3716

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 12, DECEMBER 2021

Incorporating User’s Preference into
Attributed Graph Clustering

Wei Ye ", Dominik Mautz™, Christian Bohm, Ambuj Singh

, and Claudia Plant

Abstract—Graph clustering has been studied extensively on both plain graphs and attributed graphs. However, all these methods
need to partition the whole graph to find cluster structures. Sometimes, based on domain knowledge, people may have information
about a specific target region in the graph and only want to find a single cluster concentrated on this local region. Such a task is called
local clustering. In contrast to global clustering, local clustering aims to find only one cluster that is concentrating on the given seed
vertex (and also on the designated attributes for attributed graphs). Currently, very few methods can deal with this kind of task. To this
end, we propose two quality measures for a local cluster: Graph Unimodality (GU) and Attribute Unimodality (AU). The former
measures the homogeneity of the graph structure while the latter measures the homogeneity of the subspace that is composed of the
designated attributes. We call their linear combination as CompacTnNEss. Further, we propose LOCLU to optimize the ComPACTNESS
score. The local cluster detected by LOCLU concentrates on the region of interest, provides efficient information flow in the graph and
exhibits a unimodal data distribution in the subspace of the designated attributes.

Index Terms—Local clustering, user’s preference, attributed graphs, dip test, unimodal, NCut, power iteration

1 INTRODUCTION

DATA can be collected from multiple sources and mod-
eled as attributed graphs (networks), in which vertices
represent entities, edges represent their relations and attrib-
utes describe their own characteristics. For example, pro-
teins in a protein-protein interaction network may be
associated with gene expressions in addition to their inter-
action relations; users in a social network may be associated
with individual attributes such as interests, residence and
demographics in addition to their friendship relations.

One of the major data mining tasks in graphs (networks)
is the detection of clusters. Existing methods for cluster
detection in attributed graphs can be divided into two cate-
gories, i.e., full space attributed graph clustering methods
[1], [2] and subspace attributed graph clustering meth-
ods [3], [4], [5]. The methods belonging to the first category
treat all attributes equally important to the graph structure,
while the methods belonging to the second category con-
sider varying relevance of attributes to the graph structure.
All these methods need to partition the whole graph to find
cluster structures. However, based on domain knowledge,
sometimes people may have information about a specific
target region in the graph and are only interested in finding
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a cluster surrounding this local region. Such a task is called
local cluster detection, which has aroused a great deal of
attention in many applications, e.g., targeted ads, medicine,
etc. Without considering scalability, one may think we can
first use full space or subspace attributed graph clustering
techniques and then return the cluster that contains the tar-
get region. However, it is hard to set the number of clusters
in real-world graphs. And the cluster content depends on
the chosen number of clusters.

To deal with this task, several recent works [6], [7] use
short random walks starting from the target region to
find the local cluster. Also, some approaches [8], [9]
focus on using the graph diffusion methods to find the
local cluster. However, these methods are only suitable
for detecting local clusters in plain graphs whose vertices
have no attributes. Recently, FocusCO [10] has been pro-
posed to find a local cluster of interest to users in attrib-
uted graphs. Given an examplar set, it first exploits a
metric learning method to learn a projection vector that
makes the vertex in the examplar set similar to each
other in the projected attribute subspace, then updates
the graph weight and finally performs the focused clus-
ter extraction. FocusCO cannot infer the projection vector
if the examplar set has only one vertex.

In this paper, given user’s preference, i.e., the seed vertex
and the designated attributes, we develop a method that
can automatically find the vertices that are similar to the
given seed vertex. The similarity is measured by the homo-
geneity both in the graph structure and the subspace that is
composed of the designated attributes. To this end, we first
propose COMPACTNESS to measure the unimodality' of the

1. In this work, unimodality /unimodal and homogeneity /homoge-
neous can be used interchangeably.
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Age: 12
Sport: 2 Age: 17 Age: 18
Study: 23 sport: 0.5 Sport: 0.8
Age: 11 M.G.:5.5 Study: 40 Study: 42
Sport: 1.5 MG.:0.9
Study: 25
M.G.: 5.5

Age: 18

Age: 13
Sport: 1.5 Age: 12 Sport: 1
Study: 24 Sport: 3 Age: 17 Study: 48
M.G.: 5 Study: 21 Sport: 0.5 M.G.: 0.9
M.G.: 6 Study: 45
M.G.: 0.8

Fig. 1. An example social network.

clusters in attributed graphs. CompPACTNESs is composed of
two measures: Graph Unimodality (GU) and Attribute
Unimodality (AU). GU measures the unimodality of the
graph structure, and AU measures the unimodality of the
subspace that is composed of the designated attributes. To
consider both the graph structure and attributes, we first
embed the graph structure into vector space. Then we con-
sider the graph embedding vector as another designated
attribute and apply the local clustering technique separately
on each designated attribute. We call the procedure to find
a local cluster as LOCLU.

Let us use a simple example to demonstrate our motiva-
tion. Fig. 1 shows an example social network, in which the
vertices represent students in a middle school, the edges
represent their friendship relations, and the attributes asso-
ciated to each vertex are age (year), sport time (hour) per
week, studying time (hour) per week and playing mobile
game (M.G.) time (hour) per week. Given vertex 4 and the
designated attribute M.G., the task is to find a local cluster
around the vertex 4. (This task is of interest to mobile game
producers.) Conventional diffusion-based local clustering
method such as HK [9] finds a cluster C; = {1,3,4,5,6,7}.
However, this cluster is not homogeneous in the subspace
of the M.G. attribute. Compared with C;, the cluster
Cy ={1,2,3,4} is more local, which is concentrated on the
vertex 4 and the M.G. attribute.

The main contributions are as follows:

e We introduce the univariate statistic hypothesis test
called Hartigans’ dip test [11] to a new user-centric
problem setting: incorporating user’s preference into
attributed graph clustering.

e We propose COMPACTINESS, a new quality measure for
clusters in attributed graphs. COMPACTNESS measures
the homogeneity (unimodality) of both the graph
structure and subspace that is composed of the des-
ignated attributes.

e We propose LOCLU to optimize the COMPACTNESS
score.

e We demonstrate the effectiveness and efficiency of
LOCLU by conducting experiments on both syn-
thetic and real-world attributed graphs.
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2 PRELIMINARIES

2.1 Notation

In this work, we use lower-case Roman letters (e.g., a,b) to
denote scalars. We denote vectors (column) by boldface
lower case letters (e.g., x) and denote its ith element by x(7).
Matrices are denoted by boldface upper case letters (e.g., X).
We denote entries in a matrix by non-bold lower case letters,
such as x;;. Row ¢ of matrix X is denoted by X(4, :), column j
by X(:,j). A set is denoted by calligraphic capital letters
(e.g., ). An undirected attributed graph is denoted by
G = (V,&,X), where Vis a set of graph vertices with number
n = [V| of vertices, £ is a set of graph edges with number
e = |€| of edges and X € R™*? is a data matrix of attributes
associated to vertices, where d is the number of attributes.
An adjacency matrix of vertices is denoted by A € R"*"
with a;; = 1(2 # j) and a;; = 0(¢ = j). The degree matrix D
is a diagonal matrix associated with A with d;; = >, a;;. The
random walk transition matrix W is defined as D 'A.
The Laplacian matrix is denoted as L =1— W, where I is
the identity matrix. An attributed graph cluster is a subset
of vertices C C V with attributes. The indicator function is
denoted by 1(z).

