in PyTorch Geomet-

ric (PyG)
3
and its temporal extension (PyG-T)

4
as they contain the

most up-to-date and well-organized open-source graph neural net-

work model implementations. In particular, we compare our model

with the vanilla GCN from [11], Chebyshev Graph Convolutional

Gated Recurrent Unit (GConvGRU) from [24], GraphSAGE from [8],

GAT V2 from [2] and Graph Transformer as in [25]. Baseline mod-

els are constructed similar to ours: each has four graph encoding

layers taking in both signals and adjacency matrices, followed by

two linear layers along the node axis and two linear layers for the

final classification. We train baseline models with the same input,

3
https://pytorch-geometric.readthedocs.io/

4
https://pytorch-geometric-temporal.readthedocs.io/
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loss, optimizer, and epoch settings (all models are well-converged).

Grid search is used to optimize the rest of the hyperparameters. We

compare weighted F1 and training time per epoch in table 2; we

also plot our model and Graph Transformer’s confusion matrices

in fig. 12.

Our model shows significant performance gains and requires

less training time than graph baselines. We believe the most critical

reason is that the models in PyG treat temporal signals as feature

vectors instead of placing them into a separate temporal dimen-

sion. Without sequence modeling on the temporal dimension, even

the state-of-the-art graph attention models (GAT-v2 and graph

Transformer) cannot perform well. In addition, almost all models

in PyG-T assume one common graph for the inputs (application

scenarios are traffic network forecasting, link predictions, etc.),

whereas we need to feed different SC for every sample. Out of them,

we were able to choose one model (GConvGRU) that supports differ-

ent adjacency matrices, but it didn’t give a satisfactory result. Our

proposed ideas of sample-level adaptive adjacency matrix learning

and multi-resolution inner cluster smoothing help capture latent

brain dynamics and improve the performance. The higher model

performance here reflects a better encoding ability of brain signals,

which can benefit different downstream tasks such as disease and

trait prediction.

In addition to graph baselines, we also tested the state-of-the-art

model formultivariate time series classification (MVTS Transformer

[37]), which has comparable performance to ours. This stresses

the critical role of temporal modeling when dealing with dynamic

signals, so we tested our model without GNN layers. We experiment

both removing GNN layers altogether and replacing them with

1 × 1 CNN layers: both outperform graph models that focus on the

spatial modeling aspect. Although these results demonstrate that

temporal modeling is crucial, adding graph modeling that includes

signals’ spatial relationships as proposed can further improve the

performance. Since the MVTS Transformer model has projections

to generate queries, keys, and values from the input sequence, it can

also implicitly learn spatial relationships between variables (nodes).
On the other hand, explicitly adding graph components allows the

model to utilize prior structures (e.g., SC). The attribution of graph

models can also provide better interpretability of brain networks,

such as identifying critical region connections.

3.3 Interpretation with IG

This section studies the contributions of different brain ROIs and

subnetworks defined by their functionalities. For the subnetwork

definition, we choose to use the 17 networks specified in [28], which

has a mapping from our previous 200-ROI parcellation
5
. To select

baseline inputs, we follow the general principle for attributionmeth-

ods: when the model takes in a baseline input, it should produce a

near-zero prediction, and Softmax(outputs) should give each class

about the same probability in a classification model. All-zero base-

lines 𝐴′
and 𝑋 ′

can roughly achieve this for our model, so we

choose them as our baseline inputs. Step number 𝑀 is set to 30.

The IG computation is done on 900 inputs for each task to get an

overall distribution.

5
https://github.com/ThomasYeoLab/CBIG/blob/master/stable_projects/brain_parcellation

(a) (b)

Figure 3: (a) Temporal importance sanity check of IG results on two

pieces of inputs with a large overlap period. Attribution maps are

offset aligned. (b) Attr𝑋 distributions across 17 brain subnetworks

(defined as in [28]) for VWM.

