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Abstract

We present a reformulation of the ‘reactive rod model’ (RRM) of Dutta and Gra-
ham [Dutta, Sarit and Graham, Michael D., JNNFM 251 (2018)], a constitu-
tive model for describing the behavior of dilute wormlike micelle solutions. The
RRM treats wormlike micelle solutions as dilute suspensions of rigid Brownian
rods undergoing reversible scission and growth in flow. Evolution equations for
micelle orientation and stress contribution are coupled to a kinetic reaction equa-
tion for a collective micelle length, producing dynamic variations in the length
and rotational diffusivity of the rods. This model has previously shown success
in capturing many critical steady-state rheological features of dilute wormlike
micelle solutions, particularly shear-thickening and -thinning, non-zero normal
stress differences, and a reentrant shear stress-shear rate curve, and could fit a
variety of steady state experimental data. The present work improves on this
framework, which showed difficulty in capturing transient dynamics and high-
shear behavior, by reformulating the kinetic equation for micelle growth on a
more microstructural (though still highly idealized) basis. In particular, we al-
low for micelle growth associated with strong alignment of rods and breakage
due to tensile stresses along the micelles. This new formulation captures both

steady and transient shear rheology in good agreement with experiments. We
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also find good agreement with available steady state extensional rheology.
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1. Introduction

Surfactants are amphiphilic molecules consisting of bulky hydrophilic head
groups bonded to long-chain hydrophobic tails; beyond some concentration, the
critical micelle concentration (CMC), surfactants self-assemble into aggregate
structures whose geometry is dictated by the size, shape, and chemistry of the
surfactant molecules as well as temperature and the salinity of the solution [1-4].
Among these aggregate structures are spherical and wormlike or rodlike micelles,
as well as vesicles and bilayers. At sufficiently high concentrations, wormlike
micelles can entangle and form large-scale networks and branched structures,
transitioning into a highly viscoelastic gel-like phase. The application of an
external field (e.g. flow), or increased temperature, can disrupt these networks
and force micelles into distinct structures [5-7].

Herein we focus on dilute surfactant solutions that form wormlike micelles
(WLMs); these solutions have been shown to exhibit remarkable flow dynam-
ics ranging from pronounced shear-thickening and -thinning regimes to shear-
induced structure (SIS) formation, as well as numerous instabilities in shear and
extensional flows [8-12]. The addition of small amounts of wormlike micelle-
forming surfactants to turbulent flows can produce up to an 80 —90% reduction
in turbulent drag, which in some cases can exceed the drag-reducing capabilities
of the most widely used polymer solutions [13-15]. Moreover, the self-assembling
capabilities of these micellar solutions, through which surfactants are able to re-
assemble into aggregate structures following mechanical deformations, can also
be exploited to overcome the well-known shear-induced breakdown of polymer
chains in the pumping of turbulent flows. There has even been recent interest
in leveraging the shear-thickening and -thinning properties of dilute surfactant
solutions to form less environmentally destructive carrier fluids in oil recovery
operations [16]. The ubiquity of surfactant solutions, including widespread use
in household and commercial products, has motivated numerous studies over
recent decades into understanding the rheology, dynamics, and flow behavior of

these solutions.
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Experiments have demonstrated that the behavior of wormlike micelle solu-
tions drastically changes with concentration [16]. In the upper semi-dilute and
concentrated regimes, WLM solutions typically show shear-thinning behavior
reminiscent of long-chain polymer solutions. These higher concentration solu-
tions also tend to exhibit, under appropriate conditions, the well-known shear-
banding (or gradient banding) instability. This instability is characterized by
the development of a macroscopically “banded” flow in which fluid separates
into two distinct regions of equal shear stress but each supporting a unique
shear rate [17, 18]. The separation of these two regions is often observable
through differences in turbidity and/or birefringence. There has been exten-
sive theoretical and experimental treatment of this instability (see [17, 19] for a
comprehensive review).

In the dilute and lower semi-dilute regimes, WLM solutions exhibit pro-
nounced shear-thickening behavior associated with the formation of SISs; at
high deformation rates this thickening gives way to stark shear-thinning in-
duced by the breakdown of SISs and strong orientation of the micelles [20, 21].
In the dilute regime, SISs take the form of elongated wormlike micelles that
can be several times longer than the equilibrium micelle length, in some cases
yielding micelles with lengths on the order of microns [3, 6]. In addition to
this shear-thickening and -thinning behavior, dilute WLM solutions can display
reentrant, or multivalued, flow curves (shear stress vs. shear rate); the exis-
tence of a reentrant flow curve is a necessary condition for a relatively unique
vorticity banding instability [22]. In contrast to the shear-banding instability
of higher concentrations, vorticity banding requires that a single shear rate be
able to support multiple shear stresses. In circular Couette flow, this instability
manifests as stacked “bands” along the vorticity axis, where adjacent bands
support distinct shear stresses. Again, similar to gradient banding, these bands
can often be visualized by differences in turbidity and birefringence [17, 22].

There have been a number of theoretical treatments and models put forth
to explain and predict the behavior and dynamics of WLM solutions. The pro-

posed models can be loosely lumped into three categories: population balance
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models, coupled fluidity models, and microstructural models. One of the earliest
treatments of WLM solutions was by Cates and Turner [23, 24] with the aim of
generating a population balance model that accounted for the different stress re-
laxation mechanisms associated with wormlike micelles, namely micelle scission
and rotational diffusion. This work led to the development of an evolution equa-
tion for the probability distribution function for a micelle of given length and
orientation by considering a reversible kinetic reaction scheme: a given micelle
can rupture at any point along its length to form two shorter micelles, while two
collinear micelles can also fuse into a single, larger micelle. The model assumes
that rods must be strongly aligned for fusion to occur in order to avoid the large
energetic penalty associated with bent micelles; this collinearity assumption re-
sults in a positive feedback mechanism owing to the decreased angular mobility
of longer rods, and this feedback can incur a gelation transition in which micelle
length diverges sharply. Further, the competition between relaxation mecha-
nisms yields two distinct limits: a fast-breaking (scission-dominated) limit and
a slow-breaking (rotation-dominated) limit.

The Cates and Turner model has shown good agreement with experiments,
however, the presence of a continuous spectrum of lengths in this model greatly
restricts both its use in studying more complex flows and its incorporation into
fluid-dynamical studies. Nevertheless, this model provides a strong mechanistic
basis for understanding the dynamics of WLM solutions, and has been used as a
foundation for other WLM models both in the dilute and concentrated regimes
[25, 26]. We omit a thorough review of the remaining population balance type
models as these have been developed primarily for understanding the behavior
of concentrated WLM solutions, and thus fall outside the scope of the present
work. Readers interested in the modeling and dynamics of concentrated WLM
solutions are directed to the Vazquez-Cook-McKinley (VCM) model [25, 27],
the simplified tube approximation for rapid-breaking micelles (STARM) model
by Peterson and Cates [28], and Brownian dynamics simulations of the VCM
and reformulated VCM models by Adams and coworkers [29].

