
Tree++: Truncated Tree Based Graph Kernels
Wei Ye , Zhen Wang, Rachel Redberg , and Ambuj Singh

Abstract—Graph-structured data arise ubiquitously in many application domains. A fundamental problem is to quantify their

similarities. Graph kernels are often used for this purpose, which decompose graphs into substructures and compare these

substructures. However, most of the existing graph kernels do not have the property of scale-adaptivity, i.e., they cannot compare

graphs at multiple levels of granularities. Many real-world graphs such as molecules exhibit structure at varying levels of granularities.

To tackle this problem, we propose a new graph kernel called TREE++ in this paper. At the heart of TREE++ is a graph kernel called the

path-pattern graph kernel. The path-pattern graph kernel first builds a truncated BFS tree rooted at each vertex and then uses paths

from the root to every vertex in the truncated BFS tree as features to represent graphs. The path-pattern graph kernel can only capture

graph similarity at fine granularities. In order to capture graph similarity at coarse granularities, we incorporate a new concept called

super path into it. The super path contains truncated BFS trees rooted at the vertices in a path. Our evaluation on a variety of real-world

graphs demonstrates that TREE++ achieves the best classification accuracy compared with previous graph kernels.

Index Terms—Graph kernel, graph classification, truncated tree, path, path pattern, super path, BFS

Ç

1 INTRODUCTION

STRUCTURED data are ubiquitous in many application
domains. Examples include proteins or molecules in

bioinformatics, communities in social networks, text
documents in natural language processing, and images
annotated with semantics in computer vision. Graphs
are naturally used to represent these structured data.
One fundamental problem with graph-structured data is
to quantify their similarities which can be used for
downstream tasks such as classification. For example,
chemical compounds can be represented as graphs,
where vertices represent atoms, edges represent chemi-
cal bonds, and vertex labels represent the types of atoms.
We compute their similarities for classifying them into
different classes. In the pharmaceutical industry, the
molecule-based drug discovery needs to find similar
molecules with increased efficacy and safety against a
specific disease.

Fig. 1 shows two chemical compounds from the MUTAG
[1], [2] dataset which has 188 chemical compounds and can
be divided into two classes. We can observe from Figs. 1a
and 1b that the numbers of the atoms C (Carbon), N (Nitro-
gen), F (Fluorine), O (Oxygen), and Cl (Chlorine), and their
varying combinations make the functions of these two
chemical compounds different. We can also observe that
chemical compounds (graphs) can be of arbitrary size and
shape, which makes most of the machine learning methods
not applicable to graphs because most of them can only

handle objects of a fixed size. Tsitsulin et al. in their paper
NetLSD [3] argued that an ideal method for graph compari-
son should fulfill three desiderata. The first one is permuta-
tion-invariance which means the method should be
invariant to the ordering of vertices; The second one is
scale-adaptivity which means the method should have dif-
ferent levels of granularities for comparing graphs. The last
one is size-invariance which means the method can com-
pare graphs of different sizes.

Graph kernels have been developed and widely used to
measure the similarities between graph-structured data.
Graph kernels are instances of the family of R-convolution
kernels [4]. The key idea is to recursively decompose graphs
into their substructures such as graphlets [5], trees [6], [7],
walks [8], paths [9], and then compare these substructures
from two graphs. A typical definition for graph kernels is
KðG1;G2Þ ¼

P
S2S cðG1; SÞcðG2; SÞ, where S contains all

unique substructures from two graphs, and cðGi; SÞ repre-
sents the number of occurrences of the unique substructure
S in the graph Gi; ði ¼ 1; 2Þ.

In the real world, many graphs such as molecules have
structures at multiple levels of granularities. Graph kernels
should not only capture the overall shape of graphs (whether
they are more like a chain, a ring, a chain that branches, etc.),
but also small structures of graphs such as chemical bonds
and functional groups. For example, a graph kernel should
capture that the chemical bond C—F in the heteroaromatic
nitro compound (Fig. 1a) is different from the chemical bond
C—Cl in the mutagenic aromatic nitro compound (Fig. 1b). In
addition, a graph kernel should capture that the functional
groups (as shown in Fig. 2) in the two chemical compounds
(as shown in Fig. 1) are different. Most of the existing graph
kernels only have two properties, i.e., permutation-invariance
and size-invariance. They cannot capture graph similarity at
multiple levels of granularities. For instance, the very popular
Weisfeiler-Lehman subtree kernel (WL) [6], [7] builds a
subtree of height h at each vertex and then counts the

� W. Ye, R. Redberg, and A. Singh are with the Department of Computer
Science, University of California, Santa Barbara, CA 93106 USA.
E-mail: {weiye, rredberg, ambuj}@cs.ucsb.edu.

� Z. Wang is with the Department of Electrical Engineering, Columbia
University, New York, NY 10027 USA. E-mail: zw2501@columbia.edu.

Manuscript received 20 May 2019; revised 15 Aug. 2019; accepted 2 Oct.
2019. Date of publication 8 Oct. 2019; date of current version 5 Mar. 2021.
(Corresponding author: Wei Ye.)
Recommended for acceptance by X. Li.
Digital Object Identifier no. 10.1109/TKDE.2019.2946149

1778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 4, APRIL 2021

1041-4347 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

occurrences of each kind of subtree in the graph. WL can only
capture the graph similarity at coarse granularities, because
subtrees can only consider neighborhood structures of verti-
ces. The shortest-path graph kernel [9] counts the number of
pairs of shortest paths which have the same source and sink
labels and the same length in two graphs. It can only capture
the graph similarity at fine granularities, because shortest-
paths do not consider neighborhood structures. The Multi-
scale LaplacianGraphKernel (MLG) [10] is the first graph ker-
nel that can handle substructures at multiple levels of
granularities, by building a hierarchy of nested subgraphs.
However, MLG needs to invert the graph Laplacian matrix
and thus its running time is very high as can be seen from
Table 3 in Section 5.

In this paper, we propose a new graph kernel TREE++ that
can compare graphs at multiple levels of granularities. To
this end, we first develop a base kernel called the path-
pattern graph kernel that decomposes a graph into paths.
For each vertex in a graph, we build a truncated BFS tree of
depth d rooted at it, and lists all the paths from the root to
every vertex in the truncated BFS tree. Then, we compare
two graphs by counting the number of occurrences of each
unique path in them. We prove that the path-pattern graph
kernel is positive semi-definite. The path-pattern graph ker-
nel can only compare graphs at fine granularities. To com-
pare graphs at coarse granularities, we extend the definition
of a path in a graph and define a new concept super path.
Each element in a path is a distinct vertex while each ele-
ment in a super path is a truncated BFS tree of depth k
rooted at the distinct vertices in a path. k could be zero, and
in this case, a super path degenerates to a path. Incorpo-
rated with the concept of super path, the path-pattern graph
kernel can capture graph similarity at different levels of
granularities, from the atomic substructure path to the com-
munity substructure structural identity.

Our contributions in this paper are summarized as
follows:

� We propose the path-pattern graph kernel that can
capture graph similarity at fine granularities.

� We propose a new concept of super path whose ele-
ments can be trees. After incorporating the concept
of super path into the path-pattern graph kernel, it
can capture graph similarity at coarse granularities.

� We call our final graph kernel TREE++ as it employs
truncated BFS trees for comparing graphs both at

fine granularities and coarse granularities. TREE++
runs very fast and scales up easily to graphs with
thousands of vertices.

� TREE++ achieves the best classification accuracy on
most of the real-world datasets.

The paper is organized as follows: Section 2 discusses
related work. Section 3 covers the core ideas and theory
behind our approach, including the path-pattern graph ker-
nel, the concept of super path, and the TREE++ graph kernel.
Using real-world datasets, Sections 4 and 5 compare TREE++
with related techniques. Section 6 makes some discussions
and Section 7 concludes the paper.