The extracted high-attribution regions and connections should

be reproducible across different initializations to be used for down-

stream tasks. Since the overall problem is non-convex, we empir-

ically test and confirm the attribution reproducibility with two

randomly initialized models before proceeding to the following

analyses. In addition, [32] demonstrates IG’s consistency (repro-

ducibility among a range of hyperparameters) and faithfulness

(more accurate attribution can be obtained with better performing

models). Since our model has higher performance with longer in-

puts, we compute IG attributions of a model trained on length-256

input signals in this section.

Temporal importance. On the single input level, we can at-

tribute which parts of the inputs in G𝑖 are more critical in predicting

the target class by looking into (Attr𝑋 )𝑖 . This attribution map not

only shows which brain regions contribute more but also reveals

the important signal frames. One critical drawback of fMRI imaging

is its low temporal resolution, but if we know which part is more

important, we can turn to more temporally fine-grained signals

such as EEG to see if there are any special activities during that time.

To confirm that the attributions we get are valid and consistent,

we perform a sanity check of IG results on two overlapped inputs

with an offset 𝜏 : the first input is obtained from window [𝑡0, 𝑡0 +𝑇 ]
and the second is obtained from window [𝑡0 + 𝜏, 𝑡0 + 𝜏 +𝑇 ]. Offset
aligned results are shown in fig. 3a, in which the attributions agree

with each other quite well.

Spatial importance.We examine the connection importance

between brain ROIs by looking at Attr𝐴 . In particular, columns

in Attr𝐴 with higher average values are sender ROIs of high-

contributing connections, which is what matters in the GNN opera-

tion. We also explore why using random graph adjacency matrices

(setting (v) in section 3.1) can produce a similar result for length-256

inputs compared to using both SC-induced 𝐴𝑖 and 𝐴𝑖_adp (setting

(i)). By examining Attr𝐴 under both settings (fig. 4), we see that

the column averages of Attr𝐴 under these two settings are similar

for almost all tasks, meaning the model can learn the important sig-

nal sending regions relatively well even without explicit structures.

We credit this ability primarily to multi-resolution inner cluster

smoothing, as the performance drops notably without it (setting

(vii)). However, using ground truth SC not only gives us higher

performance for shorter inputs but also provides the opportunity

to interpret brain region connections better. We can directly use
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task-averaged Attr𝐴 as the weighted adjacency matrix to plot

edges between brain ROIs, just as in fig. 5. Important brain regions

obtained from Attr𝐴 mostly comply with the previous literature

(see appendix B.3 for details).

In addition to Attr𝐴 , Attr𝑋 can also provide insights on spa-

tial importance when the attribution maps are aggregated along

the temporal dimension. But it does so from another perspective:

based on how the model takes in the inputs, larger Attr𝐴 implies

critical structural connections between brain regions, meaning that

information passing between those regions is deemed essential in

classifying task states. In contrast, larger Attr𝑋 reveals regions

or subnetworks that are sources of the important signals: it does
not matter if the signal activities propagate from one region to

another. Instead, the signals themselves are crucial for differenti-

ating between task states. We notice that signal-important ROIs

are not necessarily the same as connection-important ROIs: top-

ranked subnetworks for resting state are DefaultA and DefaultB

by Attr𝐴 , and VisCent and DorsAttnA by Attr𝑋 ; although they

do coincide with each other for tasks like VMN. This disparity is

reflected in fig. 5 as edge and node differences. Another observation

is that DYN and PVT have similar Attr𝐴 patterns; both have a

high attribution on connections originating from visual, control,

and somatomotor systems. But when looking at Attr𝑋 , DYN and

PVT are extreme opposites. For example, PVT has a very high

Attr𝑋 for a few ROIs in LH_SomMotA, DorsAttnA_TempOcc, and

RH_VisCent_ExStr, while DYN has very low Attr𝑋 for them. This

suggests that the model uses these ROIs’ activities to distinguish

between the two tasks. Therefore, the attributions are not abso-

lute but relative to what they are compared against. As a result,

when identifying biomarkers with attribution, it is crucial to have

contrasts—for example, different tasks, different disease states, etc.