We now turn our attention back to models for dilute WLM solutions, and in
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particular to coupled fluidity models; as the name suggests these models couple
well-known and well-studied models for general viscoelastic fluids (e.g. Oldroyd-
B, FENE-P, Giesekus) to a fluidity (inverse viscosity) evolution equation origi-
nally proposed by Fredrickson for studying thixotropic systems [30]. The fluidity
equation accounts for spontaneous ‘buildup’ and shear-induced ‘breakdown’ of
microstructure in the fluid. By coupling the fluidity equation to the Oldroyd-B
equation, Bautista et al. [31] have formed the BMP model, which is able to pre-
dict both shear-thickening and shear-thinning behavior. More recently, Manero
et al. [32] developed the generalized BMP model, where the model’s kinetic
parameters are taken as functions of the second invariants of both deformation
rate and stress tensors, expanding the model to allow for reentrant behavior.
This model has also been used successfully by Lanzazuri et al. [33] to predict the
steady and transient behavior of CTAB and CTAVB solutions and has shown
good agreement with experimental results. However, the BMP model lacks a
clear connection between model parameters and the underlying microstructural
dynamics of WLM solutions and the use of the Oldroyd-B equation presents
difficulties in extensional flows due to a divergent extensional viscosity [34].
More recently, Tamano et al. [35] have taken inspiration from the BMP
model and have coupled a fluidity equation to the Giesekus and FENE-P mod-
els to form the f-Giesekus and f-FENE-P models, respectively. This formulation
results in four dimensionless parameters accounting for micelle breakdown and
build-up (e.g. elongation) timescales, infinite and zero-shear viscosity ratios,
and maximum extensibility of micelles. Using this formulation the authors si-
multaneously capture shear-thickening and -thinning, which is not possible using
either of the pure Giesekus and FENE-P models. Further, the transient behav-
ior of this model, in particular in startup of steady shear flow, demonstrates
a stress overshoot that is similar to experimental observations of WLM solu-
tions. The f~-FENE-P model does suffer from an inability to predict nonzero
second normal stress differences, an artifact of the original FENE-P model’s
inability to do so, and there is some difficulty in predicting the steepness of vis-

cosity vs. shear rate data as well as the magnitude of shear-thickening seen in



125

130

135

140

145

150

experiments. Notably, however, this formulation is particularly well-suited for
implementation in direct numerical simulations (DNS) given that the majority
of simulations for viscoelastic polymer solutions are already formulated on the
FENE-P and Giesekus constitutive equations.

The present work concerns the last class of wormlike micelle models — mi-
crostructural models — and in particular focuses on a reformulation of the reac-
tive rod model (RRM), a tensor constitutive model proposed by Dutta and Gra-
ham [26]. The RRM takes a phenomenological, but highly microstructurally-
motivated, approach to modeling WLMs and treats dilute wormlike micelle so-
lutions as suspensions of rigid Brownian rods able to undergo reversible growth
and scission in flow. The model couples evolution equations governing the en-
semble average orientation of rods and micelle stress contribution to an evolution
equation for the collective length of micelles, where micelle number density and
length are constrained by conservation of surfactant molecules. We provide
more details on the modeling framework of the RRM in section 2, but note that
it follows mechanisms proposed by Turner and Cates [24], namely growth due to
flow-induced alignment of micelles and spontaneous scission along the lengths of
micelles. The RRM has shown success in capturing experimental observations
of dilute WLM solutions, and is able to capture flow curve multiplicity, a neces-
sary condition for vorticity banding, as well as nonzero normal stress differences.
While this model provides a proof of principle that the modeling structure of
rigid Brownian rods is rich enough to capture many key features associated with
dilute WLM solutions, it does have difficulty in predicting transient flow and
high-shear results. Further, the nature of the proposed length equation lacks
clear physical insights that, if present, would allow for more precise understand-
ing of rheological behavior. The motivation of the present work is to further
develop the RRM by developing a length evolution equation based more closely
on WLM dynamics in flow, with the aim of forming a model that is both accu-
rate in predicting WLM rheology and tractable enough for implementation in

DNS and in the study of more complex flows.
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2. Model description

The complete derivation of the reactive rod model (RRM) is described in
[26]. As discussed above, this modeling framework takes inspiration from the-
oretical treatments by Cates and Turner [23]. In summary, dilute wormlike
micelle solutions are treated as suspensions of rigid Brownian rods undergoing
reversible scission and growth. Rods fuse end-to-end (reducing the energetic
penalty associated with the micellar end caps), but only when they are highly
aligned — otherwise the energy penalty arising from forming a long but bent
micelle is too large for fusion to take place [23, 36]. The application of flow
tends to align the rods. This alignment is balanced by rotational diffusivity of
the rods acting to return the suspension to isotropy. The fundamental assertion
of the RRM is that rods are able to react (fuse) in flow to form longer rods, and
that the reaction rate increases with increasing rod alignment. Consequently, a
positive feedback mechanism exists between rod growth and alignment owing to
the smaller rotational diffusivity of longer rods. It is assumed that rod growth
is countered by hydrodynamic stresses acting along the lengths of the rods and
these stresses, which increase with increasing length, can induce breakage events

into shorter rods.

2.1. Rigid Brownian rods

The underlying theory of a non-reactive suspension of rigid Brownian rods is
given in both [26, 37], which we briefly review before delving into the complete
RRM. We begin with a uniform collection of rods with length Lg, radius b,
and number density ny suspended in a Newtonian solvent with viscosity 7.
The orientation of a single rod is described by the unit director vector w. The
suspension is subjected to an arbitrary, homogeneous flow with velocity v and
transpose velocity gradient K = Vwv'. The orientation tensor S describes
the average collective orientation of the suspension and is given by the second

moment of u

S = (ww) = [ wuvdu. 1)



where 1 is the probability distribution function of w. The time evolution of S in
a homogeneous flow can be found by multiplying the rotational Smoluchowski

equation

o _
ot

where R = u X % and D, g is the rotational diffusion coefficient of a rod, by S

Dy oR*) —R - (u x K -uy), (2)

and integrating over w [37]. We then have for the time evolution of S
ds
dt

where I is the unit tensor and the double dot product is defined as A : B =

Tr(A-BT).

= —6D,0 (s ;I) +K-ST+8 K" - 2K : (uuuu), (3)

The total stress of the suspension is given by the sum of the solvent 7° and

m

micellar 7™ contributions

T=71"+7", (4)

where

7% =2n,D (5)

is the Newtonian solvent contribution with rate of deformation tensor D =

WK +K")and
nok‘BT

2D,

1
7" = 3nokpT (S - 3I> + K : (uuuu) (6)

is the additional stress due to the presence of rods. Here, kp is the Boltzmann
constant and 7T is the temperature. Equations (3) and (6) notably contain the
fourth moment (uuwuu), an evolution equation for which depends on the sixth
moment of w, which in turn depends on higher moments. To proceed analyt-
ically, it is then necessary to supply a closure approximation for the product
K : (uuuu). While numerous approximations are possible (see, for example:
[37-39]), we use an approximation from Dhont and Briels [40] that interpolates
between exact expressions in the limits of isotropy (equilibrium) and complete

alignment:

1
K:<uuuu>%g[S-D+D~S—S-S-D—D-S-S+...

2§-D-S+3(S:D)S]. (7)
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2.2. Reactive Brownian rods

As discussed above, a key feature of the RRM is that it allows micelles,
modeled as rigid rods, to undergo reversible scission and growth by allowing the
collective length and number density of the suspension to be dynamic properties
that evolve with time and flow. Consider a suspension of rods at equilibrium
initially with number density ng and representative length Lg; in practice the
length of a wormlike micelle suspension follows an exponential distribution [36],
but to make analytical progress it is assumed that a single, representative length
is able to suitably characterize the system. The radius b of the rods is taken to
be constant. The evolution of length L and number density n are constrained

at all times by the surfactant mass balance
nlL = TL()L(). (8)

Everywhere below, n will be determined by this equation.

