2268

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 5, MAY 2022

Learning Deep Graph Representations via
Convolutional Neural Networks

Wei Ye™, Omid Askarisichani

, Alex Jones, and Ambuj Singh

Abstract—Graph-structured data arise in many scenarios. A fundamental problem is to quantify the similarities of graphs for tasks
such as classification. R-convolution graph kernels are positive-semidefinite functions that decompose graphs into substructures and
compare them. One problem in the effective implementation of this idea is that the substructures are not independent, which leads to
high-dimensional feature space. In addition, graph kernels cannot capture the high-order complex interactions between vertices. To
mitigate these two problems, we propose a framework called DeepMar to learn deep representations for graph feature maps. The
learned deep representation for a graph is a dense and low-dimensional vector that captures complex high-order interactions in a
vertex neighborhood. DeerMar extends Convolutional Neural Networks (CNNs) to arbitrary graphs by generating aligned vertex
sequences and building the receptive field for each vertex. We empirically validate DEerMap on various graph classification
benchmarks and demonstrate that it achieves state-of-the-art performance.

Index Terms—Deep learning, representation learning, convolutional neural networks, feature maps, graph kernels, graphlet, shortest path,

Weisfeiler-Lehman

1 INTRODUCTION

RREGULAR data arise in many scenarios, such as proteins or
molecules in bioinformatics, communities in social net-
works, text documents in natural language processing, and
images annotated with semantics in computer vision.
Graphs are naturally used to represent such data. One fun-
damental problem with graph-structured data is computing
their similarities, needed for downstream tasks such as clas-
sification. Graph kernels have been developed and widely
used to measure the similarities between graph-structured
data. This paper deals with graph kernels that are instances
of the family of R-convolution kernels [1]. The key idea is to
recursively decompose graphs into their substructures such
as graphlets [2], subtrees [3], [4], walks [5], [6], paths [7], [8],
and then compare these substructures from two graphs. A
typical definition for graph kernels is KC(Gi,Gs2) = (¢(G1),
¢(G2)), where (-,-) denotes the dot product between two
vectors, ¢(G;) = [V(Gi, A1), ¥(Gi, A2), ..., ¥(Gi, An)] is a vec-
tor that contains the number of occurrences of substructure
A; (1 < j<m) (denoted as ¥(G;, A;)) in graph G, (i = 1,2).
We call ¢(G) the feature map' (please see Definition 2) of
graph G.
Although graph kernels are efficient methods to compute
graph similarities, they still have the following two main

1.In this work, feature map and representation are used in an
exchangable manner.

o The authors are with the Department of Computer Science, University of
California, Santa Barbara, CA 93106 USA. E-mail: {weiye, omid55,
alexjones, ambujj@cs.ucsb.edu.

Manuscript received 2 Dec. 2019; revised 14 July 2020; accepted 31 July 2020.
Date of publication 4 Aug. 2020; date of current version 1 Apr. 2022.
(Corresponding author: Wei Ye.)

Recommended for acceptance by J. Tang.

Digital Object Identifier no. 10.1109/TKDE.2020.3014089

issues: First, the substructures extracted from graphs are
not independent. For instance, by adding/deleting vertices
or edges, one graphlet can be derived from another graph-
let. Fig. 1 shows that graphlet Gg‘i) can be derived from
graphlet Gé‘}) by adding an edge. This dependency (redun-
dancy) remains in graph feature maps. Because of this
dependency between substructures, the dimension of the
graph feature map often grows exponentially and thus it
leads to low effectiveness. Second, graph kernels use the
hand-crafted features without considering the complex
interactions between vertices. Thus, high-order information
in the neighborhood of a vertex is not integrated into graph
feature maps.

To solve the first main issue, Deep Graph Kernels
(DGK) [9] leverages techniques from natural language proc-
essing to learn latent representations for substructures.
Then the similarity matrix between substructures is com-
puted and integrated into the computation of the graph ker-
nel matrix. If the number of substructures is high, it will
cost a lot of time and memory to compute the similarity
matrix. In addition, DGK uses natural language processing
models to learn latent representations for substructures
without proving that the frequency of substructures
extracted from graphs follows a power-law distribution,
which is observed in natural language. For example, the
Weisfeiler-Lehman subtree kernel (WL) [3], [4] decomposes
graphs into subtree patterns and then counts the number of
common subtree patterns across graphs. If the subtree is of
depth zero (i.e., only one root vertex), we can represent
it using the vertex degree. However, the vertex degree dis-
tribution of a graph does not always follow a power-law
distribution. Thus, the learned representations for substruc-
tures are not accurate. To solve the second main issue, peo-
ple develop graph neural networks (GNNs) [10], [11], [12],
[13] to extract the complex high-order interactions in a ver-
tex neighborhood.

1041-4347 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

YE ET AL.: LEARNING DEEP GRAPH REPRESENTATIONS VIA CONVOLUTIONAL NEURAL NETWORKS

O O
O O O———O
@ a¥ () G5
O—0O——=0
© Gy @ G

Fig. 1. Non-isomorphic subgraphs (graphlets) of size k = 3.

To mitigate these two main issues, we develop a CNN
architecture on the vertex feature map (please see Definition 3)
extracted from each vertex in a graph. The method is called
DEeePMAP since it learns deep representations for graph feature
maps. The learned deep representation of a graph is a dense
and low-dimensional vector that captures complex high-
order interactions in a vertex neighborhood. Typically, a
CNN contains several convolutional and dense layers. CNNs
exploit spatial locality of an input and thus the learned
“filters” produce the strongest response to the spatially local
input pattern. Stacking many such layers leads to non-linear
filters that can capture appropriate patterns. The extension of
CNNs from images to graphs of arbitrary size and shape faces
one main challenge: as opposed to images whose pixels are
spatially ordered, vertices in graphs do not have spatial or
temporal order. Vertices across different graphs are hard to
align, and thus the receptive fields of CNNs cannot be directly
applied on vertices in graphs. To develop a CNN applicable
to arbitrary graphs, we propose to solve two main problems:
(1) Generate a vertex sequence for each graph such that these
sequences are aligned. (2) Determine the receptive field for
each vertex in each vertex sequence.

Our contributions are summarized as follows:

e We analyze the graph feature maps of three popular
graph kernels and then propose the definition of ver-
tex feature maps.

e We develop a new CNN model DEerPMaP on the ver-
tex feature maps to mitigate the two main issues.
The extension of CNN from images to graphs of arbi-
trary size and shape is achieved by two steps: (1) We
use eigenvector centrality [14] as a measure to gener-
ate aligned vertex sequences. (2) We use a breadth-
first search (BFS) method for constructing the recep-
tive field for each vertex in each vertex sequence.

e We empirically validate DEePMAP on a number of
graph classification benchmarks and demonstrate
that it achieves state-of-the-art performance.

The rest of the paper is organized as follows: We describe
related work in Section 2. Section 3 covers the ideas of graph
feature maps of three popular graph kernels. Section 4 introdu-
ces the core ideas behind our approach DeerMap, including the
definition of vertex feature maps and the extension of CNN to
arbitrary graphs. Using the benchmark graph datasets,
Section 5 compares DeepMap with related techniques. Section 6
makes some discussions. And Section 7 concludes the paper.

2269

2 RELATED WORK

2.1 Graph Kernels

R-convolution graph kernels can be based on walks [5], [6],
paths [7], [8], graphlets [15], and subtree patterns [3], [4],
[16], [17], etc. RetGK [6] introduces a structural role descrip-
tor for vertices, i.e., the return probabilities features (RPF)
generated by random walks. The RPF is then embedded
into the Hilbert space where the corresponding graph ker-
nels are derived. The shortest-path graph kernel (SP) [7]
counts the number of pairs of shortest paths that have the
same source and sink labels and the same length in two
graphs. The Tree++ [8] graph kernel is proposed for the
problem of comparing graphs at multiple levels of granular-
ities. It first uses a path-pattern graph kernel to build a trun-
cated BFS tree rooted at each vertex and then uses paths
from the root to every vertex in the truncated BFS tree as
features to represent graphs. To capture graph similarity at
multiple levels of granularities, Tree++ incorporates a new
concept called super path into the path-pattern graph ker-
nel. The super path contains truncated BFS trees rooted at
the vertices in a path. The graphlet kernel (GK) [15] pro-
poses to use the method of random sampling to extract
graphlets from graphs. The idea of random sampling is
motivated by the observation that the more sufficient num-
ber of random samples is drawn, the closer the empirical
distribution to the actual distribution of graphlets in a
graph. The Weisfeiler-Lehman subtree kernel (WL) [3], [4]
is based on the Weisfeiler-Lehman test of graph isomor-
phism [18] for graphs. In each iteration, the Weisfeiler-Leh-
man test of graph isomorphism augments vertex labels by
concatenating their neighbors’ labels and then compressing
the augmented labels into new labels. The compressed
labels correspond to the subtree patterns. WL counts com-
mon original and compressed labels in two graphs.