2 RELATED WORK

The first family of graph kernels is based onwalks and paths,
which first decompose a graph into random walks [8], [11],
[12], [13], [14] or paths [9], and then compute the number of
matching pairs of them. G€artner et al. [11] investigate two
approaches to compute graph kernels: one uses the length of
all walks between each pair of vertices to define the graph
similarity; the other defines one feature for every possible
label sequence and then counts the number of walks in the
direct product graph of two graphs matching the label
sequence, of which the time complexity is Oðn6Þ. If using
some advanced approximation methods [8], the time com-
plexity could be decreased to Oðn3Þ. Kashima et al. [12] use
random walks to generate label paths. The graph kernel is
defined as the inner product of the count vector averaged
over all possible label paths. Propagation kernels [15] lever-
age early-stage distributions of random walks to capture
structural information hidden in vertex neighborhood.
RetGK [14] introduces a structural role descriptor for verti-
ces, i.e., the return probabilities features (RPF) generated by
random walks. The RPF is then embedded into the Hilbert
space where the corresponding graph kernels are derived.
Borgwardt et al. [9] propose graph kernels based on shortest
paths in graphs. It counts the number of pairs of shortest
paths which have the same source and sink labels and the
same length in two graphs. If the original graph is fully con-
nected, the pairwise comparison of all edges in both graphs
will costOðn4Þ.

The second family of graph kernels is based on sub-
graphs, which include these kernels [5], [10], [16], [17] that
decompose a graph into small subgraph patterns of size k
nodes, where k 2 f3; 4; 5g. And graphs are represented as
the number of all types of subgraph patterns. The subgraph
patterns are called graphlets [18]. Exhaustive enumeration
of all graphlets are prohibitively expensive (OðnkÞ). Thus,
Shervashidze et al. [5] propose two theoretically grounded
acceleration schemes. The first one uses the method of

Fig. 1. Two chemical compounds from the MUTAG [1], [2] dataset.
Explicit hydrogen atoms have been removed from the original dataset.
Edges represent four chemical bond types, i.e., single, double, triple, or
aromatic. (We do not show the edge type here for brevity.) The labels of
vertices represent the types of atoms.

Fig. 2. Functional groups in the two chemical compounds from the
MUTAG dataset.

YE ET AL.: TREE++: TRUNCATED TREE BASED GRAPH KERNELS 1779

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

random sampling, which is motivated by the idea that
the more sufficient number of random samples is drawn,
the closer the empirical distribution to the actual distribu-
tion of graphlets in a graph. The second one exploits the
algorithms for efficiently counting graphlets in graphs of
low degree. Costa et al. [16] propose a novel graph kernel
called the Neighborhood Subgraph Pairwise Distance Ker-
nel (NSPDK) to decompose a graph into all pairs of neigh-
borhood subgraphs of small radium at increasing distances.
The authors first compute a fast graph invariant string
encoding for the pairs of neighborhood subgraphs via a
label function that assigns labels from a finite alphabet S to
the vertices in the pairs of neighborhood subgraphs. Then a
hash function is used to transform the strings to natural
numbers. MLG [10] is developed for capturing graph struc-
tures at a range of different scales, by building a hierarchy
of nested subgraphs.

The third family of graph kernels is based on subtree pat-
terns, which decompose graphs into subtree patterns and
then count the number of common subtree patterns in two
graphs. Ramon et al. [19] construct a graph kernel consider-
ing the subtree patterns which are rooted subgraphs at ver-
tices. Every subtree pattern has a tree-structured signature.
For each possible subtree pattern signature, the paper asso-
ciates a feature of which the value is the number of times
that a subtree of that signature occurs in graphs. For all
pairs of vertices from two graphs, the subtree-pattern kernel
counts all pairs of matching subtrees of the same signature
of height less than or equal to d. Mah�e et al. [20] revisit and
extend the subtree-pattern kernel proposed in [19] by intro-
ducing a parameter to control the complexity of the sub-
trees, varying from common walks to large common
subtrees. Weisfeiler-Lehman subtree kernel (WL) [6], [7] is
based on the Weisfeiler-Lehman test of isomorphism [21] for
graphs. The Weisfeiler-Lehman test of isomorphism belongs
to the family of color refinement algorithms that iteratively
update vertex colors (labels) until reaching the fixed number
of iterations, or the vertex label sets of two graphs differ. In
each iteration, the Weisfeiler-Lehman test of isomorphism
algorithm augments vertex labels by concatenating their
neighbors’ labels and then compressing the augmented labels
into new labels. The compressed labels correspond to subtree
patterns.WL counts common original and compressed labels
in two graphs.

Recently, some research works [22], [23] focus on aug-
menting the existing graph kernels. DGK [22] deals with the
problem of diagonal dominance in graph kernels. The diag-
onal dominance means that a graph is more similar to itself
than to any other graphs in the dataset because of the spar-
sity of common substructures across different graphs. DGK
leverages techniques from natural language processing to
learn latent representations for substructures. Then the
similarity matrix between substructures is computed and
integrated into graph kernels. If the number of substruc-
tures is high, it will cost a lot of time and memory to com-
pute the similarity matrix. OA [23] develops some base
kernels that generate hierarchies from which the optimal
assignment kernels are computed. The optimal assignment
kernels can provide a more valid notion of graph similarity.
The authors finally integrate the optimal assignment kernels
into the Weisfeiler-Lehman subtree kernel. In addition to

the above-described literature, there are also some literature
[3], [24], [25], [26], [27], [28] for graph classification that are
related to our work.

The graph kernels elaborated above are only for graphs
with discrete vertex labels (attributes) or no vertex labels.
Recently, researchers begin to focus on the developments of
graph kernels on graphs with continuous attributes. Graph-
Hopper [29] is an extention of the shortest-path kernel.
Instead of comparing paths based on the products of kernels
on their lengths and endpoints, GraphHopper compares
paths through kernels on the encountered vertices while
hopping along shortest paths. The discriptor matching
(DM) kernel [30] maps every graph into a set of vectors
(descriptors) which integrate both the attribute and neigh-
borhood information of vertices, and then uses a set-of-vec-
tor matching kernel [31] to measure graph similarity. HGK
[32] is a general framework to extend graph kernels from
discrete attributes to continuous attributes. The main idea is
to iteratively map continuous attributes to discrete labels by
randomized hash functions. Then HGK compares these dis-
crete labeled graphs by an arbitrary graph kernel such as
the Weisfeiler-Lehman subtree kernel or the shortest-path
kernel. GIK [33] proposes graph invariant kernels that
exploit a vertex invariant kernel (spectral coloring kernel) to
combine both the similarities of vertex labels and vertex
structural roles.

3 THE MODEL

In this section,we introduce a newgraphkernel called TREE++,
which is based on the base kernel called the path-pattern
graphkernel. The path-pattern graphkernel employs the trun-
cated BFS (Breadth-First Search) trees rooted at each vertex of
graphs. It uses the paths from the root to any other vertex in
the truncated BFS trees of depth d as features to represent
graphs. The path-pattern graph kernel can only capture graph
similarity at fine granularities. To capture graph similarity at
coarse granularities, i.e., structural identities of vertices, we
first propose a new concept called super path whose elements
can be trees. Then, we incorporate the concept of super path
into the path-pattern graph kernel.

3.1 Notations

We first give notations used in this paper to make it self-con-
tained. In this work, we use lower-case Roman letters (e.g.
a; b) to denote scalars. We denote vectors (row) by boldface
lower case letters (e.g. x) and denote its ith element by xðiÞ.
Matrices are denoted by boldface upper case letters (e.g. X).
We denote entries in a matrix as Xði; jÞ. We use x ¼
½x1; . . . ; xn� to denote creating a vector by stacking scalar xi

along the columns. Similarly, we use X ¼ ½x1; . . . ; xn� to
denote creating a matrix by stacking the vector xi along the
rows. Consider an undirected labeled graph G ¼ ðV; E; lÞ,
where V is a set of graph vertices with number jVj of vertices,
E is a set of graph edges with number jEj of edges, and
l : V ! S is a function that assigns labels from a set of positive
integersS to vertices.Without loss of generality, jSj � jVj.

