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The t-distributed stochastic neighbor embedding (t-SNE) method is one
of the leading techniques for data visualization and clustering. This
method finds lower-dimensional embedding of data points while mini-
mizing distortions in distances between neighboring data points. By con-
struction, t-SNE discards information about large-scale structure of the
data. We show that adding a global cost function to the t-SNE cost func-
tion makes it possible to cluster the data while preserving global inter-
cluster data structure. We test the new global t-SNE (g-SNE) method on
one synthetic and two real data sets on flower shapes and human brain
cells. We find that significant and meaningful global structure exists in
both the plant and human brain data sets. In all cases, g-SNE outperforms
t-SNE and UMATP in preserving the global structure. Topological analy-
sis of the clustering result makes it possible to find an appropriate trade-
off of data distribution across scales. We find differences in how data are
distributed across scales between the two subjects that were part of the
human brain data set. Thus, by striving to produce both accurate clus-
tering and positioning between clusters, the g-SNE method can identify
new aspects of data organization across scales.

1 Introduction

Dimensionality-reduction techniques have been playing essential roles for
analyzing modern high-dimensional data sets. High-dimensional data,
which are usually represented by high-dimensional vectors or matrices of
pairwise distances, can be embedded into lower-dimensional spaces by pre-
serving pairwise distances of embedded points as much as possible. Low-
dimensional embeddings (e.g., in two or three dimensions) not only provide
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a way to visualize data organization but also reveal its hidden structure.
t-distributed stochastic neighbor embedding (t-SNE) is a powerful nonlin-
ear embedding technique that has been widely applied in many areas of sci-
ence, from visualizing feature representations in deep learning (Mnih et al.,
2015), to clustering bone marrow samples to distinguish between cancerous
and healthy cells (Amir et al., 2013) and classifying neuron cells by gene
expression profiles in biology (Mahfouz et al., 2015). As a neighbor embed-
ding algorithm, t-SNE finds embedding that attempts to preserve similar-
ity distances between points, before and after embedding, but the similarity
function is strongly biased toward preserving local distances and is not sen-
sitive to changes in distances between points with large separation in the
original space (Maaten & Hinton, 2008). The neighbor embedding prop-
erty makes t-SNE effective for identifying local clusters in the data, but as
a result, it fails to preserve the global intercluster structure: the embedding
distances among clusters have no meaning, and the global distribution of
clusters is random (Wattenberg, Viégas, & Johnson, 2016). Yet the global
structure of local clusters can provide significant insight into many biolog-
ical systems. For example, ordering of cell clusters at different stages was
found to represent a developmental trajectory (Macaulay et al., 2016) and to
yield insights into cell lineages in the vertebrate brain (Raj et al., 2018). For
these tasks, it is essential to preserve intercluster organization of the data at
multiple scales.

Recently many algorithms have been proposed to preserve the global
structure of data (Wu, Tamayo, & Zhang, 2018; Ding, Condon, & Shah, 2018;
Becht et al., 2019; McInnes, Healy, & Melville, 2018; Kobak & Berens, 2018),
UMAP (Becht et al., 2019) is one of the leading algorithms that can better
preserve global structure than t-SNE and runs faster than algorithms for
very large data set. However, the global structure preservation is not the
primary goal of UMAP, as stated in McInnes et al. (2018), and further anal-
ysis shows that the global structure preservation of UMAP may not be su-
perior to optimazed t-SNE in many other data sets (Kobak & Berens, 2018).
In addition, UMAP requires large sample sizes to find manifold structure
in noisy data (McInnes et al., 2018), which makes it inappropriate for small
data sets. For these reasons, t-SNE and its variants are still of great inter-
est in doing dimensionality reduction, and much effort has recently been
made to overcome the weaknesses of t-SNE on running speed (Pezzotti,
Hollt, Lelieveldt, Eisemann, & Vilanova, 2016; Linderman, Rachh, Hoskins,
Steinerberger, & Kluger, 2019), parameter tuning (De Bodt, Mulders, Ver-
leysen, & Lee, 2018; Belkina et al., 2018), and global structure preservation
(Kobak & Berens, 2018), which makes t-SNE more applicable to large, com-
plex biological data sets. In all these efforts, the way to calculate attractive
force and repulsive force was optimized, but the form of these forces was
not changed. We notice that the key reason for a lack of global structure in
t-SNE is that the repulsive force in the cost function is not sensitive to large
distances.
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Using Global t-SNE to Preserve Intercluster Data Structure 1639