There are also some graph kernels [19], [20] focusing on
computing global similarities between graphs. The paper [19]
computes the Jensen-Shannon divergence between probabil-
ity distributions over graphs, without the need of decompos-
ing the graph into substructures. The paper [20] designs two
novel graph kernels to capture global properties of unlabeled
graphs. The kernels are based on the Lovasz number and are
called the Lovasz ¢ kernel and the SVM-v kernel. Both of
these two kernels still need to enumerate all subsets of nodes
from two graphs and compute the Lovasz number for each
subset. The number of possible subsets of nodes still expo-
nentially increases with the increasing size of the graph.

Recently, some research works such as [9], [21] focus on
augmenting the existing graph kernels or fusing GNNs
with graph kernels [22]. DGK [9] deals with the problem of
diagonal dominance in graph kernels. The diagonal domi-
nance means that a graph is more similar to itself than to
any other graphs in the dataset because of the sparsity of
common substructures across different graphs. DGK lever-
ages techniques from natural language processing to learn
latent representations for substructures. Then the similarity
matrix between substructures is computed and integrated
into graph kernels. If the number of substructures is high, it
will cost a lot of time and memory to compute the similarity
matrix. OA [21] develops some base kernels that generate
hierarchies from which the optimal assignment kernels are

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

2270

computed. The optimal assignment kernels can provide a
more valid notion of graph similarity. The authors finally
integrate the optimal assignment kernels into the Weis-
feiler-Lehman subtree kernel. Graph Neural Tangent Kernel
(GNTK) [22] is inspired by the connections between over-
parameterized neural networks and kernel methods [23],
[24]. Tt is a model that inherits both advantages from GNN5s
and graph kernels. It can extract powerful features from
graphs as GNNs and is easy to train and analyze as graph
kernels. It is equivalent to infinitely wide GNNs trained by
gradient descent.

2.2 Graph Neural Networks

In addition to the above-described literature, there are also
some literature from the field of graph neural networks
(GNNs) [10], [11], [12], [13], [25], [26], [27], [28], [29] related
to our work. SpectralNet [26] develops an extension of spec-
tral networks [30] for deep learning on graphs. A spectral
network generalizes a convolutional network through the
Graph Fourier Transform. Graph-CNN [28] proposes a
strictly localized spectral filters that uses Chebyshev polyno-
mials for approximately learning K-order spectral graph
convolutions [31]. Both SpectralNet and Graph-CNN first
construct similarity graphs from a dataset and then classify
data points into different classes. They are not applicable to
graphs of arbitrary size and shape. GCN [27] introduces a
simple and well-behaved layer-wise propagation rule for
graph convolutional networks. The propagation rule is
derived from the first-order approximation of spectral graph
convolutions. GAT [29] computes the latent representations
for each vertex in a graph, by attending over its neighbors,
following a self-attention strategy. It specifies different
weights to different vertices in a neighborhood. GraphS-
AGE [32] is developed for the inductive representation learn-
ing on graphs. It learns a function to generate embeddings
for each node, by sampling and aggregating features from a
node’s local neighborhood. GCN, GAT and GraphSAGE are
designed for the classification of vertices in a graph.

Neural Graph Fingerprints (NGF) [13] introduces a con-
volutional neural network on graphs for learning differentia-
ble molecular fingerprints, by replacing each discrete
operation in circular fingerprints with a differentiable ana-
log. NGF develops a local message-passing architecture that
propagates information to a depth of R neighborhood.
DCNN [25] extends convolutional neural networks to graphs
by introducing a diffusion-convolution operation, based on
which diffusion-based representations can be learned from
graphs and used as an effective basis for vertex classification
and graph classification. DGCNN [12] first designs a novel
special graph convolution layer to extract multi-scale vertex
features. Then, in order to sequentially read graphs of differ-
ing vertex orders, DGCNN designs a novel SortPooling layer
that sorts graph vertices in a consistent order so that tradi-
tional neural networks can be trained on graphs. GIN [10] is
proposed to analyze the expressive power of GNNs to cap-
ture different graph structures. Both DGCNN and GIN are
inspired by the close connection between GNNs and the
Weisfeiler-Lehman test of graph isomorphism. The inputs to
DGCNN and GIN are the one-hot encodings of vertex labels.
PatcHYSaN [11] generalizes CNNs from images to arbitrary

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 5, MAY 2022

graphs. It first orders vertices by the graph canonicalization
tool NauTy [33], and then performs three operations: (1) ver-
tex sequence selection, (2) neighborhood assembly, and (3)
graph normalization. There is another work that also uses
CNNs on graphs. DeepTrend 2.0 [34] proposes a CNN-based
model on a sensor network for traffic flow prediction. It con-
verts the sensor network into an image, in which neighbor-
ing pixels represent sensors that have a strong correlation. In
this way, the local similarity of the image is fullfilled. But
neighboring sensors in a sensor network may not be mapped
to the neighboring pixels in the image.

3 GRAPH FEATURE MAPS

In this work, we use lower-case Roman letters (e.g., a,b) to
denote scalars. We denote vectors (row) by boldface lower
case letters (e.g., x) and denote its ith element by x(i). We
use X = [z1,...,x,] to denote creating a vector by stacking
scalar z; along the columns. We consider an undirected
labeled graph G = (V, £,1), where V is a set of graph vertices
with number [V| of vertices, £ is a set of graph edges with
number |€]| of edges, and [: V — X is a function that assigns
labels from a set of positive integers 2, to vertices. Without
loss of generality, |2 < |V|. An edge e is denoted by two
vertices uv that are connected to it. In graph theory [35], a
walk is defined as a sequence of vertices, e.g., (v1,vs,...)
where consecutive vertices are connected by an edge. A trail
is a walk that consists of all distinct edges. A path is a trail
that consists of all distinct vertices and edges. The depth of
a subtree is the maximum length of paths between the root
and any other vertex in the subtree.

Definition 1 (Graph Isomorphism). Two undirected labeled
graphs Gy = V1,&1,1) and Gy = (Va, &2, 12) are isomorphic
(denoted by G, ~ G) if there is a bijection ¢ : Vi — Vs, (1)
such that for any two vertices u,v € Vy, there is an edge uv if
and only if there is an edge o(u)p(v) in Go; (2) and such that
L(v) = b(e(v)).

Let X be a non-empty set and let £ : X x X — R be a
function on X. Then K is a kernel on X’ if there is a real Hil-
bert space H and a mapping ¢ : X — H such that K(z,y) =
(p(z),p(y)) for all z, y in X, where (-,-) denotes the inner
product of H, ¢ is called a feature map and 7 is called a fea-
ture space. K is symmetric and positive-semidefinite. In the
case of graphs, let ¢(G) denote a mapping from a graph to a
vector which contains the number of occurrences of the
atomic substructures in graph G. Then, the kernel on two
graphs G; and G, is defined as K(G1, Ga) = (¢(G1), #(G2)).

We define graph feature maps as follows:

Definition 2 (Graph Feature Maps). Define a map ¥ :
{G1,Ga,...,Gn} x 3 — N such that (G, A) is the number of
occurrences of the atomic substructure A in graph G. Then the
feature map of graph G is defined as follows:

¢(g) = W(Q A1)> W(ga A2)a B 1/f(g, Am)]v 1)

where m is the number of unique atomic substructures and
depends on graphs.

In the following, let us elaborate the mechanisms of three
popular graph kernels, i.e., the graphlet kernel (GK) [15],

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

YE ET AL.: LEARNING DEEP GRAPH REPRESENTATIONS VIA CONVOLUTIONAL NEURAL NETWORKS

(c) Label concatenation in Gj.

®
e

(e) Label hashing in (f) Label hashing in
g1- gg.

Fig. 2. lllustration of one iteration of the WL test of graph isomorphism
algorithm for graphs. For subfigures (a) and (b), = = {1, 2,3,4}. For sub-
figures (e) and (f), = = {5,6,7,8,9,10,11,12}.