In fig. 3b, we plot the distribution of time-averaged and subnetwork-

averaged (mapping 200 ROIs into 17 subnetworks) Attr𝑋 during

the VWM task. We can see the clear dominance of VisCent, Dor-

sAttnA, and ContA subnetworks (numbered as 1, 5, 11), indicating

signals from these regions are useful for the model to decide if the

input is from the VWM task. More informative than the rankings is

the distribution itself: even though VisCent, DorsAttnA, and ContA

ranked top 3 for both resting state and VWM for signal attributions,

their relative importance and attribution distribution variances are

drastically different. In a sense, the distribution can act as a task

fingerprint based on brain signal states.

Group, session, and region heterogeneity. Average variances

of attributions are very different across tasks, especially those of

Attr𝑋 : VWM and DYN have much smaller attribution variances

compared to other tasks. This can be caused by either task dynamics

when certain tasks have more phase transitions and brain status

changes, or/and group heterogeneity when individuals carry out

specific tasks more differently than the others. We investigate this

by examining three subjects that have multiple scan sessions for

every task.

We report the following findings: (1) Even only aggregating at-

tributions over a single subject’s sessions, attribution variances

of the other four tasks are still larger than VWM and DYN. And

these variance values are comparable to that of aggregating over

many subjects. This means the large variances are not mainly due

to group heterogeneity; rather, some tasks have more states than

others. (2) There is still group heterogeneity apart from different

task dynamics, and the group heterogeneity is also more evident for

tasks with more dynamics (high attribution variances). We can see

from fig. 6 that attributions for VMM are much more concentrated

and universal across subjects than that of MOD. (3) Flexibility of

different subnetworks varies: subnetworks with small distribution

IQR (interquartile range) of the same subject’s different sessions are

also more consistent across subjects. One example is that subnet-

work 18 during the MOD task has both higher within-subject IQR

and more significant across-subject differences than subnetwork

19. This indicates that for a particular task, some subnetworks are

more individual and flexible (may activate differently across time),

while others are more collective and fixed. In summary, we can find

both critical regions that a particular task must rely on and regions

that can characterize individual differences during tasks.

3.4 Simulation study

To validate the results of our interpretations, we perform simulation

studies with known ground truth. All graphs are generated with

SBM (stochastic block model) using the same community structure

(200 nodes, 10 communities), but each graph has its own adjacency

matrix. This generation process mimics brain structures in that

samples share similar community structures but have distinct struc-

tural connectivities. Fig 7a shows a typical adjacency matrix of

a synthetic graph. All adjacency matrices are binary. Time-series

on each node are then generated with code adapted from pytorch-

gnn repository
6
. In particular, the value at each time step of each

node is a small temporal Gaussian random noise plus signals from

neighbors’ (a small spatial Gaussian noise is added to the adjacency

matrix) previous step.

Simulation (I)We create two classes for this simulation. In class

one, only the first three communities (nodes 1–60) generate small

temporal noises, and other nodes are only affected by neighbors.

In class two, only the last three communities (nodes 141–200) gen-

erate small temporal noises, and other nodes are only affected by

neighbors. We visualize the task aggregated Attr𝑋 and 𝐴
adp

and

in figs. 7b and 7c. The signals are characterized well in Attr𝑋 . For

the generated series, signals are more important in node 1–60 for

class 1 and 141–200 for class 2: 𝐴
adp

finds this pattern and helps

propagate signals in these regions better. We notice that Attr𝐴 is

mostly random, with no apparent patterns. This is consistent with

the graph signal generation: when aggregating information from

neighbors, all connected edges are weighted the same (binary); thus,

the connections do not affect generated signals. We perform the

following study to understand the opposite effect.

Simulation (II) We again create two classes for the simulation:

in class one, connections from nodes 61–100 are strengthened; in

class two, connections from nodes 101–140 are strengthened. The

weights of strengthened edges are increased from 1 to 5 during

signal generation. However, the model still takes in binary adja-

cency matrices as inputs (processed as mentioned in section 2.1

before feeding to the model). We visualize the task aggregated𝐴
adp

and Attr𝐴 in fig. 7d. This time the connection differences are re-

flected in Attr𝐴 . Signals in node 61–100 for class 1 or 101–140 for

class 2 are less important because stronger connections can send

6
https://github.com/alelab-upenn/graph-neural-networks
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Figure 4: Column averages of task-averaged Attr𝐴 (mapped into 34 subnetworks defined by the 17-network parcellation with left, right

hemispheres). Top row is obtained from real SC induced 𝐴 and bottom rows is obtained from random SC induced 𝐴
rand

. Attributions are

normalized to [0, 1]. Tasks are: Rest, VWM, DYN, DOT, MOD, PVT from left to right.