An edge e is denoted by two vertices uv that are con-
nected to it. In graph theory [34], a walk is defined as a
sequence of vertices, e.g., ðv1; v2; . . .Þ, where consecutive ver-
tices are connected by an edge. A trail is a walk that consists

1780 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

of all distinct edges. A path is a trail that consists of all dis-
tinct vertices and edges. A spanning tree ST of a graph G is
a subgraph that includes all of the vertices of G, with the
minimum possible number of edges. We extend this defini-
tion to the truncated spanning tree. A truncated spanning
tree T is a subtree of the spanning tree ST, with the same
root and of the depth d. The depth of a subtree is the maxi-
mum length of paths between the root and any other vertex
in the subtree. Two undirected labeled graphs G1 ¼ ðV1; E1;
l1Þ and G2 ¼ ðV2; E2; l2Þ are isomorphic (denoted by G1 ’
G2) if there is a bijection ’ : V1 ! V2, (1) such that for any
two vertices u; v 2 V1, there is an edge uv if and only if there
is an edge ’ðuÞ’ðvÞ in G2; (2) and such that l2ð’ðvÞÞ ¼ l1ðvÞ.

Let X be a non-empty set and let K : X � X ! R be a
function on the set X . Then K is a kernel on X if there is a
real Hilbert space H and a mapping f : X ! H such that
Kðx; yÞ ¼ hfðxÞ;fðyÞi for all x, y in X , where h�; �i denotes
the inner product of H, f is called a feature map and H is
called a feature space. K is symmetric and positive-semide-
finite. In the case of graphs, let fðGÞ denote a mapping from
graph to vector which contains the counts of atomic sub-
structures in graph G. Then, the kernel on two graphs G1

and G2 is defined as KðG1;G2Þ ¼ hfðG1Þ;fðG2Þi.

3.2 The Path-Pattern Graph Kernel

We first define the path pattern as follows:

Definition 1 (Path Pattern). Given an undirected labeled graph
G ¼ ðV; E; lÞ, we build a truncated BFS tree T ¼ ðV0; E0; lÞ
(V0 � V and E0 � E) of depth d rooted at each vertex v 2 V. The
vertex v is called root. For each vertex v0 2 V0, there is a path
P ¼ v; v1; v2; . . . ; v

0ð Þ from the root v to v0 consisting of distinct
vertices and edges. The concatenated labels lðP Þ ¼ lðvÞ; lðv1Þ;ð
lðv2Þ; . . . ; lðv0ÞÞ is called a path pattern ofG.

Note from this definition that a path pattern could only
contain the root vertex. Figs. 3a and 3b show two example
undirected labeled graph G1 and G2. Figs. 3c and 3d show
two truncated BFS trees of depth d ¼ 1 on the vertices with
label 4 in G1 and G2, respectively. To build unique BFS
trees, the child vertices of each parent vertex in the BFS tree
are sorted in ascending order according to their label values.
If two vertices have the same label values, we sort them

again in ascending order by their eigenvector centrality [35]
values. We use eigenvector centrality to measure the impor-
tance of a vertex. A vertex has high eigenvector centrality
value if it is linked to by other vertices that also have high
eigenvector centrality values, without implying that this
vertex is highly linked. All of the path patterns of the root of
the BFS tree in Fig. 3c are as follows: ð4Þ; ð4; 1Þ; ð4; 1Þ; ð4; 3Þ;
ð4; 3Þ. All of the path patterns of the root of the BFS tree in
Fig. 3d are as follows: ð4Þ; ð4; 1Þ; ð4; 3Þ; ð4; 3Þ. On each vertex
in the graph G1 and G2, we first build a truncated BFS tree
of depth d, and then generate all of its corresponding path
patterns. The multiset1M of the graph G is a set that con-
tains all the path patterns extracted from BFS trees of depth
d rooted at each vertex of the graph.

Let M1 and M2 be two multisets corresponding to the
two graphs G1 and G2. Let the union ofM1 andM2 be U ¼
M1 [M2 ¼ flðP1Þ; lðP2Þ; . . . ; lðPjUjÞg. Define a map c : fG1;

G2g � S! N such that cðG; lðPiÞÞ is the number of occur-

rences of the path pattern lðPiÞ in the graph G. The defini-
tion of the path-pattern graph kernel is given as follows:

KppðG1;G2Þ ¼
X

lðPiÞ2U
c G1; lðPiÞð Þc G2; lðPiÞð Þ: (1)

Theorem 1. The path-pattern graph kernel Kpp is positive semi-
definite.

Proof. The path-pattern graph kernel Kpp in Equation (1)
can also be written as follows:

KppðG1;G2Þ ¼ fðG1Þ;fðG2Þh i
where fðG1Þ ¼ cðG1; lðP1ÞÞ;cðG1; lðP2ÞÞ; . . . ;cðG1; lðPjUjÞÞ

� �
and fðG2Þ ¼ cðG2; lðP1ÞÞ;cðG2; lðP2ÞÞ; . . . ;cðG2; lðPjUjÞÞ

� �
.

Inspired by earlier works on graph kernels, we can
readily verify that for any vector x 2 Rn, we have

xKppx ¼
Xn
i;j¼1

xixjKppðGi;GjÞ

¼
Xn
i;j¼1

xixj fðGiÞ;fðGjÞ
� �

¼
Xn
i¼1

xifðGiÞ;
Xn
j¼1

xjfðGjÞ
* +

¼
Xn
i¼1

xifðGiÞ
�����

����� � 0:

(2)

tu
For example, if the depth of BFS tree is set to one, the

multisetsM1 andM2 are as follows:

M1 ¼ ð1Þ; ð1; 4Þ; ð1Þ; ð1; 4Þ; ð4Þ; ð4; 1Þ; ð4; 1Þ; ð4; 3Þ; ð4; 3Þ;f
ð3Þ; ð3; 3Þ; ð3; 4Þ; ð2Þ; ð2; 3Þ; ð3Þ; ð3; 2Þ; ð3; 3Þ; ð3; 4Þg

M2 ¼ ð1Þ; ð1; 1Þ; ð1Þ; ð1; 1Þ; ð1; 4Þ; ð4Þ; ð4; 1Þ; ð4; 3Þ; ð4; 3Þ;f
ð2Þ; ð2; 3Þ; ð3Þ; ð3; 2Þ; ð3; 3Þ; ð3; 4Þ; ð3Þ; ð3; 3Þ; ð3; 4Þg:

The union of M1 and M2 is U ¼M1 [M2 which is a
normal set containing unique elements. The elements are
sorted lexicographically.

Fig. 3. Illustration of the path patterns in graphs. S ¼ f1; 2; 3; 4g.

1. A set that can contain the same element multiple times.

YE ET AL.: TREE++: TRUNCATED TREE BASED GRAPH KERNELS 1781

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

U ¼ ð1Þ; ð1; 1Þ; ð1; 4Þ; ð2Þ; ð2; 3Þ;f
ð3Þ; ð3; 2Þ; ð3; 3Þ; ð3; 4Þ; ð4Þ; ð4; 1Þ; ð4; 3Þg:

Considering that a path uv is equivalent to its reversed one
vu in undirected graphs, we remove the repetitive path pat-
terns in U and finally we have:

U ¼ ð1Þ; ð1; 1Þ; ð1; 4Þ; ð2Þ; ð2; 3Þ; ð3Þ; ð3; 3Þ; ð3; 4Þ; ð4Þf g
For each path pattern in the set U, we count its occurrences
in G1 and G2 and have the following:

fðG1Þ ¼ c G1; ð1Þð Þ;c G1; ð1; 1Þð Þ; . . . ;c G1; ð4Þð Þ½ �
¼ 2; 0; 4; 1; 2; 2; 2; 4; 1½ �

fðG2Þ ¼ c G2; ð1Þð Þ;c G2; ð1; 1Þð Þ; . . . ;c G2; ð4Þð Þ½ �
¼ 2; 2; 2; 1; 2; 2; 2; 4; 1½ �:

Thus KppðG1;G2Þ ¼ fðG1Þ;fðG2Þh i ¼ 42
The path-pattern graph kernel will be used as the base

kernel for our final TREE++ graph kernel. We can see that
the path-pattern graph kernel decomposes a graph into its
substructures, i.e., paths. However, paths cannot reveal the
structural or topological information of vertices. Thus, the
path-pattern graph kernel can only capture graph similarity
at fine granularities. Likewise, most of the graph kernels
that belong to the family of R-convolution framework [4]
face the same problem colloquially stated as losing sight of
the forest for the trees. To capture graph similarity at coarse
granularities, we need to zoom out our perspectives on
graphs and focus on the structural identities.

