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Abstract—Online social networks have become major battlegrounds for political campaigns, viral marketing, and the dissemination of
news. As a consequence, “bad actors” are increasingly exploiting these platforms, which is a key challenge for their administrators,
businesses and society in general. The spread of fake news is a classical example of the abuse of social networks by these bad actors.
While some have advocated for stricter policies to control the spread of misinformation in social networks, this often happens in
detriment of their democratic and organic structure. In this paper, we aim to limit the influence of a target group in a social network via
the removal of a few users/links. We formulate the influence limitation problem in a data-driven fashion, by taking into account past
propagation traces. More specifically, our algorithms find critical edges to be removed in order to decrease the influence of a target
group based on past data. The idea is to control the diffusion processes while minimizing the amount of disturbance in the network
structure. Moreover, we consider two types of constraints over edge removals, a budget constraint and also a, more general, set of
matroid constraints. These problems lead to interesting challenges in terms of algorithm design. For instance, we are able to show that
influence limitation is APX-hard and propose deterministic and probabilistic approximation algorithms for the budgeted and the matroid
version of the problem, respectively. Experiments show that the proposed approaches outperform several baselines.

Index Terms—Influence control, network design, combinatorial optimization, approximation

1 INTRODUCTION

NLINE social networks, such as Facebook and Twitter,

were popularized as platforms for sharing entertaining
content and maintaining friendship. However, they have
been quickly transformed into major battlegrounds for
political campaigns, viral marketing, and the dissemination
of news. With this shift, the increase in the number of “bad
actors”, such as tyrannical governments and spammers,
exploiting these platforms has become a key challenge for
their administrators, businesses and society in general.

A questionable approach to control the diffusion of mis-
information in social platforms is via stricter laws and regu-
lations. This type of control often happens in detriment of
the democratic and organic structure that are central to
these platforms. Instead, a more sensible approach is to
limit the impact of bad actors in the network while minimiz-
ing the disruption of its social structure.

In this paper we formalize the influence limitation problem.
In particular, we focus on modifying a network via the
removal (or blocking) of a few edges or nodes. These modi-
fications can be implemented by social network administra-
tors or induced by other organizations or governments via
advertising campaigns. Although we focus on influence
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limitation, our problem is also relevant from the perspective
of an agent that aims to maintain the influence of a set of
users. Nodes/edges discovered by our algorithm are those
that should be protected by such an agent. Similarly, while
we focus on the edge version of the problem, our proposed
techniques also apply to the node version.

A well-known major challenge in studying influence is
its causal nature. We say that person A influenced person B
if A induced B’s future behavior [1], [2]. Thus, limiting the
influence of A is to reduce the extent in which she can affect
the behaviors of others around her. While the most accurate
assessment of influence should be based on controlled
experiments, running them is often expensive and even con-
troversial [3], [4], [5]. Instead, existing work on influence
limitation assume that the diffusion process follows classi-
cal models—e.g., Independent Cascade (IC), Linear Thresh-
old (LT), and Susceptible-Infected-Recovered (SIR)—that
are based on strong premises and require computationally-
intensive simulations [6]. Instead, we propose a data-driven
approach for influence minimization based on historical
data [7].

Another important limitation of existing studies on influ-
ence limitation is that they often assume budget constraints
[8], [9]—i.e., a fixed number of nodes or edges can be
blocked in the network. However, budget constraints have
undesired effects in many settings. For instance, they might
disconnect or disproportionately target particular commu-
nities in the network. Such effects are in conflict with impor-
tant modern concerns in algorithm design, such as fairness
[10]. We address this issue by studying the influence limita-
tion problem not only under a budget constraint but also
under a more general set of matroid constraints [11], [12].

This paper demonstrates how the formalization of the
influence limitation problem under budget and matroid
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constraints leads to interesting challenges in terms of algo-
rithm design. Different from the budget version, for which
we propose a simple greedy algorithm, the matroid version
requires a more sophisticated solution via continuous relax-
ation and rounding. Yet, we provide a theoretical analysis
of the performance of both algorithms that is supported by
the fact that the objective function of the influence limitation
problem is submodular. Moreover, we provide strong inap-
proximability results for both versions of the problem.
Our contributions are summarized as follows:

e We investigate the novel data-driven influence limi-
tation problem via node/edge removals. We show
that the edge version is more general and covers the
node version of the problem.

e We study our problem under both budget and mat-
roid constraints, discussing how these affect algo-
rithmic design.

e We prove that the influence limitation problem is
APX-hard and propose constant-factor approxima-
tions for both versions of the problem—deterministic
and probabilistic aproximation for the budget and
matroid version, respectively.

e We show that our methods outperform baseline sol-
utions by up to 35 percent while scaling to large
graphs.

Organization. Section 2 introduces the credit distribution
model and the influence limitation problems under two dif-
ferent constraints (budget and matroid). In Sections 3 and 4,
we prove the submodularity of the objective function and
the APX-hardness of both problems. Sections 5.1 and 5.2
introduce efficient algorithms for influence limitation. In
Section 6, we demonstrate the effectiveness of the proposed
solutions in an experimental evaluation. Most of the proofs
are given in the Appendix, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TKDE.2020.3016293.

2 INFLUENCE LIMITATION

We start with a description of Credit Distribution Model and
formulate the influence limitation problems in Section 2.2.
Table 1 contains the frequently used symbols.

2.1 Credit Distribution Model
The Credit Distribution Model (CDM) [7] estimates user influ-
ence directly from propagation traces. Its main advantages
compared to classical influence models (e.g., Independent
Cascade and Linear Threshold [13], [14]) is that it does not
depend on computationally intensive simulations while also
relying less on the strong assumptions made by such models.
Let G(V,E) and «(User, Action,Time) be a directed
social graph and an action log respectively. A tuple (u,a,t)
in action log  indicates that user u has performed action a
at time ¢. Action a € .~ propagates from node u to node v iff
u and v are linked in social graph and u performed action a
before v. This process defines a propagation (action) graph of
a as a directed acyclic graph (DAG) G(a) = (V(a), E(a)).
The action log « is thus a set of DAGs representing different
actions” propagation traces. For a particular action «, a
potential influencer of a node or user can be any of its
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TABLE 1
Frequently Used Symbols

Symbols Definitions and Descriptions

G(V,E) Given graph (vertex set V and edge set
E)

X Target set of source nodes

c The set of candidate edges

k Budget for BIL

G(a) = (V(a),E(a)) Action/propagation graph (DAG) for
action a

T'yu(a) Credit of node v for influencing v in
G(a)

I'xu(a) Credit given to set X for influencing u
in G(a)

Ye(@) = v (a) Direct credit for v to influence u via e =
(v,u)

wav It implies there is a path from u to vin
G(a)

A(B) The change in credit due to the removal
of set B

b Maximum #edges removed from a
node in ILM

m The vector with edge membership
probabilities

1@ The continuous extension of A(B)

T #iterations in CG algorithm

s #samples applied by CG algorithm

DI(B) Decrease in influence after removal of

set B

in-neighbours. We denote N, (u,a) = {v|(v,u) € E(a)} as
the set of potential influencers of u for action @ and
din(u,a) = |Nin(u, a)|. When a user u performs action a, the
direct influence credit, denoted by y,,(a), is given to all v €
Nin(u,a). Intuitively the CDM distributes the influence
credit backwards in the propagation graph G(a) such that
not only u gives credit to neighbours, but also in turn the
neighbours pass on the credit to their predecessors. The
total credit, I',,(a) given to a user v for influencing u via
action a from v to w in the propagation graph G(a) is:

Fv,u(a) = Z FU-,’IL'(a)'y(w,u)(a)' @

weN;, (u,a)
Similarly, one can define the credit for a set of nodes X,

1 ifueX

Zwel\.",,-”(uﬂ,) FX{UJ (a)'y(’w.u) (CL) otherwise’

Ix.(a) = {

The influence o.4(X) is the credit given to X by all vertices:

1
oG, X) =Y — > Txula). @)
ueV | ’ “| ac vy
Influence probabilities y, ) are computed using well-

known techniques [15]. However, our theoretical results do
not depend on how y is computed. We study influence min-
imization in two settings: The first is budget constrained
optimization, where a limit on the number of edges to be
modified is set as a parameter. The second takes into
account a more general class of constraints that can be
expressed using independent sets.
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3
(b) G(a)

(a) Social Graph, G (c) Modified: G™ (a)

Fig. 1. lllustrative example of a social graph and CDM with the corre-
sponding credits over the edges.