2.2 The Dip Test
Before introducing the concept of the dip test, let us first
clarify the definitions of unimodal distribution and multi-
modal distribution. In statistics, a unimodal distribution
refers to a probability distribution that only has a single
mode (i.e., peak). If a probability distribution has multiple
modes, it is called multimodal distribution. From the behav-
ior of the cumulative distribution function (CDF), unimodal
distribution can also be defined as: if the CDF is convex for
x < m and concave for x > m (m is the mode), then the
distribution is unimodal.

Now let us introduce a univariate statistic hypothesis test
which is called Hartigans’ dip test [11] as follows:

Theorem 1 [11]. Let F(z) be a distribution function. Then
D(F) = 2h (h is the dip test value) only if there exists a nonde-
creasing function G(x) such that for some x; < x,:

o G(x) is the greatest convex minorant (g.c.m.) of
F(x)+ hin (—oo, x).
o G(x) has constant maximum slope in [x;,x,] (modal

interval).

o G(x) is the least concave majorant (l.c.m.) of F(z) — h
in (zy,00).

e h= Supy ¢ [leu]‘F(x) - G(:IZ)| > Supwe[acl,xu”F(x)
—G(x)|.

The g.cm. of F(z) in (—oo,z;] is sup(L(xz)) for = <z,
where the sup(-) is taken over all functions L(z) that are con-
vex in (—oo, z;] and nowhere greater than F'(x). The l.c.m. of
F(z) in [x,,00) is inf(L(z)) for = > x,, where the inf(-) is
taken over all functions L(x) that are concave in [z,, c0) and
nowhere less than F(z).

The dip test is the infimum among the supremum com-
puted between the cumulative distribution function (CDF)
of F(z) and the CDF of G(z) from the set of unimodal distri-
butions. The dip test measures the departure of F'(z) from
unimodality. As pointed out in [11], the class of uniform
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maximum slope

(a) Histogram. (b) Dip solution.

Fig. 2. The demonstration of the dip test.

distributions is the most suitable for the null hypothesis,
because their dip test values are stochastically larger than
those of other unimodal distributions. Note that the higher
the dip test value, the more multimodal the distribution.
Also note that the dip test value is in the range [0, 0.25) [12].

Let us use Fig. 2 to demonstrate the main idea behind
the dip test. Fig. 2a shows the histogram of the z-axis
projection of the data shown in Fig. 3a. The blue curve
(F(z)) in Fig. 2b is the CDF of the z-axis projection of
the data. Note that the histogram is for visual compari-
son only. The dip test only needs F(z). To measure the
unimodality of F(z), the dip test tries to fit a piecewise-
linear function G(x) onto it. Then, the twice of the dip
test value 2h is defined as the maximum achievable ver-
tical offset for two copies of F(z) (the red and magenta
curves, ie.,, F(z)+ h and F(z) —h in Fig. 2b) such that
G(z) does not violate its unimodal rules (convex up to
the modal interval (the shade area in Fig. 2b) and con-
cave after it). The farther F(z) strays from unimodality,
the larger the required offset between the two copies of
F(x). For more details, please refer to [11], [12], [13].

The p-value for the d1p test is then computed by compar-
ing D(F(x)) with D(G(x ) ) b times, each time with a differ-
ent n observations from G(z), and the proportion >, ., 1
(D(F(z)) < D(G(= ) ))/b is the p-value. If the p-value is
greater than a significance level ¢, say 0.05, the null hypoth-
esis Hy that F'(z) is unimodal is accepted. Otherwise Hj is
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3 MEeTHOD LOCLU

3.1 Objective Function
The problem of incorporating user’s preference into attrib-
uted graph clustering can be defined as follows:

Incorporating User’s Preference into Attributed Graph
Clustering. Given an attributed graph G = (V,£,X), a seed
vertex v,, and the indexes of the designated attributes Z =
{a1,0a9,...,a,}, find a cluster C = {v1,vs,...,v,,...} around
the seed vertex v,, such that the cluster C is not only unim-
odal in the graph structure but also in the subspace that is
composed of the designated attributes.

In order to find the local cluster that satisfies the defini-
tion, we need to consider the information from both the
graph structure and attributes. First, we consider the graph
structure. We propose Graph Unimodality (GU) to measure
the unimodality of the graph structure.

Definition 1 (Graph Unimodality). For a local cluster
C={vi,v9,...,0,...} around the given seed vertex vy, its
graph unimodality is defined as

)
i=1

where r is the dimension of the graph embedding E, e; is the ith
embedding vector, and F(e;(C)) is the CDF of e;(C).

(1)

Graph Unimodality (GU) measures the unimodality of
the graph structure in a detected local cluster. The lower the
GU value, the more unimodal a local cluster in the graph
structure. We use the spectral embedding method, espe-
cially normalized cut (NCut) [15], to find the embedding E
of the graph structure. The definition of the NCut is

cut(C,C) C)
“vol(C)

where cut(C,C) = Zl eCv;eC Yii and vol(C) = ZULEC1 jev Gij-
Equation (2) can be equivalently rewritten as (for a more
detailed explanation, please refer to [16])

NCut(C) = (2

NCut(C) = eLe

rejected in favor of the alternative hypothesis H, that F(z) s.t. eDe = vol(G) 3)
is multimodal. Del1l
)
° S&DD ; S&DD
B EE ob B @BDJD )
[Ea]
DDDQD DDDQD N
X xl(” xff) X x|(2) x@ X

(a) The z-axis projection is multlmodal
with the modal interval [xl 2]

(b) The z-axis projection is multimodal
with the modal interval [z;”, v’ ].

(c) The z-axis projection is unimodal

@ and the local clustering stops.