3.3 Incorporating Structural Identity

Structural identity is a concept to define the class of vertices
in a graph by considering the graph structure and their

relations to other vertices. In graphs, vertices are often asso-
ciated with some functions that determine their roles in the
graph. For example, each of the proteins in a protein-protein
interaction (PPI) network has a specific function, such as
enzyme, antibody, messenger, transport/storage, and struc-
tural component. Although such functions may also depend
on the vertex and edge attributes, in this paper, we only
consider their relations to the graph structures. Explicitly
considering the structural identities of vertices in graphs for
the design of graph kernels has been missing from the litera-
ture except the WeisfeilerLehman subtree kernel [6], [7],
Propagation kernel [15], MLG [10], and RetGK [14].

To incorporate the structural identity information into
graph kernels, in this paper, we extend the definition of
path in graphs and define super path as follows:

Definition 2 (Super Path). Given an undirected labeled graph
G ¼ ðV; E; lÞ, we build a truncated BFS tree T ¼ ðV0; E0; lÞ
(V0 � V and E0 � E) of depth d rooted at each vertex v 2 V. The
vertex v is called root. For each vertex v0 2 V0, there is a path
P ¼ v; v1; v2; . . . ; v

0ð Þ from the root v to v0 consisting of dis-
tinct vertices and edges. For each vertex in P , we build a trun-
cated BFS tree of depth k rooted at it. The sequence of trees
S ¼ Tv;Tv1 ;Tv2 ; . . . ;Tv0

� �
is called a super path.

We can see that the definition of super path includes the
definition of path in graphs. Path is a special case of super
path when the truncated BFS tree on each distinct vertex in
a path is of depth 0.

The problem now is that what is the path pattern corre-
sponding to the super path? In other words, what is the
label of each truncated BFS tree in the super path? In this
case, we also need to extend the definition of the label func-
tion l described in Section 3.1 as follows: l : T! S (S here is
different from above. We abuse the notation.) is a function
that assigns labels from a set of positive integers S to trees.
Thus, the definition of the path pattern for super paths is:
the concatenated labels lðSÞ ¼ lðTvÞ; lðTv1Þ; lðTv2Þ; . . . ; lðT0vÞ

� �
is called a path pattern.

For each truncated BFS tree, we need to hash it to a value
which is used for its label. In this paper, we just use the con-
catenation of the labels of its vertices as a hash method.
Note that the child vertices of each parent vertex in the BFS
trees are sorted by their label and eigenvector centrality val-
ues, from low to high. Thus, each truncated BFS tree is
uniquely hashed to a string of vertex labels. For example, in

Fig. 4, T
ð1Þ
1 can be denoted as (1,4,1,3,3), and T

ð1Þ
4 can be

denoted as (3,3,4,2,1,1). Now, the label function l : T! S
can assign the same positive integers to the same trees (the
same sequences of vertex labels). In our implementation,
we use a set to store BFS trees of depth k rooted at each ver-
tex in a dataset of graphs. In this case, the set will only con-
tain unique BFS trees. For BFS trees shown in Figs. 4 and 5,

the set will contain T
ð2Þ
1 , T

ð2Þ
2 , T

ð1Þ
1 , T

ð1Þ
3 , T

ð2Þ
4 , T

ð1Þ
5 , T

ð2Þ
5 , T

ð1Þ
4 ,

T
ð1Þ
6 , and T

ð2Þ
6 . Note that the truncated BFS trees in the set are

sorted lexicographically. We can use the index of each trun-

cated BFS tree in the set as its label. For instance, l : T
ð2Þ
1 ! 1,

l : T
ð2Þ
2 ! 2, l : T

ð1Þ
1 ! 3, l : T

ð1Þ
3 ! 4, l : T

ð2Þ
4 ! 5, l : T

ð1Þ
5 ! 6,

l : T
ð2Þ
5 ! 7, l : T

ð1Þ
4 ! 8, l : T

ð1Þ
6 ! 9, and l : T

ð2Þ
6 ! 10. If we

use the labels of these truncated BFS trees to relabel their

Fig. 4. A truncated BFS tree of depth two rooted at each vertex in the
undirected labeled graph G1.

1782 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

root vertices, graphs G1 and G2 in Figs. 3a and 3b become
graphs shown in Figs. 6a and 6b.

One observation is that if two vertices have the same
structural identities, their corresponding truncated BFS trees
are the same and thus they will have the same new labels.
For example, Figs. 4a and 4b show two truncated BFS trees
on the two vertices with the same label 1 in Fig. 3a. The two
trees are identical, and thus these two vertices’ structural
identities are identical, and their new labels in Fig. 6a are
also the same. This phenomenon also happens across graphs,
e.g., the vertices with label 2 in Figs. 3a and 3b also have the
same labels in Figs. 6a and 6b (vertices with the label 4).
Figs. 4d and 4e show another two truncated BFS trees on the
two vertices with label 3 in Fig. 3a. We can see that they have
different structural identities. Thus, by integrating structural
identities into path patterns, we can distinguish path pat-
terns at different levels of granularities. If we build truncated
BFS trees of depth 0 rooted at each vertex for super paths, the
two path patterns (1,4,3) in Fig. 3a and (1,4,3) in Fig. 3b (The
starting vertex is the left-bottom corner vertex with label 1,
and the end vertex is the right-most vertex with label 3.) are
identical. However, if we build super paths using truncated
BFS trees of depth two (as shown in Figs. 4 and 5), the two
path patterns become the two new path patterns (3,9,6) and
(2,10,7). They are totally different.

3.4 Tree++

Definition 3 (Graph Similarity at the k-level of Granu-
larity). Given two undirected labeled graphs G1 and G2, we
build truncated BFS trees of depth d rooted at each vertex in
these two graphs. All paths in all of these BFS trees are con-
tained in a set P. For each path in P, we build a truncated BFS

tree of depth kðk � 0Þ rooted at each vertex in the path. All
super paths are contained in a set SðkÞ (SðkÞ ¼ P, if k ¼ 0).
The graph similarity at the k-level of granularity is defined as
follows:

KðkÞpp ðG1;G2Þ ¼
X

S
ðkÞ
i
2SðkÞ

lðSðkÞ
i
Þ2UðkÞ

c G1; lðSðkÞi Þ
	

c G2; lðSðkÞi Þ
	

; (3)

where UðkÞ is a set that contains all of unique path patterns at
the k-level of granularity.

To make our path pattern graph kernel capture graph simi-
larity at multiple levels of granularities, we formalize the
following:

KTreeþþðG1;G2Þ ¼
Xk
i¼0
KðiÞpp ðG1;G2Þ: (4)

We call the above formulation as TREE++. Note that TREE++
is positive semi-definite because a sum of positive semi-def-
inite kernels is also positive semi-definite.

In the following, we give the algorithmic details of our
TREE++ graph kernel in Algorithm 1. Lines 2–8 generate
paths for each vertex in each graph. For each vertex v, we
build a truncated BFS tree of depth d rooted at it. The
time complexity of BFS traversal of a graph is OðjVj þ jEjÞ,
where jVj is the number of vertices, and jEj is the number of
edges in a graph. For convenience, we assume that jEj > jVj
and all the n graphs have the same number of vertices and
edges. The worst time complexity of our path generation for
all the n graphs isO n � jVj � jEj þ jVjð Þð Þ. Lines 11–18 generate
super paths from paths. The number of paths generated in

lines 2–8 is n � jVj � jEj þ jVjð Þ. For each path, it at most con-

tains jVj vertices. For each vertex in the path, we need to con-

struct a BFS tree of depth k, which costs OðjEjÞ. Thus, the
worst time complexity of generating super paths for n

graphs is Oðn � jVj2 � jEj2 þ n � jVj3 � jEjÞ. Line 19 sorts the ele-

ments in U lexicographically, of which the time complexity is

bounded by OðjEjÞ [7]. Lines 20–21 count the occurrences of
each unique path pattern in graphs. For each unique path

pattern in UðiÞ, we need to count its occurrences in each

graph. The time complexity for counting is bounded by

Oðq �mÞ, where q is the maximum length of all UðiÞð0 �
i � kÞ, and m is the maximum length of AllSuperPaths[j]

(1 � j � n). Thus, the time complexity of lines 10–21 is

Oðn � jVj2 � jEj2 þ n � jVj3 � jEj þ n � q �mÞ. The time complex-

ity for line 23 is bounded by Oðn2 � qÞ. The worst time com-

plexity of our TREE++ graph kernel for n graphs with the

depth of k truncated BFS trees for super paths is Oðk � n�
jVj2 � jEj2 þ k � n � jVj3 � jEj þ k � n2 � q þ k � n � q �mÞ.