Figure 5: ROI attributions from Attr𝐴 and Attr𝑋 . (Task order is the same as fig. 4). Edge color and width are based on task-averaged

Attr𝐴 ∈ R200×200, and node color and size are based on task and temporal-averaged Attr𝑋 ∈ R200. For visualization, only edges with highest

attributions are shown (the resulting sparsity reduces to 0.009 from 0.196).

Figure 6: 34 subnetworks’Attr𝑋 distributions of 3 subjects perform-

ing the VWM task (left) and the MOD task (right). Outliers that go

beyond [𝑄1 − 1.5 IQR,𝑄3 + 1.5 IQR] are omitted. VWM has a much

smaller average attribution variance than MOD.

these signals out: this results in smaller values for corresponding

columns in 𝐴
adp

. Combined with the previous simulation results,

this suggests that strong signal sending regions or regions with

weak connections that are over-reflected in the graph adjacency

matrix tend to have higher 𝐴
adp

values. In other words, 𝐴
adp

com-

plements both signals and connections to encode latent dynamics,

while attributions obtained from IG are better at interpreting the

modalities separately.

4 CONCLUSIONS

This paper proposes ReBraiD, a high-performing and efficient graph

neural network model that embeds both structural and dynamic

functional signals for a more comprehensive representation of brain

(a) A (b) Simulation (I) Attr𝑋 of 200 nodes

(c) Simulation (I)𝐴
adp

of 200 nodes

(d) Simulation (II)𝐴
adp

and Attr𝐴 of 200 nodes

Figure 7: (a) A typical adjacency matrix for simulated graph signals.

(b) Task averaged Attr𝑋 of simulation (I). Attribution values are

normalized. (c) Task averaged 𝐴
adp

of simulation (I) and its entry

averages per column. (d) Task averaged𝐴
adp

and task averaged Attr𝐴

of simulation (II). Attribution values are normalized.

dynamics. To better capture latent structures, we propose sample-

level adjacency matrix learning and multi-resolution inner cluster
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smoothing. Apart from quantitative results showing ReBraiD’s su-

periority in representing brain activities, we also leverage integrated

gradients to attribute and interpret the importance of both spatial

brain regions and temporal keyframes. The attribution also reveals

heterogeneities among brain regions (or subnetworks), tasks, and

individuals. These findings can potentially reveal new neural basis,

biomarkers of tasks or brain disorders when combined with be-

havioral metrics. They can also enable more fine-grained temporal

analysis around keyframes when combined with other imaging

techniques and extend to different scientific domains with sample

(subject) heterogeneity.
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A MODELS

A.1 Choice of temporal layers

Fig. 8 explains the choice of TCN layers.

dilation 1

dilation 2

dilation 4

causal
paddings

strided TCN dialated causal TCN

Figure 8: Comparison of strided non-causal TCN (left) and dilated

causal TCN (right). For a causal TCN, the causal aspect is achieved

through padding (kernel_size − 1) × dilation number of zeros to the

layer’s input. The resulting y always has the same length as input

x, in which y𝜏 only depends on inputs x𝑡≤𝜏 . We can view strided

non-causal TCN as the rightmost node of a dilated causal TCN.

A.2 Regularization terms for soft-assignment

For each soft assignment matrix 𝑆 ∈ R𝑁×𝑐×𝑡
in eq. (4), we test three

regularization terms:

• Similar to DiffPool, to ensure a more clearly defined node as-

signment, namely each node is only assigned to few clusters (the

closer to one the better), we minimize the entropy of single node

assignments: 𝐿𝐸1
= 1

𝑐

∑𝑐
𝑖=1 𝐻 (𝑆𝑖 ).