The rotational diffusion constant for a rod of length Ly and radius b is given

b BT 3kgT . (L
Dyo= 28" 1n22). 9
o= 2o n(%) )

In the RRM, the constant rotational diffusion coefficient of the simple rigid rod

model is replaced by the length-dependent coefficient

Do (InL* +m
L3 m ’

where L* = L/Lg is the dimensionless micelle length and m = In[Lg/(2b)] is

D, =

(10)

a constant related to the initial aspect ratio of the rods. Substituting eq. (10)
into egs. (3) and (6), we find

% = —6D, <S:1))I) +K-ST+8 K" —2K : (uuuu) (11)
and
m 1 nkgT )
7" = 3nkgT (S— 31) + 2D, K : (uuuu) . (12)

The rod orientation of the suspension is tracked by introducing a scalar

orientational order parameter

(13)

W)
I
N W
w
w)

10
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where § = S — %I is the traceless part of S. This order parameter varies
between S = 0 for isotropic rods and S =1 for perfectly aligned rods. The
orientation and stress equations are rendered dimensionless by introducing a
nondimensional time t* = D, gt and Péclet number Pe = 4/D, ¢ in shear flow
and Pe = ¢/D, o in extensional flow. Note that the description and equations
above are valid for both the original RRM and the reformulation (RRM-R),
the only variation between the two models is in the length evolution equation,

discussed below.

2.8. Reactive rod model (RRM)
To allow for variability of rod length the original RRM introduces a length
evolution equation of the form

dL*
dt*

= R, + R, (14)

where R, represents alignment-induced growth of micelles and R collectively
represents spontaneous fusion and breakdown of micelles. The model assumes
that alignment-induced growth increases linearly with rod alignment, while
spontaneous growth and breakage are assumed to be proportional to the instan-

taneous deviation from equilibrium micelle length, Ly. The RRM introduces

*

the idea of a maximum length L} .

beyond which micelles are broken down by

hydrodynamic stresses, and since these stresses increase with increasing defor-

*

mation rates, L} .

must decrease with increasing Pe. Moreover, the breakdown

*

rate is assumed to increase without bound as L approaches L7 ..,

suggesting a
FENE-like form for R,. Using these assumptions, the RRM proposes a complete

length evolution equation of the form

dL* A ~
- _(1-L*)+kS, (15)
" ()
a+P£e

where A, k, o, and 8 are model parameters. Equations (7), (11), (12) and (15)
now form a closed set of equations describing the orientation, stress, and length

of a suspension of reactive Brownian rods.

11
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2.4. Reformulated reactive rod model (RRM-R)

The original formulation of the RRM does an excellent job in capturing
some of the most commonly seen phenomena in dilute wormlike micelle rhe-
ology, namely shear- and extensional-thickening and -thinning, reentrant (i.e.
multivalued) shear stress, and non-zero normal stress differences. It also makes
progress in putting forth a tractable constitutive model that has potential for
implementation in CFD simulations. In this way, the original RRM acts as a
proof-of-principle, indicating that the coupling of orientation, stress, and length
evolution equations has great potential in the modeling of dilute wormlike mi-
celle rheology.

However, the original formulation of the RRM has difficulty in accurately
capturing phenomena associated with transient flows (e.g. inception of steady
shear), which is a significant obstacle for future implementation in CFD stud-
ies. This difficulty arises from the nature of length evolution equation (eq. (15)),
which notably depends only on Péclet number (which is fixed for a given flow)
and not on stress (which depends on flow type and time). Importantly, this
lack of stress dependence prevents the original RRM from fully distinguishing
between shear and extensional flows, or between steady and transient flows.
Further, while the length equation in the original RRM does incorporate ex-
perimental insights about micellar rheology, such as alignment-induced growth
and spontaneous growth and breakdown, there is not a clear physical grounding
underlying the structure of the proposed equation. To address this, we present
a new length evolution equation that considers in greater depth the microscopic
mechanisms underlying micellar reversible scission dynamics. This new formula-
tion incorporates mechanistic parameters that represent distinct microstructural
phenomena, thus facilitating more direct comparisons with surfactant rheology
and chemistry. It must be acknowledged that this new model still does not
attempt to capture the distribution of micelle lengths, nor does it encompass
other effect such as formation of branched or laterally-associating micelles.

We begin our reformulation with a similar approach to the original RRM,

assuming a length evolution equation that balances growth and breakdown of

12
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micelles

dL
— =R R 16
dt 9 + i, ( )

where R, > 0 is the rate of micelle growth and R, < 0 is the rate of micelle

breakdown.

2.4.1. Micelle growth rate
Beginning with 2y, we assume that the rate of growth consists of two distinct

types: spontaneous growth, R, ,, and alignment-induced growth, Ry
Ry=Rys+ Rya- (17)

Spontaneous growth must occur both in the presence and absence of flow and,
as we will address later, must balance with spontaneous breakage in a quiescent
suspension to maintain equilibrium. Spontaneous growth, R, s, which occurs
when the ends of two micelles randomly collide, must increase with number

density and thus we propose a form

Ry.s = n’kgo, (18)

where n is number density and kg [m7s~!] is a spontaneous growth rate co-
efficient. The choice of a quadratic dependence on number density is due to
the bimolecular nature of a collision event. We note that because we limit
our framework to dilute solutions, interactions between micelles, and therefore
spontaneous growth events, should occur infrequently.

Now turning our attention to alignment-induced growth, a feature of both
Cates and Turner’s work as well as the original RRM, we assume that this type

of growth must depend on both the alignment and collision frequency of rods.

We capture this idea with a functional form

Rg,a = f(g)g(y)7 (19)

where v is collision frequency. We assume a separable form here to make analyt-

ical progress, though this may not be the case. Rod alignment is captured by the

13
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orientational order parameter §, and the bimolecular nature of a combination

event suggests a quadratic dependence on order
1(8) = ka1 5%, (20)

where kgq,1 is a kinetic growth parameter.

There are two possible mechanisms for collisions — diffusion and flow. A
simple approximation for collision frequency due to flow is v = n?||D||. Here, v
depends on D rather than K because strain and the relative motion of micelles,
as opposed to rigid rotation, produces collisions. Again, the bimolecular nature
of growth suggests a quadratic dependence on number density. Ignoring vari-
ation in number density with flow rate we thus approximate that the collision
frequency due to flow scales linearly with Péclet number.