Fig. 5. A truncated BFS tree of depth two rooted at each vertex in the
undirected labeled graph G2.

Fig. 6. Relabel graphs. S ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g.

YE ET AL.: TREE++: TRUNCATED TREE BASED GRAPH KERNELS 1783

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1. TREE++

Input: A set of graphs G ¼ fG1;G2; . . . ;Gng and their vertex
label functions L ¼ fl1; l2; . . . ; lng, d, k

Output: The computed kernel matrix K 2 Nn�n

1 K zeros((n; n)), AllPaths {};
/* Path generation */

2 for i 1 to n do
3 Paths []; /* list */

4 foreach vertex v 2 Gi do
5 Build a truncated BFS tree T of depth d rooted at the

vertex v;
6 foreach vertex v0 2 T do
7 Paths.append(P);

/* P ¼ ðv; v1; v2; . . . ; v0Þ */

8 AllPaths[i� Paths;
/* Compute TREE++ . */

9 for i 0 to k do
/* Super path generation. */

10 UðiÞ set(), AllSuperPaths {};
11 for j 1 to n do
12 SuperPaths [], Paths AllPaths[j];
13 foreach P 2 Paths do
14 foreach vertex v in P do
15 Build a truncated BFS tree Tv of depth i rooted at

the vertex v in graph Gj;

16 SuperPaths.append(lðSðiÞÞ); /* SðiÞ ¼ ðTv1 ;
Tv2 ; . . .Þ; P ¼ ðv1; v2; . . .Þ */

17 UðiÞ.add(lðSðiÞÞ);
18 AllSuperPaths[j� SuperPaths;

/* contains all the super paths in graph

Gj */

19 UðiÞ sort(UðiÞ); /* lexicographically */

20 for j 1 to n do

21 fðGjÞ cðGj; lðSðjÞ1 ÞÞ;cðGj; lðSðjÞ2 Þ; . . . ;cðGj; lðSðjÞjUðiÞjÞ
h i

/* count the number cðGj; lðSðjÞÞÞ of the occur-

rences of each path pattern stored in AllSu-

perPaths[j].

lðSðjÞ1 Þ; lðSðjÞ2 Þ; . . . ; l S
ðjÞ
jUðiÞj

	

2 UðiÞ */

22 F fðG1Þ;fðG2Þ; . . . ;fðGnÞ½ �;
23 K KþF �F>;
24 return K ;

4 EXPERIMENTAL SETUP

We run all the experiments on a desktop with an Intel Core
i7-8700 3.20 GHz CPU, 32 GB memory, and Ubuntu 18.04.1
LTS operating system, Python version 2.7. TREE++ is written
in Python. We make our code publicly available at Github.2

We compare TREE++with seven state-of-the-art graph ker-
nels, i.e., MLG [10], DGK [22], RETGK [14], PROPA [15], PM
[26], SP [9], and WL [7]. We also compare TREE++ with one
state-of-the-art graph classification method FGSD [28] which
learns features from graphs and then directly feed them into
classifiers. We set the parameters for our TREE++ graph
kernel as follows: The depth of the truncated BFS tree rooted
at each vertex is set as d ¼ 6, and the depth k of the trunca-
ted BFS tree in the super path is chosen from {0, 1, 2, . . . , 7}
through cross-validation. The parameters for the comparison
methods are set according to their original papers. We use
the implementations of PROPA, PM, SP, and WL from the
GraKeL [36] library. The implementations of other methods
are obtained from their corresponding websites. A short
description for each comparisonmethod is given as follows:

� MLG [10] is a graph kernel that builds a hierarchy of
nested subgraphs to capture graph structures at a
range of different scales.

� DGK [22] uses techniques from natural language
processing to learn latent representations for sub-
structures extracted by graph kernels such as SP [9],
and WL [7]. Then the similarity matrix between sub-
structures is computed and integrated into the com-
putation of the graph kernel matrices.

� RETGK [14] introduces a structural role descriptor for
vertices, i.e., the return probabilities features (RPF)
generated by random walks. The RPF is then embed-
ded into the Hilbert space where the corresponding
graph kernels are derived.

� PROPA [15] leverages early-stage distributions of ran-
dom walks to capture structural information hidden
in vertex neighborhood.

� PM [26] embeds graph vertices into vectors and use
the Pyramid Match kernel to compute the similarity
between the sets of vectors of two graphs.

� SP [9] counts the number of pairs of shortest paths
which have the same source and sink labels and the
same length in two graphs.

� WL [7] is based on the Weisfeiler-Lehman test of iso-
morphism [21] for graphs. It counts the number of
occurrences of each subtrees in graphs.

� FGSD [28] discovers family of graph spectral distan-
ces and their based graph feature representations to
classify graphs.

All graph kernel matrices are normalized according to the
method proposed in [29]. For each entryKði; jÞ, it will be nor-

malized as Kði; jÞ= ffi
Kði; iÞKðj; jÞp

. All diagonal entries will

be 1. We use 10-fold cross-validation with a binary C-SVM
[37] to test classification performance of each graph kernel.
The parameter C for each fold is independently tuned from
1; 10; 102; 103

�

using the training data from that fold. We

repeat the experiments ten times and report the average

TABLE 1
Statistics of the Real-World Datasets Used in the Experiments

Dataset Size Class # Avg. Node# Avg. Edge# Label #

BZR 405 2 35.75 38.36 10
BZR_MD 306 2 21.30 225.06 8
COX2 467 2 41.22 43.45 8
COX2_MD 303 2 26.28 335.12 7
DHFR 467 2 42.43 44.54 9
DHFR_MD 393 2 23.87 283.01 7
NCI1 4110 2 29.87 32.30 37
PROTEINS 1113 2 39.06 72.82 3
Mutagenicity 4337 2 30.32 30.77 14
PTC_MM 336 2 13.97 14.32 20
PTC_FR 351 2 14.56 15.00 19
KKI 83 2 26.96 48.42 190

2. https://github.com/yeweiysh/TreePlusPlus

1784 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

classification accuracies and standard deviations. We also
test the running time of each method on each real-world
dataset.

In order to test the efficacy of our graph kernel TREE++,
we adopt twelve real-word datasets whose statistics are
given in Table 1. Fig. 9 shows the distributions of vertex
number, edge number and degree in these twelve real-world
datasets.

Chemical Compound Datasets. The chemical compound
datasets BZR, BZR_MD, COX2, COX2_MD, DHFR, and
DHFR_MD are from the paper [38]. Chemical compounds or
molecules are represented by graphs. Edges represent the
chemical bond type, i.e., single, double, triple or aromatic.
Vertices represent atoms. Vertex labels represent atom types.
BZR is a dataset of 405 ligands for the benzodiazepine recep-
tor. COX2 is a dataset of 467 cyclooxygenase-2 inhibitors.
DHFR is a dataset of 756 inhibitors of dihydrofolate reduc-
tase. BZR_MD, COX2_MD, and DHFR_MD are derived
from BZR, COX2, and DHFR respectively, by removing
explicit hydrogen atoms. The chemical compounds in the
datasets BZR_MD, COX2_MD, and DHFR_MD are repre-
sented as complete graphs, where edges are attributed with
distances and labeled with the chemical bond type. NCI1
[39] is a balanced dataset of chemical compounds screened
for the ability to suppress the growth of human non-small
cell lung cancer.