(d) Label concatenation in

Go.

oo

the shortest-path kernel (SP) [7] and the Weisfeiler-Lehman
subtree kernel (WL) [4], and relate them to our definitions.

A graphlet G (as shown in Fig. 1) is a non- 1somorph1c
subgraph of size k induced from graph G. Let G*) be the
multiset” of size-k graphlets. Then, for graph G, its feature
map is defined as follows:

#(G) = |w(G. G, (G, GY), ... w(g.cM], ®)

where m stands for the number of unique graphlets of size k
in G , ¥(G, G)(1 < i <m) denotes the frequency of the
unique graphlet ng occuring in graph G. Exhaustive enu-
mation of all graphlets of size k is prohibitively expensive,
especially for large graphs. Usually, we use some sampling
techniques such as the random sampling scheme proposed
in [15] to sample a number of ¢ graphlets of size k from
graph G, and then count the frequency of each unique
graphlet occurring in these ¢ samples.

Let P denote the multiset of all shortest-paths in graph G.
For each shortest-path P = (s,vy,vs,...,t) € P where s
denotes the source vertex and ¢ denotes the sink vertex, we
use a triplet (I(s),l(t),len(P)) to denote it, where len(P) is
the length of the shortest-path P. For example, in Fig. 2b,
the triplet for the shortest-path between the two vertices
with labels 2 and 4 respectively is (2, 4, 2). Then, for graph
G, its feature map is defined as follows:

¢(g) = Wf(g, Sl)7 W(ga S?)a R 1//(9, Sm)]a (3)

2. A set that can contain the same element multiple times.

2271

where m denotes the number of unique triplets in P, and
¥(G, S;)(1 <i <m) denotes the number of a unique triplet
S; occurring in graph G.

The Weisfeiler-Lehman test of graph isomorphism [18]
belongs to the family of color refinement algorithms that
iteratively update vertex colors (labels) until reaching the
fixed number of iterations, or the vertex label sets of two
graphs differ. In each iteration, the Weisfeiler-Lehman test
of graph isomorphism algorithm augments vertex labels by
first concatenating their neighbors’ labels and then hashing
the augmented labels into new labels. The hashed labels cor-
respond to subtree patterns.

For example, in Fig. 2b, a subtree pattern of height one
rooted at the vertex with label 4 can be denoted as a string
of concatenated labels of vertices “4, 1, 3, 3” which is aug-
mented as “12’ by the Weisfeiler-Lehman test of graph iso-
morphism. Let T" denote the multiset of all subtree
patterns of height h in graph G, then the feature map of G is
defined as follows:

p(G") = [w(@™, T"), p(g" "), ... w(@", 1),

4)

where G is the original graph G and G") is the augmented
graph at the hth iteration of the Welsfeﬂer—Lehman test of
graph isomorphism. We call graphs ¢, ... ¢" a
sequence of Weisfeiler-Lehman graphs m denotes the num-
ber of unique subtree patterns in T"), and y(G" T Ma <
i < m) denotes the number of a unique subtree pattern T,
occurring in graph G

The feature map of WL is the concatenation of the feature
maps at all the iterations

(h)

#(0) = [9(G"),6(G"), ... 4(G")]. ®)

4 DEeeP GRAPH FEATURE MAPS

In this section, we develop a new convolutional neural net-
work (CNN) model for learning deep graph feature maps,
which is called DeepMar. The extension of CNNs from
images whose pixels are spatially ordered to graphs of arbi-
trary size and shape is challenging. We first align vertices
across graphs. Then, we build the receptive field for each
vertex.

4.1 CNNs on Graphs
We define the vertex feature maps as follows:

Definition 3 (Vertex Feature Maps). Define a map :
{v,v9, .., } x 2 = N where v; € V(1 <4 <|V|) such
that (v, A) is the number of occurrences of the atomic sub-
structure A that contains v in graph G. Then the feature map of
vertex v is defined as follows:

¢(U) = W(% A1)> W(vv A2)7 R I/I(U, Am)]7 (6)

where m is the number of unique atomic substructures and
depends on graphs.

From Definitions 2 and 3, we can observe that the feature
map of a graph equals to the sum of the feature maps of all
the vertices in that graph. Note that this pooling-like feature

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

2272

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 5, MAY 2022

X ‘y ‘Z ‘u

052 | 0.52 [0.28 | 0.61

)2 b |c |d |e |f
¢ 0.21 ‘ 0.52 ‘ 0.24 ‘ 0.24 ‘ 0.60 ‘ 0.46
vertex sequence genera-
@tion
@EPOOD®

receptive field generation

©@® EB® E® @O O@

input into convolutional archi-
tecture

(a) G1

vertex sequence genera-
@tiom
WOOBOO0

receptive field generation

XY WRY WX® WG OO0 OOO

input into convolutional archi-

tecture
(b) G2

Fig. 3. lllustration of the generation of vertex sequences and the corresponding receptive fields for undirected graphs G, and G,. The two tables
beside graphs G, and G, contain the eigenvector centrality value of each vertex.

map is permutation-invariant and size-invariant. In other
words, the feature map is invariant to the ordering of verti-
ces and the sizes of graphs

Vi

$(9) =D o(v). (M

From the definitions of vertex feature maps (Equation (6))
and graph feature maps (Equation (1)), we can see that sev-
eral important issues are not taken into account to compute
graph feature maps. As described in Section 1, they are: (1)
Substructures are not independent and thus it leads to high-
dimensional feature space. (2) The complex high-order
interactions in the neighborhood of a vertex are not consid-
ered. To mitigate these two issues, in this work, we develop
a CNN architecture on the vertex feature maps. The learned
deep graph representation is of low-dimension. Further-
more, convolution operation in CNN can capture the com-
plex high-order interactions in the neighborhood of a
vertex. One main challenge in developing CNNs for graphs
of arbitrary size and shape is that unlike images whose pix-
els are spatially ordered, vertices in graphs do not have a
spatial or temporal order. Vertices across different graphs
are difficult to align, and thus the receptive fields of CNNs
cannot be directly applied on vertices in graphs.

An image can be considered as a rectangle grid graph
whose vertices represent pixels. A CNN of a stride length
one on an image can be considered as traversing a sequence
of pixels (vertices), from left to right and top to bottom. As
indicated above, pixels are spatially ordered and they are
aligned across images. Thus, the order of pixels in the
sequence that is traversed by a CNN is unique. To make
CNN s applicable to graphs, we first need to generate a ver-
tex sequence for each graph such that the sequences are
aligned across graphs. In this work, we use eigenvector cen-
trality [14] to measure the importance of a vertex. A vertex
has high eigenvector centrality value if it is linked to by
other vertices that also have high eigenvector centrality val-
ues, without implying that this vertex is highly linked. We
generate a vertex sequence in each graph by sorting their

eigenvector centrality values from high to low. Since graphs
are of arbitrary size, we use the size w of the graph that has
the largest number of vertices as the length of the sequence.
In this case, for sequences whose lengths are less than w, we
concatenate them with dummy vertices to make their
lengths equal to w. The dummy vertices” feature maps are
set to zero vectors so that they do not contribute to the
convolution.

After generating a vertex sequence for each graph, we
need to determine the receptive field for each vertex in the
sequence. Assume that the size of the receptive field is r.
We perform a breadth-first search (BFS) on the original
graph for constructing the receptive field. If the number of
the one-hop neighbors of a vertex is greater than or equal to
r — 1, we select the top r — 1 largest one-hop neighbors with
respect to their eigenvector centrality values. If the number
of the one-hop neighbors of a vertex is less than r — 1, we
first select all the one-hop neighbors and then select vertices
from the two-hop neighbors, the three-hop neighbors, and
so on, until the receptive field has exact r vertices. If the size
of a graph is less than r, we use dummy vertices for pad-
ding purposes. Note that the vertices in the receptive field
are also sorted in descending order according to their eigen-
vector centrality values.

We use Fig. 3 to demonstrate the generation procedure
for vertex sequences and their corresponding receptive
fields. In the first row of Fig. 3, the tables demonstrate the
eigenvector centrality value of each vertex. In the second
row of Fig. 3, the vertex sequence is generated by sorting
the eigenvector centrality values of vertices in descending
order. Since the size of graph G, is less than that of graph G,
we concatenate two dummy vertices (indicated by two
blank vertices) in the generated sequence. In the third row
of Fig. 3, for each vertex (indicated in gray) in the vertex
sequence, we use BFS to generate its receptive field. Here,
the size of the receptive field is three. Finally, we use a con-
volutional architecture to learn deep graph feature maps
from the feature maps of the vertices.