2.2 Problem Definitions

Our goal is to remove a few edges B C E such that the influ-
ence of a target set of users X is minimized according to the
CDM. The credit of target user v for influencing user u in
G(a) is computed based on Equation (1). Consider P (v, u) to
be the set of paths from v to u where each path p=
{e1,€e9,...,¢;} is such that e; = (v,7), ¢, = (v/,u), and ¢; €
E(a) for all i and «',v" € V(a) — {v,u}. We use y(,,(a) or
Y.(a) to represent the credit exclusively via edge e = (v', w)
for influencing w in G(a). Therefore, Equation (1) can be
written as:

Fyu(a) = Z Hye(a). (3)

peP(v,u) e€p

A similar expression can be obtained for a target set X:

Z H Ve (a)a 4)

pEP(X u) e€p

FX,u(a) =

where P(X, u) contains only the minimal paths from v € X
to u—i.e., Api, p; € P(X,u) such that p; C p;.

We apply Equation (4) to quantify the change in credit
for a target set of nodes X and a particular action a after the
removal of edge e according to the credit distribution
model:

Sa({e}) = Z FXﬂU(a) -

weV

Z H ya(a)|. %)

peP(Xw)e¢ peep

An edge deletion potentially blocks a few paths from v,
reducing its credit (or influence). We use G™ = (V, E — B)
and G™(a) to denote the graph and the propagation graph
for action a after the removal of edges in B, respectively.
The following sections introduce the budget and matroid
constrained versions of the influence limitation problem.

2.2.1 Budgeted Influence Limitation (BIL)
We start formalizing the budgeted version of our problem:

Problem 1 (Budgeted Influence Limitation (BIL)). Given a
directed graph G(V, E), an action log v, a candidate set of
edges C, a given seed set X, and an integer k < |C|, find a
set B C C C E of k edges such that 6.,(G™, X) is minimized
or, A(B)=o0,(G,X)—04(G",X) is maximized where
G" = (V.E\ B).

Example 1. In Fig. 1, we assume the candidate set C' =
{(t,z), (y,u), (x,u)}, k=2, and X ={w,v}. In G(a)
(Fig. 1b), 0.4(G,X) =4.21 and the deletion of (t,z) € C
will not change the influence of X. The removal of
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(a) BIL

(b) ILM

Fig. 2. We perform our methods for (a) BIL (Problem 1) and (b) ILM
(Problem 2) on the Zachary’s Karate network with | X| = 5,k = 9. Square
(red) nodes are in the target set, | X|, and dotted (red) edges are in the
solution set. The edges are incident to few nodes in the solution for BIL,
being strongly biased towards a small set of nodes. For ILM, we have
considered b = 2, which leads to a solution with a more uniform set of
edges.

(y,u) and (z,u) (Fig. 1c) will make o.,4(G™(a),X) =
Fyo4+Txw+Txs+Txy+Tx, =1+1+05+(0.2+
0.2) +1=3.9.

The BIL problem also generalizes the node version of the
influence minimization problem—i.e.,, where nodes are
removed instead of edges. The construction is as follows:
Given a node version of the problem, a candidate node v is
divided into two nodes u;, and u,,; associated with the incom-
ing and outgoing edges of u, respectively. A directed edge
from w;, to u,, will be added to the candidate edge set in BIL
for the corresponding candidate node v in the node version.

Theorem 1. The BIL problem is NP-hard.

BIL assumes that any % edges in the candidate set can be
removed. As a consequence, an optimal solution for BIL
might make the network disconnected or disproportionately
affect particular parts of the network. Fig. 2 exemplifies this
issue using Zachary’s karate' network. BIL modifications are
strongly biased towards a small set of nodes. To overcome
this we define the influence limitation problem under mat-
roid constraints (ILM). Formally it is defined as Problem 2.
Next we present a different formulation for influence limita-
tion that addresses some of these challenges.

2.2.2 Influence Limitation under Matroid (ILM)

Matroids are abstract objects that generalize the notion of lin-
ear independence to sets [16]. We apply matroids to charac-
terize a class of constraints for influence limitation. To
illustrate the expressive power of matroids as a general class
of constraints for optimization problems defined over net-
works, we focus on a particular setting of influence minimi-
zation. More specifically, we upper bound the number of
incoming edges that can be removed (or blocked) from each
node in the network.

Problem 2 (Influence Limitation under Matroid (ILM)).
Given a directed social graph G(V, E), an action log -, a candi-
date set of edges C, a given seed set X, and an integer b, find a
set B (where B C C' C E) such that at most b edges from B are
incident (incoming) on any node in V and o.4(G™, X) is mini-
mized where G™ = (V,E—B) or, A(B)=04(G,X)—
0.d(G™, X) is maximized.

1. http:/ /www-personal.umich.edu/ mejn/netdata/
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The effect of ILM enforces network modifications that are
more uniformly distributed across the network. Notice that
a valid solution for the budget constrained version (BIL)
might not necessarily be a valid solution for ILM and vice-
versa.

Theorem 2. The ILM problem is NP-hard.

It remains to show that ILM follows a matroid—any
valid solution is a matroid. We show that ILM follows a par-
tition matroid, which is a matroid where the ground set C'is
partitioned into non-overlapping subsets C, Cs, ..., C; with
associated integers by, b, ..., b; such that a set B is indepen-

Observation 1. ILM follows a partition matroid.

The key insight for this observation is that, for any
incoming edge, the associated node is unique to the edge.
As an example, if e = (u,v) then the node v is unique to the
edge e. Thus, the ground set C' can be partitioned into edge
sets (C1,Cs, ..., Cly|) based on the [V] edges associated with
them. Any feasible solution B (edge set) is an independent
setas BN C, < b, where v € V. Notice that the more general
setting where a constant b, is defined for each node in the
network is also a partition matroid.

The BIL and ILM problems are APX-hard and cannot be
approximated a factor greater than (1 —1). We prove these
results in Section 4 using the notion of curvature [17].

3 SUBMODULARITY

A key feature in the design of efficient algorithms for influ-
ence limitation is submodularity. Intuitively, submodular
functions are defined over sets and have the so called dimin-
ishing returns property. Besides its more usual application to
the budgeted version of our problem, we also demonstrate
the power of submodular optimization in the solution of its
matroid constrained version.

To prove that the maximization function A associated to
BIL and ILM is submodular, we analyze the effect of the
removal of a candidate edge e over the credit of the target
set X. Lemma 3.1 defines the change in credit (5,({e})) in
G(a). The notation ua'v denotes that there is a path from u
to vin G(a).

Lemma 3.1. For an action a, with corresponding DAG V (a), the
change in credit after the removal of e = (u,v) is as follows:

8a({e}) = (FX,u(a) : y(u;u)(a)) “2wev Low(a).

We are now able to formalize the change in credit due
to a single edge deletion over all the actions in the action
set ..