Now turning our attention towards collisions due to diffusion, we can show
that translational diffusivity alone, and not strain induced by the flow, is suf-
ficient to induce end-to-end collisions. The mean squared displacement Ar?
behaves as

(Ar?) = 6Degt, (21)

where Deg = (D) +2D 1 )/3 is the effective translational diffusion coefficient for
the rod, and D and D =~ D)/2 are the diffusivities parallel and perpendicular
to the rod axis, respectively [41]. The parallel diffusivity is given by

kT In(L/b)

22
2mns L (22)

Dy =

[37]. For a typical wormlike micelle of length L ~ O(10 nm) and radius b ~
O(1 nm) in an aqueous solution at room temperature, we find from eq. (22)
that Djj ~ O(107! m?s™1).

We estimate the average distance between between rods as xavg ~ n=1/3,
We consider a dilute surfactant solution with concentration ~ O(1 mM) and an
estimated ~ O(10?) surfactant molecules per rod, giving a rod number density
of ~ O(10% rods/m?), and thus an average distance between rods of Zyg ~

1078 m. Using eq. (21), we calculate that end-to-end collision events occur on

the order of ~ O(1075 s). This fact that diffusion-driven collision events occur

14
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on such a short timescale indicates that diffusion alone is enough to account for
collision-induced growth. Of course, at sufficiently high shear rates (e.g. > 104
s71), such as in turbulent flows, convective and diffusive timescales will become
comparable and this approximation will no longer hold; however, the majority
of rheological experiments occur below this high shear regime. We therefore can
discard the convective shear dependence in the alignment-induce growth term,

leaving us with g(v) = kgq2n?, and our overall growth rate is

Ry = n2kgo + kgan®5?, (23)

where kg, [m”s™1] is an overall alignment-induced growth coefficient.

2.4.2. Micelle breakage rate
We now turn our attention to the micellar breakage rate Rp. Similar to the
growth rate, we consider two distinct types of breakage: spontaneous breakage,

Ry s, and tension-induced breakage, Rp
Ry = Rp,s + Rpz- (24)

Spontaneous breakage, like growth, occurs in both the presence and absence
of flow and must increase with rod length. These considerations suggest a

spontaneous breakage rate of the form
Ry, = —kyoL, (25)

where kyo [s7!] is a rate constant. At equilibrium spontaneous growth and

breakage must balance such that
0= ngkgo — kaLo. (26)

This relation, along with the surfactant mass balance eq. (8), allows us to rewrite
kg0 in terms of kyg.

Now considering breakage under flow, we assume that as rods become suf-
ficiently long they will be broken down by hydrodynamic stresses. Although

this mechanism was incorporated in the original RRM, we propose here a more

15



physical grounding for the functional form of the breakage term, by specifically
taking this rate to be affected by the tensile force T' at the midpoint of a rod.
This force acts along the direction of the rod, so can be written T' = T'u. Now

we note that the stress 7™ exerted on the fluid by the rods is approximated by
7" ~ n(TLu) = n(T Luu). (27)

Here the term in parentheses estimates the force dipole exerted by a micelle on
the fluid [41]. Taking the dot product with w on both the left and right, noting
that w- 7™ - uw = wu : 7™, and solving for T yields

m

We can further simplify this expression by estimating uwu as its ensemble average
S and applying the surfactant balance nL = ngLg to find that

S:Tm
~Y

noLo

(29)

Viewing the micelle tension as increasing the likelihood that micelle will over-
come the free energy barrier to scission [36] motivates the use of an Arrhenius-

type breakage rate expression:

Ry = ki {exp( @ S:T ) - 1} , (30)

kBT moLg

where ky: [ms™!] is a tension-induced breakage coefficient and a [m] acts as
constant for micelle scission. Note that T'a has units of work, and thus one
could view a as the distance the two halves of the micelle need to be pulled
apart to break it in half. In our fitting of experimental data, we find a to be
on the order of nanometers, which is physically reasonable. This term has been
structured so that at rest, (i.e. when S : 7™ = 0), the tension-induced breakage
rate vanishes entirely. Substituting egs. (25) and (30) into eq. (24) gives our
overall breakage rate

a S:1™m
Rb = —I{/’boL — kbt |:eXp (kBTnOLO> — 1:| (31)

16
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2.4.3. Owerall length evolution
Substituting eqs. (23) and (31) into eq. (16) gives our dimensional length

evolution equation

dr
dt

~ ST
— kyon? 282 _ kol — a 1. P
kgon® + kgan®S* — kyo ke [exp (kBT oLn (32)

We can further simplify this expression using eq. (26) and the surfactant mass

balance to obtain

L L3 , 52 a S:7m
E = kbO <L2 - L) + kga(noLO) ﬁ — kbt exp kBTm —1]. (33)

We render eq. (33) dimensionless by introducing a nondimensional time ¢* =

tD, o and length L* = L/L,

a1 N\ .8 eq . m
de* :kbo<L*2_L)+kgaL*2_kbt[eXp(aS:T )11, (34)
where
Ebo kgand K a
b0 D’I‘,O ’ ga DraOLO ’ bt DT,OLO ’ “ ’I’LoLOkBT ( )

We have now introduced four dimensionless groups: kj, K, k;,, and a*. In

G0
order, kj, represents the ratio of relaxation due to spontaneous breakage and
relaxation due to diffusion (i.e. realignment), &k}, acts as a measure of the ratio
of growth due to alignment to diffusion, kj, represents the ratio of relaxation
due to tension-induced breakage and relaxation due to diffusion, and finally, a*,
as noted above, functions as a dimensionless length that must be overcome for
tension-induced scission to occur. Equations (7), (10) to (12) and (34) form a

closed set of ODEs governing the time-evolution of a dilute wormlike micelle

solution modeled as reactive Brownian rods.

2.5. Shear flow

For a simple shear velocity profile v = [¥y,0,0]T with Péclet number Pe =

4/D,.o, substituting our closure relation eq. (7) into the orientation equation

17



eq. (11) and supplying eq. (10) to account for variation in the rotational diffu-

sivity gives

oS 6 (InL*+m 1 2
S O (m) (sch - 3) S PeSuy (44450 — 5y,), (360)
as. 6 (InL*+m 1 2
S 8 (m) (syy - 3) — SPeSy (144, — Sia),  (36b)
0S.. 6 ([InL*+m 1 6
at* = _L*S <m> (SZZ — 3) — 5PeSwySzz, (36C>
0S8, 6 [InL*+m Pe 9
e (m) Sey = = 692, + Sax =4Sy = (Sea = S)?]
(36d)
Likewise we have the components of the stress tensor
TP 3 1 mPeL*?
= = 7 Tr T o 5,y (1 45, — ;
nokpT L7 <S 3) oW gy oey L 45 = Sw), - (37a)
T 3 1 mPeL*?
W_ = — S, — = —— 5., (1+4S5,, — S:z), 37b
nokpT  L* ( vy 3) + 10(In L* + m) y (1445, ) (37b)
TP 3 1 3mPeL*?
2 = — 5, — - — 5452, 37
noksl  L* < 3> 0L £ m) v (87c)
Toy o Say mPeL*?

nokgT ~ L* ~ 20(InL* +m)

In simple shear flow our length evolution eq. (34) becomes

(652, + Sea+ Syy = (Suw = Sy)*] . (374)

drL* 1 2
— = kyo ( - L*) + kgaﬁPe —kpe [l —exp (aS:T™)], (38)

dts L*2

with

. m o __
S:t" = szng + Snygy + Szz’rfz + QSggyTalzjyv

and with scalar orientation parameter

N 3 1 2 1 2 1 2 )
°T L{(Sﬂ”w) #(sw-g) +(5-3) +om

265 where Sy, + Syy +5..=1
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2.6. Uniaxial extensional flow

