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ABSTRACT ARTICLE HISTORY
Traffic assignment is used for infrastructure planning, based on met- Received 22 March 2020
rics like total system travel time (TSTT), vehicle-miles traveled (VMT) Accepted 11 November 2020
and link or path flows. Algorithms for traffic assignment converge KEYWORDS

to an equilibrium solution over multiple iterations, but these metrics Traffic assignment;
converge at different rates. Current guidance indicates that freeway convergence criteria;
link flows stabilize at a relative gap of roughly 10~%. This study gen- network optimization
eralizes this guidance by testing additional networks and metrics, in

more experimental settings. Our results reveal that aggregate met-

rics (VMT and TSTT) stabilize earlier (relative gap 10~#) than link flows

(relative gap 10>), which in turn stabilize slightly before the set of

most likely used paths and flows on these paths (relative gap 107°).

These results are stable across the TAPAS and Algorithm B methods

for solving assignment. Our results also show strong linear correla-

tions between alternative gap measures, allowing for the translation

of stabilization results across other gap definitions as well.

1. Introduction

Traffic assignment is a common tool in transportation planning and predicts how travelers
will choose routes accounting for congestion effects. Traffic assignment is used in long-term
planning, as the final step of the traditional four-step model, to assist in decision-making
based on link flows, select link analysis, or shortest path analysis. It also appears as a sub-
problem in network design, toll-setting, and other related bilevel optimization problems.
Despite many advances in dynamic traffic modeling, static assignment remains common in
current practice. And despite advances in technology and algorithmic efficiency, computa-
tion times are still a relevant issue as agencies move to more detailed, multi-class models, or
when assignment is a subproblem in a larger iterative scheme (feedback models, trip table
estimation, network design, and so forth). This article therefore focuses on the static traffic
assignment problem (TAP) as it is traditionally formulated.

Algorithms for traffic assignment converge to an equilibrium solution in the limit, so a
convergence criterion must be introduced to ensure output in finite time. Rose, Daskin,

CONTACT Priyadarshan N. Patil @ Priyadarshan@utexas.edu @ Graduate Program in Operations Research and
Industrial Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., C2200, Austin, TX 78712-1591, USA

© 2020 Hong Kong Society for Transportation Studies Limited



TRANSPORTMETRICA A: TRANSPORT SCIENCE . 1245

and Koppelman (1988) considered the convergence behavior of the Frank-Wolfe algorithm
on small networks (16 nodes). Their study used the relative gap metric (a common con-
vergence criterion, defined below) based on the duality gap. They concluded that it was
very difficult to obtain precise estimates of the equilibrium flows in networks which contain
only a few O-D pairs with overlapping paths and called for more research on convergence
behavior. Boyce, Ralevic-Dekic, and Bar-Gera (2004) found that link flows in the Philadel-
phia network stabilized once the relative gap (a different definition, also defined below)
was below 1074, This article investigates the convergence behavior of other metrics -
specifically total system travel time, vehicle-miles traveled, equilibrium path flows, and
the set of used paths — on 12 standard networks. We thus aim to generalize the recom-
mendations of Boyce, Ralevic-Dekic, and Bar-Gera (2004) based on other networks and
metrics.

These metrics were chosen to represent a variety of applications. Aggregate measures,
such as total system travel time or vehicle-miles traveled, are used to capture the overall
state of a network (Harrison et al. 2006; Weisbrod 2008; Higgins 2013; Moudon and Stew-
art 2013). For instance, the North Carolina Department of Transportation strategic plan
uses total system travel time to monitor network performance (Carolina Department of
Transportation 2015), Litman (2016) uses vehicle-miles traveled as a sustainability indica-
tor, Qian and Zhang (2012) use total system travel time and vehicle-miles traveled as factors
to compare interstate closure scenarios in Sacramento, and the California Department of
Transportation uses a reduction in vehicle-miles traveled as a strategic target (California
Department of Transportation 2015). A few other examples include usage in the analysis
of delivery vehicle impact (José, Cruz, and Ban 2013), credit- or permit-based demand man-
agement (Lessan and Fu 2019) and within network design problems as project selection cri-
teria (Shayanfar and Schonfeld 2019). Disaggregate measures, such as link and path flows,
more finely describe the impacts of projects on specific regions and populations. Such mea-
sures are commonly used by many practitioners and researchers (Cherlow 1981; Daniels,
Ellis, and Stockton 1999; Bureau of Transportation Statistics 2015; Seattle Department of
Transportation 2016; US Department of Transportation 2016, 2017; Astroza et al. 2017;
Boyles et al. 2018; Maryland Department of Transportation 2018).