• To ensure a representation separation among nodes, meaning

the assignment should not assign all the nodes a same way, we

maximize the entropy of node assignment patterns across all
nodes: 𝐿𝐸2

= − 1

𝑐

∑𝑐
𝑖=1 𝐻 (∑𝑛

𝑗=1 𝑆𝑖 𝑗 ).
• To make the assignment along temporal axis smoother, we penal-

ize assignment variances within a small time window [𝑡, 𝑡 + 𝜏]:
𝐿𝑇 = 1

𝑡−𝜏
∑𝑡−𝜏
𝑡=0

𝜎 (𝑆 [𝑡,𝑡+𝜏 ] ), where 𝜎 represents standard devia-

tion.

Together with cross entropy classification loss 𝐿𝐶𝐸 , the final loss

function of the model becomes:

𝐿𝑟𝑒𝑔 = 𝛼1𝐿𝐶𝐸 + 𝛼2𝐿𝐸1
+ 𝛼3𝐿𝐸2

+ 𝛼4𝐿𝑇 ,
∑︁
𝑖

𝛼𝑖 = 1 (7)

B EXPERIMENTS

B.1 Ablation studies

Numerical values of fig. 2 are reported in table 3. Training time

ranges from 51 seconds / epoch for length-8 inputs to 298 seconds /

epoch for length-256 inputs. Models converges to a relatively stable

loss level within 20 epochs.

Table 3: Weighted F1 of ablation study settings.

Input length (frames) 8 16 32 64 128 256

(i): SC + adp 66.19 70.18 75.87 76.14 82.91 90.85

(ii): SC only 64.54 65.58 71.79 70.31 73.63 89.79

(iii): adp only 64.32 65.20 74.01 71.42 80.63 89.46

(iv): SC + FC 66.10 67.58 70.26 75.02 76.91 84.68

(v): random adj 62.17 66.25 72.30 73.72 76.58 89.22

(vi): (i) without smoothing 63.57 62.82 70.19 65.82 72.91 79.65

(vii): (v) without smoothing 56.88 64.08 72.27 62.72 75.16 83.75

(viii): coarsened graph 37.92 42.23 46.18 52.12 57.17 64.25

Figure 9: Choosing number of GNN to TCN layer ratio for different

input lengths. In most cases, two TCN layers per GNN layer results

in the best model performance in terms of F1.

(I) Number of GNN layers. The total number of temporal layers

depends on the input signal length since each strided TCN layer

reduces the temporal length by a factor of two: if the input length

is 2
𝑖
, there need to be 𝑖 temporal layers. But is alternating every

TCN with GNN the best strategy, or do we only need to follow one
GNN after a few TCNs? We study this question with different input

lengths.

Model weighted F1 are plotted in fig. 9 for all possible GNN to

total TCN ratios (e.g. length-256 inputs requires 8 TCN layers. The

possible ratios are
1

8
, 1
4
, 1
2
, 1 since we can insert one GNN per 8, 4, 2,

1TCN layers). The figure shows alternating every layer rarely yields

the highest performance and the best ratio lies around one GNN

per two TCN layers for our dataset. We repeat the experiment for

𝐾 = 1, 3 (in eq. (3)) to rule out the possibility that this result is related

to how many neighbors one GNN layer can reach; we find they

have roughly the same pattern as the 𝐾 = 2 case. We hypothesize

that a lower GNN to TCN ratio does not capture enough spatial

context, while higher ones might be overfitting. We leave exploring

the relationship between this ratio and the number of nodes 𝑁 to a

future study.

The best GNN to TCN ratio also depends on whether model

incorporates latent adjacency matrices or not: without𝐴
adp

, length-

128 signals achieves its relative best (among all ratios) when having

one GNN per two TCNs, but it only needs one GNN per three

TCNs if using 𝐴
adp

. This shows learning latent structures 𝐴
adp

not

only improves overall model accuracy but can also reduce model

parameters, thus complexity, in achieving better results.