Following similar steps for uniaxial extensional flow with velocity profile v =

[—éx/2, —¢éy/2,¢é2]T and Péclet number Pe = ¢/D,.(, our orientation equations

are
0S5,z 6 (InL*+m 1 9
=- ——— | | Sz — 5 ) — zPeSua Sz,
ot L+ ( m > ( 3> 5
05, 6 (InL*+m 1 9 o
=— _— —=]—-=P — .
ot~ L3 ( m ) (S“ 3) 5Pe (55 = 5:2)
Likewise we have the components of the stress tensor
TP, 3 1 mPeL*?
=— | Spz — = ————5,.(95,. —5
nokpT  L* ( =3 )T (InL* +m) ™" (9522 =5),

P 3 1 mPe}? )
22— — |5, — - — (95 S..).
nokgT  L* < = 3) + 20 (In L* + m) (95%; + 52)

Our length evolution eq. (34) in uniaxial extension becomes
dL* 1 . V6 2 .
%:kbo <L*2—L>+kzga2L*zPe—kbt[l—exp(aS:T )],

with
S 7" = Sputhy + Syyth, + ST

z

and with scalar orientation parameter

s [3 (st s (o) (Y

where symmetry requires Sy, = Sy, = (1 —5,,)/2.
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3. Results and Discussion

The organization of this section is as follows: in section 3.1 we characterize
the effects of the four dimensionless parameters in the RRM-R on steady shear
flow and show that by varying the parameters we can capture many key fea-
tures associated with WLM solution rheology. In section 3.2 we fit our model to
experimental data reported in literature for steady shear flows and demonstrate
that the model is able to predict the behavior of both dilute and semi-dilute
WLM solutions, as well as the behavior of both cationic and non-ionic surfac-
tant solutions. We then turn our attention to transient flows in section 3.3 by
characterizing the predictions of the RRM-R in startup of steady shear flow; we
further show excellent agreement in simultaneously fitting our model to both
steady and transient shear experimental data. Finally, in section 3.4, we briefly
show that the RRM-R is able to suitably predict the behavior of steady exten-

sional flows of wormlike micelle solutions.

3.1. Steady shear: parameter dependence

In this section we survey the behavior of the model over a wide range of
parameters. Our aim here is not to capture specific experimental observations —
that will be done in the subsequent sections. We have combined the discussions
of the normalized micelle contribution to the viscosity (7m/7m,0), fig. 1, and
normalized micelle length (L/Lg), fig. 2, as functions of Péclet number (Pe =
4/D,.0) as they tend to show nearly identical parameter dependence. Note that
for convenience we have dropped the asterisks from all dimensionless parameters
for the remainder of this manuscript. Figures 1(a) and 2(a) show the effect
of the exponential breakage parameter a with kyy = 1074, kgo = 500, and
ky: = 10; we see that increasing the value of a decreases the magnitude of
shear-thickening and micelle elongation and as a is increased beyond some limit
prescribed by a combination of the other three parameters (here a 2 10), the
suspension transitions to a purely shear-thinning fluid. In this shear-thinning

regime (a = 25, 50) we see that the suspension undergoes distinctly two thinning
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Figure 1: Normalized micellar viscosity vs. shear rate in simple shear flow: (a) effect of a, (b)

effect of kga, (c) effect of ko, and (d) effect of ky; with m =3 and D, o = 1.

regimes separated by a plateau that extends over almost a decade of shear rates.
This result reflects the fact that two mechanisms for shear-thinning exist in the
model: alignment of the rods with flow and tension-induced rod breakage. To
the best of our knowledge this plateau behavior that extends into the high-shear
rate regime is not typically observed in experiments; however, a similar plateau
in the intermediate-shear rate regime has been observed[42], though at high
enough shear rates this eventually gives way to shear-thinning.

In regimes where the suspension shear-thickens (a < 10), the viscosity can
be seen to thicken to over 100 times its zero-shear value and the micelle length
increases by almost 50 times its equilibrium value, consistent with experimen-
tal observations of flow-induced structures in dilute wormlike micelle solutions

[3, 43]. This regime contains a significant transition where values of a below
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Figure 2: Mean micelle length normalized by equilibrium length vs. shear rate in simple shear
flow: (a) effect of a, (b) effect of kga, (c) effect of kpg, and (d) effect of kp; with m = 3 and
Dyo = 1.

some threshold (here a2 4) exhibit reentrant behavior (i.e. multivalued stress-
shear rate curve). In this reentrant region the fluid can take on three steady
state stresses for a given shear rate; all three of the stress values are accessible
via a strain-controlled experiment, whereas a shear rate-controlled experiment
will exhibit hysteresis and jump between the minimum and maximum stresses,
leaving the intermediate stress inaccessible. Finally, we see that for small enough
values of a (< 1) the viscosity and length plateau at high Péclet numbers. Intu-
itively we expect high shear rates and stresses to break apart micelles, leading to
lengths (and consequently viscosities) that asymptotically approach zero. While
this may be nonphysical behavior, it is easily avoided by ensuring a exceeds a

necessary threshold.
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Figure 3: Normalized first normal stress difference vs. shear rate in simple shear flow: (a)

effect of a, (b) effect of kgq, (c) effect of kpg, and (d) effect of ky, with m = 3 and D, o = 1.

Figures 1(b) and 2(b) show the effect of the alignment-induced growth pa-
rameter kqy, with a = 2.5, kyo = 1074, and kp; = 10. The effect of increasing kga
is nearly equivalent to decreasing a, where larger values of kg, (and smaller val-
ues of a) induce stronger shear-thickening and micelle elongation. At k,, = 5000
we see that the viscosity increases to nearly 1000-times its zero-shear value; we
also see for this parameter value that the viscosity and length plateau at high
Péclet numbers, which although nonphysical can be avoided by tuning the re-
lationship between a and kgq. The effects of the breakage coefficient ky, are
shown in figs. 1(d) and 2(d) and very nearly mirror the effects of a so we will
not discuss them in greater detail.

The most unique parameter effect can be seen by varying the spontaneous

breakage parameter kpo in figs. 1(c) and 2(c). We see that increasing ko in-
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creases the critical shear rate for shear-thickening and elongation to occur, but
not necessarily the magnitude of thickening or extent of elongation. Recalling
that kpo describes the ratio of relaxation due to breakage to relaxation due to
rotational diffusion, this increase in the critical shear rate can be understood
by the fact that larger values of kpg correspond to a greater propensity for un-
dergoing a breakage event rather than rotation, and thus a system will prefer
to relax by breaking rather than aligning with the flow. An equivalent effect
is achieved by decreasing the rotational diffusion constant D, o, which acts to
restrict the rods from aligning and in turn restricts micellar growth. The effect
of kpp on the magnitude of thickening and elongation is somewhat complicated:
at large values of kg, increasing kyo further acts to decrease the magnitude of
thickening, while at smaller values (kyo < 1072) there is no effect on the mag-
nitude of thickening, only the critical shear rate. Notably, different behavior
due to variations in kg can only be seen at low shear rates, while at high shear
rates all curves collapse onto identical shear-thinning profiles. This collapse is
the result of increased stress that drives the breakdown of elongated micellar
structures.