Lemma 3.2. Let G™ = (V, E'\ {e}), then the change in credit
A({e}) due to the removal of edge e is equal to:

A{e}) =D (Txu(a) v (@). (Zﬁrl,,,u,(a)>,
weV w

ac. v

Lemma 3.2 follows from Lemma 3.1 and Equation (2).
Next, we prove the submodularity property of the function
A. This property helps in designing efficient algorithms for
both BIL and ILM.
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Theorem 3. The function A is monotone and submodular.

Proof. The function is monotonic for each action a, as the
removal of an edge cannot increase the credit. As a
consequence, A (sum of credits over all actions) is also
monotonic. To prove submodularity, we consider the
deletion of sets of edges Es and Er where Eg C Er,
and show that A(EsU{e}) — A(Eg) > A(ErU{e}) —
A(E7) for any edge e € C such that e¢ Egs and e ¢ Ep.
A non-negative linear combination of submodular
functions is also submodular. Thus, it is sufficient to
show the property for one action «, as A has the fol-
lowing form:

A(B) = md(G X)

> (.G a)

ac vy

—0.4(G", X)

— T, (G",a)),

/u|

where I'y (G, a) denotes I'x ,(a) in G(a).

For the same reason, we assume a single node = € X
Cxu=>4ex FYU X+5). Edge sets Eg and Er are removed
from the graph and we evaluate A({e}) such that e ¢ E
and e ¢ Ep. Let the credits towards = from node w after
removing Es and Ep edges be I', (G°) and T, (G")
(omitting a from I"(.,a) for s1mphc1ty) respectlvely.
Moreover, we use the notation ua@v if there is a path
from u to v in G(a). There are two possible cases:

(1) If wa'v does not hold, then removal of e = (u,v)
keeps I' ,(G%) and I"  (GT) unchanged and the
marginal gains for both Eg and Er are 0. (2) If wa'v
holds, marginal gains for sets Kg and FEr are equal
to F,r u(Gb) J/(uL DX m(Gg) and F/ (GT) Y (uw)- Fv u(GT)
respectively. Thus,

, u(GS) 111 vu (GS) 2 F/ (GT) y(u v) v w (GT)

asl, (G°) =T, (G")and I, ,(G®) 2 T ,(GT).

These conclude that A is a submodular function. O

4 CURVATURE AND APX-HARDNESS

The ILM problem is NP-hard to approximate within a con-
stant greater than 1 —1. We prove the same about the BIL
(budget constrained) problem To show these results, we
first describe a parameter named curvature that models the
dependencies between elements (edges) in maximizing an
objective function.

In ILM, the objective is maz{A(B), B C C'} where Bis an
independent set. Before proving APX-hardness, we define
the concept of total curvature (c;) [17].

Definition 1. The total curvature of a monotone and submodu-
lar function A is defined by:

o ASU{e}) — A)
AU {er}) — AWD)

Ct = 1-—

The total curvature [17] measures how much the marginal
gains decrease when an element is added to a set S. Intui-
tively, it captures the level of dependency between elements
in a set S. For instance, if the marginal gains are
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Fig. 3. This illustrates a counter example in Theorem 5.

independent (¢; = 0) a simple greedy algorithm will be opti-
mal. Let S* be the optimal solution set. The curvature with
respect to optimal (c,) [17] is as follows:

Definition 2. A has curvature with respect to optimal ¢, €
[0,1] if ¢, is the smallest value such that for every T

A(STUT) = A(S)+ DY (A(STUT\{e})
jes T
A(S*UT)) > (1= c,)A(T).

Vondrak [17] proves the following theorem:

Theorem 4. There is no polynomial time algorithm that gener-
ates an approximation within a factor larger than }0 (1 —e )
for maximizing a monotone and submodular function under
matroid constraints where c, is the curvature with respect to
optimal.

We use Theorem 4 to prove the APX-hardness of ILM.

Theorem 5. ILM is APX-hard and cannot be approximated
within a factor greater than (1 — 1/e).

Proof. ILM is a monotone and submodular optimization
problem under a matroid constraint. We prove the inap-
proximability result by designing a problem instance
where the curvature with respect to optimal (c,) is 1. Con-
sider the example in Fig. 3, the candidate set C =
{(w,z), (x,y),(y,2)}, b=1 and the target set X = {u,v}.
In this setting, one of the optimal sets S* = (w, z), (z, ).
Assuming T' = (y, z) will imply S*NT = 0. If A(S*UT) —
A(S*) =0, then ¢, has to be 1. Note that, A(S*UT) =
A(S*) = 2.5, which leads to ¢, = 1. Therefore, ILM cannot
be approximated within a factor greater than 1 (1 —e™!)
and our claim is proved. ]

Theorem 6. BIL is APX-hard and cannot be approximated
within a factor greater than (1 — 1/e).

Proof. We reduce the BIL problem from a problem similar
to ILM and has matroid constraints with curvature with
respect to optimal as 1. First, we define this problem as
ILMO where maximum b outgoing edges can be deleted
form a node (ILM has a limit on incoming edges). How-
ever, ILMO is NP-hard, follows matroid constraints and
has curvature 1 (the proofs are straightforward and simi-
lar to the proofs for ILM). Thus ILMO cannot be approxi-
mated within a factor greater than (1 —1).

Now we give an L-reduction [18] from the ILMO
problem. The following two equations are satisfied in
our reduction:

OPT'(Ipr) < ¢ - OPT(Irpymo)
OPT(I]LMo) — S(TS) S Cy (OH(IB]L) - S(TB)).
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where Ij;y0 and Ip;; are problem instances, and
OPT(Y) is the optimal value for Y. s(7°) and s(T7)
denote any solution of the ILMO and BIL instances,
respectively. If the conditions hold and BIL has an «
approximation, then ILMO has an (1 —c¢je(l —«))
approximation. It is NP-hard to approximate ILMO
within a factor greater than (1—-1). Now, (1 —cie(1 —

a)) <(1-1), or, a < ( o if the conditions are
satisfied, it is NP- hard to appr0x1mate BIL within a factor
greater than (1 —

o)-

crcoe
Consider a problem instance 770, where graph G =
(V,E), V| =n,|E| =m and integer b and the target set
X = {z} are given. This problem becomes a BIL instance
when b = k where £ is the budget (in BIL). If the solution
of Irryo is s(TS ) then the influence of node z will
decrease by s(T"). Note that s(T%?) = s(T") from the con-
struction. The conditions are satisfied when ¢; = 1 and
¢y = 1. So, BIL is NP-hard to approximate within a factor
grater than (1 —2). o

BIL and ILM are APX-hard and cannot be approximated
within a constant greater than 1 — 1. Given this inaproxim-
ability results, we now turn our focus to the design of effi-
cient algorithms for influence limitation, which is the focus
of the next section.

5 ALGORITHMS FOR BIL AND ILM

The next two sections describe efficient approximate algo-
rithms for influence limitation based on submodularity.

5.1 An Algorithm for BIL

In Section 4, we have proven that the BIL problem is APX-
hard (Theorem 6) and cannot be approximated within a fac-
tor greater than (1 — 1/e) with a polynomial-time algorithm.
However, according to Theorem 3, BIL is a monotone sub-
modular maximization problem under a budget constraint.
As a consequence, a simple greedy algorithm produces a
(tight) constant factor approximation of (1 —1/e) [11] for
the problem.