Here we propose the global t-SNE (g-SNE) algorithm based on tradi-
tional t-SNE to preserve the global structure of clusters in data. The algo-
rithm preserves the global structure by introducing a global cost function
in which the repulsive force is dominated by large distances and optimize
anew cost function that is the weighted sum of global cost function and the
original one. We test the algorithm on a synthetic data set and two real data
sets, and demonstrate its ability to preserve both local and global organiza-
tion of the data, yielding new biological insights.

2 Global t-SNE (g-SNE)

Let us consider a data set containing N data points described by
D-dimensional vectors: {xq, X2, X3, ..., Xy; X; € RP}. The t-SNE algorithm
(Maaten & Hinton, 2008) describes the similarities of two points according
to the following measure:

exp(—lx; — x;lI?/207)

i = ; @2.1)
i 2 ki €Xp(—lIxi — Xcl?/207)
ili + Pij
Pij = %' (2.2)

To avoid the crowding problem in low-dimensional embedding, the
heavy tailed Student t-distribution is applied within the embedding d-
dimensional space where distances between points {y1, y2,y3, ..., yn: Vi €
R4} are defined as

I+ llyi —yjIH™
= . 2.3
i > en L+ llym — yul?) ! @3

The Kullback-Leibler (KL) divergence between the joint probability distri-
butions of pairwise data points p;; and embedding points g;; measures the
distance discrepancies between the data and embedding points:

L=Dx(PIQ) =) ) pijlog (Z’) : (2.4)
i Y

The t-SNE minimizes the KL divergence by gradient descent method. The
gradient of the cost function L with respect to embedding coordinate y; is
(see section 6):

oL
oy =4Z(Pz‘j — i)y —y) A+ lyi —y;j 1) (2.5)
! j
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The probability distributions of distances p;; and g;; in equations 2.2 and
2.3 are symmetric distributions that peak at 0 and decay exponentially or
polynomially as the distances increase. As such, these distributions are sen-
sitive to small pairwise distances among neighboring points but not to large
distances between distant points. Minimizing the differences of probability
distributions of data and embedding points can effectively capture and pre-
serve the local structure of data and generate well-separated clusters in the
embedding space. However, it fails to capture the large distances of inter-
cluster points, so both the relative and absolute positions of the clusters are
not preserved and as a result are embedded randomly (Wattenberg et al.,
2016). To capture and preserve the global structure of the points and clus-
ters, we propose the g-SNE algorithm that takes into account a new set of
probability distributions for distance measures p;; and 4;;, which are pri-
marily sensitive to large values:

o 1+ IIx; — x;11?
Pi= S O+ T — )
1+ llyi —y;l?

Jii = . 2.6
q] Zm;&n (1 + ||Ym - Yn||2) ( )

A

The global probability distributions p;; and §;; are also symmetric but peak
at large values. Just as in equation 2.4, we can also define the global cost
function L in g-SNE:

L=Du(PIQ) =) pijlog (%) : (2.7)
i Y

Minimizing the global cost . preserves the large distances in the low-
dimensional embedding. To account for both the local and global structure
of the data, we define a total cost function Ly, by combining the two cost
functions using a weight parameter A:

Liotat = L+ AL. (2.8)
The gradient of the total cost function Ly, in g-SNE has a simple form:

%l =43 My — @) — 1Py — )] i~y A+ i~y D7 (29)
j

where the weight 1 of the global cost function controls the balance

between the local clustering and global distribution of the data. Large

values lead to more robust global distributions of clusters but less clear clas-

sifications. Small A moves back to approximate the traditional t-SNE, and

will be exactly the same when A = 0. In the next section, we apply the g-SNE
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Figure 1: Clustering for synthetic data using MDS, t-SNE, and g-SNE with three
repeats. Three rows represent three repeats of mapping. First column: Synthetic
two-dimensional data containing six groups of points labeled by different col-
ors, with 50 points in each group. Second column: MDS maps of data. Third
column: t-SNE maps. Fourth column: g-SNE maps with A = 1. Fifth column:
g-SNE maps with A = 10.

algorithm to one synthetic data set and two real data sets to test its ability
to preserve the local and global structures of data and compare the results
with t-SNE.

3 Synthetic Data

Traditional t-SNE is powerful in generating local clustering, and it per-
forms best in tasks where one only needs to define clusters, for exam-
ple, to separate features in deep learning (Mnih et al., 2015). However, the
t-SNE method does not pay attention to organization between clusters. To
evaluate our new algorithm, we select the data sets that have significant
structure across multiple scales.

We generate six groups of points in two-dimension planes, each group
containing 50 clustered points; the six groups are hierarchically distributed
in the plane (see the first column in Figure 1). First, we apply the two-
dimensional multidimensional scaling (MDS; Kruskal, 1964) method to this
data set, obtaining good reconstructions for the data structure (see the sec-
ond column). The t-SNE generates six tightly clustered groups, but the
distribution of the six clusters is random across three repeats and in con-
sistent with the data structure (see the third column). Applying g-SNE
with A =1 to the data yields six well-separated clusters (see the fourth col-
umn). When further increasing A = 1 to 10, the global structure even better
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Figure 2: Clustering for Iris flower data set using MDS, t-SNE, and g-SNE with
three repeats. Three rows represent three repeats of mapping. First column:
MDS maps of data. Second column: t-SNE maps. Third column: g-SNE maps
with & = 1. Fourth column: g-SNE maps with A = 10.

approximates the data (see the fifth column), with the point clouds becom-
ing more scattered. This shows how the change of A affects the balance of
local and global structures of data. In both cases, the positioning of clusters
in the g-SNE map is consistent across repeats and shows good correspon-
dence to the original data. This test on synthetic data shows the ability of
g-SNE to preserve the global structure of data.

4 Biological Data

4.1 Iris Flower Data Set. Next we apply the g-SNE algorithm to a low-
dimensional real biological data set: the four-dimensional Iris flower data
(Fisher, 1936). This data set has been widely used in many statistical classi-
fication algorithms as a test example. It consists of 50 samples in each of the
three Iris species: setosa, virginica, and versicolor. Each sample is described by
four features: the length and width of the sepals and petals measured in cen-
timeters. We embed the four-dimensional Iris data set to two-dimensional
space using MDS, t-SNE, and g-SNE (see Figure 2). The 2D MDS mapping
preserves the intercluster structure of the Iris data well across three repeats
(Dhillon, Modha, & Spangler, 1998) (first colunm). The three species form
three clusters: the versicolor cluster (green) and virginica cluster (blue) are
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Using Global t-SNE to Preserve Intercluster Data Structure 1643

close to each other and far from setosa (red), but versicolor is closer to setosa
than virginica. The t-SNE mapping shows the three clusters, but the inter-
cluster distances are not preserved: the sefosa cluster is too far from the other
two clusters compared with the MDS mapping, and the versicolor is farther
from setosa than virginica in repeat 3 (see the second column). The g-SNE
with A =1 generates very similar intercluster structure as the MDS in all
three repeats, only with different rotations of the maps (see the third col-
umn). However, g-SNE provides better cluster separation than the MDS,
which reduces the noise in the data. When further increasing A =1 to 10,
the global structure does not change much, but the points within each clus-
ter become more scattered, showing the reduced clustering effects (see the
fourth column). Therefore, the g-SNE combines both the advantages of the
t-SNE in cluster separation and the ability of MDS to preserve the interclus-
ter structure, and it performs better than any one of them with a proper 1.