Molecular Compound Datasets. The dataset PROTEINS is
from [40]. Each protein is represented by a graph. Vertices
represent secondary structure elements. Edges represent
that two vertices are neighbors along the amino acid

sequence or three-nearest neighbors to each other in space.
Mutagenicity [41] is a dataset of 4337 molecular compounds
which can be divided into two classes mutagen and non-
mutagen. The PTC [1] dataset consists of compounds
labeled according to carcinogenicity on rodents divided
into male mice (MM), male rats (MR), female mice (FM) and
female rats (FR).

Brain Network Dataset. KKI [42] is a brain network con-
structed from the whole brain functional resonance image
(fMRI) atlas. Each vertex corresponds to a region of interest
(ROI), and each edge indicates correlations between two
ROIs. KKI is constructed for the task of Attention Deficit
Hyperactivity Disorder (ADHD) classification.

5 EXPERIMENTAL RESULTS

In this section, we first evaluate TREE++ with differing
parameters on each real-world dataset, then compare
TREE++ with eight baselines on classification accuracy and
runtime.

5.1 Parameter Sensitivity

In this section, we test the performance of our graph kernel
TREE++ on each real-world dataset when varying its two
parameters, i.e., the depth k of the truncated BFS tree in the
super path, and the depth d of the truncated BFS tree rooted
at each vertex to extract path patterns. We vary the number
of k and d both from zero to seven. When varying the num-
ber of k, we fix d ¼ 7. When varying the number of d, we fix
k ¼ 1.

Fig. 7. The classification accuracy of TREE++ on each real-world dataset when varying the number of k (the depth of the truncated BFS tree in the
super path).

Fig. 8. The classification accuracy of TREE++ on each real-world dataset when varying the number of d (the depth of the truncated BFS tree rooted at
each vertex to extract path patterns).

YE ET AL.: TREE++: TRUNCATED TREE BASED GRAPH KERNELS 1785

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

Fig. 7 shows the classification accuracy of TREE++ on each
real-world dataset when varying the number of k. On the
original chemical compound datasets, we can see that TREE+
+ tends to reach better classification accuracy with increas-
ing values of k. The tendency is reversed on the derived
chemical compound datasets where explicit hydrogen
atoms are removed. We can see from Fig. 9 that compared
with the original datasets BZR, COX2, and DHFR, the

derived datasets BZR_MD, COX2_MD, and DHFR_MD
have more diverse edge and degree distributions, i.e., the
edge number and degree vary more than those of the origi-
nal datasets. In addition, their degree distributions do not
follow the power law. For graphs with many high degree
vertices, the concatenation of vertex labels as a hash method
for BFS trees in super paths can hurt the performance. For
example, two BFS trees in super paths may just have one

Fig. 9. The rows illustrate the distributions of node number, edge number, and degree in the datasets used in the paper.

1786 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

different vertex, which can lead to different hashing. Thus,
with increasing values of k, two graphs with many high
degree vertices tend to be more dissimilar, which is a reason
for the decreasing of classification accuracy in datasets
BZR_MD, COX2_MD, and DHFR_MD. Since the degree dis-
tribution of the brain network dataset KKI follow the power
law, we can observe a tendency of TREE++ to reach better
classification accuracy with increasing values of k. On all
the molecular compound datasets whose degree distribu-
tion also follow the power law, we also observe a tendency
of TREE++ to reach better classification accuracy with
increasing values of k. Another observation is that the classi-
fication accuracy of TREE++ first increase and then remain
stable with increasing values of k. One explaination is that if
smaller values of k can distinguish the structure identities
of vertices, larger values of k will not benefit much to the
increase of classification accuracy.

Fig. 8 shows the classification accuracy of TREE++ on each
real-world dataset when varying the number of d. On all the
chemical compound datasets except COX2, and on all the
molecular compound datasets and brain network dataset,
TREE++ tends to become better with increasing values of d.
The phenomena are obvious because deep BFS trees can
capture more path patterns around a vertex.

5.2 Classification Results

Table 2 shows the classification accuracy of our graph ker-
nel TREE++ and its competitors on the twelve real-world

datasets. TREE++ is superior to all of the competitors on
eleven real-world datasets. On the dataset COX2_MD, the
classification accuracy of TREE++ has a gain of 5.3 percent
over that of the second best method SP, and has a gain of
43.7 percent over that of the worst method MLG. On the
dataset KKI, the classification accuracy of TREE++ has a gain
of 6.5 percent over that of the second best method PM, and
has a gain of 15.9 percent over that of the worst method
MLG. On the datasets DHFR_MD, Mutagenicity, and
PTC_MM, TREE++ is slightly better than WL. On the dataset
PROTEINS, SP achieves the best classification accuracy.
TREE++ achieves the second best classification accuracy.
However, the classification accuracy of SP only has a gain of
0.7 percent over that of TREE++. To summarize, our TREE++
kernel achieves the highest accuracy on eleven datasets and
is comparable to SP on the dataset PROTEINS.

5.3 Runtime

Table 3 demonstrates the running time of every method on
the real-world datasets. TREE++ scales up easily to graphs
with thousands of vertices. On the dataset Mutagenicity,
TREE++ finishes its computation in about one minute. It
costs RETGK about twelve minutes to finish. It even costs
MLG about one hour to finish. On the dataset NCI1, TREE+
+ finishes its computation in about one minute, while
RETGK uses about twelve minutes and MLG uses about
one hour. On the other datasets, TREE++ is comparable to
SP and WL.

TABLE 2
Comparison of Classification Accuracy (Standard Deviation) of TREE++ and Its Competitors on the Real-World Datasets

Dataset TREE++ MLG DGK RETGK PROPA PM SP WL FGSD

BZR 87.88 	 1.00 86.28 	 0.59 83.08 	 0.53 86.30 	 0.71 85.95 	 0.85 82.35 	 0.47 85.65 	 1.02 87.25 	 0.77 85.38 	 0.85
BZR_MD 69.47 	 1.14 48.87 	 2.44 58.50 	 1.52 62.77 	 1.69 61.53 	 1.27 68.20 	 1.24 68.60 	 1.94 59.67 	 1.47 61.00 	 1.35
COX2 84.28 	 0.85 76.91 	 1.14 78.30 	 0.29 81.85 	 0.83 81.33 	 1.36 77.34 	 0.82 80.87 	 1.20 81.20 	 1.05 78.30 	 1.03
COX2_MD 69.20 	 1.69 48.17 	 2.43 51.57 	 1.71 59.47 	 1.66 55.33 	 1.70 63.60 	 0.87 65.70 	 1.66 56.30 	 1.55 48.97 	 1.90
DHFR 83.68 	 0.59 79.61 	 0.50 64.13 	 0.89 82.33 	 0.66 80.67 	 0.52 64.59 	 1.25 77.80 	 0.98 82.39 	 0.90 78.13 	 0.58
DHFR_MD 68.87 	 0.91 67.87 	 0.12 67.90 	 0.26 64.44 	 0.98 64.18 	 0.97 66.21 	 1.01 68.00 	 0.36 64.00 	 0.47 66.62 	 0.78
NCI1 85.77 	 0.12 78.20 	 0.32 66.72 	 0.29 84.28 	 0.25 79.71 	 0.39 63.55 	 0.44 73.12 	 0.29 84.79 	 0.22 75.99 	 0.51
PROTEINS 75.46 	 0.47 72.01 	 0.83 72.59 	 0.51 75.77 	 0.66 72.71 	 0.83 73.66 	 0.67 76.00 	 0.29 75.32 	 0.20 70.14 	 0.67
Mutagenicity 83.64 	 0.27 76.85 	 0.38 66.80 	 0.15 82.89 	 0.18 81.47 	 0.34 69.06 	 0.14 77.52 	 0.13 83.51 	 0.27 70.71 	 0.39
PTC_MM 68.03 	 0.61 61.21 	 1.08 67.09 	 0.49 65.79 	 1.76 64.12 	 1.43 62.27 	 1.51 62.18 	 2.22 67.18 	 1.61 57.88 	 1.97
PTC_FR 68.71 	 1.29 64.31 	 2.00 67.66 	 0.32 66.77 	 0.99 65.14 	 2.04 64.86 	 0.88 66.91 	 1.46 66.17 	 1.02 63.80 	 1.51
KKI 55.63 	 1.69 48.00 	 3.64 51.25 	 4.17 48.50 	 2.99 50.88 	 4.17 52.25 	 2.49 50.13 	 3.46 50.38 	 2.77 49.25 	 4.76