Fig. 4 demonstrates our convolutional architecture. The
architecture has three one-dimensional convolution layers
which have rectified linear units (ReLU). Three one-

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

YE ET AL.: LEARNING DEEP GRAPH REPRESENTATIONS VIA CONVOLUTIONAL NEURAL NETWORKS 2273
Inputs Outputs
m@w xrx1 32w x 1 16@w x 1 8@w x 1 8 128 class#

Convolution Convolution Convolution
r x 1 kernel 1 x 1 kernel 1 x 1 kernel
rx 1 stride 1 x 1 stride 1 x 1 stride

Summation

Dense

Fig. 4. Convolutional architecture. In the first layer, m is the dimension of the vertex feature map, w is the maximum number of vertices in a set of

graphs, and r is the size of the receptive field.

dimensional convolution layers are used to aggregate the
feature maps of each vertex with those of its neighbors.
After the last convolution layer, we use a summation layer
to add the feature map of every vertex in a graph together
and the resulting feature map is the deep graph feature
map. This summation layer just functions Equation (7).
After the summation layer, we use a dense (fully-connected)
layer with rectified linear units (ReLU), followed by a drop-
out layer and a softmax layer, for graph classification.

Theorem 1. If two graphs G, and G, are isomorphic, their deep
graph feature maps after the summation layer are the same.

Proof. If G; ~ Gy, we have the following:

V1| = [V2| and [€1] = [&s].

G, and G, have the same degree sequence.

Vertex v; from G; and vertex ¢(v;) from G, have
the same feature map ¢(v1) = ¢(¢(v1)).

e Vertex sequence S, = (1)1,1)2, oo ,1)|V1|) generated
from G, is identical to vertex sequence Sy =
(p(v1),¢(v2),...,0(v),)) generated from Gs.

e The receptive field for each vertex in sequence S}
is the same as that of the corresponding vertex in
sequence 5.

Thus, G; and G, have the same deep graph feature

maps after the summation layer.]

Note that if we use the sampling technique to sample
graphlets around two corresponding vertices from two iso-
morphic graphs, the vertex feature maps may not be the
same. Thus, the deep graph feature maps may not be the
same.

4.2 Algorithm

The pseudo-code for DEePMar is given in Algorithm 1. Lines
1-7 compute the feature map for each vertex in each graph.
The feature map could be graphlet feature map, shortest-

path feature map, or subtree feature map. The user can
choose one kind of them. If using random sampling for
graphlets, the time complexity to compute feature maps for
all vertices in n graphs is O(n - w - d*) [15], where w is the
largest number of vertices in a set of graphs, and d is the
maximum degree number. If using the Floyd-Warshall
algorithm to find all pairs of shortest paths, the time com-
plexity to compute feature maps for all vertices in n graphs
is O(n-w?) [7]. If using subtrees, the time complexity to
compute feature maps for all vertices in n graphs is
O(n - h-e) [4], where e is the largest number of edges and
we assume e¢ > w, and h is the iteration of the Weisfeiler-
Lehman test of graph isomorphism.

For each graph, line 11 generates the vertex sequence by
sorting vertices in descending order with respect to their
eigenvector centrality values. We use power iteration to com-
pute eigenvector centrality for each graph. The time complex-
ity for line 11 is bounded by O(e + w - logw), where O(e) is
the time complexity of power iteration, and O(w - log w) is the
time complexity for the fast sort. If the size of a graph is less
than the designated length w of the vertex sequence, line 13
appends its vertex sequence with dummy vertices. For each
vertex v in the sequence, lines 15-19 construct its receptive
field and append the corresponding vertex feature maps to
@'. Line 17 uses the breadth-first search (BFS) starting from v
on the original graph to find the top » — 1 largest neighbors w.
r.t. their eigenvector centrality values, and sort them in
descending order. We assume the number of edges is greater
than the number of vertices. Thus, the time complexity for
BFS is bounded by O(e). Thus, the time complexity for lines
10-20is O(n - (e +w - logw + w - €)). Finally, we input @’ and
the graph labels) into CNNss for graph classification.

The time complexity of two-dimensional CNNs is
O(X1_ nic - s7 -ny -m?2.) [36], where [is the index of a con-
volutional layer, c is the number of convolutional layers, n;.
is the number of input channels, s; is the length of the recep-
tive field, ny is the number of filters in the [th layer, m,. is

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

2274

the size of output channels. In our one-dimensional CNNSs, ¢
is set to three. In the first layer, n;. is the length m of the ver-
tex feature maps extracted by counting the substructures
around the vertices, s; is 7, n is w, m,, is set to 32. In the sec-
ond layer, n;. is 32, s; is set to one, n is w, m,, is set to 16. In
the third layer, n;. is 16, s; is also set to one, ny is w, M, is
set to 8. Thus, the time complexity of our one-dimensional
CNN:s is bounded by O(m - r - w). The dense layer has 128
units. The dropout layer has a dropout rate of 0.5. The
worst-case (When using the shortest-path feature map) time
complexity of DEepMaris O(n - w +n-w-e+m-w-r).

Algorithm 1. DEepMap

Input: A set of graphs {G1,0s,...,G,} and their corresponding
labels ¥ = {y1,v2, ..., yn}, the size r of the receptive field
Output: Classification accuracy acc
1: ® — [] /* featuremaps initialization. */
2: foreach graph G,;(1 <i < n) do
X1
foreach vertex v € G; do
X — ¢(v);
X.append(x);
®.append(X);
w «— maxg, length(G;) (1 <i < n);
P)
: foreach graph G;(1 <i <n) do
: generate vertex sequence S; = (s, Voy - - - 7v(,w) by sort-
ing vertices according to their eigenvector centrality values
/*01,03,...,0, is apermutationof 1,2,..., [Vi|. */
12: if length(G;) < w then
13: append w—length(G;) dummy vertices to .S;;
14: X «[|;
15: foreach vertex v in sequence S; do
16: if v is not a dummy vertex then
17: append X(vs,), X(vs,), - ., X(v), ..., X(vs, ;) to X /*
use the breadth-first search (BFS) start-
ing from v on the original graph to find the
top r—1 largest neighbors w.r.t. their
eigenvector centrality values, and sort
them in descending order. */
18: else
19: append number 7 of zero vectors 0 (for dummy verti-
ces) to X';
20: @'.append(X);
21: acc + CNNs ®',) /* 10-fold cross-validation. */
22: return acc;

DY RN TR

—_ =

5 EXPERIMENTAL EVALUATION

In this section, we conduct experiments on the benchmark
graph datasets to compare DeerMar with state-of-the-art
graph kernels and GNNs. DEepMArP is built on three kinds of
vertex feature maps: graphlet (GK [15]), shortest-path
(SP [7]), and subtree patterns (WL [4]). The corresponding
three versions of DeepMar are denoted as DeepMar-GK,
DeepMAP-SP, and DeEepMaP-WL, respectively.

5.1 Experimental Setup

We run all the experiments on a server with a 32-core Intel
(R) Xeon(R) Silver 4110 CPU@2.10 GHz, 128 GB memory, a
quad-core GeForce RTX 2080 GPU, and Ubuntu 18.04.1 LTS

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 5, MAY 2022

TABLE 1
Statistics of the Benchmark Datasets Used in the Experiments
Dataset Size Class Avg. Avg. Label
Node# Edge#
SYNTHIE 400 4 95.00 17293 N/ A
KKI 83 2 26.96 48.42 190
BZR_MD 306 2 21.30 225.06 8
COX2_MD 303 2 26.28 335.12 7
DHFR 467 2 42.43 44.54 9
NCI1 4110 2 17.93 19.79 37
PTC_MM 336 2 13.97 14.32 20
PTC_MR 344 2 14.29 14.69 18
PTC_FM 349 2 14.11 14.48 18
PTC_FR 351 2 14.56 15.00 19
ENZYMES 600 6 32.63 62.14 3
PROTEINS 1113 2 39.06 72.82 3
IMDB-BINARY 1000 2 19.77 96.53 N/A
IMDB-MULTI 1500 3 13.00 65.94 N/A
COLLAB 5000 3 74.49 245778 N /A

N | A means the dataset has no vertex labels.

operating system, Python version 3.6. DEEPMAP is imple-
mented with the Tensorflow wrapper Keras. We make our
code publicly available at Github.”