(2)

Fig. 3. The demonstration for the local clustering technique. Assume that the attributes = and y are associated with a local graph cluster. Given the
seed vertex (the big blue dot) and the index of the designated attribute (), we want to find a local cluster around the blue dot, which is unimodal in

the subspace that is composed of the designated attribute z.
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where e is the cluster indicator vector (embedding vector) and
eLe is the cost of the cut and 1 is a constant vector whose
entries are all 1. Note that finding the optimal solution is
known to be NP-hard [17] when the values of e are constrained
to {1, —1}. Butif we relax the objective function to allow it take
values in R, a near optimal partition of the graph G can be
derived from the eigenvector having the second smallest
eigenvalue of L. More generally, embedding E that is com-
posed of k eigenvectors with the k& smallest eigenvalues parti-
tion the graph into k& subgraphs with near optimal normalized
cut value.

Second, we consider the attributes. We propose Attribute
Unimodality (AU) to measure the unimodality of the sub-
space that is composed of the designated attributes.

Definition 2 (Attribute Unimodality). For a local cluster
C={v1,v9,...,0q,...} around the given seed vertex vy, its
attribute unimodality is defined as

— 15" piFe) @

where w is the number of the designated attributes, x; is the
a;th designated attribute, and F(x;(C)) is the CDF of x;(C).

Attribute Unimodality (AU) measures the unimodality of
the subspace that is composed of the designated attributes
in a detected local cluster. The lower the AU value, the
more unimodal a local cluster in the subspace.

To measure the unimodality of both the graph structure
and attributes of a local cluster, our objective function inte-
grates both GU and AU into one framework, which is called
COMPACTNESS

GU(C) + AU(C). ()

In the following, we will elaborate the optimization
method LOCLU. It employs a dip test based local clustering
technique on the embedding of the graph structure and the
designated attributes. The detected local cluster is unimodal
both in the graph structure and the designated attributes.

Compactness(C) =

3.2 Optimizing Attribute Unimodality
There are many clustering techniques for the numerical
attributes, e.g., k-means, EM, DBSCAN [14], etc. One possi-
ble idea is inputing proper parameters (such as the number
of clusters for k-means, and MinPts and ¢ for DBSCAN) to
the clustering techniques and letting them return the cluster
that includes the given seed vertex. However, the disadvan-
tage is that the parameters are difficult to set. The cluster
assignments change with different numbers of clusters.
Moreover, many clustering techniques need to partition the
whole dataset, which is very time- and resource-consuming,.
Alternatively, we can consider the attributes and graph
structure simultaneously and apply some attributed graph
clustering technique. The problems we face are the same as
described above. In this paper, we would like to develop a
local clustering technique. The technique does not require
the number of clusters k, which is difficult to set in the real
world datasets.

Note that the dip test returns a modal interval, in which the
distribution of data is unimodal. Our idea is to employ the
modal interval to find a local cluster around the given seed
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vertex. Our perspective is that data points in the modal inter-
val belong to one cluster. We cluster vertices according to their
positions and the position of the modal interval. Thus, other
statistical tests that do not return the modal interval cannot be
adopted. We use Fig. 3 to elaborate the main idea of our local
clustering technique. Assume that Fig. 3a shows two numeri-
cal attributes # and y associated with a local graph cluster.
The two attributes have three clusters inside. The purple and
blue clusters follow Gaussian distributions. The orange clus-
ter follows a uniform distribution. The big blue dot in the blue
cluster reveals the numerical values of the given seed vertex
and we want to find a local cluster concentrating on this big
blue dot and the z-axis.

We input the z-axis projection of the data into the dip test
and it returns a p-value and a modal interval [m§ ), z(M]. In
this case, the p-value is 0 that is below the significance level
o = 0.05, which means the z-axis projection of the data 1s
multimodal. If the given seed point is on the left side of xl ),
we remove the data points that situate on the right side of
1:1(1 and dip over the z-axis projection of the remaining
data. If the given seed point is on the right side of =", we
remove the data points that situate on the left side of z(!
and dip over the z-axis projection of the remaining data.
Otherwise, we dip over the z-axis pro]ectlon of the data situ-
ated in the modal interval [m,( ) z{1]. We repeat the process
until the z-axis projection of the remaining data that con-
tains the given seed pomt 1s ummodal

In our case, since [:z:} ), D] does not contain the big blue
dot, We remove the data pomts that situate on the right side
of ;z:, ) and continue to dip over the z-axis projection of the
remaining data. The dip test on the z-axis projection of the
remaining data (shown in Fig. 3b) returns a p-value of 0,
which indicates that the remaining data is still multimodal.
Because the given seed point is within the new modal inter-
val [z (>,a:1(f)], we extract the data points situated in this
modal interval and dip over their z-axis projection. Since
the p-value returned by the dip test is 0.937 that is greater
than the significance level o = 0.05, which means the z-axis
projection of the data points (shown in Fig. 3¢c) is unimodal,
we terminate the recursive process and return the found
local cluster (shown in Fig. 3c).

In the above, we recursively dip over the z-axis projec-
tion of the data to find the local cluster. If given the
indexes of attributes Z = {a1, as, ..., a,}, we will first com-
pute the dip test value of each attribute and then dip over
the attributes according to their dip test values, from the
highest to the lowest. In this way, the most multimodal
attribute will be first explored. The insight is that the direc-
tions which depart the most from unimodality are promis-
ing for clustering.

Theorem 2. For a random variable X = [x1,x2,...,2,)], the
local clustering method will find a unimodal cluster whose val-
ues are in the interval [x;,x,]. The probability distribution
function (PDF) of the data points in the interval [z;,x;]

Vi, j,a) < x; < x; < x,) is unimodal.

Proof. If the PDF of the data points in the interval [z;, z;]
Vi, j,x1 < z; < zj; <) is multimodal, the PDF of the
data points in the interval [z, z,] should also be multi-
modal. Thus, the cluster in the interval [z;,z,] is not
unimodal and the local clustering method will continue
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dipping over the interval [z;,z,] until the PDF of the
remaining data points is unimodal. ]

3.3 Optimizing Graph Unimodality

A good partition of the graph structure is achieved by using
the local clustering method in the embedding vector space.
In this work, the graph embedding just contains one eigen-
vector. Each eigenvector bisects the graph into two clusters.
We can consider the cluster that contains the seed vertex as
the required local cluster. We can first compute the second
smallest eigenvector e, of the graph Laplacian matrix L.
Then, we use the proposed local clustering technique on it
to find a local cluster that contains the seed vertex v,. For
large-scale graphs, the eigen-decomposition of L is O(n?)
which is impractical. Instead, we use the power iteration
method [18] to compute an approximate eigenvector.