1.1. Why is static traffic assignment still relevant?

Static traffic assignment has been studied for over five decades now, starting with the con-
vex optimization formulation by Beckmann, McGuire, and Winsten (1956) and described
at length in Patriksson (1994) and Boyles, Lownes, and Unnikrishnan (2020). With signif-
icant advances in traffic flow theory and traffic assignment in the interim, including the
development of dynamic traffic assignment and micro-simulation techniques, it is worth
asking whether the traditional traffic assignment problem is still worth studying. Despite
the important roles that these other methods play in transportation analysis, there are still
several settings where static assignment remains a valuable tool.

Well-known advantages of static assignment include a standard formulation, efficient
and provably correct solution algorithms, and guarantees of equilibrium existence and
uniqueness. The latter concerns are not strictly mathematical, but have important impli-
cations for practice — it is unclear how projects should be evaluated or ranked if multiple,
potentially very different solutions exist, or none at all.
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A less-appreciated advantage is its greater robustness to errors in input data, such as
origin-destination matrices or link and node parameters. Many dynamic traffic assignment
models feature queue spillback, which is a significant contributor to traffic congestion in
the field. However, spillback introduces discontinuities into the assignment process, poten-
tially amplifying any error or noise in the model inputs. Boyles and Ruiz Juri (2019) showed
that when the error in the trip table is sufficiently large, a model without spillback actually
produces a smaller absolute error in delay estimations than a model with spillback. Relat-
edly, static models are easier to calibrate; despite advances in travel demand modeling,
forecasting a time-dependent trip table in a large network remains highly challenging.

Static assignment can also be solved in a shorter amount of time. Even as computa-
tional resources expand and more efficient algorithms are developed, in the amount of
time required to run a single dynamic assignment it is possible to run multiple static assign-
ments. In applications requiring hundreds or thousands of assignment runs — examples
include Monte Carlo simulation to simulate distributions over input parameters (Waller,
Schofer, and Ziliaskopoulos 2001; Zhao and Kockelman 2002; Ukkusuri, Mathew, and
Waller 2007; Duthie, Unnikrishnan, and Waller 2011), sensitivity analysis (Boyles 2012; Jafari,
Pandey, and Boyles 2017), trip table estimation (Yang 1995; Lundgren and Peterson 2008),
network design (Yang 1997; Yang and Bell 1998; Josefsson and Patriksson 2007), network
pricing (Yang and Lam 1996), and other bilevel optimization problems (Yin 2000) - the com-
putational advantages of static assignment are compelling, if for no other reason than a
preliminary screening of alternatives to form a ‘shortlist’ for more detailed modeling.

We lastly point out a recent line of research showing how a variety of static and dynamic
models can be generalized into a single common framework (Bliemer et al. 2017; Bliemer
and Raadsen 2020), suggesting that research into one type of traffic assignment model may
have relevance to the other as well.

For all of the reasons above, static assignment remains a commonly used tool in trans-
portation planning practice. To be clear, none of this is to argue that static assignment
should be universally applied. In applications where the input data are known with high
precision, detailed congestion information is essential, and computation times are not con-
straining (e.g. present-day studies of work zone impacts), dynamic traffic assignment or
even microsimulation are likely superior tools. Yet there remain applications where static
assignment is preferred, as when inputs are poorly known, or when rapid assessment of
a large number of alternatives is preferred to an in-depth assessment of a few (e.g. long-
range regional planning, bilevel optimization), and it is such applications that this paper
has in mind.