We compare DEePMAaP with six state-of-the-art graph ker-
nels, i.e,, GNTK [22], DGK [9], RerGK [6], GK [15], SP [7],
and WL [4]. We also compare DeepMar with four state-of-
the-art GNNs, i.e., GIN [10], PatcuySan [11], DCNN [25],
and DGCNN [12]. We perform 10-fold cross-validation and
report the average classification accuracies and standard
deviations.

For the comparison methods, we set their parameters
according to their original papers. The graphlet size of GK
is selected from {3,4,5}. The depth of the subtree used in
WL is selected from {0, 1,2,3,4,5}. For DEepPMAP, we use a
single network architecture for all the experiments. We use
the RMSPROP optimizer with initial learning rate 0.01 and
decay the learning rate by 0.5 if the number of epochs with
no improvement in the loss reaches five. We select the num-
ber of batch size from {32,256}. Following GIN [10], for
DeerMar and other GNNs, the number of epochs is set as
the one that has the best cross-validation accuracy averaged
over the ten folds. For graph kernels, we use a binary
C-SVM [37] as the classifier. The parameter C' for each fold
is independently tuned from {1,10,10?,10°} using the
training data from that fold.

5.2 Datasets

In order to test the effectiveness of DEePMApr, we use bench-
mark datasets whose statistics are given in Table 1. For data-
sets without vertex labels, we use vertex degrees as their
vertex labels.

Synthetic Dataset. SYNTHIE [38] contains 400 graphs and
can be divided into four classes. They are generated from
two Erdés-Rényi graphs with edge probability 0.2.

Brain Network Dataset. KKI [39] is a brain network con-
structed from the whole brain functional resonance image
(fMRI) atlas. Each vertex corresponds to a region of interest

3. https:/ /github.com/yeweiysh/DeepMap

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

YE ET AL.: LEARNING DEEP GRAPH REPRESENTATIONS VIA CONVOLUTIONAL NEURAL NETWORKS

551

50

45 - -
—— DeepMap-GK

—.- SP
—— DeepMap-SP
—- WL

—— DeepMap-WL

40

Classification accuracy (%)

Varying the size of the receptive field

Fig. 5. Parameter sensitivity studies for the deep map models and their
corresponding graph kernels on the benchmark dataset SYNTHIE.

(ROI), and each edge indicates correlations between two
ROIs. KKI is constructed for the task of Attention Deficit
Hyperactivity Disorder (ADHD) classification.

Chemical Compound Datasets. The chemical compound
datasets BZR_MD, COX2_MD, and DHFR are from [40].
Chemical compounds or molecules are represented by
graphs. Edges represent the chemical bond type, i.e., single,
double, triple or aromatic. Vertices represent atoms. Vertex
labels represent atom types. BZR is a dataset of ligands for
the benzodiazepine receptor. COX2 is a dataset of cyclooxy-
genase-2 inhibitors. DHFR is a dataset of 756 inhibitors of
dihydrofolate reductase. BZR MD and COX2_MD are
derived from BZR and COX2, respectively, by removing
explicit hydrogen atoms. The chemical compounds in the
datasets BZR_MD and COX2 _MD are represented as com-
plete graphs. NCI1 [41] is a balanced dataset of chemical
compounds screened for the ability to suppress the growth
of human non-small cell lung cancer.

Molecular Compound Datasets. The PTC [42] dataset consists
of compounds labeled according to carcinogenicity on rodents
divided into male mice (MM), male rats (MR), female mice
(FM) and female rats (FR). ENZYMES is a dataset of protein
tertiary structures from [43], consisting of 600 enzymes from
six Enzyme Commission top-level enzyme classes. The data-
set PROTEINS is from [43]. Each protein is represented by a
graph. Vertices represent secondary structure elements. Edges
represent that two vertices are neighbors along the amino acid
sequence or three-nearest neighbors to each other in space.

Movie Collaboration Dataset. IMDB-BINARY and IMDB-
MULTI datasets are from [9]. IMDB-BINARY contains mov-
ies of different actor/actress and genre information. For each
collaboration graph, vertices represent actors/actresses.
Edges denote that two actors/actresses appear in the same
movie. The collaboration graphs are generated on Action
and Romance genres. And for each actor/actress, a corre-
sponding ego-network is derived and labeled with its genre.
IMDB-MULTI is a multi-class version of IMDB-BINARY and
includes a balanced set of ego-networks derived from Com-
edy, Romance, and Sci-Fi genres.

Scientific Collaboration Dataset. COLLAB [44] is derived
from three public collaboration datasets, i.e., High Energy
Physics, Condensed Matter Physics, and Astro Physics.
Each graph represents an ego-network of a researcher from
a research field. The label represents the research field
(High Energy Physics, Condensed Matter Physics, and
Astro Physics) of a researcher.

2275
100 4
90 4
X 80+
> S
8 m fmm eSS
3
Iy
< 60
o
£ == GK
[=4 <
® 50 —— DeepMap-GK
= —
Al sp
—— DeepMap-SP
30 1 == W
. —— DeepMap-WL
0 50 100 150 200

Number of epochs

Fig. 6. Representational power studies for the deep map models and
their corresponding graph kernels on the benchmark dataset SYNTHIE.

5.3 Results

In this section, we first evaluate DEePMAP with varying the
size r of the receptive field, then compare DeepMar with
baselines on representational power and classification
accuracy.

5.3.1 Parameter Sensitivity

We test the parameter sensitivity of the deep map models
and their corresponding graph kernels on the synthetic
dataset SYNTHIE. The results are shown in Fig. 5. Because
graph kernels do not have the parameter of the size r of the
receptive field, their classification accuracies do not change.
When the size of the receptive field equals one, i.e., no
neighborhood information is used in the deep map models,
we can see that the deep map models perform poorly (clas-
sification accuracy is around 27 percent). When the size of
the receptive field exceeds two, all the three deep map mod-
els are superior to their corresponding graph kernels. The
performance of DEepPMAP-SP decreases with the increasing
size of the receptive field, which can be explained by the
small world experiments [45]. The experiments are often
associated with the phrase “six degrees of separation”,
which means every two vertices in a graph can be connected
by a shortest-path of length at most six. When the size of the
receptive field of a vertex exceed seven (including the vertex
itself), extra neighbors deteriorate the discrimination power.
We can also observe a similar tendency of DeepMar-WL
because it is built on subtree patterns which are also con-
strained by the “six degrees of separation”. For DeepMar-
GK, its performance increases with the increasing size of
the receptive field. DEepPMapP-GK is built on graphlets. For
each vertex, we randomly sample 20 graphlets of size five.
More neighbors provide more distinct information and thus
improve the discrimination power.

5.3.2 Representational Power

We test the representational power of the deep map models
and their corresponding graph kernels on the benchmark
dataset SYNTHIE in Fig. 6. We use the average training
accuracy over the ten folds to evaluate the representational
power. We can see that the deep map models dramatically
improve the representational power of their corresponding
graph kernels. DEePMaP-WL and DEeepMapP-SP converge

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

2276

100 A - — e
I.\« W “' /Wv""’ v -~
4]
Saof [T
> | PO O AN ftl'll
g0y | A i
3
M
o 607 3 ;
< e te oo b a0 —— DeepMap
PP LA \ i\
5 501 ~"’,'\'(.,‘5:'|'u|".‘\\‘,'v”‘l"‘°‘""““"ﬁ" W DGenN
[J —-- GIN
404 || DCNN
g —-== PatchySan
304 4 e RetGK
0 50 100 150 200

Number of epochs

Fig. 7. Representational power studies for DEerMapr and other baselines
on the benchmark dataset SYNTHIE. To reduce clutter, for graph ker-
nels, we only show the result of the graph kernel that has the highest
representational power.

faster than DeepMapr-GK. We use the best results of the deep
map models in Fig. 6 as the final results for DEepMapr. We
compare the representational power of DEepPMaP with other
baselines in Fig. 7. We can observe that DEepPMAP has better

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 5, MAY 2022

representational power and converges faster than other
GNNs. DEepMAP is superior to all the other baselines with a
large margin.