The power iteration (PI) is a fast method to compute the
dominant eigenvector of a matrix. Note that the k largest
eigenvector of W are also the k£ smallest eigenvector of L.
The power iteration method starts with a randomly gener-
ated vector v’ and iteratively updates as follows:

thfl
t
= v 6
V= W ©

Suppose W has eigenvectors (embedding vectors) E =
[e1;es;...;e,] with eigenvalues A = [\, Ao, ..., \,], where
A1 = 1 and ey is constant. We have WE = AE and in general
W'E = A'E. When ignoring renormalization, Equation (6)
can be written as

V=WVl =W 2 = ... = W'
=W/(cie; +cres + -+ crep)
= Wle, + sWley + - - - + ¢, Wle,
= cl)\’iel + cz)\geg 4+ Cn,)\;en:

(7)

where v" can be denoted by cie; + czes + - - - + ¢, e, which is
a linear combination of all the original orthonormal eigen-
vectors. Since the orthonormal eigenvectors form a basis for
R"™, any vector can be expanded by them.

From Equation (7), we have the following:

v e () en (A"
v 2 (A2 () e, ]
61)\11 e1+61 <)\1) e + +C1 ()\1> e ®)

So the convergence rate of PI towards the dominant eigen-
vector e; depends on the significant terms (/’\\—i)t(2 <i<n)lf
we let the power iteration method run long enough, it will
converge to the dominant eigenvector e; which is of little use
in clustering. If we define the velocity at ¢ to be the vector
8' = v! — v!~! and define the acceleration at ¢ to be the vector
€' = &' — 8!, we can stop the power iteration when ||€’], ... i
below a threshold ¢. We use v' as the graph embedding vector.
Fig. 4 shows e, and v’ of the graph Laplacian matrix of the
data shown in Fig. 3. Compared with the PDF of ey, the PDF
of v! is more multimodal and thus is more promising for
clustering.
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(a) Histogram of e3.

(b) Histogram of v*.

Fig. 4. Comparison between the PDFs of e; and v'.

3.4 Implematation Details and Analysis

We can consider the embedding vector v as another des-
ignated attribute and perform local clustering on it. Let
us elaborate the algorithmic details of LOCLU whose
pseudo-code is given in Algorithm 1. Line 3 computes
the random walk transition matrix, which costs O(e)
where e represents the number of edges in the graph.
Line 4 initializes the starting vector for the power itera-
tion method. Lines 5-9 use the power iteration method
to compute an embedding vector for the graph structure.
The power iteration method is guaranteed to converge
(please refer to [18]). The time complexity for the power
iteration method is O(e) [19]. Line 10 considers the
embedding vector v’ as another designated attribute and
concatenates it to the data matrix X. Lines 11-16 perform
local clustering separately on the designated attributes.
Lines 11-13 compute the dip test values and p-values for
the designated attributes. At lines 15-16, we dip over the
designated attributes according to their dip test values,
from the highest to the lowest. Line 16 uses the local
clustering method to find a local cluster around the
given seed vertex on each designated attribute. The time
complexity of the dip test at line 12 is O(n) [11]. Note
that the dip test method first sorts the input data, which
costs O(n-log(n)) time. Thus, the time complexity of
lines 11-14 in Algorithm 1 is O(u - n -log(n)), where u is
the number of the designated attributes and n is the
number of vertices.

The local clustering method is given in Algorithm 2. It
recursively dips over the designated attribute until finding
the local cluster around the given seed vertex. Line 3 dips
over the designated attribute. At lines 4-9, if the given seed
vertex does not belong to the current modal interval, we
extract the vertices whose attribute values are on the left
side of z; (line 5) or on the right side of z, (line 7) and
update the cluster C; at line 9, if the given seed vertex
belongs to the current modal interval, we update the cluster
C with the vertices whose attribute values are inside the
modal interval. The time complexity of the dip test at line 3
is O(n - log (n)). Thus, the time complexity of the local clus-
tering procedure is bounded by O(k-n-log(n)), where
k < n is the number of modes in the data. We remark that
the local clustering method is guaranteed to converge. The
worst case is that each vertex is a mode and local clustering
method finds the given seed vertex as the local cluster,
which will lead to the termination of the dip test. Thus,
LOCLU is also guaranteed to converge. The time complex-
ity of LOCLU is O((u + k) - nn - log (n) + €).
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Theorem 3. The local cluster detected by LOCLU is unimodal in
each designated attribute and the graph structure.

Proof. For the data matrix X = [X, v'] at line 10 in Algorithm
1, we first apply the local clustering method on the attribute
with the highest dip test value and it will find a unimodal
cluster in the interval [wg ), 5, )]. Then we apply it on the
attribute with the second’ largest dip test value and it will
find a unimodal cluster in the interval [xg ) 22] where

l1 <1y < ug < uy. From Theorem 2, we know that the data

points in the interval [acl(?, rulz] of the attribute with the
highest dip test value remains unimodal. If we apply the
local clustering method on each column of X, from the high-
est to the lowest with respect to their dip test values, the
final local cluster detected by LOCLU is unimodal in each

designated attribute and the graph structure. ]

Algorithm 1. LOCLU

Input: Adjacency matrix A, data matrix X € R, the seed

vertex index ¢, the indexes of the designated attributes

T =A{ar,a9,...,a,}

Output: Local cluster C

€+ 0.001, t < 0, iter < 1000;

C — [1:n]/*Ccontains the indexes of vertices.* /

compute the random walk transition matrix W;

v! « randn (n, 1);

/ *power iteration * /

repeat
vitl

= W N =

t
= Wiy
— |vit!
t—t+4+1;
until |8 — &), < éort > iter;

X— X, vl], ayy1 —d+1, T—ZTUay / * [,
concatenation. * /
/ * Perform local clustering separately on the
embedding vector of the graph structure and
designated attributes. * /

11 fori« 1 Tou+1do

12 [dip, p-value, t, z;, x,| < DipTest(X(:, a;));

13 d(i) « dip;

14 [d,s] « sort(d) / * descending sort, s contains the
indexes of attributes sorted by their dip test
values. * /

15 fori«— 1 Tou+1 do

16 C < LocalClustering (C,X,q,s(7));

17 return C;

S+l —vi|;

OO oo o G

-] means

4 EXPERIMENTAL EVALUATION

4.1 Experiment Settings

We thoroughly evaluate LOCLU on cluster quality and run-
time using both synthetic and real-world attributed graphs.
We compare LOCLU with baseline methods whose descrip-
tions are as follows:

e FocusCO [10] identifies the relevance of vertex attrib-
utes that makes the user-provided examplar vertices
similar to each other. Then it reweighs the graph
edges and extracts the focused cluster.

e SG-Pursuit [4] is a generic and efficient method for
detecting subspace clusters in attributed graphs. The
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main idea is to iteratively identify the intermediate
solution that is close-to-optimal and then project it to
the feasible space defined by the topological and
sparsity constraints.

e UNCut [5] proposes unimodal normalized cut to
find cohesive clusters in attributed graphs. The
homogeneity of attributes is measured by the pro-
posed unimodality compactness which also exploits
Hartigans’ dip-test.

e AMEN [20], [21] develops a measure called NORMAL-
ITY to quantify both internal consistency and external
separability of a graph cluster. Then, the graph clus-
ter that has the best NORMALITY score is extracted.

e AGC [22] is an adaptive graph convolution method
for attributed graph clustering, using spectral convo-
lution filters on the vertex attributes.

e HK [9] is a local and deterministic method to accu-
rately compute a heat kernel diffusion in a graph.
Then, it finds small conductance community around a
given seed vertex. HK only considers the graph
structure.