4.2 Human Brain Atlas Data. We next study much more complex and
high-dimensional data: the human brain transcriptome atlas (Hawrylycz
et al., 2012). This data set contains microarray profiling of around 900
anatomical regions in the human brain from two donors, H0351.2001 and
HO0351.2002, and each sample region was profiled by 58,692 probes repre-
senting 29,191 genes. The data were already normalized using the methods
in Atlas (2013) and was available in Allen Institute for Brain Science (2014).
For the complex brain atlas data, MDS fails to give a good local clustering
as in synthetic data or the simple Iris data. We perform MDS embeddings
on the two brain data sets, and only three or four clusters can be identified
from the embeddings (see Figure 1S). We quantify the local structure preser-
vation by calculating the optimal number of clusters and Silhouette scores
of the clusters (see section 6), finding that MDS gives only four clusters
with very low silhouette scores (see Table S1). A nonlinear dimensionality-
reduction method such as t-SNE usually performs better clustering than
MDS on complex biological data. Mahfouz et al. (2015) applied BH-SNT (a
fast t-SNE) to the human brain atlas data set to reduce the dimensionality
of gene expression space and visualize the organization of region samples
in the brain. Here, we first apply the t-SNE method to the brain atlas data to
reproduce the results in Mahfouz et al. (2015). We then apply g-SNE to the
same data to generate new mappings and use recent topological methods
(Giusti, Pastalkova, Curto, & Itskov, 2015; Zhou, Smith, & Sharpee, 2018) to
quantitatively evaluate how well both methods preserve the global struc-
ture of the data.

We apply both t-SNE and g-SNE to the gene expression profiles of brain
region samples in donor H0351.2002 and plot the 2D maps of the samples
with three repeats (see the first row in Figure 3A); the samples are colored
by their anatomical acronyms from the Allen Reference Atlas (Allen Insti-
tute for Brain Science, 2014). We identify the 15 acronyms used in Mahfouz
etal. (2015) and label other acronyms as “Other” for comparison purposes.
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Figure 3: Two-dimensional embedding of gene expression profiles of donor
HO00351.2002 using t-SNE and g-SNE with three repeats. The brain region sam-
ples are labeled and colored by their anatomical acronyms from the Allen Ref-
erence Atlas: frontal lobe (FL), parietal lobe (PL), temporal lobe (TL), occipital
lobe (OL), hippocampal formation (HiF), striatum (Str), globus pallidus (Gp),
amygdala (Amg), thalamus (TH), hypothalamus (Hy), mesencephalon (MES),
pons, myelencephalon (MY), cerebellum (Cb), white matter (WM) and Others.
(A) Three repeats of t-SNE maps (first row) and the centroid positions of sam-
ples with the same labels (second row). (B) Three repeats of g-SNE maps with
A =1 (first row) and centroids of the 16 anatomical groups in the maps (second
row). (C) The schematic of network topology changing with the edge densities.
New edges are added to the network as we decrease the connection threshold of
points. The edge density p increases from 0.33 to 0.53, and the one-dimensional
hole appears at p = 0.40, persists at p = 0.47, and vanishes at p = 0.53. Plotting
the number of one-dimensional holes (first Betti values) against the edge densi-
ties yields the Betti curves in panels D and E. (D) Average Betti curve of the 16
centroids in 100 repeats of t-SNE maps. Insets: Box plot of integrated Betti val-
ues of the 100 repeats. (E) Average Betti curve of the 16 centroids in 100 repeats
of g-SNE maps. Insets: Box plot of integrated Betti values of the 100 repeats.
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In total, we work with 16 clusters. To view the global structure more clearly,
we calculate the mean positions of samples in each cluster (with the same
acronyms) as the centroid of the cluster and plot the 16 centroids with
the same colors (see the second row in Figure 3A). The first repeat of the
t-SNE map resembles the result shown in Mahfouz et al. (2015). However,
the other two differ a lotin the global distribution of clusters (see Figure 3A).
The reason is that t-SNE performs weakly in preserving large distances in
data. The g-SNE with A = 1 shows different maps of the data, and the global
structures of embedding clusters are more consistent across three repeats
than the t-SNE maps (see Figure 3B). g-SNE also preserves the local struc-
ture well, and it generates 11 to 16 clusters (a total of 16 clusters in data) with
much higher Silhouette scores than MDS (see Table S1). We also perform
UMAP embedding to the data. The global patterns in UMAP are not very
consistent; for example, the relative position of GP and Cb varies across the
three repeats (see Figure S2). In addition, the clusters in UMAP are not sep-
arated as well as in g-SNE (see Figure S2 versus Figure 3B). The quantitative
analysis shows that UMAP embedding generates a very small number of
clusters (two to three clusters; see Table S1). The evidence shows that g-SNE
preserves better local structures than MDS and UMAP and preserves better
global structure than t-SNE and UMAP.