5.3.3 Classification Accuracy

Table 2 shows the classification accuracies of the deep map
models and their corresponding graph kernels on the
benchmark datasets. We can see from the table that the
deep map models outperform their corresponding graph
kernels in most cases. On the dataset IMDB-MULTI, SP is
better than DeePMapP-SP, with a gain of 5.3 percent. On the
dataset NCI1 and COLLAB, WL outperforms DeepMapr-WL.
However, on the other datasets, e.g., BZR MD, DeerMar-
GK has a gain of 28.1 percent over GK, DeepPMar-SP has a
gain of 7.2 percent over SP, and DeepPMapr-WL has a gain of
19.9 percent over WL, respectively.

Table 3 shows the classification accuracies of DEePMAP
and other graph kernels and GNNs on the benchmark data-
sets. DEEPMAP outperforms all the GNNs on most of the
datasets. DGK is also based on the graph feature maps. We
can see that our model DeEepMarP is superior to DGK with a
large margin on all the datasets. On the dataset ENZYMES

TABLE 2
Comparison of Classification Accuracy (+ Standard Deviation) of the Deep Map Models to Their Corresponding Graph Kernels on
the Benchmark Datasets

Dataset GK DreerMar-GK SpP DrerMAar-SP WL DeepMar-WL
SYNTHIE 23.68+2.11 54.48+4.34 50.73+1.74 54.034+2.38 50.88+1.04 54.53+6.16
KKI 51.88+3.19 56.77+9.69 50.13+3.46 62.924+7.94 50.38+2.77 61.65+15.0
BZR_MD 49.274+2.15 63.11+10.0 68.60+1.94 73.55+5.76 59.67+1.47 71.56+6.66
COX2_MD 48.17+£1.88 52.44+7.36 65.70+1.66 72.28+9.37 56.30+£1.55 69.66+7.32
DHFR 61.014+0.23 61.64+2.07 77.8040.98 81.35+4.08 82.394+0.90 85.174+2.19
NCI1 62.11+0.19 63.26+2.04 73.12+0.29 79.90+1.78 84.79+0.22 83.07+1.07
PTC_MM 50.82+6.20 66.68+5.71 62.184+2.22 66.30+4.87 67.18+1.62 69.59+7.39
PTC_MR 49.68+2.03 63.38+6.04 59.88+2.02 67.73+6.61 61.32+0.89 63.59+5.31
PTC_FM 51.94+4.05 62.83+6.23 61.38+1.66 64.45+5.04 64.44+2.09 65.16+5.62
PTC_FR 49.54+6.00 65.82+1.07 66.91+1.46 68.39+3.57 66.17+1.02 67.82+5.03
ENZYMES 23.88+1.78 30.50+3.88 41.07£0.77 50.33+4.70 51.98+1.24 54.33£6.11
PROTEINS 71.4440.25 73.77+2.33 75.77+0.58 76.19+2.91 75.45+0.20 75.47+3.26
IMDB-BINARY 67.03+0.79 69.60+4.80 72.204+0.78 74.60+4.74 72.26+0.78 78.10+5.26
IMDB-MULTI 40.83+0.57 42.80+2.84 50.89+0.90 48.33+£2.70 50.39+0.49 53.33+3.89
COLLAB 72.84+0.28 73.924+2.03 N/A N/A 78.90+1.90 75.5442.78
TABLE 3
Comparison of Classification Accuracy (+ Standard Deviation) of DeepMap to Other Competitors on the Benchmark Datasets
Dataset DeepMar DGCNN GIN DCNN PatcuySan DGK RerGK GNTK
SYNTHIE 54.53+6.16 47.504+7.99 53.48+3.64 54.18+4.49 442541436 52.43+1.02 49.9541.96 53.98+0.87
KKI 62.92+7.94 56.25+18.8 60.34+£12.5 4893+7.50 43.75+13.98 51.254+4.17 48.504+2.99 46.75£5.75
BZR_MD 73.55+5.76 64.674+9.32 70.53+£8.00 59.61+11.2 67.00£9.48 58.50+1.52 62.774+1.69 66.47+1.20
COX2_MD 72.2849.37 64.00£8.86 65.97+£5.70 51.29+5.31 65.33£7.78 51.57+1.71 59.47+1.66 64.27+1.55
DHFR 85.17+2.19 70.674+4.95 82.15+4.02 59.80+2.45 77.0043.59 64.13+0.89 82.33+0.66 73.48+0.65
NCI1 83.07+1.07 71.73+£2.14 82.70£1.70 57.10+£0.69 78.60£1.90 80.31+0.46 84.50+0.20 84.20+1.50
PTC_MM 69.59+7.39 62.124+14.1 67.19£741 63.04+£2.71 56.58+9.01 67.09+0.49 67.90+£1.40 65.94+1.21
PTC_MR 67.73+6.61 55.2949.38 62.57+£5.18 55.65+4.92 55.254+7.98 62.03+1.68 62.50+1.60 58.32+1.00
PTC_FM 65.161+5.62 60.294+6.69 64.22+2.36 63.50+3.78 58.384+9.27 64.47+0.76 63.90+1.30 63.85+1.20
PTC_FR 68.39+3.57 65.43+11.3 66.97+£6.17 66.24+3.83 61.00£5.61 67.66+0.32 67.80+1.10 66.97£0.56
ENZYMES 54.33+6.11 43.83+6.85 50.50+6.01 17.50+2.67 22.504+7.08 53.43+091 60.40+0.80 32.354+1.17
PROTEINS 76.194+2.91 73.06£4.81 76.20+£2.80 66.47+1.10 75.90£2.80 75.684+0.54 75.80+0.60 75.60+4.20
IMDB-BINARY 78.10+£5.26 70.03+0.86 75.10+5.10 71.384+2.08 71.00+2.29 66.96+0.56 72.30+0.60 76.90+3.60
IMDB-MULTI 53.33+3.89 47.83£0.85 52.30+£2.80 45.02+1.73 45.23+£2.84 44.554+0.52 48.70£0.60 52.80+4.60
COLLAB 75.5442.78 73.76+£2.52 80.20£1.90 76.24+0.60 72.60+2.20 73.094+0.25 81.00£0.30 83.60+1.00

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

YE ET AL.: LEARNING DEEP GRAPH REPRESENTATIONS VIA CONVOLUTIONAL NEURAL NETWORKS 2277
TABLE 4
Comparison of Classification Accuracy (+ Standard Deviation) of DeEerMap to Other GNNs With the
Same Input of Vertex Feature Maps

Dataset DEeerMar DGCNN GIN DCNN PATCHYSAN
SYNTHIE 54.53+6.16 47.25+7.86 53.68+8.25 50.67+4.41 42.00+10.36
KKI 62.92+7.94 56.25+18.87 64.93+17.15 53.93+7.22 48.75+15.26
BZR_MD 73.55+5.76 64.33+8.90 73.00+10.70 68.73+3.46 67.33+8.41
COX2_MD 72.28+9.37 59.00+9.30 65.76+7.65 61.98+4.99 62.00+10.13
DHFR 85.17+2.19 79.334+5.56 80.16+5.27 76.51+6.47 71.00+16.76
NCI1 83.07+1.07 71.05+2.03 75.38+2.03 77.344+0.98 80.14+1.58
PTC_MM 69.59+7.39 61.21+12.27 68.40+7.78 64.64+2.74 62.00+7.69
PTC_MR 67.73+6.61 54.12+7.74 64.87+8.41 57.57+4.26 58.88+8.19
PTC_FM 65.16+5.62 58.53+6.86 61.89+8.54 57.784+4.07 58.38+5.09
PTC_FR 68.39+3.57 65.43+11.38 66.08+5.99 62.99+4.17 58.25+8.81
ENZYMES 54.33+6.11 35.33+5.02 37.50+3.59 42.75+1.81 25.174+5.19
PROTEINS 76.19+2.91 76.58+4.37 75.10+5.04 65.55+3.36 65.50+6.80
IMDB-BINARY 78.10+5.26 69.20+5.73 74.10+3.18 74.55+2.50 68.70+5.27
IMDB-MULTI 53.33+3.89 47.67+4.41 49.87+3.14 48.32+3.40 43.33+7.25
COLLAB 75.54+2.78 73.5+2.1 71.68+2.10 76.50+1.26 72.38+2.18

and NCI1, RerGK outperforms DeepMap. On the dataset
COLLAB, GNTK is better than DeepMar. However, DEEP-
Mapr dramatically outperforms the worst method DCNN
with a gain of 210.5 percent. On the dataset COX2_MD,
DeepMaP has a gain of 9.6 percent over the second-best
method GIN and has a gain of 40.9 percent over the worst
method DCNN.