We use the Normalized Mutual Information (NMI) [23]
and the F; score [9], [24] to evaluate the cluster quality.
NMl is a widely used metric for computing clustering accu-
racy of a method against the desired ground truth. NMI is

defined as NMI(C*,C) = Hz(éf)(%, where C* is ground

truth, C is the detected cluster, I(;) is mutual information,
H(-) is entropy. F score is the harmonic mean of precision
P and recall R and is defined as F; =2- P ~ R, where

P = ‘C?Ccl*‘ R= ‘C‘QC | The higher the NMI and £ score, the

better the clustering.

Algorithm 2. LocalClustering

Input: Cluster C, data matrix X, the seed vertex index ¢, the
index s of the designated attribute
Output: Local cluster C

1 repeat

2 x<—X(,s);

3 [dip, p-value, z;, x,] « DipTest(x);

4  ifx(q) < z; then

5 C— {o1,09,...}

/ *{x(01),x(02),...} < a1 */
6 elseifx(q) > =z, then
7 C<—{O‘1,0‘2,...}
/ *{x(01),x(02),...} >z, */
8 else
9 C— {o1,09,...}
/ *{x(01),x(02),...} € [z, m,]) * /

10 until p-value > 0.05;
11 return C;

For the experiments on the synthetic graphs, we give the
correct number of clusters to SG-Pursuit, UNCut, and AGC.
We also give the correct size of each cluster to SG-Pursuit.
We compute the NMI and the F; score for each combination
of the detected cluster and the ground truth cluster and
report the best NMI and F) score. Note that the selection of
the seed vertex and the indexes of the designated attributes
depend on user’s preferences. In the experiments, we ran-
domly sample a vertex as the seed vertex, and only dip over
the most multimodal attribute whose dip test value is the
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Fig. 5. Clustering results of LOCLU with the increasing number of desig-
nated attributes.

highest. FocusCO needs to compute the relevant attribute
weight vector g which is then used to weight each edge in
the graph. For a fair comparison, the entry in g that corre-
sponds to the attribute whose dip test value is the highest is
set to one and the other entries are set to zero. AMEN also
needs to compute the relevant attribute weight vector. Anal-
ogous to FocusCO, we set the corresponding entry to one
and other entries zero. Since HK is designed for plain
graphs and cannot handle attribute information, we incor-
porate the attribute information by weighing the edges of
the graph using the weighting vector . We also report the
results of HK on the graph structure. We call these two ver-
sions as weighted HK (w) and unweighted HK (uw). We
run each experiment 50 times and at each time we randomly
sample a seed vertex.

All the experiments are run on the same machine with
the Ubuntu 18.04.1 LTS operating system and an Intel Core
Quad i7-3770 with 3.4 GHz and 32 GB RAM. LOCLU is
written in Java. The code of LOCLU and all the synthetic
and real-world graphs used in this work are publicly avail-
able at Github.”

4.2 Synthetic Graphs
4.2.1 Clustering Quality

To study the clustering performance, we generate synthetic
graphs with varying numbers of vertices n, attributes d,
varying ratio of relevant attribute and variable cluster size
range. For the case of varying n, we fix the attribute dimen-
sion d = 20 and the ratio of relevant attributes 50 percent.
For the case of varying d, we fix the number of vertices
n = 1000 and the ratio of relevant attributes 50 percent. For
the case of varying the ratio of relevant attribute, we fix the
attribute dimension d =20 and the number of vertices
n = 1000. For varying the cluster size range, we fix the attri-
bute dimension d = 20 and the ratio of relevant attributes
50 percent.

All the graphs are generated based on the planted parti-
tions model [25] which is also used in FocusCO and SG-
Pursuit. Given the desired number of vertices in each cluster,

2. https:/ / github.com/yeweiysh/LOCLU
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Fig. 6. Clustering results () on synthetic graphs.

we define a block for the cluster on the diagonal of the adja-
cency matrix and randomly asign a 1 (an edge) for each entry
in the block with probability 0.35 (density of edges in each
cluster). For the blocks that are not on the diagonal of the
adjacency matrix, we randomly assign an edge for each entry
in the block with a probability of 0.01 (density of edges
between clusters). We further bisect each graph cluster into
two new clusters and then assign attributes to each new clus-
ter. In this case, a method that is only applicable for graph
structure cannot detect the “real cluster” (unimodal both in
the graph structure and designated attributes). To add vertex
attributes, for each new graph cluster, we generate the values
of relevant attributes according to a Gaussian distribution
with the mean value of each attribute randomly sampled
from the range [0, 10], and the variance value of each attribute
0.001. Following FocusCO [10], the variance is specifically
chosen to be small such that the clustered vertices “agree” on
their relevant attributes. To make the other attributes of
clusters irrelevant to the graph structure, we first randomly
permute the vertex labels and then generate each cluster’s
irrelevant attribute values according to a Gaussian distribu-
tion with mean randomly sampled from the range [10, 20]
and variance 1.

To study how the number of designated attributes affect
the performance of LOCLU, we use our generative model to
generate a synthetic data with n = 1000 vertices, d = 20
attributes, and the ratio of relevant attributes 50 percent.
Fig. 5 shows that LOCLU can almost detect the ground
truth. When increasing the number of designated attributes,
the performance of LOCLU does not change much. LOCLU
considers the data points that situate in the modal interval
as the cluster. However, for some boundary data points of
Gaussian clusters, the modal interval may not include them.
This is the reason why the performance curves of LOCLU
have some small vibrations.

Figs. 6 and 7 show the quality results. Since HK(w) and
HK (uw) have similar performance, we only show one of
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Fig. 7. Clustering results (NMI) on synthetic graphs.

them. Fig. 6d shows the results of each method when vary-
ing the cluster size range. We let the graph contains clusters
with variable sizes and increase the variance of the cluster
sizes. The cluster size is randomly drawn from the variable
ranges. In Fig. 6, we can see that LOCLU outperforms the
most comparison methods. In most cases, LOCLU beats all
the competitors with a large margin, although we provide
them with the correct parameters. Fig. 6 also shows that SG-
Pursuit is the most unstable method compared with the
other methods in all these scenarios. AGC is a deep learning
method. We can see that AGC is the best in all the compari-
son methods. Fig. 6c demonstrates that the performance of
AGC is dramatically increasing with the increasing ratio of
relevant attribute. In Fig. 7, we have similar conclusions. As
pointed out above, for some boundary data points of Gauss-
ian clusters, the modal interval may not include them. Thus,
the curves of LOCLU has some small vibrations. In addi-
tion, we randomly generate the mean values of the attrib-
utes of the graph cluster. If the mean values of the attributes
of two graph clusters are very close, the dip test may think
these two clusters’ attributes follow a unimodal distribu-
tion. Therefore, LOCLU cannot separate them. This is
another reason that the curves of LOCLU have some small
vibrations.