1.2. Why are runtimes still an issue?

With advances in computing and solution algorithms, it is worth asking whether run
times are still relevant in static assignment, particularly given the time frame of long-term
planning. As discussed in the previous section, there are applications requiring a large
number of assignment runs, often with traffic assignment as a subproblem in an iterative
scheme. For this reason, research continues in assessing and improving the computational
performance of static assignment (Galligari and Sciandrone 2019; Schneck and N6kel 2020).

Furthermore, as computation power advances, network models have increased in scope
and resolution. Regional planning models today commonly include tens of thousands of
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links and nodes, multiple user classes, and feedback to earlier modeling stages to ensure
consistency. For large metropolitan areas, even using cutting-edge software and hardware,
it is not uncommon for a single model run to take several hours. For a single scenario, this
may be acceptable; as part of a bilevel trip table optimization requiring thousands of runs,
it is clearly not.

The goal of this paper is to provide guidance on the level of convergence needed,
depending on the metric of interest. This allows computational resources to be used as
effectively as possible, and not wasted on unnecessary precision beyond the requirements
of a particular application.

1.3. Contributions

The central question addressed in this paper is the level of precision needed in the solution.
An insufficiently converged solution will not produce reliable estimates for planning. An
overly-stringent convergence criterion, on the other hand, wastes computational resources
that can be better spent on other model components or tasks. (For instance, examining
additional alternatives in a Monte Carlo simulation or solutions in a bilevel program.) The
appropriate convergence level depends on the application context: the specific network,
the specific metrics of interest, and the decision being made. In particular, the appropriate
convergence criterion when producing a single point prediction is likely different than that
when selecting a preferred alternative among several. The latter problem introduces several
complications relative to the former, so this article focuses primarily on the convergence
level needed to stabilize a metric for a single modeling scenario.

The primary guidance to date is based on Boyce, Ralevic-Dekic, and Bar-Gera (2004), and
a relative gap level of 1074 or 107> is common in current software as a default conver-
gence criterion. The manual for Caliper's TransCAD software further suggests that ‘since
traffic assignment problems vary in many dimensions, some experimentation is warranted
to arrive at how much convergence is enough’. (Caliper Corporation 2018). While the study
by Boyce, Ralevic-Dekic, and Bar-Gera (2004) played a critical role in determining the neces-
sary level of precision, its experiments were conducted on a single network and considered
a single metric (freeway link flows).

The main contribution of this article is to identify the convergence behavior of five
metrics on twelve different networks, thus generalizing the analysis of Rose, Daskin, and
Koppelman (1988) and Boyce, Ralevic-Dekic, and Bar-Gera (2004). We examine the rates of
convergence of these metrics compared to that of relative gap (the most common con-
vergence metric), and identify trends based on network size and congestion level. We
additionally describe the heterogeneity in convergence rates between different links within
the same network. These analyses primarily have implications for choosing a convergence
level for analysis of a particular scenario, and also lay the groundwork for future studies on
appropriate convergence criteria for multi-scenario analyses. Our experiments also include
tests of different traffic assignment algorithms, and examining a scenario with heteroge-
neous user classes. We also compare alternative gap functions in current use, suggesting
how our results for one gap function can be translated to these alternatives.

The rest of this article is structured as follows: Section 2 provides mathematical spec-
ifications of TAP and the metrics we study and reviews current solution algorithms. We
next describe our experimental structure, the networks we use, and the design of particular
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scenarios in Section 3. We next provide the results of these experiments, and our interpre-
tation of these results in Section 4. We finally conclude with a summary of our findings and
topics for future study.

2. Background

Consider a directed network with a set of links A, and a set of zones Z. For each link (i, j) € A,
let I; denote its physical length, and t;; its travel time, assumed to be a function of its flow
xjj alone. For each origin r € Z and destination s € Z, let d,s denote the demand for travel
between these zones, and let [1"”* denote the set of network paths connecting these zones.
Further, let TT be the set of all network paths. For a given path 7, the number of travelers
choosing that path is given by h;;.