In the next experiment, we input the vertex feature maps
to other GNNSs. Table 4 shows the classification accuracies.
We want to investigate if DEEPMAP has a better architecture
for vertex feature maps. Even with the same inputs as DEer-
Map, all the other GNNs cannot defeat DEEPMAP in most
cases. On the dataset KKI, GIN achieves the best classifica-
tion result, with a gain of 3.2 percent over DEerMar. On the
dataset PROTEINS, DGCNN is slightly better than DeepMavp.
On the dataset COLLAB, DCNN achieves the best result.

5.4 Runtime

Table 5 shows the average runtime of each epoch of DEepMap
and other GNN’s on the real-world datasets. DEEPMAP is com-
petitive to other GNNs. PTC_MM, PTC_MR, PTC_FM and
PTC_FR are four similar datasets. The runtime of DEepMar

TABLE 5
Runtime of Each Epoch of DeerMapr and Other GNNs

Dataset DeepMar DGCNN GIN DCNN PaTcHYSAN
SYNTHIE 166.7ms 313.5ms 1.4s 338.5ms 566.0ms
KKI 428.8ms 61.5ms 1.1s 63.Ims 343.9ms
BZR_MD 99.2ms 224.0ms 1.1s 93.3ms 366.0ms
COX2 _MD 106.9ms 200.5ms 1.2s 95.0ms 367.8ms
DHFR 564.2ms 442.5ms 1.2s 375.8ms 654.1ms
NCI1 7.3s 3.0s 1.6s 3.4s 2.5s
PTC_MM 104.3ms 212.5ms 1.1s 138.3ms 381.2ms
PTC_MR 213.0ms 2125ms 1.1s 148.1ms 390.5ms
PTC_FM 430.3ms 217.5ms 1.1s 147.2ms 382.9ms
PTC_FR 121.1ms 2195ms 1.1s 143.8ms 385.0ms
ENZYMES 9.9s 359.5ms 1.2s 279.1ms 530.6ms
PROTEINS 334.1ms 727.5ms 1.2s 1.2s 887.2ms
IMDB-BINARY 2.9s 638.0ms 1.2s 514.0ms 932.8ms
IMDB-MULTI 2.6s 882.0ms 1.3s 665.7ms 1.1s
COLLAB 8.4s 6.3s 3.8s 10.4s 4.1s

on these four datasets are differing because DEEPMAP uses
different kinds of vertex feature maps and their dimensions
are different. For datasets NCI1, ENZYMES, IMDB-BINARY
and IMDB-MULTI, DeepMar performs the worst because the
vertex feature maps built on the shortest-path or subtree pat-
terns are of high dimension. Each epoch of GIN costs over 1s
because GIN uses five layers of MLPs (multilayer percep-
trons) that are hard to train.

6 DiSCuSsSION

Similar to PATCHYSAN, our method DEepMAP also imposes an
order for graph vertices to make alignments across graphs.
However, DeepMar is different from PATCHYSAN in three
aspects: (1) DeepMar adopts eigenvector centrality to
impose an order for graph vertices, which is more efficient
than Nauty used in ParcuySan. (2) ParcuySaN samples a
number (equals to the average degree) of vertices from
graphs to construct a vertex sequence. DEePMaP uses all the
vertices in a graph to generate a vertex sequence. Compared
with PATcHYSAN, DEEPMAP makes full use of all the vertex
information in a graph. (3) The input to PATCHYSAN is the
one-hot encoding of each vertex label, while the input to
DeerMAP is the vertex feature map built on the graphlet,
shortest-path, or subtree patterns. Compared with the one-
hot encoding of each vertex label, vertex feature maps
include richer information. The disadvantage of using the
vertex feature map is that the dimension may be very high
and it leads to low efficiency for CNNs.

As discussed in Section 2, DeepTrend 2.0 maps a sensor
network to an image. Neighboring sensors may not be
mapped to neighboring pixels. Differing from DeepTrend
2.0, DEepPMAP maps a graph into a vertex sequence. Then, for
each vertex in the vertex sequence, DEePMaP decides its
receptive field using BFS on the original graph. All the verti-
ces in a receptive field are neighboring vertices in the origi-
nal graph. One problem with this formalization is that the
size of the input vertex sequence into CNNSs is r times that
of the original graph. This may also cause the low-efficiency
problem. DEepMAP uses a summation layer as a readout
function for the whole graph. The sum function loses the

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

2278

local distribution of each deep vertex feature map. A possi-
ble alternative is to use a concatenation layer that concate-
nates all the deep vertex feature maps into a vector.
DEeepMAP is built on the hand-crafted vertex feature maps
used in graph kernels. It is not an end-to-end framework.
Recently, researchers have been focusing on deriving neural
architectures from graph kernels [46]. It is very interesting
to research on this direction, designing an end-to-end neu-
ral learning architecture that is inspired from the mecha-
nisms of graph kernels. Another interesting direction is to
design a new graph neural network that can realize differ-
ent levels of embeddings, including node level, edge level,
group level and graph level.

As discussed before, R-convolution graph kernels just
decompose graphs into substructures and compare these
substructures. Thus, they cannot capture the high-order
complex interactions between vertices. For example, the
random walk graph kernel [5], [47], [48] conduct random
walk on each vertex in two graphs. Each random walk is
denoted as a string of node labels and edge labels. Then, the
random walk graph kernels just count the number of com-
mon random walks (the same strings of node labels and
edge labels) in these two graphs. Because random walk is
conducted on the first-order transition matrix of the graph
structure, the random walk graph kernel cannot capture the
high-order complex interactions between vertices. To this
end, one possible extension is to conduct random walk on
the high-order transition matrix of the graph structure. We
leave this for a future work.

7 CONCLUSION

In this paper, we have proposed the deep map models to
learn deep representations for graphs. DeePMapr extends
CNNs from images to graphs of arbitrary shape and size,
by solving the problems of vertex alignment across graphs
and vertex receptive field generation. DEePMAP can be built
on the vertex feature maps of any substructures. By resolv-
ing the two main problems that derived from R-convolu-
tional graph kernels, DEePMaP dramatically improves the
performances of R-convolutional graph kernels and also
outperforms several state-of-the-art graph neural networks.
The learned deep feature map of each vertex can also be
considered as vertex embedding and used for vertex classi-
fication. In the future, we would like to develop new archi-
tectures that integrate the mechanisms of graph kernels for
graph neural networks.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers for
their constructive and helpful comments. This work was
supported partially by the US National Science Foundation
(grant # 11S-1817046) and by the U.S. Army Research Labo-
ratory and the U.S. Army Research Office (grant # W911NF-
15-1-0577).

REFERENCES

[1] D. Haussler, “Convolution kernels on discrete structures,” Dept.
Comput. Sci., Univ. California, Santa Cruz, CA, USA, Tech. Rep.
UCSC-CRL-99-10, 1999.

[2]
[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 34, NO. 5, MAY 2022

N. Przulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: Scale-
free or geometric?” Bioinformatics, vol. 20, no. 18, pp. 3508-3515, 2004.
N. Shervashidze and K. M. Borgwardt, “Fast subtree kernels on
graphs,” in Proc. 22nd Int. Conf. Neural Inf. Process. Syst., 2009,
pp- 1660-1668.

N. Shervashidze, P. Schweitzer, E. J. V. Leeuwen, K. Mehlhorn,
and K. M. Borgwardt, “Weisfeiler-Lehman graph kernels,” J.
Mach. Learn. Res., vol. 12, no. Sep., pp. 2539-2561, 2011.

S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and
K. M. Borgwardt, “Graph kernels,” |. Mach. Learn. Res., vol. 11,
no. Apr., pp. 1201-1242, 2010.

Z. Zhang, M. Wang, Y. Xiang, Y. Huang, and A. Nehorai,
“RetGK: Graph kernels based on return probabilities of random
walks,” in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., 2018,
pp- 3964-3974.

K. M. Borgwardt and H.-P. Kriegel, “Shortest-path kernels on
graphs,” in Proc. 5th IEEE Int. Conf. Data Mining, 2005, pp. 8 pp--.
W. Ye, Z. Wang, R. Redberg, and A. Singh, “Tree++: Truncated
tree based graph kernels,” IEEE Trans. Knowl. Data Eng., to be
published, doi: 10.1109/TKDE.2019.2946149.