4.2.2 Scalability

In this section, we study the scalability of all the methods.
We still use the generative model to generate synthetic
graphs. For the case of varying the number of attributes, we
fix the number of vertices n = 2000 and the ratio of the rele-
vant attributes 50 percent. For the case of varying the num-
ber of vertices, we fix the attribute dimension d = 20 and
the ratio of the relevant attributes 50 percent. Because the
running time of the weighted and unweighted versions of
the baseline HK are similar, we only give the results of the
unweighted version. The runtime of each method is

103 4
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Fig. 8. Runtime experiments.
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TABLE 1

The Statistics of the Real-World Attributed Graphs
Datasets vertex# edge# attribute# cluster#[3], [5]
DisNEY 124 333 28 9
4AREA 26,144 108,550 4 50
ARXIV 856 2,660 30 19
IMDs 862 4,388 21 30
ENRON 13,533 176,967 18 40
PATENTS 100,000 188,631 5 150

demonstrated in Fig. 8. Since HK (uw) only considers the
graph structure, its running time is the lowest. AGC has the
second lowest running time. LOCLU outperforms FocusCO,
SG-Pursuit, UNCut, and AMEN in most cases.

4.3 Real-World Graphs

We conduct experiments on six real-world attributed
graphs whose statistics are given in Table 1. Their details
are described in the following. For the real-world graphs,
if their attributes are not numeric, i.e., categorical, we use
one-hot encoding to tranform the categorical values to
numeric ones.

e  DisNEY [26]: This network is the Amazon co-purchase
network of Disney movies. The network has 124
vertices and 333 edges. Vertices represent movies
and edges represent their co-purchase relationships.
Each movie has 28 attributes.

e 4Area [10]: This network is a co-authorship network
of computer science authors. The attributes represent
the relevance scores of the publications of an author
to the conferences. The categories of conferences are
“databases”, “data mining”, “information retrieval”,
and “machine learning”. The network has 26,114 ver-
tices and 108,550 edges.

e ARXIV [3]: This network is a citation network whose
vertices represent papers and edges represent citation
relationships. Attributes denote how often a specific
keyword appears in the abstract of the paper. The net-
work has 856 vertices, 2,660 edges, and 30 attributes.

e IMDs [3]: This network is extracted from Internet
Movie Database. Each vertex represents a movie
with at least 200 rankings and an average ranking of
at least 6.5. Two movies are connected if they have
the same actors. Attributes denote 21 movie genres.
The network has 862 vertices and 4,388 edges.
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TABLE 2

The AU/GU/CompacTnEss Scores of Each Method on the Real-World Attributed Graphs
Algorithms DisNEY 4 AREA ARXIV IMDsB ExrRON PATENTS
LOCLU 0.010/0.062/0.072  0.002/0.009/0.011 0/0.027/0.027 0/0.015/0.015 0.006/0.001,/0.007 0/0.001/0.001
FocusCO 0.012/0.080/0.092  0.021/0.075/0.096  0.074/0.055/0.129 0.024/0.079/0.103 0.088/0.001/0.089  0.012/0.067/0.079
SG-Pursuit 0.088/0.087/0.167 N/A 0.075/0.074/0.149 0.051/0.058/0.109 0.126/0.001/0.127 N/A
UNCut 0.094/0.079/0.173  0.175/0.009/0.184  0.172/0.051/0.223  0.148 / 0.023 / 0.171 0.149/0/0.149 0.162/0.012/0.174
AMEN 0.071/0.055/0.126  0.022/0.033/0.055 N/A 0.106/0.060/0.166 N/A N/A
AGC 0.138/0.094/0.232  0.008/0.011/0.019  0.138/0.057/0.195 0.132/0.029/0.161 0.156/0.001/0.157  0.007/0.007/0.014
HK (uw) 0.123/0.070/0.193  0.050/0.078/0.128  0.168/0.050/0.218 0.143/0.019/0.162 0.167/0.002/0.169  0.027/0.031/0.058
HK (w) 0.123/0.070/0.193  0.050/0.078/0.128  0.168/0.050/0.218 0.143/0.019/0.162 0.167/0.002/0.169  0.027/0.031/0.058

N/A means the results are not available because the method: 1) is not applicable on the unconnected graphs, 2) runs out of memory, or 3) does not finish in a week.

e ENrON [26]: This network is the communication
network with email transmission as edges between
email addresses. Each vertex has 18 attributes which
describe aggregated information about average con-
tent length, average number of recipients, or time
range between two mails. The network has 13,533
vertices and 176,967 edges.

o Patents [3]: This network is a citation network of
patents with 100,000 vertices, 188,631 edges, and
five attributes which are “assignee code”, “claims”,
“patent class”, “year” and “country”.

Since the real-world graphs do not have a ground truth,
we use the proposed AU, GU, and CoMPACTINEss as cluster
quality measures. The lower the scores of these three meas-
ures, the higher the cluster quality. In addition to these three
measures, we also report the NormaLity [20], [21] score. The
NORMALITY score is a generalization of Newman’s modular-
ity and assortativity [27], [36] to attributed graphs. NORMAL-
ITY measures both the internal consistency and external
separability of an attributed graph cluster. The higher the
NORMALITY score, the better the cluster quality. Note that the
NORMALITY score can be negative. We give the average scores
over 50 runs in Tables 2 and 3, each time with a randomly
sampled vertex as the seed vertex. For SG-Pursuit, UNCut
and AGC, we give them the same number of clusters as
used in [3], [5]. For each seed vertex, we first decide which
cluster contains it and then compute the scores of these
measures.