Algorithm 1. Greedy
Require: X, C, k
Ensure: A solution set B of k edges
1: B«
2:  while |B| < kdo
3 fore € C'\ Bdo
4 e.MC«+— computeMC(e)
5: et argmaz.ccple.MC}
6.
7
8
9

B — BU{e*}and E — E\ {e*}

updateUC(e, EP,UC, SC)

updateSC(e, EP, UC, SC)
returnB

We introduce an efficient version of the greedy algorithm
based on properties of the credit distribution model. The
greedy algorithm removes the edge that minimizes the
credit of the target set, one at a time. After each removal,
the credit (I',,) of node u for influencing v has to be
updated. However, as only one edge e is removed,
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intuitively, nodes in the entire network should not be affected
but only some in the neighborhood of e. We formalize these
observations in an efficient algorithm for BIL. The notation
u@ v denotes that there is a path from u to vin G(a).

Algorithm 2. computeMC

Require:e = (u,v), X, UC, SC
Ensure:mc

1: me=0

2:  forac . such that SC[u][a] > 0 & EP[u][v][a] > 0 do
3 mc, =0

4: for each user w such that UC[v][w][a] > 0 do

5 me, = me, + UC][w]lal/

6 me =me+ (SClu][a] - EP[u][v][a]) - mc,

Observation 2. For a given action a and DAG G(a), the
removal of e = (u,v) changes T, ,, iff z'a'v and va w.

Let G(a) and {z,w} be an arbitrary DAG and node pair,
respectively. Deleting e=(u,v) only affects the credit I'.,,
i.e., credit of node z for influencing w, if e is on a path from =
to w in G(a). The edge e is on one of such paths if and only
if za'u and vaw. The following observations are derived
from Lemma 3.2.

Observation 3. For given DAG G(a), the removal of e = (u,v)
reduces T'-., bY (T V(u)) - Lo iff zauand va w.

Observation 4. For given target set X, an action a and DAG
G(a), the removal of e = (u,v) reduces U'x .y by (Uxu - ¥ (i) -
Uy iff 2@ wand vaw where z € X.

Algorithm 1 scans the action log ~ to collect information
for comparing the effect of each candidate edge. This informa-
tion is maintained in data structures EP, EC, and SC. More
specifically, £P[u][v][a] denotes the edge credit (y,,(a)) of u
for influencing v when (u,v) exists, UC[u][v][a] is the credit
(T,,,»(a)) given to u for influencing v, and SC|u][a] is the credit
(I'x(a)) given to X for influencing v, all for an action a.

The contribution of each edge (see Lemma 3.2), given the
current solution B, is computed using computeMC. Method
updatelC (Algorithm 4, available in the online supplemen-
tal material.) identifies the credits that have been changed
upon an edge removal and does so by updating the data
structure UC following Observation 3. Method updateSC
does the same for the credits of target set of nodes X by
updating the data structure SC following Observation 4.
The methods updateUC and updateSC are described in the
Appendix, available in the online supplemental material.

The expensive steps of Algorithm 1 are steps 4,7 and 8. The
corresponding methods computeMC, updateUC, and updateSC,
take O(3 e . [V(a)]),0(Z,c . [V(a)), and O(3, . [V(a)))
time respectively. Thus, the total running time of Greedy is
Ok-|Cl- >0 V(@) +k-> .. |V(a)|?). Notice that the
total time complexity does not depend on the number of
nodes (|V]) in the graph, but on the sizes of the action graphs,
the budget and the candidate edge set.

5.2 Method: ILM

Theorems 2 and 5 show that the ILM problem is NP-hard
(Section 2) and APX-hard (Section 4), respectively. As was
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the case for BIL, these inapproximability results imply that
there does not exist a polynomial-time algorithm for ILM
that generates results that are within a factor greater than
(1 —1/e) of the optimal. Moreover, notice that the greedy
algorithm (Algorithm 1) for BIL might not provide a valid
solution for the matroid constrained problem. Based on
Observation 1, we apply continuous relaxation and adopt
the continuous greedy technique to design our algorithm.
We also propose a fast randomized scheme for rounding
the relaxed solution that works well in practice.

5.2.1 Continuous Relaxation

Let § = (y1, 2, ...y.) be the vector with membership proba-
bilities for edges in the candidate set C' (|C| = ¢). Moreover,
let B be a random subset where ¢; € C'is included in B with
probability y;. From [19], if f is the continuous extension of
A, then:

F@) =EpyAB)] =Y AB) [Tw JT -w). (©)

BCC e, €B ¢;€C\B

Let Ej,(v) be the edges incoming to v. Our objective is to
find a § that maximizes f(%) with the following constraints:

Yi € [0, 1] 7

S w<b weV ®)

€, €L, (v)

While Equation (7) (constraint S1) maintains the frac-
tional values as probabilities, Equation 8 (constraint S2)
enforces the maximum number of edges incident to each
node to be bounded by b. Because the relaxation of A as f is
continuous, the optimal value for f is an upper bound on A
(the discrete version). Let B* and Y™ be the optimal edge
sets for A and f, respectively. Also, let Z be a vector defined
as follows: z; =1 if ¢; € B* and z; = 0, otherwise. Then,
A(B*) = f(Z) and Z maintains the constraints. As f(Y™) is
maximum, A(B*) = f(Z) < f(Y™).

We show that the function f is smooth (it has a second deriva-
tive), monotone and submodular. Based on these properties, we
design a continuous greedy algorithm that produces a relaxed
solution for ILM with a constant-factor approximation [19].

Theorem 7. The function [ is smooth, monotone and
submodular.

Continuous Greedy (CG). The continuous greedy algorithm
(Algorithm 3) provides a solution set j such that f(y) >
(1 =1 f(v*) > (1 —LA(B*) with high probability. The guar-
antee exploits the facts that A is submodular (Theorem 7) and
ILM follows a matroid constraint (Observation 1). CG is simi-
lar to the well-known Frank-Wolfe algorithm [20]. It itera-
tively increases the coordinates (edge probabilities) towards
the direction of the best possible solution with small step-sizes
while staying within the feasible region. In [19], the author
proves the following:

Theorem 8. The Continuous Greedy (Algorithm 3) returns a
vector i that satisfies constraints S1 and S2 and such that
f(@) > (1 =HA(B*) when v = and s = .

The values t and s correspond to the number of iterations
and samples applied by CG. The costliest operations of the
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algorithm are steps 3, 4 and 5. Step 3 takes O(c.s) time, as it
visits each edge in the candidate set C' (|C|=c). Step 4 com-
putes the contribution of edges, having worst case time
complexity O(s.c) . |V(a)|). Step 5 greedily selects the
best edges, according to the weights. Therefore, the total
running time of the algorithm is O(t(s.c>.,. [V(a)|+
clogc)). Though Theorem 8 requires high value of t and s,
in practice, the algorithm produces good results with low
values of them (see Section 6.2).

5.2.2 Rounding

Algorithm 3 returns a vector ¥ satisfying constraints Equa-
tions (7) and (8) while producing f(7) > (1 —1)A(B*). How-
ever, as i contains probability values (in the interval [0,1]), a
rounding step is still required for obtaining a deterministic
set of edges.

Algorithm 3. Continuous Greedy (CG)

Require: X, C, b

Ensure: A vector i satisfying constraints (51) and (S2)
1:  Startyas a null vector, ¢ = 0
2: whilet <7tdo

3: Generate s samples By, By, . ..
B; (¥j € [s]) with probability y;

, B, where e; belongs to

S B 61 B
4. Set weight of an edge, ¢; as w; = Z, 1 U{ }—A(B))

5: Compute an edge set £¥ maintaining the constramt (52)
and maximizes }°, _pv w;
6: Foralle; € EY,sety; =y, + 1/t
t=t+1
returny

There exists a computationally-intensive lossless rounding
procedure for matroids known as swap rounding [16]. The
computation depends on the number of base matroids which
can be very large in the solution obtained from Algorithm 3.
We address this issue by proposing a simpler and faster ran-
domized procedure. We show that our independent rounding
method produces feasible edges with low error and high
probability.