TABLE 3
Comparison of Runtime (in seconds) of TREE++ and Its Competitors on the Real-World Datasets

Dataset TREE++ MLG DGK RETGK PROPA PM SP WL FGSD

BZR 11.29 142.80 1.60 13.70 11.76 16.80 12.37 1.73 0.73
BZR_MD 4.73 89.93 1.23 4.22 4.89 17.15 17.81 7.72 0.07
COX2 14.57 78.29 2.26 15.73 7.28 6.48 4.81 0.92 0.14
COX2_MD 7.83 4.42 1.10 5.62 1.71 4.67 2.67 1.14 0.07
DHFR 26.24 200.05 4.44 48.95 14.17 16.01 12.07 1.95 0.22
DHFR_MD 8.10 19.03 1.12 10.02 3.01 6.82 4.65 1.49 0.08
NCI1 81.68 3315.42 39.35 761.45 221.84 326.43 22.89 101.68 1.39
PROTEINS 59.56 3332.31 48.83 49.07 27.72 32.79 36.38 38.66 0.49
Mutagenicity 87.09 4088.53 24.67 735.48 526.96 672.33 28.03 94.05 1.56
PTC_MM 1.99 152.69 1.08 2.84 2.44 10.00 1.83 0.95 0.08
PTC_FR 2.19 170.05 1.14 3.16 5.73 10.01 2.48 1.77 0.09
KKI 2.00 67.58 0.65 0.40 0.57 1.25 1.27 0.25 0.02

YE ET AL.: TREE++: TRUNCATED TREE BASED GRAPH KERNELS 1787

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

6 DISCUSSION

Differing from the Weisfeiler-Lehman subtree kernel (WL)
which uses subtrees (each vertex can appear repeatedly) to
extract features from graphs, we use BFS trees to extract fea-
tures from graphs. In this case, every vertex will appear
only once in a BFS tree. Another different aspect is that we
count the number of occurrences of each path pattern while
WL counts the number of occurrences of each subtree pat-
tern. If the BFS trees used in the construction of path pat-
terns and super paths are of depth zero, TREE++ is
equivalent to WL using subtree patterns of depth zero; If
the BFS trees used in the construction of path patterns are of
depth zero, and of super paths are of depth one, TREE++ is
equivalent to WL using subtree patterns of depth one. In
other cases, TREE++ and the Weisfeiler-Lehman subtree ker-
nel deviate from each other. TREE++ is also related to the
shortest-path graph kernel (SP) in the sense that both of
them use the shortest paths in graphs. SP counts the number
of pairs of shortest paths which have the same source and
sink labels and the same length in two graphs. Each short-
est-path used in SP is represented as a tuple in the form of
“(source, sink, length)” which does not explicitly consider
the intermediate vertices. However, TREE++ explicitly con-
siders the intermediate vertices. If two shortest-paths with
the same source and sink labels and the same length but
with different intermediate vertices, SP cannot distinguish
them whereas TREE++ can. Thus compared with SP, TREE++
has higher discrimination power.

As discussed in Section 1, WL can only capture the graph
similarity at coarse granularities, and SP can only capture
the graph similarity at fine granularities. By inheritingmerits
both from trees and shortest-paths, our method TREE++ can
capture the graph similarity at multiple levels of granular-
ities. Although MLG can also capture the graph similarity at
multiple levels of granularities, it needs to invert the graph
Laplacianmatrix, which costs a lot of time. TREE++ is scalable
to large graphs. TREE++ is built on the truncated BFS trees
rooted at each vertex in a graph. One main problem is that
the truncated BFS trees are not unique. To solve this problem,
we build BFS trees considering the label and eigenvector cen-
trality values of each vertex. Alternatively, we can also use
other centrality metrics such as closeness centrality [43] and
betweenness centrality [44] to order the vertices in the BFS
trees. An interesting research topic in the future is to investi-
gate the effects of using different centrality metrics to con-
struct BFS trees on the performance of TREE++.

As stated in Section 2, hash functions have been integrated
into the design of graph kernels. But they are just adopted for
hashing continuous attributes to discrete ones. Convention-
ally, hash functions are developed for efficient nearest neigh-
bor search in databases. Usually, people first construct a
similarity graph from data and then learn a hash function to
embed data points into a low-dimensional space where
neighbors in the input space aremapped to similar codes [45].
For two graphs, we can first use hash functions such as Spec-
tral Hashing (SH) [46] or graph embedding methods such as
DeepWalk [47] to embed each vertex in a graph into a vector
space. Each graph is represented as a set of vectors. Then, fol-
lowing RetGK [14], we can use the MaximumMean Discrep-
ancy (MMD) [48] to compute the similairty between two sets

of vectors. Finally, we have a kernel matrix for graphs. This
research direction is worth exploring in the future. TREE++ is
designed for graphs with discrete vertex labels. Another
research direction in the future is to extend TREE++ to graphs
with both discrete and continuous attributes.

7 CONCLUSION

In this paper, we have presented two novel graph kernels:
(1) The path-pattern graph kernel that uses the paths from
the root to every other vertex in a truncated BFS tree as fea-
tures to represent a graph; (2) The TREE++ graph kernel that
incorporates a new concept of super path into the path-pat-
tern graph kernel and can compare the graph similarity at
multiple levels of granularities. TREE++ can capture topolog-
ical relations between not only individual vertices, but also
subgraphs, by adjusting the depths of truncated BFS trees in
the super paths. Empirical studies demonstrate that TREE++
is superior to other well-known graph kernels in the litera-
ture regarding classification accuracy and runtime.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their constructive and helpful comments. This work was
supported partially by the National Science Foundation
(grant # IIS-1817046) and by the U. S. Army Research Labo-
ratory and the U. S. Army Research Office (grant #
W911NF-15-1-0577).

REFERENCES

[1] N. Kriege and P. Mutzel, “Subgraph matching kernels for attrib-
uted graphs,” in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 291–298.

[2] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath,
A. J. Shusterman, and C. Hansch, “Structure-activity relationship
of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity,”
J. Medicinal Chemistry, vol. 34, no. 2, pp. 786–797, 1991.

[3] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. M€uller,
“Netlsd: Hearing the shape of a graph,” in Proc. 24th ACMSIGKDD
Int. Conf. Knowl. Discovery DataMining, 2018, pp. 2347–2356.

[4] D. Haussler, “Convolution kernels on discrete structures,” Dept.
Comput. Sci., Univ. California at Santa Cruz, Santa Cruz, CA,
Tech. Rep. UCSC-CRL-99–10, 1999.

[5] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and
K. Borgwardt, “Efficient graphlet kernels for large graph
comparison,” in Proc. 12th Int. Conf. Artif. Intell. Statist., 2009,
pp. 488–495.

[6] N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on
graphs,” in Proc. 22nd Int. Conf. Neural Inf. Process. Syst., 2009,
pp. 1660–1668.

[7] N. Shervashidze, P. Schweitzer, E. J. V. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-lehman graph kernels,” J. Mach.
Learn. Res., vol. 12, pp. 2539–2561, 2011.

[8] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt, “Graph kernels,” J. Mach. Learn. Res., vol. 11,
pp. 1201–1242, 2010.

[9] K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on
graphs,” in Proc. 5th IEEE Int. Conf. Data Mining, 2005, pp. 8–pp.

[10] R. Kondor and H. Pan, “The multiscale laplacian graph kernel,” in
Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016, pp. 2990–2998.

[11] T. G€artner, P. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in Learning theory and kernel
machines. Berlin, Germany: Springer, 2003, pp. 129–143.