We can see from Table 2 that LOCLU achieves the best
AU and CoMPACTNESs scores on all six real-world datasets.
On the dataset Disney, AMEN achieves the best GU score.
Table 3 shows the NorMALITY score of each method. We can

TABLE 3
The NormaLiTy Score of Each Method on the
Real-World Attributed Graphs

Algorithms DisNey 4Area ARXIV IMDB ENRON PATENTS
LOCLU -1.326 -0.420 -0.567 0.013 -0.800 -1.001
FocusCO -1.567 -0.760 -0.832 -0.979 -1.000 -0.920
SG-Pursuit -1.898 N/A -0914 -0979 -0.999 N/A
UNCut -1.182 -1.000 -0.999 -0.996 -1.000 -1.001
AMEN -2.403 -0974 N/A -0990 N/A N/A
AGC -1.235 -1.000 -0.987 -0.998 -1.000 -1.000
HK (uw) -1.687 -0.780 -0.858 -0.958 -0.926 -1.001
HK (w) -1.687 -0.780 -0.858 -0.958 -0.926 -1.001

NJ/A means the results are not available because the method: 1) is not applicable
on the unconnected graphs, 2) runs out of memory, or 3) does not finish in a
week.

see that LOCLU has the best NORMALITY score on four data-
sets. On dataset Disngy, UNCut has the best NORMALITY
score. On dataset PATENTS, FocusCO has the best NORMALITY
score. For case studies, we interprete the results of LOCLU
and its competitor FocusCO on DisNEY and 4ARrea datasets.
For FocusCO, we set the entries in 8 that correspond to the
designated attributes to one and other entries to zero.

Disney. DisNEY is a subgraph of the Amazon co-purchase
network. Each movie (vertex) is described by 28 attributes,
such as “Average Vote”, “Product Group”, and “Price”.
Given the seed vertex and one designated attributes
“Amazon Price”, we want to find a local cluster concentrat-
ing on this seed vertex and the designated attribute. All the
15 vertices in Fig. 9 are read-along movies that are rated as
PG (Parental Guidance Suggested) and attributed as
“Action & Adventure”, e.g., “Spy Kids”, “Inspector Gadget”
and “Mighty Joe Young”. We show the local clusters
detected by LOCLU and its competitor FocusCO in Fig. 9.
In Fig. 9, the vertex in red is the given seed vertex, and the
vertices in blue are the detected vertices. Fig. 9a shows the
local cluster detected by LOCLU. The GU score is 0.087 and
the AU score is 0.110. The CompacTNESs score is 0.197. The
NORMALITY score is -1.454. Fig. 9b shows the local cluster
detected by FocusCO. The GU score is 0.050 and the AU
score is 0.100. The ComracTNEss score is 0.150. The NORMAL-
ITY score is -1.711. FocusCO is better than LOCLU if consid-
ering the CompacTness score. LOCLU 1is superior to
FocusCO when considering the NORMALITY score.

4Area. 4AREA is a co-authorship network of computer sci-
ence authors. The attributes represent the relevance scores
of the publications of an author to the conferences
“databases”, “data mining”, “information retrieval”, and
“machine learning”. Given the seed vertex Jinwei Han and
two attributes “data mining” and “machine learning”, we

(a) LOCLU (b) FocusCO

Fig. 9. Local clusters found in the Disney dataset by LOCLU and
FocusCO.
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Fig. 10. Local clusters found in the 4AReA dataset by LOCLU and FocusCO. To reduce clutter, we only show a subgraph of 4ARea, which consists of

the seed vertex and the detected vertices.

want to find a local cluster concentrating on this seed vertex
and the two designated attributes. Fig. 10a shows the main
component of the local cluster that includes the given seed
vertex (in red) and the detected vertices (in blue) by
LOCLU. This subgraph has 37 authors and is unimodal in
the two designated attributes “data mining” and “machine
learning”. This subgraph contains authors that belong to the
“data mining” field, but not the “machine learning” field. It
contains authors such as Jian Pei, Philip S. Yu, Hans-Peter
Kriegel, and Christos Faloutsos who focus primarily on “data
Mining”. The GU score is 0.046 and the AU score is 0.052.
The Comractness score is 0.098. The NORMALITY score is
-1.424. The detected cluster (shown in Fig. 10b) by FocusCO
has 134 authors. This local cluster is not unimodal in the
designated attribute “data mining”. The cluster contains
authors such as Chu Xu and Liping Wang who focus primar-
ily on “information retrieval”, and authors such as Joseph C.
Pemberton and Zhao Xing who focus primarily on “machine
learning”. The GU score is 0.018 and the AU score is 0.110.
The Comractness score is 0.128. The NORMALITY score is
-2.000. Thus, the subgraph shown in Fig. 10a has a higher
quality than that shown in Fig. 10b.

5 RELATED WORK AND DISCUSSION

5.1 Plain Graph Clustering

Plain graphs are those graphs whose vertices have no attrib-
utes. Clustering on plain graphs has been well studied in lit-
eratures. METIS [28] and spectral clustering [15], [29], [30]
are typically and widely used methods, which compute a
k-way partitioning of a graph. METIS is a multi-constraint
graph partitioning method, which are based on the multi-
level graph partitioning paradigm. Spectral clustering aims
to partition the graph into k& subgraphs such that the nor-
malized cut criterion is minimized. Instead of optimizing
the normalized cut criterion, MODULE [27] optimizes a
quality function known as “modularity” over the possible
divisions of a graph. The authors showed that the

modularity was superior to the normalized cut criterion in
the task of community detection. Markov Cluster Algorithm
(MCL) [31] is a fast and scalable graph clustering method
that is based on simulation of stochastic flow in graphs.
Infomap [32] is an information theoretic approach that uses
the probability flow of random walks on a network as a
proxy for information flows and decomposes the network
into modules by Minimum Description Length (MDL) prin-
ciple. Attractor [33] automatically detects communities in a
network by using the concept of distance dynamics, i.e., the
network is treated as an adaptive dynamical system where
each vertex interacts with its neighbors. Cluster-driven
Low-rank Matrix Completion (CLMC) [51] performs com-
munity detection and link prediction simultaneously. It first
decomposes the adjacency matrix of a graph as three addi-
tive matrices: clustering matrix, noise matrix and supple-
ment matrix. Then, the community-structure and low-rank
constraints are imposed on the clustering matrix to remove
noisy edges between communities.

5.2 Attributed Graph Clustering

Differing from the plain graph clustering which groups
vertices only taking the graph structure into account,
attributed graph clustering achieves detecting clusters in
which the vertices have dense edge connectivity and
homogeneous attribute values. PICS [1] exploits the MDL
principle to automatically decide the parameters to detect
meaningful and insightful patterns in attributed graphs.
SA-Cluster [2] first designs a unified neighborhood ran-
dom walk distance to measure the vertex similarity on an
augmented graph. It then uses k-medoids to partition the
graph into clusters with cohesive intra-cluster structures
and homogeneous attribute values. BAGC [34] develops a
Bayesian probabilistic model for attributed graphs. Cluster-
ing on attributed graphs is transformed into a probabilistic
inference problem, which is then solveld by an efficient
variational method.
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The above methods consider all attributes for clustering.
However, the irrelevant attributes may be contradicting
with the graph structure. In this case, clusters only exist in
the subset (subspace) of attributes. For the subspace cluster-
ing in attributed graphs, some methods have been pro-
posed. SSCG [3] proposes Minimum Normalized Subspace
Cut and detects an individual set of relevant features for
each cluster. It needs to update the subspace dependent
weight matrix in every iteration, which is very time-
consuming. CDE [52] formulates the community detection
in attributed graphs as a nonnegative matrix factorization
problem. It first develops a structural embedding method
for the graph structure. Then, it integrates community struc-
ture embedding matrix and vertex attribute matrix for sub-
sequent nonnegative matrix factorization. CDE is only
applicable on graphs with nonnegative vertex attributes.