A recent study by Tamano et al. [35] that coupled a fluidity equation to
well-known constitutive equations (e.g. Giesekus and FENE-P) to produce both
thinning and thickening behaviors (see section 1) identified a nearly identical
effect when varying their parameter Rpg. Similar to kyg in the RRM-R, Rpq
represents the ratio of the micelle breakdown timescale (A\q) to the relaxation
time of the fluid (A). The fact that these two parameters, which are intended to
represent equivalent ratios but exist in two distinct models, yielded extremely
similar behavior is quite interesting and worthy of further exploration.

All parameter regimes in fig. 1, excluding curves that show high shear-
plateaus, undergo the same power-law thinning 7 oc 4™ with n = —2/3 at high
shear rates. This is in contrast to the high-shear behavior of simple Brownian
rods of infinite aspect ratio, which exhibit power-law thinning with n = —1/3
[44, 45]. At finite aspect ratio the viscosity plateaus as Pe — oo. These behav-

iors are not well-captured using closures, because while the rods spend most of
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their time aligned with the flow, the high-shear viscosity is dominated by the
stress arising during the infrequent flipping of the rods, an effect not accounted
for in closures. (The n = —2/3 scaling would be correct for the simple rigid
rod case if the stress were dominated by the aligned rods.) We are unaware of
experimental or modeling results that indicate what the correct scaling behavior
should be at very high Pe. We note that we are able to achieve good agreement
with the degree of shear thinning found in the experiments shown below.
Figure 3 shows the role of the four parameters on the normalized first normal
stress difference Ni/nokpT, where Ni = 74, — 7y, of the suspension as a
function of Péclet number. Figures 3(a) and 3(d) show that increasing a and
ky: act to reduce Ny and transition the curve away from reentrant behavior. In
fig. 3(b) we have that opposite effect, increasing kg, increases Ny and develops
a reentrant profile. Figure 3(c) shows that increasing ko forces the increase
of the normal stress difference to higher Péclet numbers, consistent with fig. 1.
This plot clearly shows two power-law relationships between the first normal
stress and Péclet number, where at low-to-intermediate shear rates Ny o Pe?

1/3

which transitions at high shear rates to Ny o« Pe™/°. This is again in contrast

to high-shear behavior of non-reactive rods which demonstrate a Ny o Pe?/?
relationship [45]. As discussed above, the origins of this disagreement are as
of yet not fully understood but likely stem from either (1) higher-order stress-
length coupling or (2) closure approximations. While this power-law relationship
is more difficult to observe in figs. 3(a), 3(b) and 3(d), we can see traces of it
for 2.5 < a <25, 100 < kg < 1000, and 10 < ky; < 100. This new formulation
of the RRM, like the original, is able to capture non-zero second normal stress
differences No; although we do not show plots here, N> follows the same trends

as IV but is negative and roughly two orders of magnitude smaller, which is

consistent with other literature reports for viscoelastic fluids [46].

8.2. Steady shear: experimental comparison

In this section we turn to comparisons between our model and literature

results for steady shear flow. Model parameters were obtained by generating
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roughly 74 steady state flow curves (seven different values of each of the four pa-
rameters) and plotting the experimental data of interest on each of these curves;
we inspected each curve to obtain an approximate ‘best fit’ and then fine-tuned
this set by repeating this process with a range of parameters within a few per-
cent of the ‘best fit’ values. We then took the new ‘best fits’ and performed
small tweaks to obtain our final fit parameters. We should also note that deter-
mination of ideal fitting parameters for the RRM-R is a nonlinear optimization
problem and we therefore cannot guarantee the existence of a unique global
minimum (i.e. a unique parameter set). Although we do emphasize that the
highly idealized nature of our model means that we should not attach too much
physical significance to the values of model parameters, we do see consistency
that at least suggests parameters are relatively constant for a given solution
composition (e.g. CTAB/NaSal), with the greatest deviations occurring in the
most concentrated (semi-dilute) solutions. In all figures showing viscosity, we
are showing the total solution viscosity (7 = ns-+nm,) where the solvent viscosity
is taken to be that of water.

The first data set we consider is for a CTAB/NaSal solution in water, from
Liu and Pine [47]. Figure 4(a) shows fits of our model to steady shear viscosity
as a function of shear rate for increasing concentrations. Model parameters are
shown in table 1. The measurements were made using a double-wall Couette
rheometer with an inner cylinder diameter of 25 mm and gap width of 1 mm.
We find strong agreement between fits and experimental data, particularly in
capturing the onset of shear-thickening and transition to shear-thinning. We
are notably unable to capture the weak initial shear-thinning at low shear rates
that occurs in semi-dilute surfactant solutions (> 500 ppm); shear-thinning in
this regime is attributed to disruption of micellar networks that can form at
equilibrium, a phenomenon that is not considered in our treatment.

Figure 4(b) shows model predictions for the normalized mean micelle length
as a function of shear rate. We find that our model predicts that the mean
micelle length increases by about two times in the most concentrated solution

and almost four times in the most dilute. While length was not measured
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Figure 4: Fits (lines) to experimental data of (a) shear viscosity vs. shear rate and (b) mean
micelle length vs. shear rate. Experimental data corresponds to solutions of 250 ppm, 500
ppm, and 1000 ppm CTAB/NaSal in water obtained by Liu and Pine [47]. Corresponding

parameter values are shown in table 1.

in the study by Liu and Pine, these length changes are consistent with other
experimental results [7].

We also make comparisons to data from [48] for both cationic and non-ionic
wormlike micelle solutions. Figure 5 shows fits to experimental steady shear
viscosity as a function of shear rate data, as well as micelle length predictions.
Red data corresponds to a solution of 1000 ppm cationic CTASal in water,
measured in a low-shear, circular Couette viscometer at 20 °C with a gap width
of 0.320 mm [48]. Blue and purple data correspond to solutions of 1000 ppm and
1500 ppm non-ionic ODMAOQO in water, respectively, measured with a capillary

viscometer with inner diameter 5.045 mm [49]. Our model is able to capture the
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Table 1: Dimensional RRM-R parameters for experimental data (fig. 4) of CTAB/NaSal

solutions [47].

Composition CTASal CTASal CTASal

¢ [ppm] 250 500 1000

kyo [s7Y] 1.4 x 1072 2.8 x 1072 6.3 x 1072
kg [pm7] 6.1 x 1076 3.9 x 1076 2.0 x 1076
Kpy [m s™1] 1.1 x107* 1.2 x 104 8.1x 1075
a [nm] 1.3 1.6 2.2

Dyo [s7Y] 55 55 25

strong shear-thickening and -thinning regimes, particularly that of the cationic
solution. Although we see some difficulty in capturing the zero-shear viscosity
of the cationic solution (red), this difference less than 1 mPa s and is thus
relatively insignificant. We note that the work by Ohlendorf and coworkers
[48] shows markedly different behaviors for a given wormlike micelle solution
by simply changing the gap width of the circular Couette device, indicating the
possible presence of instabilities such as vorticity banding.