We sort the edges according to their weights (probabil-
ities) and round them while maintaining feasibility. This
procedure only makes a single pass over the candidate
edges in C. In order to analyze this randomized proce-
dure, we assume that it is unaware of the dependency
between the edges. Let B be the edge set produced by
rounding, i.e., f(y) =E[A(B)], and let E, C B be the
incoming edges incident on node v. Next we show that
the randomized procedure produces a feasible set within
error € with (high) probability 1 —1, where n = |V| is the
number of nodes.

Theorem 9. The following holds for the number of edges incom-
ing to v in the rounded set:

Pr(lE,| < (1+€)b) 2

where e = /%182,

We emphasize two implications of Theorem 9: (1) The prob-
ability that the rounded solution is feasible depends on the
error € which is small whenever b is large; (2) The rounding

1
1777
n
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TABLE 2
Statistics of the Datasets

Dataset Name V] |E| #Action  #Tuple
ca-AstroPh (CA) 18K 197K 1K 56K
email-EuAll (EE) 266K 420K — —
Youtube (CY) 1.1M 2.9M - -
Flixster-small (FXS) 15K 191K 1.8K 30K
Flickr-small (FCS) 15K 1.4M 14K 10K
Flixster (FX) 1M 28M 49K 82M
Flickr (FC) 1.3M 81M 296 K 36 M

We generate synthetic actions via IC model for CA, EE and CY datasets.

procedure has a probabilistic bi-criteria approximation, being
lossless if the maximum number of edges to be removed per
node is ¥ =b(1 +¢€). The proposed randomized rounding
scheme is efficient, as it only performs one pass over the candi-
date edges C. Additionally, node degrees on average are not
very large compared to the constraint b for a node. Moreover,
notice that our framework also works with different b’s for
each node.

5.2.3 Generalizations

Matroids can capture other influence limitation settings, espe-
cially when edges in the solution can be naturally divided into
partitions. Examples include the limitation of influence in
non-overlapping communities [21], [22], disjoint campaigning
[23], and problems where issues of fairness arise [24]. More-
over, influence boosting problems via attribute-level modifi-
cation [25] and edge addition [26] can also be modelled under
matroid constraints.

6 EXPERIMENTAL RESULTS

Our solutions were implemented in Java and experiments
were conducted on 3.30 GHz Intel core with 30 GB RAM.

Datasets. The datasets used in the experiments are the fol-
lowing: 1) Flixster [7]: Flixster is an unweighted directed
social graph, along with the log of performed actions. The
log has triples of (u, a,t) where user v has performed action
a at time t. Here, an action for a user is rating a movie. 2)
Flickr [27]: This is a photo sharing platform. Here, an action
would be joining an interest group. 3) Synthetic: We use the
structure of real datasets that come from different genre
(e.g., co-authorship, social). The networks are available
online.”> We synthetically generate the actions and create
associated tuples. Synthetic actions are generated assuming
the Independent Cascade (IC) [13] model. The “ca-AstroPh”
dataset is a Collaboration network of Arxiv Astro Physics.
In the “Youtube” social network, users form friendship
with others and can create groups that other users can join.
Table 2 shows the statistics of the datasets. We use the small
networks (from Flixster and Flickr) for the quality-related
experiments as our baselines are not scalable. To show the
scalability of our methods, we extract networks of different
sizes from the raw large Flixster and Flickr data. For all the
networks, we learn the influence probabilities via the
method proposed in [15].

2. https:/ /snap.stanford.edu
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BT ooy 10 TABLE 3
30, XX 1c6r SOB\E\E—E\E‘ [BIL] Running Times (in secs.) of Greedy Varying
| S S \% Number of Tuples
) 1 o * FXS: # (tuples, actions) x 103
a0 . Budget (30,1.7) (50,4.8) (75,6.9)
10 15 20 25 30 35 40 45 10 20 30 40 50 & — 50 58 61 68
Budget (k) | X] k=175 73 83 85
(a) CA (varying k) (b) CA (varying | X|) k=100 85 88 91
10 10 FCS: # (tuples, actions) x 10°
reed:
80 o reer 80 2026 (30,3.8) 50,5.9)
T 60 s rignoes = 60 k=50 208 383 1187
~ i — 20 k=175 269 579 1891
@] ] k=100 356 780 2551
20 20
R TR R R R L P——g—t——% Number of tuples and actions are in thousands.
Budget (k) | X
(c) FXS (varying k) (d) FXS (varying | X) TABLE 4
[BIL] Running Times of Greedy Varying
8 Graph Size for | X| = 30 and & = 30
60
= Dataset V] Actions  Tuples |C] Time (sec)
=40
a EE 265K 5K 326K 4.1K 637
20 CY 1.1M 5K 313K 6.3K 950
FX 200K 2.6K 200K 51K 4020
090 15 20 25 30 35 40 45 i0 20 30 40 50
Budget (k) |X|

(e) FCS (varying k) (f) FCS (varying | X|)

Fig. 4. [BIL] (a, c, e) Decrease in Influence (DI) produced by different
algorithms. (b, d, f) DI produced by different algorithms varying the size
of the target set, X with & = 30.

Performance Metric. The quality of a solution set B (a set of
edges) is the percentage of Decrease in Influence (DI) of X:

(Ucd(G7 X) - Ued(Gm? X))
Ucd(G, X)

DI(B) = x 100. 9)

The set X is randomly selected from the set of top 150 nodes
with highest number of actions. The candidate set C' con-
tains edges that appear at least once in any action graph.
The number of MC simulations for IC and LT-based base-
lines is at least 1000.

6.1 Experiments: BIL

Baselines: 1) IC-Gr [28]: Finds the top k edges based on a
greedy algorithm that minimizes influence under the IC
model. 2) LT-Gr [26]: Identifies the top k edges based on the
greedy algorithm proposed in [26], which minimizes the
influence of a set of nodes according to the LT model. Note
that we also apply the optimization techniques proposed in
[26] for both of these baselines. 3) High-Degree: Selects edges
between the target nodes X and the top-k high degree
nodes. Other heuristics (Friends of a Friend and random
selection) did not produce better results than High-Deg.
The mentioned baselines have limitations compared to
Algorithm 1. High-degree is a simple heuristic that ignores
the combinatorial nature of the BIL objective. IC-Gr [28] and
LT-Gr [26] assume theoretical models for influence and do
not take the propagation traces into account to compute
marginal gains of the edges—i.e., they are not data-driven.

Quality (vs Baselines): We compare our Greedy algorithm
(Algorithm 1) against the baselines on three datasets (CA,
FXS and FCS) in Figs. 4a, 4c, and 4e (target size is set as 30).
Greedy takes a few seconds to run and significantly outper-
forms the baselines (by up to 35 percent) in terms of DI(%).
The running time of Greedy is low as it avoids expensive
Monte-Carlo simulations. For CA, the action graphs are
generated by IC model and hence, IC-Gr produces better
results than the other two datasets.

Scalability of Greedy. We show the scalability of our
Greedy algorithm (Alg. 1) for increasing number of tuples
(#actions) size of the graph. Table 3 shows the results on
FXS and FCS. As FCS has higher edge density than FXS,
the number of tuples has higher effect on the running
time in FCS. Note that we consider all the edges that
appear in one of the actions in our candidate set of
edges. A larger candidate set results in longer running
time. However our algorithm only takes around 2 and
43 minutes to run for 75K and 50K tuples in FXS and
FCS, respectively.

Table 4 shows the results varying the graph size. The run-
ning times are dominated by the size of both the graphs and
the candidate sets. Greedy takes nearly 16 minutes on CY
with 1M nodes and 6K candidate edges, whereas, it takes
67 minutes on FX with 200K nodes and 51K candidate edges.