Next we apply two quantitative approaches to evaluate the global struc-
ture preservation of the t-SNE, g-SNE, and UMAP algorithms. The first
approach is a topological technique proposed in Giusti et al. (2015). Ac-
cording to this method, each pairwise distance matrix of a set of points can
be quantified by the characteristic Betti curve. The Betti curves are based on
computing Betti values, which represent the number of cycles of different
dimensions with the set of connected points. The zeroth Betti value mea-
sures the number of connected components, whereas the first Betti value
yields the number of one-dimensional “circular” holes. Points in the data
set are deemed “connected” if the distance between them is less than a cer-
tain threshold. Varying this threshold changes the number of connected
data points and also affects the Betti value (see Figure 3C). The Betti curve
describes how the Betti value changes as a fraction of the connected points
increases. Giusti et al. (2015) reported that the integral of the Betti curve,
termed the integrated Betti value, was sensitive to the presence of geomet-
rical organization in the data set, and in particular could distinguish geo-
metrically generated data from random data sets. For the tasks at hand, we
find that working with just the first integrated Betti value is sufficient to
evaluate the data set structure.

To use the topological method, we generate the average Betti curves of
the 16 cluster centroids from 100 t-SNE maps repeats and make the box plots
of the integrated Betti values of the 100 maps (see Figure 3D). We make the
same plots for 100 g-SNE maps in Figure 3E. As expected, the Betti curves of
the t-SNE and g-SNE maps have different shapes, and the integrated Betti
values distribution of the g-SNE maps is significantly different from the
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t-SNE maps (p < 0.001 in the two-sample Kolmogorov-Smirnov test). Thus,
the t-SNE and g-SNE methods produce different representations of the data
at the global scales.

To evaluate which of these results better reflects the organization of the
original data at the global scale, we apply topological methods to the orig-
inal data. We cannot directly use the mean values of gene expression of
samples within each cluster to represent the 16 clusters of data. One rea-
son is that it will smooth out gene expression patterns, and another is that
it produces only one set of points and one Betti curve, which cannot be
used to make statistical comparison with the results of 2D maps. To make
full use of the data and generate a large number of intercluster representa-
tives of Betti curves, we randomly select 16 anatomical samples from the 16
acronym groups and then repeatedly sample different representatives from
the 16 groups 1000 times (see Figure 4A). As a control, we randomly take 16
samples from the whole brain but not based on acronym groups (see Fig-
ure 4B). After taking the samples, we can define pairwise distance matrix
by the Euclidean distance of gene expression vectors and then plot the Betti
curves. We show the averaged Betti curves and integrated Betti value dis-
tributions of samples taken by acronym groups (see Figure 4A) and taken
randomly across the whole brain (see Figure 4B). The difference of the two
integrated Betti value distributions is significant (see Figure 4E, p < 0.001
in the two-sample Kolmogorov-Smirnov test). This shows that the data set
has a significant intercluster global structure. Integrating the Betti curves of
data and 2D maps together shows that the Betti curves of the g-SNE map
better fits the data than the t-SNE and UMAP (see Figures 4C, 4D, and 4F).
The integrated Betti value distributions of data can be fitted by g-SNE with
A =1 (p = 0.25; see Figure 4E) but not by t-SNE (p < 0.001; see Figure 4E).