It is worth drawing attention to model predictions for the rotational diffusion
coefficient. Looking at tables 1 and 2, we see that predictions for D, o range
from ~ 10s™! to ~ 1000s~ ', whereas for a typical micelle length of a few
hundred angstroms eq. (10) predicts values of D, on the order of 10%s™!.
Further, for rigid rods we can relate the relaxation time of the bulk fluid to the
rotational diffusivity by A = 1/6D,.¢, where for wormlike micelle solutions A is
typically on the order of 1 — 10" s; we can then see that our predictions of D, o
yield relaxation times that fall significantly below experimental reports. This
discrepancy between experimental measurements of WLM solution relaxation
times and theoretical predictions using eq. (10) and based on the framework
proposed by Cates and Turner — shear-thickening occurs when the shear is
strong enough to overcome rotational diffusion — is well-established in literature
[50, 51]. Many studies have attempted to address this inconsistency; notably,

Barentin and Liu [52] proposed a mechanism in which micelles form networks of
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Figure 5: Fits (lines) to experimental data of (a) shear viscosity vs. shear rate and (b) mean
micelle length vs. shear rate. Experimental data corresponds to solutions of (red) 1000 ppm
CTASal in water obtained by Ohlendorf et al. [48], and (purple) 1500 ppm and (blue) 1000
ppm ODMAO in water obtained by Tamano et al. [49]. Corresponding parameter values are

shown in table 2.

bundles with some success. In our model, there is strong reason to believe that
the disparity between predictions and experimental measurements arises from
the neglect of charge and hydrodynamic interactions, as well as certain collision
mechanisms. In particular, the assumption that collisions are primarily end-
to-end in nature ignores the possibility of ‘phantom crossings’ that have been

observed in dissipative particle dynamics studies [53].
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Table 2: Dimensional RRM-R parameters for experimental data (fig. 5) of CTASal and
ODMAO solutions obtained by [48] and [49], respectively.

Composition CTASal ODMAO ODMAO
¢ [ppm] 1000 1000 1500

kpo [s7Y] 1.2 2.5 x 1071 1.5 x 1071
kga [pm7] 8.6 x 1076 2.2 x 1075 7.8 x 1076
pe [m s™1] 2.0 x 1073 1.1 x 1074 6.8 x 1072
a [nm] 6.2 1.8 2.8

Do [s71] 800 50 30

3.8. Startup of steady shear

One of the primary pitfalls of the previous RRM formulation is its difficulty
in capturing the transient dynamics of dilute surfactant solutions. Accurately
describing transient dynamics is crucial for studying complex and turbulent
flows. Additionally, it is important to note that properly fitting experimental
data requires both steady and transient data. The reason for this requirement
is that at steady state, eq. (34) can be multiplied by any positive scalar value
and still produce the same steady shear viscosity vs. shear rate curve. However,
multiplying by a scalar does alter transient data, particularly the induction
times (tinqa) and overshoots seen in startup of steady shear flows. Thus, if we
wish to completely describe dilute WLM solutions, we must be able to accurate
predict both steady and transient data in tandem.

We assess the capabilities of the model at capturing transient dynamics by
evaluating its behavior in startup of steady shear flow. An initially isotropic
fluid at rest is subjected starting at t = 0 to a constant shear rate 4. We use an
explicit, fourth-order Runge-Kutta scheme implemented in Matlab (ode45) to
time-step eqs. (36) to (38) and (40). In evaluating the success of the RRM-R at
predicting transient dynamics, we are looking particularly at induction times,
the time required for stress growth to occur, as well as stress overshoot, where
the stress (and viscosity) is seen to overshoot its steady state value.

Figures 6(a) and 6(b) show the time- and applied shear rate-dependent vis-
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Figure 6: Shear viscosity (normalized by zero-shear viscosity), ensemble average orientation
components, and normalized length vs. dimensionless time in transient startup of steady shear
flow for a range of applied Péclet numbers. Both sets of parameters in (a)-(e) and (b)-(f) yield

equivalent steady states but varying transient behavior.
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cosity as a function of dimensionless time for three decades of Péclet numbers.
Viscosity is normalized by the steady zero-shear viscosity, which importantly
is not equal to the viscosity at ¢ = 0 (discussed in detail below). Darker lines
corresponds to larger Péclet numbers and the black dotted line corresponds to
n(t,%)/no = 1. We see that there are distinctly two thickening regimes present;
the first, which is identical for all applied shear rates, occurs at very short times
and is due to near-equilibrium alignment of rods. This slight thickening of the
viscosity is caused by weak alignment of rods in the S,, direction, as seen in
figs. 6(c) and 6(d); this alignment is also seen in purely (i.e. non-reactive) Brow-
nian rod suspensions and can be found analytically for startup of steady shear
flow by solving for the near-equilibrium behavior of the rods. I.e. to leading

order at small Pe, the transient viscosity is given by

% nOk'BT ( —6t*>
m(t°) = 4-3 . 46
m(t") = o5 (430 (46)
We can clearly see for short times 7, (t* < 1) = gg%ff which increases to
N (t* — 00) = 21”5“5??. We can also verify this by comparing fig. 6(c) and

fig. 6(e), in which growth in S, can be seen occurring prior to elongation of
micelles.

The second thickening regime (t* = 1) can be attributed to elongation of
the mean micellar length in tandem with rod alignment. We clearly see that
the induction time ¢;,q, qualitatively defined here as the time for viscosity (and
therefore stress) growth to occur, decreases with increasing shear rate, a trend
that has been observed in experiments of WLM solutions [33, 54]. In fact, as
we will demonstrate later on, a distinctive power-law relationship between ti,q
and the applied shear rate 7o can be observed, ting < Vo ", where 1 < n < 3,
which again agrees well with experimental observations in literature [33].

One feature of transient dynamics of dilute wormlike micelle solutions, par-
ticularly in startup of steady shear flow, is a viscosity (or stress) overshoot, in
which the viscosity of the solution is observed to exceed its steady state viscosity
before settling to the steady state value, oftentimes after a number of decaying

oscillations [55]. We can see slight instances of this overshoot in fig. 6(b), par-
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Figure 7: Shear viscosity (normalized by zero-shear viscosity), ensemble average orientation
components, and normalized length vs. dimensionless time in transient startup of steady shear

flow for a range of applied Péclet numbers clearly demonstrating stress-overshoot phenomenon.
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ticularly for Pe > 107!, but it is more clearly seen in fig. 7(a) where we have
increased the relative growth parameter kg4, by a factor of four compared to
fig. 6. By ‘relative’ we mean in relation to kyg and kp;. Comparing fig. 7(a) with
fig. 7(b) and fig. 7(c), we see that this overshoot is solely a product of ‘over’-
alignment in the S, direction as there is no apparent overshoot in the mean
micelle length, though notably in regions where 7,, and S, are observed to
overshoot there is a distinct change in the slope of L* vs. t*. It is also interest-
ing that the micelle length remains a monotonic function of time even following
the viscosity overshoot, whereas n and S;, do not. Stress overshoot also occurs
in simple (i.e. constant length) Brownian rod suspensions and thus variations in
micelle length are not necessary for an overshoot to occur. The monotonicity of
the micelle length curve highlights the fact that micelle alignment and micelle
elongation, although interrelated, are distinct phenomena.