Parameter Variations. We also analyze the impact of varying
the following parameters: the number of target nodes (|.X|)
and the number of simulations for LT-Gr and IC-Gr. First we
vary the size of the target set X. Figs. 4b, 4d, and 4f show the
results for CA, FXS, and FCS respectively where budget, k =
30. Greedy provides better DI (by up to 35 percent) across all
| X| and datasets. With the increase in | X|, DI decreases for the
top three algorithms. A larger | X| would have a higher influ-
ence to reduce. Thus, with the same number of edges
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10 60 S 10* =
go F—B—H8—FH—*& c c
—_ ~49| —B—E—B—F S 10 g 10°
X 60" " S ot o
o [3F] Greedy | O 20 W 0] 10° Q 102
20! X 1C-Gr WHH
WV LT-Gr E H——F £ E
3 G 0 3 7 10 3 z = 3 7
10 10 10 10 10 10 10 10
#Simulation #Simulation #Simulation #Simulation

(a) Quality on CA (b) Quality on FXS

(c) Time on CA (d) Time on FXS

Fig. 5. [BIL] Comparison of greedy and baselines varying number of simulations: (a-b) Quality and (c-d) Running time.

removed, DI would decrease for larger target set. DI is lower
for FCS as it is denser than CA and FXS.

We also evaluate the effect of the number of simulations
on LT-Gr and IC-Gr. Fig. 5 shows the results for |X|=30
and k£=20. Our algorithm produces better results even
when the baselines perform 10" simulations. By comparing
Figs. 5a and 5b, it is evident that IC-Gr performs better than
LT-Gr in CA as the synthetic actions are generated by IC
model. Fig. 5d also shows that our method is 1-4 orders
faster than the baselines.

6.2 Experiments: ILM

Baselines and other settings: 1) Greedy with Restriction (GRR).

Finds the feasible edges (respecting the matroid constraint)

using a greedy algorithm (BIL). We also apply IC-Gr and

LT-Gr with the edge removal constraint for each node.
Algorithm 3 (CG) applies a continuous relaxation and a

matching procedure that respects the matroid constraint

4 2
3£ ce
30 V=Y GRR 20
— X 1C-Gr —
§ 20 et LT-Gr § 15

5 5 10
10 X% 5

10 20 30 40 10 20 30 40
#Edge Removed #Edge Removed
(2) CA (b=1) (b) CA (b=2)
100 80
= 70
801 = GRR 60
> —#— IC-Gr 3
X 60] 4 LtGr X 45!-8
20 1o
10 15 20 25 30 35 40 45 970 15 20 25 30 35 40 45
#Edge Removed #Edge Removed
(c) FXS (b=1) (d) FXS (b=2)
80

3E] ce 60
VA GRR

— 60 > Ic-Gr —_
X |groeg 85— |4
< 40 ~
a

20 30 40 10 20 30 40

#Edge Removed #Edge Removed
(e) FCS (b=1) (f) FCS (b=2)

Fig. 6. [ILM] Decrease in Influence produced by different algorithms on
(a-b) CA, (c-d) FXS, and (e-f) FCS. Our algorithm, CG outperforms the
baselines by up to 20 percent.

while searching for a solution for ILM. On the other hand,
GRR selects the best edge in each iteration greedily respect-
ing the constraint, without taking into account future edge
selections. IC-Gr and LT-Gr suffer from the same problem,
in addition to the limitations described in Section 6.1. The
number of samples and iterations used in CG are set to s=
20 and t=100, respectively. After obtaining the solution
vector from CG, we the run randomized rounding scheme
for 50 times and return the best solution found.

Quality (vs Baselines): We compare the Continuous
Greedy (CG) algorithm against the baselines on CA, FXS
and FCS where |X|=30 varying the number of edge
removal. Fig. 6 shows the results when b =1 and b = 2. CG
significantly outperforms the baselines by up to 20 percent.
GRR does not produce good results as it has to select the
feasible edge that does not violate the maximum edge
removal constraint b. While maintaining feasibility, GRR
cannot select the current true best edge.

Scalability. CG (Algorithm 3) is generally slower than GRR.
However, unlike for GRR, increasing the budget does not
affect the running time of CG. We evaluate the running time
of CG while increasing the number of tuples (actions) using
FCS in Table 5. Table 6 shows the results on the quality in DI
(%) produced by CG and GRR (other baselines are not scal-
able) on FCS data. CG outperforms GRR by up to 15 percent.

Table 7 shows results varying the graph size. Running
times are dominated by the size of the graphs and the

TABLE 5
[ILM]Running Times (in min.) of CG Varying Number of Tuples
for | X]| =20andb =2

FCS: # (tuples, actions)x 103

(20,2.6) (30,3.8) (50,5.8)
20 28.1 64.7 180
40 29.1 64.6 181
60 29.2 63.1 167
TABLE 6

[ILM] Decrease in Influence (%) in FCS by Continuous Greedy
(CG) vs GRR Varying the Number of Tuples

FCS: # (tuples, actions) x 10°

#Edge (20,2.6) (30,3.8) (50,5.8)
CG GRR CG GRR CG GRR
20 33 22 50 41 35 20
40 ) 32 53 44 45 35
60 44 35 61 54 54 40

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:26:39 UTC from IEEE Xplore. Restrictions apply.



2650

TABLE 7
[ILM] Running Time (Scalability) in Seconds of CG and DI
(Percentage) by CG and GRR Varying Graph Size for | X| = 20,
b = 2 and the Number of Edges Removed is 20

Dataset \4 |C| CG (Time) CG((DI) GRR (DI
CY 1.IM 63K 1858 55.1 47.2
FX 200k 51K 5690 46.2 37.3

candidate sets (numbers of actions and tuples are in Table 4).
CG takes approximately 31 minutes on CY with 1M nodes
and 6K candidate edges, whereas it takes approximately
1.5 hours on FX with 200K nodes and 51K candidate edges.
CG also outperforms GRR by up to 9 percent.

7 PREvVIOUS WORK

The influence boosting or limitation problems via network
modifications are orthogonal to the classical influence maxi-
mization task [13]. In these problems, the objective is to opti-
mize the content spread via structural or attribute-level
change in the network.

Previous work addressed the influence limitation prob-
lem in the SIR model [8], [29], [30]. The objective is to opti-
mize specific network properties to boost or contain the
content/virus spread. For instance, Tong et al. proposed
methods to add (delete) edges to maximize (minimize) the
eigenvalue of the adjacency matrix. A more recent work
[31] proposes measuring the influence of an edge or a node
over a rank of nodes (e.g., Pagerank). However, notice that
our measure of influence is based on the CDM.

The influence spread optimization problem also has been
studied under the IC model via network design [25], [28],
[32], [33], [34] and injecting an opposite campaign [35], [36].
Bogunovic [32] addressed the minimization problem via
node deletion. On the other hand, the node addition prob-
lem was solved via mixed mixed integer programming [33]
and later by greedy algorithms[28]. While Chaoji et al. [34]
studied the problem of boosting the content spread via edge
addition, Lin et al. [25] investigated the same via influencing
initially uninfluenced users.

Boosting and controlling the influence via edge addition
and deletion were also studied under the Linear Threshold
(LT) model by Khalil et al. [26]. They showed the supermod-
ular property for the objective functions and then applied
known approximation guarantees. The influence minimiza-
tion problem was also studied under a few variants of LT
model. [9], [37].

In summary, existing approaches for optimizing influ-
ence (propagation) are mostly based on theoretical diffusion
models such as SIR, LT and IC. However, our work
addresses the influence minimization problem based on his-
torical cascade information. Moreover, we frame influence
limitation under two different types of constraints—budget
and matroid. Another contribution of our work is to show
that our algorithms produce tight guarantees based on inap-
proximability results (see Theorems 5 and 6).