For another donor H0351.2001, g-SNE with A = 5 fits the data (p = 0.39)
while neither t-SNE nor UMAP can do so (p < 0.001; see Figure 4G). Thus,
g-SNE better preserves the global structure in the brain atlas data than both
t-SNE and UMAP. By screening the weight parameter A in g-SNE, we notice
that there exists an optimal A for each donor; too small or too large A cannot
fit the data (see Figures 4E and 4G). The reason may be that too small A re-
covers t-SNE and cannot account for large distance distributions, while too
large 1 performs poorly in local clustering, which weakens the interclus-
ter structure. We also notice that the optimal A differs across donors, which
means that optimal 2 may serve as an indicator of brain states.

The second approach to evaluating the goodness of embedding is the
Shepard diagram (Shepard, 1980), a plot of embedding pairwise distances
against data distances. For both brain donors, g-SNE gives higher corre-
lation coefficients for distance plots than t-SNE and UMAP (see Figure 5,
R =0.76 for H0351.2002, R = 0.77 for H0351:2001), and approximates the
distance preservation in MDS (R = 0.78) in donor H0351.2002. The low cor-
relations in the t-SNE and UMAP embeddings result from the plateaus
in large distances, which indicates that the global structures of data are
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Figure 4: Betti curves of gene expression profiles of the human brain atlas and
evaluation of 2D embedding maps. (A) Average Betti curves of 1000 pairwise
distance matrices. Each matrix is generated from 16 anatomical region sam-
ples where each sample is randomly taken from one of the 16 acronym groups.
(B) Average Betti curves of 1000 pairwise distance matrices. Each matrix is gen-
erated from 16 samples randomly taken from all the anatomical samples in the
brain. The pairwise distances of samples are defined as Euclidean distances
of gene expression vectors. The insets show the box plots of 1000 integrated
Betti values of the Betti curves. (C) Integration of Betti curves of samples ran-
domly taken based on acronym groups (red solid lines, “Group”), Betti curves of
samples randomly taken from whole brain (red dashed line, “Random”), Betti
curves of cluster centroids of t-SNE maps (blue line), and Betti curves of cluster
centroids of g-SNE maps with A = 1 (green lines). (D) The blue line indicates the
result of UMAP embedding with optimal parameters instead of t-SNE. (E) Box
plots of integrated Betti values of data, g-SNE with different 1, and UMAP with
optimal parameters. A = 0 is equivalent to t-SNE. The brain donor in panels A
to E is H0351.2002. (F, G) The Betti curves and violin plots of integrated Betti
values of data and models for donor H0351.2001. The stars in panels E and G
represent the significance levels of a two-sample Kolmogorov-Smirnov test on
integrated Betti value distributions of the first column (“Group”) with the rest
ones: “p < 0.05, *p < 0.01, and **p < 0.001.
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Figure 5: Quantitative evaluation of embeddings of different models. (A) The
embedding distances of t-SNE, UAMP, g-SNE, and MDS are plotted against the
data distances that are grouped by 50 bins. The lines in the middle and the shad-
ows represent the median and 95% interval of the values in the bins. R is the
Pearson correlation coefficient of the distances plots. The data are from brain
donor H0351.2002. (B) Shepard diagram of data from brain donor H0351.2001.
The optimal parameters are used in both g-SNE and UAMP for both data sets.

not well preserved. However, the g-SNE embedding gives linear relation-
ships in all distance scales, which indicates good preservation of global
structures.