We now turn from general features of the model to specific comparisons with
experimental data that provides both steady and transient data. Figure 8 shows
the (a) steady state shear viscosity and (b) micelle length as a function of shear
rate for 0.05wt% and 0.1wt% CTAVB in water solutions obtained by Landazuri
et al. [33]. Fits (lines) using the reformulated RRM are shown for steady shear
viscosity. Table 3 shows the dimensional model parameters. We see that the
model is well-suited for capturing steady shear viscosity and that predictions
for length elongation are about 3.5 times the equilibrium length. Figure 9(a)
shows the corresponding predictions for the induction time (¢inq) as a function of
applied shear rate for the same data sets [33]. Fits are shown as lines. Note that
we have taken the induction time to be defined as the time for stress growth
to occur after the viscosity increases to the steady state zero-shear viscosity,
otherwise all curves would yield the same ti,q. As discussed previously, we can
see a strong power-law relationship in fig. 9(a) in which tj,q < 7o~ ". We find
for the 0.05wt% CTAVB solution that n = 2.05 and for the 0.1wt% we find
n = 2.20. The agreement between model predictions and experimental data
for both steady and transient flows is quite good, and underscores the ability

of our reformulated model to capture the dynamics of dilute wormlike micelle
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Figure 8: Fits (lines) to experimental data (symbols) of (a) shear viscosity vs. shear rate and
(b) mean micelle length vs. shear rate. Experimental data corresponds to solutions of (green)
0.05wt% and 0.1wt% CTAVB in water obtained by Landazuri et al. [33]. Corresponding

parameter values are shown in table 3.

solutions. Figure 9(b) shows the RRM-R predictions for transient viscosity
growth as a function of time which were used to generate the tj,q vs. applied
shear rate plot (fig. 9(a)); explicit experimental data of viscosity (and stress)

growth as a function of time were not available for this data set.

3.4. Uniaxial extension: experimental comparison

Having verified that our model is well-equipped to capture experimental re-
sults of dilute WLM solutions in both steady and transient shear flow, we turn
our attention to extensional flows. Turbulent flows are dominated by exten-

sion and thus accurate prediction of extensional flow behavior is crucial if we
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Table 3: RRM-R parameters for experimental data (fig. 8 and fig. 9(a)) of CTAVB solutions

[33].
Composition CTAVB CTAVB
¢ [ppm] 500 1000
ko [s71] 1.9 x 1073 3.6 x 1073
kgq [pm”] 4.3 x 1076 1.9 x 107°
kpt [m s~ 22x 1074 2.3x 1073
a [nm] 4.5 5.5
Dyo [s7Y 120 140

m CTAVB 0.05ut%
N N A CTAVB 0.1uwt%
10% \ [N
\ N
N w,
\. [N
— A [ 3
@ 1o . ~
= A
— N, >
2 - ~
R=] 1 8
+ A A .
10° A S
<
N
[]
‘0.1 N ~
107! 10° 10
< -1
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Figure 9: (a) Fits (lines) to experimental data of transient shear induction time vs. shear

rate for solutions of 0.05wt% and 0.1wt% CTAVB in water and (b) corresponding transient

viscosity growth vs. time response for the 0.05wt% solution. Experimental data was obtained

by Landazuri et al. [33]. Corresponding parameter values are shown in table 3.
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Figure 10: Fits (lines) to experimental data of extensional viscosity vs. strain rate for dilute
(red) and semi-dilute (blue) CPyCl/NaSal solutions undergoing steady uniaxial extensional

flow [57]. Corresponding parameter values are shown in table 4.

aim to capture the mechanisms associated with surfactant-additive drag reduc-
tion in these flows [56]. There are limited results of steady extensional flows
of wormlike micelle solutions, primarily owing to the difficulty in performing
these experiments. Walker and coworkers used an RFX opposed jet device to
measure the extensional viscosity of semi-dilute concentrations of CPyCl/NaSal
solutions in brine [57]. These solutions are clearly not dilute, a fact that can
easily be gleaned by noting that the zero-strain viscosities far exceed the vis-
cosity of water. Fits to the experimental data are shown in fig. 10, while model
parameters are shown in table 4. As we can from fig. 10, the RRM-R is able
to accurately predict the strain-hardening and -softening behavior observed in
extensional flows of WLM solutions. Notably we have some difficulty in fitting
the high-strain rate experimental data, which can likely be attributed to the
non-dilute nature of the solutions; some fitting difficulty may also arise from
the presence of pre-shear and/or micellar slippage effects that can often occur
in these devices [58]. There has recently been significant interest in transient
extensional experiments of dilute WLM solutions, notably capillary breakup
extensional rheology (CaBER). We have performed preliminary work that sug-
gests the RRM-R is well-suited for modeling CaBER and similar experiments,

and we expect to communicate these findings in future work.
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Table 4: RRM-R parameters for experimental data (fig. 10) of CPyCl/NaSal solutions [57].

Composition CPyCl CPy(Cl

c [wt%] 1.4 4.0

koo [s71] 0.68 0.50

kgo [pm7]  22x 1071 7.0 x 1071
kp [ms™ 23x107° 2.0x107*
a [nm] 1.9 x 103 7.0 x 102
Do [s7Y 15 100
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4. Conclusions

We have presented a reformulation (RRM-R) of the reactive rod constitutive
model (RRM) that treats dilute surfactant solutions forming wormlike micelles
as a suspension of rigid Brownian rods undergoing reversible scission and growth
in flow. The model couples equations governing the ensemble average orienta-
tion, stress, and length of micelles to produce a dynamic set of equations allow-
ing for the collective micelle length to elongate and breakdown. This framework
produces steady shear viscosity vs. shear rate curves that exhibit drastic shear-
thickening and shear-thinning regimes. Fits with the RRM-R to experimental
data yields excellent agreement. The model depends on four dimensionless pa-
rameters describing: the spontaneous combination and breakdown of micelles
(kgy), growth due to alignment and collision of micelles (k},), and breakdown
of micelles by tensile stresses (kj, and a*). Certain combinations of parame-
ters, particularly those where k7, is large and/or kj, and a* are small, produce
reentrant (i.e. multivalued) steady state stress vs. shear rate curves, which is a
necessary condition for a vorticity banding instability; this reentrant behavior
indicates that the RRM-R is well-suited for studying this well-documented but
poorly understood instability. Other parameter spaces, in which kj, is small
and/or ki, and a* are large, do not undergo shear-thickening but rather show
purely shear-thinning behavior. Although our model is intended to capture the
behavior of dilute wormlike micelle solutions, we have shown that it is able to
predict, at least partly, the behavior of semi-dilute solutions.

The proposed model is also able to predict transient flow dynamics, in par-
ticular startup of steady shear flow, that well-aligns with observations seen in
literature. The model predicts a power-law relationship between induction time
and applied shear rate, which has been reported by numerous literature sources.
The ability of the model to predict steady and transient flow behavior in tan-
dem indicates that this constitutive formulation can be used in fluid-dynamics
studies of complex flow behavior and instabilities. There is currently a limited

understanding of dilute wormlike micelle solutions in turbulent flows and the
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manner in which they are able to achieve strong drag reduction; further, there
has been limited research into the numerous instabilities, particularly the vortic-
ity banding instability, present in dilute surfactant solutions. This model takes

s a large step towards uncovering these as-yet poorly understood phenomena.
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