Optimization Over Matroids. Matroids are powerful mathe-
matical framework for expressing constraints for combinatorial
problems [11], [12]. Nembhauser [11] introduced a few
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optimization problems under matroids. Vondrak [19]
addressed matroid optimization with a continuous greedy
technique for submodular functions. Calinescu et al. [38] and
Chekuri ef al. [16] proposed rounding techniques for continu-
ous relaxation of submodular functions under matroids. Here,
we apply some of these theoretical results to develop an effi-
cient approximate algorithm for influence limitation, which is a
novel problem.

Other Network Modification Problems. Lin et al. [39]
addressed a shortest path optimization problem via improv-
ing edge weights on undirected graphs. Single-source and
all-pair shortest path distance minimization were also stud-
ied in [40], [41] along with node versions [42], [43]. Previous
literature have also studied optimization of node central-
ity [44], [45], [46], [47], node similarities [48] and the stability
of k-core [49], [50] via network design. However, these opti-
mization problems have objective functions that are differ-
ent from the one considered in our work.

8 CONCLUSION

We studied the influence limitation problem via edge dele-
tion. Different from previous work, our formulation is data-
driven, taking into account available propagation traces in
the selection of edges. Our influence limitation problem was
framed under two different types of constraints—budget
and matroid. Both versions were shown to be APX-hard
and cannot be approximated within a factor greater than
(1 —1). For the budget constrained version, we have devel-
oped an efficient greedy algorithm that achieves a good
approximation guarantee by exploiting the monotonicity
and submodularity of the objective function. The matroid
constrained version was solved via continuous relaxation
and a continuous greedy technique, achieving a probabilis-
tic approximation guarantee. Experiments showed the effec-
tiveness of our solutions, which outperform the baselines
using both real and synthetic datasets.

This work opens several lines for future research. First,
while we applied the Credit Distribution Model to measure
the effect of edge removals based on propagation traces, it
would be interesting to consider probabilistic models for
influence (e.g., [51]). Moreover, we would like to investigate
influence limitation under theoretical frameworks for cau-
sality [52], [53]. Finally, instead of assuming a single actor
(influence minimizer), a more realistic and complex setting
should take into account also an active influence maximizer
as an adversary in a game-theoretic setting [54], [55].

ACKNOWLEDGMENTS

Research was funded by National Science Foundation, IIS,
Award# 1817046 and Defense Threat Reduction Agency,
Award# HDTRA1-19-1-0017.

REFERENCES

[1] A. Anagnostopoulos, R. Kumar, and M. Mahdian, “Influence and
correlation in social networks,” in Proc. 14th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2008, pp. 7-15.

[2] S. Aral, L. Muchnik, and A. Sundararajan, “Distinguishing influence-
based contagion from homophily-driven diffusion in dynamic
networks,” Proc. Nat. Acad. Sci. USA, vol. 106, no. 51, pp. 21 544—
21549, 2009.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:26:39 UTC from IEEE Xplore. Restrictions apply.



MEDYA ET AL.: APPROXIMATE ALGORITHMS FOR DATA-DRIVEN INFLUENCE LIMITATION

[3]

[4]

[5]

[6]
(7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

A. D. Kramer, J. E. Guillory, and J. T. Hancock, “Experimental
evidence of massive-scale emotional contagion through social
networks,” Proc. Nat. Acad. Sci. USA, vol. 111, no. 24, pp. 8788-8790,
2014.

J. Metcalf and K. Crawford, “Where are human subjects in big
data research? the emerging ethics divide,” Big Data Soc., vol. 3,
no. 1, pp. 1-14, 2016.

S. T. Fiskea and R. M. Hauserb, “Protecting human research
participants in the age of big data,” Proc. Nat. Acad. Sci. USA,
vol. 111, no. 38, pp. 13 675-13 676, 2014.

S. Aral and P. S. Dhillon, “Social influence maximization under empir-
ical influence models,” Nature Hum. Behav., vol. 2, pp. 375-382, 2018.
A. Goyal, F. Bonchi, and L. V. Lakshmanan, “A data-based
approach to social influence maximization,” Proc. VLDB Endow-
ment, vol. 5, no. 1, pp. 73-84, 2011.

H. Tong, B. A. Prakash, T. Eliassi-Rad, M. Faloutsos, and
C. Faloutsos, “Gelling, and melting, large graphs by edge manipu-
lation,” in Proc. 21st ACM Int. Conf. Inf. Knowl. Manage., 2012,
pp- 245-254.

C. J. Kuhlman, G. Tuli, S. Swarup, M. V. Marathe, and S. Ravi,
“Blocking simple and complex contagion by edge removal,” in
Proc. Int. Conf. Data Mining, 2013, pp. 399-408.

H. Aziz, S. Bouveret, I. Caragiannis, I. Giagkousi, and J. Lang,
“Knowledge, fairness, and social constraints,” in Proc. AAAI Conf.
Artif. Intell., 2018, pp. 4638—-4645.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “Best algorithms
for approximating the maximum of a submodular set function,”
Math. Operations Res., vol. 3, pp. 177-188, 1978.

C. Chekuri and A. Kumar, “Maximum coverage problem with
group budget constraints and applications,” in Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques. Berlin, Germany: Springer, 2004, pp. 72-83.

D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proc. 9th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2003, pp. 137-146.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,
and N. Glance, “Cost-effective outbreak detection in networks,”
in Proc. 13th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min-
ing., 2007, pp. 420-429.

A. Goyal, F. Bonchi, and L. V. Lakshmanan, “Learning influence
probabilities in social networks,” in Proc. Int. Conf. Web Search
Data Mining, 2010, pp. 241-250.

C. Chekuri, J. Vondrak, and R. Zenklusen, “Dependent randomized
rounding via exchange properties of combinatorial structures,”
in Proc. 51th Annu. IEEE Symp. Foundations Comput. Sci., 2010,
pp- 575-584.

M. Sviridenkok, J. Vondrak, and J. Ward, “Optimal approximation
for submodular and supermodular optimization with bounded
curvature,” Math. Oper. Res., vol. 42, no. 4, pp. 1197-1218, 2017.

D. P. Williamson and D. B. Shmoys, The Design of Approximation
Algorithms. Cambridge, U.K: Cambridge Univ. Press, 2011.

J. Vondrak, “Optimal approximation for the submodular welfare
problem in the value oracle model,” in Proc. 40th Annu. ACM
Symp. Theory Comput., 2008, pp. 67-74.

J. Nocedal and S. Wright, Numerical Optimization, Springer Science
& Business Media, 2006.

A. Bozorgi, S. Samet, J. Kwisthout, and T. Wareham, “Community-
based influence maximization in social networks under a competitive
linear threshold model,” Knowl.-Based Syst., vol. 134, pp. 149-158,
2017.

A.Tsang, B. Wilder, E. Rice, M. Tambe, and Y. Zick, “Group-fairness
in influence maximization,” in Proc. 28th Int. Joint Conf. Artif. Intell.,
2019, pp. 5997-6005.

M. Lake, “A new campaign resource allocation model,” in Applied
Game Theory. Berlin, Germany: Springer, 1979, pp. 118-132.

A. Yadav et al., “Bridging the gap between theory and practice in
influence maximization: Raising awareness about HIV among
homeless youth,” in Proc. 27th Int. Joint Conf. Artif. Intell., 2018,
pp- 5399-5403.

Y. Lin, W. Chen, and J. C. Lui, “Boosting information spread: An algo-
rithmic approach,” in Proc. Int. Conf. Data Eng., 2017, pp. 883-894.