The classical formulation of TAP identifies a network state which reflects traveler behav-
ior (all travelers choose a shortest path between their origin and destination) and conges-
tion effects (these shortest paths depend on the choices made by other travelers). Under
mild regularity assumptions, such a network state can be identified by solving the following
convex program (Beckmann, McGuire, and Winsten 1956):

Xij
min Z/O t;(x) dx (1)

(i) €A
subject to:
Xj= Y. h: V(ijeA 2)
well:(ij)erx
Y hr=ds Vrs)eZ’ (3)
mells
hy >0 Vmell (4)

If the link performance functions are strictly increasing, the objective function is strictly con-
vex, and thus has a unique minimum solution in the link flows, which we denote by x*. This
solution is called the user equilibrium (UE) state. We say that a path 7 is used in a solution to
TAP if h,; is strictly positive, and define I1 (h) to be the set of used paths at a given solution.

In general, the UE path flow solution is not unique, since many path flow vectors h
can generate the same link flow vector x. The most likely path flows are the unique
solution (denoted h*) to the following optimization problem, representing entropy max-
imization (Rossi, McNeil, and Hendrickson 1989):

m;":\x — Z Z h; log h, (5)

(r,s)ez?2 mell™

subject to:
Y hr=x; Vij)eA (6)
well:(ij)er
Z hy =dys Y(r5) € Z? (7)
well®

h: >0 Vrell (8)
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Note the constraint that the path flows must generate the UE link flows x*. The most likely
path flows use as many paths as possible given the user equilibrium state (Bar-Gera 2006).
Additionally, the formula for entropy calculation can be expressed in terms of link flows
obtained from an origin-based assignment as follows:

peZ (ij)eA

where, x(jp is the flow on link (i,j) from origin p and Xx;, is the flow through node j
originating at p.

Link-based algorithms (Frank and Wolfe 1956; Daneva and Lindberg 2003; Mitradjieva
and Lindberg 2013), path-based algorithms (Jayakrishnan et al. 1994; Florian, Constantin,
and Florian 2009; Babazadeh et al. 2020), and bush-based algorithms (Bar-Gera 2002;
Dial 2006; Nie 2010; Gentile 2014) have all been proposed to solve TAP. Link-based algo-
rithms only track the link flows x at each iteration, and the path flows are implicit and must
be calculated by post-processing. Such algorithms are economical on computer memory
but are slow to obtain high-precision solutions. Path-based and bush-based algorithms pro-
duce precise solutions more quickly at the expense of additional memory requirements.
Path-based algorithms explicitly track a path flow vector h. Bush-based algorithms do not,
but structure a disaggregated link flow solution in a way that a corresponding path flow
vector can be easily calculated.

Most algorithms for TAP do not produce a most likely path flow solution, and a sec-
ond algorithm is needed for that purpose. TAPAS (Bar-Gera 2010) is a recent algorithm
which both solves TAP and provides a path flow solution satisfying proportionality, a slightly
weaker condition than entropy maximization. TAPAS, and related algorithms derived from
it, are highly efficient (Xie and Xie 2015). This study uses a combination of the TAPAS
and Frank-Wolfe algorithms for its primary experiments, and also uses Algorithm B (a
bush-based algorithm) to test transferability of the results.

In our analysis, we do not test any path-based algorithms. To economize on memory,
such algorithms employ ‘column dropping’ rules to store as few paths as possible. However,
such solutions have extremely low entropy (indeed, the most likely solution spreads flow
over as many paths as possible), and thus the specific path flow solution is untrustworthy for
further analysis; see the discussion and empirical results from Bar-Gera (2006) and Bar-Gera
and Luzon (2007). Since we wish to examine convergence of the path flows in the solution, it
is clearest to do so using an algorithm which converges to the (unique) entropy-maximizing
path flow solution, rather than an arbitrary path flow equilibrium.