5 Discussion

We introduced the g-SNE algorithm by redefining the t-SNE cost function
as the weighted sum of the local cost function for local classification and
the global cost function for intercluster organization. With this combined
cost function, the g-SNE was able to preserve the global structure of data
as well as perform good local clustering. By applying the two quantitative
evaluations of the Betti curves method and Shepard diagram, we show that
g-SNE with optimal A outperforms both t-SNE and UMAP in the two brain
data sets.

The weight parameter A in g-SNE balances the local and global distances
preservation. The difference of optimal A on different brain donors indicates
that optimal A is case dependent. How the optimal A is related to the intrin-
sic structure of data would be an interesting problem to study in the future.
In particular, it may serve as a global parameters describing different data
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sets with a similar data structure, for example, characterizing the human
transcriptome differences across tissues and individuals (Melé et al., 2015).

In this work, we also introduced a quantitative and principled way to
evaluate how unsupervised clustering methods preserve data structure
across scales. The latent structure of the high-dimensional data is usually
unknown, and the evaluation of low-dimensional mapping of data has al-
ways been qualitative (i.e., focusing more on separation of clusters and
less on the relative positions of these clusters). The previous methods are
ill suited for describing multiscale data. Here we propose a quantitative
method based on Betti curves to compare the topological structure of clus-
ter organization in low-dimensional mapping and the structure of data. In
the analysis of the human brain atlas data set, the t-SNE and our algorithm
generate similar local clusters with similar levels of separations (see Fig-
ures 3A and 3B). However, the global organization of the local clusters was
significantly different, as revealed by the topological analyses (compare the
Betti curves in Figures 3D and 3E). Unlike the t-SNE results, the proposed
algorithm preserves the global topological structure of the data (see Figure
4). We show that in Figure 4C, this structure is completely missed by the
regular t-SNE method.

We showed the success of g-SNE on two small data sets (N < 1000) but
did not test it on very large ones; the main reason is that the current version
of g-SNE was based on the original t-SNE algorithm in Maaten and Hinton
(2008) without any optimization. Theoretically g-SNE has the same level
of computational complexity as the original t-SNE because the information
needed to calculate the global cost function is the same as in the local term;
the state-of-the-art acceleration methods are based on the original cost func-
tion in t-SNE and optimize nearest neighbor searching without considering
the distant points; how to integrate the acceleration methods into our g-SNE
is a future direction.

6 Methods

6.1 Evaluation of Local Structure Preservation. We evaluate the local
structure preservation using two approaches: calculating the optimal num-
ber of clusters and the Silhouette scores. The optimal number of clusters
describes the unsupervised clustering effects of the embedding, and the
Silhouette scores measure the consistency of the clustering with the clus-
ter labels. Together they can give reliable measurements for the quality of
clustering algorithms. We use Matlab’s built-in function evalclusters to cal-
culate the optimal number of clusters, in which we use k-means clustering
and silhouette criterion and set the KList to be 1 to 16 (because the data have
16 groups). The optimal number of clusters may be different in different re-
peats for some inputs, so we listed a range of values for g-SNE inputs in
Table S1. We use Matlab’s built-in function silhouette to calculate Silhouette
scores with a Euclidean metric.

220T 19qWiaAoN L0 uo Jasn 0931A NVS VINHO4HITYO 40 ALISHIAINN AQ Jpd #0510 € 098U/968€0Z/LE9L/8/YE/IPA-0101IE/008U/NPS HWJOBIP//:d)Y WOl papeojuMmoq



1650 Y. Zhou and T. Sharpee

6.2 Parameters of the Algorithms. The parameters in t-SNE are set as
perplexity = 30 and exaggeration = 4. The parameters in UMAP are set as
neighbors values= 50 and min dist values = 0.8. We run the t-SNE and MDS
algorithms using Matlab’s R2017a.
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