P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proc.
21th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2015,
pp- 1365-1374.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” in Proc. Int. Conf. Learn. Represent., 2018.
M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proc. Int. Conf. Mach. Learn., 2016,
pp- 2014-2023.

M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end
deep learning architecture for graph classification,” in Proc. AAAI
Conf. Artif. Intell., 2018, pp. 4438-4445.

D. K. Duvenaud et al., “Convolutional networks on graphs for
learning molecular fingerprints,” in Proc. 28th Int. Conf. Neural Inf.
Process. Syst., 2015, pp. 2224-2232.

P. Bonacich, “Power and centrality: A family of measures,” Amer.
J. Sociol., vol. 92, no. 5, pp. 1170-1182, 1987.

N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and
K. Borgwardt, “Efficient graphlet kernels for large graph
comparison,” in Proc. Int. Conf. Artif. Intell. Stat., 2009, pp. 488-495.

J. Ramon and T. Gartner, “Expressivity versus efficiency of graph
kernels,” in Proc. 1st Int. Workshop Mining Graphs Trees Sequences,
2003, pp. 65-74.

P. Mahé and J.-P. Vert, “Graph kernels based on tree patterns for
molecules,” Mach. Learn., vol. 75, no. 1, pp. 3-35, 2009.

B. Weisfeiler and A. Lehman, “A reduction of a graph to a canoni-
cal form and an Algebra arising during this reduction,” Nauchno-
Technicheskaya Informatsia, vol. 2, no. 9, pp. 12-16, 1968.

L. Bai, L. Rossi, A. Torsello, and E. R. Hancock, “A quantum Jen-
sen-Shannon graph kernel for unattributed graphs,” Pattern Rec-
ognit., vol. 48, no. 2, pp. 344-355, 2015.

F. Johansson, V. Jethava, D. Dubhashi, and C. Bhattacharyya,
“Global graph kernels using geometric embeddings,” in Proc. 31st
Int. Conf. Mach. Learn., 2014, pp. 1I-694-11-702.

N. M. Kriege, P.-L. Giscard, and R. Wilson, “On valid optimal
assignment kernels and applications to graph classification,” in
Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016, pp. 1623-1631.
S.S. Du, K. Hou, B. Péczos, R. Salakhutdinov, R. Wang, and K. Xu,
“Graph neural tangent kernel: Fusing graph neural networks with
graph kernels,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp- 5724-5734.

A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Con-
vergence and generalization in neural networks,” in Proc. 32nd
Int. Conf. Neural Inf. Process. Syst., 2018, pp. 8580-8589.

S. Arora, S. S. Du, W. Hu, Z. Li, R. R. Salakhutdinov, and R. Wang,
“On exact computation with an infinitely wide neural net,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2019, pp. 8141-8150.

J. Atwood and D. Towsley, “Diffusion-convolutional neural
networks,” in Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016,
pp- 2001-2009.

M. Henaff, J. Bruna, and Y. LeCun , “Deep convolutional net-
works on graph-structured data,” 2015, arXiv:1506.05163.

T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. Int. Conf. Learn. Represen-
tations, 2016.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016, pp. 3844-3852.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

YE ET AL.: LEARNING DEEP GRAPH REPRESENTATIONS VIA CONVOLUTIONAL NEURAL NETWORKS

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

P. Velickovié¢, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y.
Bengio, “Graph attention networks,” in Proc. Int. Conf. Learn. Rep-
resentations, 2018.

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in Proc. Int. Conf. Learn.
Representations, 2014.

D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets
on graphs via spectral graph theory,” Appl. Comput. Harmon.
Anal., vol. 30, no. 2, pp. 129-150, 2011.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 1024-1034.

B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” |.
Symbolic Comput., vol. 60, pp. 94-112, 2014.

X. Dai et al., “DeepTrend 2.0: A light-weighted multi-scale traffic
prediction model using detrending,” Transp. Res. Part C: Emerg.
Technol., vol. 103, pp. 142-157, 2019.

F. Harary, Graph Theory. Reading, MA, USA: Addison-Wesley,
1969.

K. He and J. Sun, “Convolutional neural networks at constrained
time cost,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015,
pp- 5353-5360.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011,
Art. no. 27.

C. Morris, N. M. Kriege, K. Kersting, and P. Mutzel, “Faster ker-
nels for graphs with continuous attributes via hashing,” in Proc.
IEEE 16th Int. Conf. Data Mining, 2016, pp. 1095-1100.

S. Pan, J. Wu, X. Zhu, G. Long, and C. Zhang, “Task sensitive fea-
ture exploration and learning for multitask graph classification,”
IEEE Trans. Cybern., vol. 47, no. 3, pp. 744-758, Mar. 2017.

J. J. Sutherland, L. A. O’brien, and D. F. Weaver, “Spline-fitting
with a genetic algorithm: A method for developing classification
structure- activity relationships,” J. Chem. Inf. Comput. Sci., vol. 43,
no. 6, pp. 1906-1915, 2003.

N. Wale, I. A. Watson, and G. Karypis, “Comparison of descriptor
spaces for chemical compound retrieval and classification,”
Knowl. Inf. Syst., vol. 14, no. 3, pp. 347-375, 2008.

N. Kriege and P. Mutzel, “Subgraph matching kernels for attrib-
uted graphs,” in Proc. 29th Int. Conf. Mach. Learn., 2012, pp. 291-298.
K. M. Borgwardt, C. S. Ong, S. Schonauer, S. Vishwanathan, A. J.
Smola, and H.-P. Kriegel, “Protein function prediction via graph
kernels,” Bioinformatics, vol. 21, no. suppl_1, pp. i47-i56, 2005.

J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graphs over time:
Densification laws, shrinking diameters and possible explan-
ations,” in Proc. 11th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2005, pp. 177-187.

S. Milgram, “The small world problem,” Psychol. Today, vol. 2,
no. 1, pp. 60-67, 1967.

T. Lei, W. Jin, R. Barzilay, and T. Jaakkola, “Deriving neural archi-
tectures from sequence and graph kernels,” in Proc. 34th Int. Conf.
Mach. Learn., 2017, pp. 2024-2033.

T. Gartner, P. Flach, and S. Wrobel, “On graph kernels: Hardness
results and efficient alternatives,” in Learning Theory and Kernel
Machines. Berlin, Germany: Springer, 2003, pp. 129-143.

H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels
between labeled graphs,” in Proc. 20th Int. Conf. Mach. Learn.,
2003, pp. 321-328.

-

2279

Wei Ye received the PhD degree in computer sci-
ence from the Institut fur Informatik, Ludwig-Maxi-
milians-Universitat Miinchen, Munich, Germany,
in 2018. He is currently a postdoctoral researcher
with the Dynamo Lab, University of California,
Santa Barbara. Before joining the Dynamo lab,
he worked as a researcher with the Department
of Al Platform, Tencent, China. His research
interests include graph-based machine learning
and their applications, network interactions, and
dynamic networks.

Omid Askarisichani received the BSc degree in
computer engineering, in 2011, and the MSc
degree in artificial intelligence from the Sharif
University of Technology, Tehran, Iran, in 2014.
He is currently working toward the PhD degree in
the Dynamo Lab, University of California, Santa
Barbara, California. Prior to joining Dynamo Lab
in 2015, he spent few years as a software engi-
neer in industry. His research interests include
complex networks, analysis of financial data, and
applied machine learning.

Alex Jones received the BSc degree in computer
science and engineering with a minor in mathe-
matics from the University of Southern California,
Los Angeles, California, in 2015. He is currently
working toward the PhD degree in the Dynamo
Lab, University of California, Santa Barbara, Cali-
fornia. He is interested in dynamic network repre-
sentations of social systems and how algorithms
and optimization theory can be used to better
understand, drive, and measure these systems.

Ambuj Singh received the PhD degree from the
University of Texas at Austin, Austin, Texas, in
1989. He is a professor of computer science with
the University of California, Santa Barbara. He
joined UCSB’s Computer Science Department
after his PhD. He has written more than 180 tech-
nical papers in the areas of distributed comput-
ing, databases, and bioinformatics. He is
currently on the editorial boards of three journals,
and has served on program committees of sev-
eral conferences, workshops, and international

meetings. His current research interests include network science, data
mining, machine learning, bioinformatics, graph querying, and mining.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 02,2023 at 21:49:37 UTC from IEEE Xplore. Restrictions apply.