[12] H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels
between labeled graphs,” in Proc. 20th Int. Conf. Int. Conf. Mach.
Learn., 2003, pp. 321–328.

[13] M. Neumann, N. Patricia, R. Garnett, and K. Kersting, “Efficient
graph kernels by randomization,” in Proc. Joint Eur. Conf. Mach.
Learn. Knowl. Discovery Databases, 2012, pp. 378–393.

1788 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 4, APRIL 2021

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

[14] Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai, “RetGK:
Graph kernels based on return probabilities of random walks,” in
Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 3964–3974.

[15] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting,
“Propagation kernels: Efficient graph kernels from propagated
information,”Mach. Learn., vol. 102, no. 2, pp. 209–245, 2016.

[16] F. Costa and K. D. Grave, “Fast neighborhood subgraph pairwise
distance kernel,” in Proc. 27th Int. Conf. Int. Conf. Mach. Learn.,
2010, pp. 255–262.

[17] T. Horv�ath, T. G€artner, and S. Wrobel, “Cyclic pattern kernels for
predictive graph mining,” in Proc. 10th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2004, pp. 158–167.

[18] N. Pr�zulj, D. G. Corneil, and I. Jurisica, “Modeling interactome:
scale-free or geometric?”Bioinf., vol. 20, no. 18, pp. 3508–3515, 2004.

[19] J. Ramon and T. G€artner, “Expressivity versus efficiency of graph
kernels,” in Proc. 1st Int. Workshop Mining Graphs Trees Sequences,
2003, pp. 65–74.

[20] P. Mah�e and J.-P. Vert, “Graph kernels based on tree patterns for
molecules,”Mach. Learn., vol. 75, no. 1, pp. 3–35, 2009.

[21] B. Weisfeiler and A. Lehman, “A reduction of a graph to a canoni-
cal form and an algebra arising during this reduction,” Nauchno-
Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–16, 1968.

[22] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proc.
21th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2015,
pp. 1365–1374.

[23] N. M. Kriege, P.-L. Giscard, and R. Wilson, “On valid optimal
assignment kernels and applications to graph classification,” in
Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016, pp. 1623–1631.

[24] X. Kong, W. Fan, and P. S. Yu, “Dual active feature and sample
selection for graph classification,” in Proc. 17th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, 2011, pp. 654–662.

[25] J. B. Lee, R. Rossi, and X. Kong, “Graph classification using struc-
tural attention,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Dis-
covery Data Mining, 2018, pp. 1666–1674.

[26] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, “Matching
node embeddings for graph similarity,” in Proc. 31st AAAI Conf.
Artif. Intell., 2017, pp. 2429–2435.

[27] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proc. 33rd Int. Conf. Int. Conf.
Mach. Learn., 2016, pp. 2014–2023.

[28] S. Verma and Z.-L. Zhang, “Hunt for the unique, stable, sparse
and fast feature learning on graphs,” in Proc. Advances Neural Inf.
Process. Syst., 2017, pp. 88–98.

[29] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borg-
wardt, “Scalable kernels for graphs with continuous attributes,”
in Proc. Advances Neural Inf. Process. Syst., 2013, pp. 216–224.

[30] Y. Su, F. Han, R. E. Harang, andX. Yan, “A fast kernel for attributed
graphs,” in Proc. SIAM Int. Conf. DataMining, 2016, pp. 486–494.

[31] K. Grauman and T. Darrell, “Approximate correspondences in
high dimensions,” in Proc. Advances Neural Inf. Process. Syst., 2007,
pp. 505–512.

[32] C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel, “Faster ker-
nels for graphs with continuous attributes via hashing,” in Proc.
IEEE 16th Int. Conf. Data Mining, 2016, pp. 1095–1100.

[33] F. Orsini, P. Frasconi, and L. De Raedt, “Graph invariant kernels,”
in Proc. 24th Int. Joint Conf. Artif. Intell., 2015, pp. 3756–3762.

[34] F. Harary, “Graph theory,” Addison Wesley series in mathematics,
Addison-Wesley, 1971.

[35] P. Bonacich, “Power and centrality: A family of measures,” Amer.
J. Sociology, vol. 92, no. 5, pp. 1170–1182, 1987.

[36] G. Siglidis, G. Nikolentzos, S. Limnios, C. Giatsidis, K. Skianis,
and M. Vazirgiannis, “Grakel: A graph kernel library in python,”
arXiv:1806.02193, 2018.

[37] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011,
Art. no. 27.

[38] J. J. Sutherland, L. A. O’brien, and D. F. Weaver, “Spline-fitting
with a genetic algorithm: A method for developing classification
structure- activity relationships,” J. Chemical Inf. Comput. Sci.,
vol. 43, no. 6, pp. 1906–1915, 2003.

[39] N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor
spaces for chemical compound retrieval and classification,”
Knowl. Inf. Syst., vol. 14, no. 3, pp. 347–375, 2008.

[40] K. M. Borgwardt, C. S. Ong, S. Sch€onauer, S. Vishwanathan,
A. J. Smola, and H.-P. Kriegel, “Protein function prediction via
graph kernels,” Bioinf., vol. 21, no. suppl_1, pp. i47–i56, 2005.

[41] K. Riesen and H. Bunke, “Iam graph database repository for
graph based pattern recognition and machine learning,” in SPR
and SSPR. Berlin, Germany: Springer, 2008, pp. 287–297.

[42] S. Pan, J. Wu, X. Zhu, G. Long, and C. Zhang, “Task sensitive fea-
ture exploration and learning for multitask graph classification,”
IEEE Trans. Cybernetics, vol. 47, no. 3, pp. 744–758, 2017.

[43] G. Sabidussi, “The centrality index of a graph,” Psychometrika,
vol. 31, no. 4, pp. 581–603, 1966.

[44] L. C. Freeman, “A set of measures of centrality based on
betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41, 1977.

[45] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with
graphs,” in Proc. 28th Int. Conf. Mach. Learn., pp. 1–8, 2011.

[46] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.
21st Int. Conf. Neural Inf. Process. Syst., 2009, pp. 1753–1760.

[47] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proc. 20th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, 2014, pp. 701–710.

[48] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Sch€olkopf, and
A. Smola, “A kernel two-sample test,” J. Mach. Learn. Res., vol. 13,
no. Mar, pp. 723–773, 2012.

Wei Ye received the PhD degree in computer sci-
ence from Institut f€ur Informatik, Ludwig-Maximili-
ans-Universit€at M€unchen, Munich, Germany, in
2018. He is currently a postdoctoral researcher with
the DYNAMO lab at the University of California,
Santa Barbara. Before joining the DYNAMO lab,
he worked as a researcher in the Department of AI
Platform, Tencent, China. His research interests
include graph-based machine learning and their
applications, network interactions, and dynamic
networks.

Zhen Wang received the BEng degree in elec-
tronic information engineering from the University
of Electronic Science and Technology of China,
Chengdu, China, and the BEng degree with first
class honour in electronics and electrical engi-
neering from the University of Glasgow, Scotland,
United Kingdom, both in 2018. He is currently
working towards theMSc degree at Columbia Uni-
versity. His research interests include graph min-
ing and statistical machine learning.

Rachel Redberg received the BA degree in
applied mathematics from the University of Cali-
fornia, Berkeley, in 2015. She is currently working
toward the PhD degree in computer science at
the University of California, Santa Barbara. Her
research interests include network analysis and
applications of network science to biological
systems.

Ambuj Singh is a professor of computer science
at the University of California, Santa Barbara
(UCSB). He joined UCSB’s Computer Science
Department after his PhD degree from the Univer-
sity of Texas at Austin, in 1989. He has written
more than 180 technical papers in the areas of dis-
tributed computing, databases, and bioinformat-
ics. He is currently on the editorial boards of three
journals, and has served on program committees
of several conferences, workshops and interna-
tional meetings. His current research interests

include network science, data mining, machine learning, bioinformatics,
graph querying, andmining.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

YE ET AL.: TREE++: TRUNCATED TREE BASED GRAPH KERNELS 1789

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:43:04 UTC from IEEE Xplore. Restrictions apply.