(II) Effects of soft-assignment cluster numbers. During our

experiments, we find that as long as the smoothing module is used,

the final performance will be close to each other, only the con-

vergence rates are different. Fig. 10b shows how validation loss

converges with different 𝑐 (cluster number) or when there is no

smoothing module. From it, we can observe that halving the num-

bers (100-50-25-12) is the most helpful setting, and we use it for

our other experiments; decreasing the numbers (160-120-80-40) or

all larger numbers (all 100) works better than increasing the num-

bers (12-25-50-100) or all smaller numbers (all 12). With the inner

cluster smoothing module, all cluster number settings converge to

around 0.23 at their smallest when trained for 30 epochs; their test

weighted F1 range from 89.47 (model with 12-25-50-100) to 90.85

(model with 100-50-25-12).
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(a) (b)

Figure 10: (a) adding inner cluster smoothing or input-dependent

adaptive adjacency matrix makes the model more stable across var-

ious learning rates (results shown are from length-16 inputs). (b)

Validation loss v.s. training epochs. Input length is 256, and four

smoothing modules are used. Legends are the soft-assignment clus-

ter numbers of the four smoothing modules. Our other experiments

use decreasing cluster numbers that halved at each module, corre-

sponding to the 100-50-25-12 choice here.

On the contrary, if no smoothing module is used, the model

overfits easily, and the validation loss can only reach about 0.4

before going up (with the best set of learning rate and weight decay

parameters found with grid search). Understandably, the model is

prone to overfitting given the complexity of GNN and the relatively

small dataset size. However, our added inner cluster smoothing

module effectively counters the effect and further brings the loss

down in a stable manner.

B.2 Model comparisons

We plot confusion matrices of ReBraiD, the model from ablation

study setting (viii), and the best performing graph baseline in fig. 12.

Misclassification pairs clustered at the first three tasks (resting,

VWM, DYN) and the latter three (DOT, MOD, PVT). Shown con-

fusion matrices are from models trained on length-256 inputs. We

note that these misclassification pairs may differ for models trained

on other input lengths (like 128-frame, etc.).

B.3 Attributions

Many discriminatory regions obtained from Attr𝐴 are consistent

with existing literature:

Resting state: The top attributed ROIs belong to the default mode

network, which is regarded salient during the resting state [20].

VWM: The dominant attributions are from visual regions and pos-

terior parietal regions, which complies with [30].

DYN: Attributions from our model suggest regions along cingulate

gyrus (defaultA-SalValAttnB-ContA-ContC-defaultC), as well as

peripheral visual and somatomotor regions. Literature suggests

anterior cingulate cortex (ACC) to be active [10] and posterior cin-

gulate cortex (PCC) to be inactive [14] during visual attention tasks.

This means both regions provide discriminative information about

the DYN states, which is what our attribution method votes for.

DOT: Important ROIs from our analysis are located in control net-

works, in particular both ACC and PCC, as well as in the peripheral

visual system. In the literature, dorsal and rostral regions of the

ACC are proved to be involved with dot-probe performance [3, 4].

MOD: Our important ROIs are mostly in temporal-parietal regions

(a)

(b)

(c)

(d)

Figure 11: Learned latent adaptive adjacency matrices. (a) 𝐴𝑖_adp of

3 randomly sampled inputs during the DOT task. (b) 𝐴𝑖_adp of 3

consecutive inputs from a same session during the DOT task. (c)

column averages of task-averaged𝐴
adp

for resting state, VWM, DYN,

DOT, MOD, PVT. (d) left two: t-SNE of 𝑋 (node-2, 156)Θ
adp

in six tasks

of one subject; right two: t-SNE of 𝑋 (node-155, 156)Θ
adp

during the

resting state of two subjects (multiple sessions are aggregated).

(a) (b) (c)

Figure 12: Confusion matrices of: (a) ReBraiD (our proposed model),

(b) model with coarsened graph (setting (viii)), (c) Graph Transformer

(best graph baseline). Tasks are 1-Rest, 2-VWM, 3-DYN, 4-DOT, 5-

MOD, 6-PVT.

and default mode network (anatomically frontoparietal), and litera-

ture suggests similar regions: parietal [7] and prefrontal [6].

PVT: Our top attributed ROIs belong to control networks, attention

networks, and somatomotor regions. This is similar to [5], where

both attention and motor systems are considered important.
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