UNCut [5] proposes unimodal normalized cut to find
cohesive clusters in attributed graphs. The detected cohe-
sive clusters have densely connected edges and have as
many homogeneous (unimodal) attributes as possible. The
homogeneity or unimodality of attributes is measured by
the proposed unimodality compactness which also exploits
Hartigans’ dip test. The dip test used in UNCut is to mea-
sure the unimodality of each attribute. However, in our
method LOCLU, the dip test is used to generate modal
interval on which the local clustering technique is based.
SG-Pursuit [4] is a generic and efficient method for detect-
ing subspace clusters in attributed graphs. The main idea
is to iteratively identify the intermediate solution that is
close-to-optimal and then project it to the feasible space
defined by the topological and sparsity constraints. SG-
Pursuit needs to specify the parameters such as the maxi-
mum number of vertices in the subspace cluster and the
maximum size of selected features which are difficult to
set in the real-world datasets.

Recently, deep learning techniques are adopted for attrib-
uted graph clustering. DAEGC [35] develops a graph
attention-based autoencoder to effectively integrate both
structure and attribute information for deep latent representa-
tion learning. Furthermore, soft labels for the graph represen-
tation are generated to supervise a self-training clustering
process. The graph representation and self-training processes
are unified in one framework. AGC [22] is an adaptive graph
convolution method for attributed graph clustering. AGC first
designs a k-order graph convolution that acts as a low-pass
graph filter on vertex attributes to obtain smooth feature
representations. Then, it utilizes spectral clustering to find
clusters in the representation space.

Another research trend is to integrate anomaly detection
into the clustering process. AMEN [20], [21] proposes a new
quality measure called NormALITY for attributed neighbor-
hoods, which utilizes the graph structure and attributes
together to quantify both internal consistency and external
separability. NORMALITY is inspired by Newman’s modular-
ity and assortativity [27], [36]. Then, a community and
anomaly detection algorithm that uses NORMALITY is pro-
posed to extract communities and anomalies in attributed
graphs. Each community is assigned with a few characteriz-
ing attributes. PAICAN [37] is a probabilistic generative
model that jointly models the attribute and graph space, as
well as the latent group assignments and anomaly
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detection. All the methods discussed above need to parti-
tion the whole graph structure to find clusters and cannot
incorporate user’s preference into clustering.

5.3 Semi-Supervised Graph Clustering

In many applications, people may be only interested in
finding clusters near a target local region in the graph. The
methods for plain graph and attributed graph clustering
cannot be applied in such a scenario. Several recent meth-
ods [6], [7], [38] focus on using short random walks start-
ing from a small seed set of vertices to find local clusters.
There are also some proposals focusing on using the graph
diffusion methods to find local clusters, such as PPR [8],
HK [9], PGDc [24], HOSPLOC [39], and MAPPR [40].
PPR [8] is an approximate method to compute the person-
alized PageRank vector which is used for the local graph
partitioning. HK [9] is a local and deterministic method to
accurately compute a heat kernel diffusion in a graph.
There are also some methods based on spectral clustering
and label propagation for local cluster detection, such
as [41], [42], [43], [44], [45].

However, all these methods are only applicable on the
task of local clustering on plain graphs. To the best of our
knowledge, there are only two methods focusing on the
local clustering on attributed graphs. FocusCO [10] incorpo-
rates user’s preference into graph mining and outlier detec-
tion. It identifies the relevance of vertex attributes that
makes the user-provided examplar vertices similar to each
other. Then it reweighs the graph edges and extracts the
focused clusters. FocusCO cannot infer the projection vector
if the examplar set has only one vertex. LOCLU can find a
local cluster around a given seed vertex. If given a set of ver-
tices whose designated attribute values follow a unimodal
distribution, LOCLU can also work. However, if their desig-
nated attribute values follow a multimodal distribution,
LOCLU cannot find a local cluster that includes all these
vertices. Like other clustering methods, LOCLU also has
limitations. For example, the univariate projection for the
dip test may cause information-loss in some cases. TCU-SA
(Target Community Detection with User’s Preference and
Attribute Subspace) [46] first computes the similarities
between vertices and then expand the query vertex set with
its neighbors. Based on the expanded set, TCU-SA deduces
the attribute subspace using an entroy method. Finally, the
target community is extracted. The idea is very similar to
that of FocusCO.

5.4 Community Search

Community search over attributed graphs in database
research field is also related to our work. Given an input set
of query vertices V, and their corresponding attributes, find
a community containing V,, in which vertices are densely
connected and have homogeneous attributes. These meth-
ods include [47], [48], [49], [50]. Closest truss community
(CTC) [47] is proposed to find a connected k-truss subgraph
that has the largest &, contains V,;, and has the minimum
diameter. The problem is NP-hard and the authors develops
a greedy algorithm to find a satisfied community. attribute
truss community (ATC) [48] formulates the community
search on attributed graphs as finding attributed truss com-
munities. The detected communities are connected and
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close k-truss subgraphs which contains V, and has the larg-
est attribute relevance score proposed by the authors.
Attributed community query (ACQ) [49], [50] develops the
CL-tree index structure and three algorithms based on it for
efficient attributed community search. The CL-tree is
devised to organize the vertex attribute data in a hierarchi-
cal structure. The community search methods are only
applicable on categorical attributes. The detected vertices
have the same attribute values to those of the query vertices.
For continuous attributes, they cannot search a community
that is unimodal in the subspace that is composed of the
designated attributes. In addition, they are based on dense
subgraph structures, such as quasi-clique, k-core, or k-truss,
which are not commonly used in graph clustering.

6 CONCLUSION

In this work, we have proposed LOCLU for incorporating
user’s preference into attributed graph clustering. Currently,
very few methods can deal with this kind of task. To achieve
the goal, we first propose a new quality measure called Com-
PACTNESs that measures the unimodality of both the graph
structure and the subspace that is composed of the desig-
nated attributes of a local cluster. Then, we propose LOCLU
to optimize the CoMPACTNESs score. Empirical studies prove
that our method LOCLU is superior to the state-of-the-arts.
In the future, we will further explore node embeddings for
attributed graphs, which seamlessly integrate information
from both the attributes and graph structure.
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