E. B. Khalil, B. Dilkina, and L. Song, “Scalable diffusion-aware
optimization of network topology,” in Proc. 20th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining, 2014, pp. 1226-1235.

A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee, “Measurement and analysis of online social
networks,” in Proc. 5th ACM/Usenix Internet Meas. Conf., 2007,
pp- 29-42.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

2651

M. Kimura, K. Saito, and H. Motoda, “Minimizing the spread of
contamination by blocking links in a network,” in Proc. 23rd AAAI
Conf. Artif. Intell., 2008, pp. 1175-1180.

C. Gao, J. Liu, and N. Zhong, “Network immunization and virus
propagation in email networks: Experimental evaluation and ana-
lysis,” Knowl. Inf. Syst., vol. 27, no. 2, pp. 253-279, 2011.

C. M. Schneider, T. Mihaljev, S. Havlin, and H. J. Herrmann,
“Suppressing epidemics with a limited amount of immunization
units,” Phys. Rev. E, vol. 84, no. 6,2011, Art. no. 061911.

M. Wang, J. Kang, C. Nan, Y. Xia, W. Fan, and H. Tong, “Graph
ranking auditing: Problem definition and fast solutions,” IEEE
Trans. Knowl. Data Eng., 2020.

I. Bogunovic, “Robust protection of networks against cascading
phenomena,” Ph.D. dissertation, Master Thesis, Dept. Comput.
Sci., ETH Zirich, Ziirich, Switzerland, 2012.

D. Sheldon et al., “Maximizing the spread of cascades using net-
work design,” UAI, pp. 517-526, 2010.

V. Chaoji, S. Ranu, R. Rastogi, and R. Bhatt, “Recommendations to
boost content spread in social networks,” in Proc. Int. Conf. World
Wide Web, 2012, pp. 529-538.

C. Budak, D. Agrawal, and A. El Abbadji, “Limiting the spread of
misinformation in social networks,” in Proc. 20th Int. Conf. World
Wide Web, 2011, pp. 665-674.

N.P.Nguyen, G. Yan, M. T. Thai, and S. Eidenbenz, “Containment
of misinformation spread in online social networks,” in Proc. 4th
Annu. ACM Web Sci. Conf., 2012, pp. 213-222.

X. He, G. Song, W. Chen, and Q. Jiang, “Influence blocking maxi-
mization in social networks under the competitive linear thresh-
old model,” in SDM. Philadelphia, PA, USA: SIAM, 2012,
pp- 463-474.

G. Calinescu, C. Chekuri, M. Pdl, and J. Vondrak, “Maximizing a
monotone submodular function subject to a matroid constraint,”
SIAM |. Comput., vol. 40, no. 6, pp. 1740-1766, 2011.

Y. Lin and K. Mouratidis, “Best upgrade plans for single and multi-
ple source-destination pairs,” Geolnformatica, vol. 19, pp. 365-404,
2015.

A. Meyerson and B. Tagiku, “Minimizing average shortest path dis-
tances via shortcut edge addition,” in Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX-
RANDOM). Berlin, Germany: Springer, 2009, pp. 272-285.

M. Papagelis, F. Bonchi, and A. Gionis, “Suggesting ghost edges
for a smaller world,” in Proc. Int. Conf. Inf. Knowl. Manage., 2011,
pp- 2305-2308.

B. Dilkina, K. J. Lai, and C. P. Gomes, “Upgrading shortest paths in
networks,” in Integration of Al and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems. Berlin, Germany:
Springer, 2011, pp. 76-91.

S. Medya, S. Ranu, J. Vachery, and A. Singh, “Noticeable network
delay minimization via node upgrades,” Proc. VLDB Endowment,
vol. 11, no. 9, pp. 988-1001, 2018.

P. Crescenzi, G. DAngelo, L. Severini, and Y. Velaj, “Greedily
improving our own centrality in a network,” in Proc. Int. Symp.
Exp. Algorithms, 2015, pp. 43-55.

V. Ishakian, D. Erdos, E. Terzi, and A. Bestavros, “A framework
for the evaluation and management of network centrality,” in
Proc. SIAM Int. Conf. Data Mining, 2012, pp. 427-438.

S. Medya, A. Silva, A. Singh, P. Basu, and A. Swami, “Group cen-
trality maximization via network design,” in Proc. SIAM Int. Conf.
Data Mining, 2018, pp. 126-134.

V. Amelkin and A. K. Singh, “Fighting opinion control in social
networks via link recommendation,” in Proc. 25th ACM SIGKDD
International Conf. Knowl. Discovery Data Mining, 2019, pp. 677-685.
P. Dey and S. Medya, “Manipulating node similarity measures in
network,” in Proc. 19th Int. Conf. Auton. Agents MultiAgent Syst.,
2020, pp. 321-329.

S. Medya, T. Ma, A. Silva, and A. Singh, “A game theoretic
approach for core resilience,” in Proc. 29th Int. Joint Conf. Artif.
Intell., 2020, pp. 1922-1924.

Z.Zhou, F. Zhang, X. Lin, W. Zhang, and C. Chen, “K-core maxi-
mization: An edge addition approach,” in Proc. 28th Int. Joint Conf.
Artif. Intell., 2019, pp. 4867-4873.

M. Farajtabar, Y. Wang, M. Gomez-Rodriguez , S. Li, H. Zha, and
L. Song, “Coevolve: A joint point process model for information
diffusion and network evolution,” J. Mach. Learn. Res., vol. 18,
no. 1, pp. 1305-1353, 2017.

J. Pearl, Causality. Cambridge, U.K.: Cambridge Univ. Press, 2009.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:26:39 UTC from IEEE Xplore. Restrictions apply.



2652 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 6, JUNE 2022

[53] S. L. Morgan and C. Winship, Counterfactuals and Causal Inference.
Cambridge, U.K.: Cambridge Univ. Press, 2015.

[54] S. Goyal, H. Heidari, and M. Kearns, “Competitive contagion in
networks,” Games Econ. Behav., vol. 113, pp. 58-79, 2019.

[55] J. Tsai, T. H. Nguyen, and M. Tambe, “Security games for control-
ling contagion,” in Proc. 26th AAAI Conf. Artif. Intell., 2012,
pp. 1464-1470.

[56] ]J. Ma et al., “Detecting rumors from microblogs with recurrent
neural networks,” in Proc. 25th Int. Joint Conf. Artif. Intell., 2016,
pp. 3818-3824.

[57] J.Ma, W. Gao, and K.-F. Wong, “Detect rumors in microblog posts
using propagation structure via kernel learning,” in Proc. 55th
Annu. Meeting Assoc. Comput. Linguistics, 2017, pp. 708-717.

Sourav medya received the PhD degree in com-
puter science from the University of California,
Santa Barbara. He is currently a postdoctoral fellow
with the Kellogg School of Management and North-
western Institute of Complex Systems (NICO). He
has also been a research intern with the HP Labs
and Qatar Computing Research Institute. His
research interests include network science, data
science, and machine learning.

Arlei Silva received the PhD degree degree in
computer science from the University of California,
Santa Barbara. He is currently a postdoctoral fellow
with the Department of Computer Science, Univer-
sity of California, Santa Barbara. He has also been
a research intern and scholar with Rensselaer
Polytechnic Institute, IBM Research, HP Labs, and
NEC Labs. His research interests include graphs,
data mining, and machine learning.

Ambuj Singh is a professor of computer science
with the University of California, Santa Barbara. He
Joined Computer Science Department, University
of California, Santa Barbara, in 1989. He has served
on the editorial boards of journals and program com-
mittees of several conferences, workshops and
international meetings. His current research inter-
ests include network science, machine learning,
bioinformatics, and graph mining.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:26:39 UTC from IEEE Xplore. Restrictions apply.