Given a feasible solution (x, h) to TAP, we select five metrics for analysis. (Since algo-
rithms for TAP converge only in the limit, we do not demand optimal solutions to the above
problems.) The total system travel time (TSTT) expresses the sum of each vehicle's travel time
in the network:

TSTT) = Y txj (10)
(ij)eA

Vehicle-miles traveled (VMT) expresses the total distance traveled by vehicles in the network:

VMT() = Y g (1)
(ij)eA
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To measure convergence of these metrics, we calculate the relative difference between
their values at the current solution x and the equilibrium solution x*:

TSTT(x) — TSTT(x*)

ATSTT(x) = TSTTO0) (12)
AVMT(X) = VMT(\’/(,)\A;(X*M)T(X ), (13)

Both TSTT and VMT are aggregate metrics. To represent convergence of the specific link
and path flows themselves, we measure the proportion of links (or paths) within a given
relative threshold e of their equilibrium values. Let A% (x) denote the set of links with flows
within this threshold:

AL (x) = {(i,)) € A |xj —x,’j| < ex;}’f}. (14)
Let IT} (h) denote the set of paths whose flows are within this threshold:
IT¥(h) = {w € 11 (h*): |h, — hL| <ehl}, (15)

where h* is the (entropy-maximizing) solution to the most likely path flows problem at equi-
librium. Note that IT? (h) is a subset of the used path set at equilibrium. Using these sets,
we define the proportion of unconverged links (PUL) as

A*
PUL(x, €) = 1 — 2] (16)
Al
and the proportion of unconverged paths (PUP) as
IT*(h
PUP(h, ) = 1 — 1e I (17)
T4 (h*)]

Finally, we define the path set deviation (PSD) to represent how the set of used paths
converges to set of equilibrium paths by defining

M () N L (b))

PSD(h) =1 —
" ITLy. ()]

(18)

We thus have PSD = 1 if the set of currently used paths and the set of equilibrium paths is
disjoint, and PSD = 0 if every equilibrium path is in the current set of used paths. As with
the other metrics, it should decrease to zero over successive iterations.

Both PUP and PSD are calculated with respect to the used paths at equilibrium. Some
restriction of the path set is necessary, since the number of paths grows exponentially with
network size and the vast majority of these are unused. Such paths should not be consid-
ered in our metrics, and we decided to measure PUP and PSD relative to the equilibrium
path sets to be consistent with the other metrics (which are measured relative to the equi-
librium link flows and most likely path flows). Defining PUP only based on the set of used
paths at equilibriumisimportant because PUP is a relative error measure; any path for which
h%* = 0 would thus appear ‘unconverged’ even with an infinitesimal flow value. This is not
a serious deficiency, because any solution placing positive flow on a non-equilibrium path
must also place the ‘wrong’ value on at least one path in [T (h*) (by flow conservation),
which would be detected by PUP with an appropriate € value.
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These five metrics — ATSTT, AVMT, PUL, PUP, and PSD - are directly related to practical
applications of traffic assignment, and converge to zero as x and h approach x* and h*,
respectively. However, they are not suitable convergence criteria because they can only
be evaluated if the equilibrium link flows or most likely path flows are already known, and
there would be no need to solve TAP if this were true. Therefore, in practice convergence is
measured using information available even at intermediate solutions.

The relative gap is one such measure. There are several definitions of relative gap in com-
mon practice; we use the following one for our experiments, and later discuss relationships
with its alternatives. Let «s(X) denote the travel time on the shortest path from origin r to
destination s using the link travel times corresponding to x. The shortest path travel time
(SPTT) can then give the total travel time we would expect if all vehicles were on shortest
paths (as the UE condition requires):

SPTT(x) = Z Krs(X)drs (19)
(r,s)ez?

The gap and relative gap of a feasible solution, as defined in Rose, Daskin, and Koppel-
man (1988), are:

gap(x) = SPTT(x) — TSTT(x) (20)

and

_gap() _ TSI

RGO =~ o ~ SPTT )

(21)

Relative gap is non-negative, and equal to zero only at equilibrium solutions, and thus is a
valid gap function. Other gap metrics used for convergence include alternative definitions
of relative gap, average excess cost (AEC) and average total reduced cost. We next define a
variant of relative gap, the one used by Boyce, Ralevic-Dekic, and Bar-Gera (2004), and AEC,
and discuss their relationship with the RG definition of equation (21). This section contains
a brief mathematical discussion, and our results include an empirical comparison.

An alternate definition of relative gap (RG’) normalizes the gap by a lower bound on the
optimal value of the Beckmann function in equation (1). The lower bound calculated from
a particular solution is given by

xij (k)
B = / t;i(x) dx -+ gap(x), (22)
(ij)ea”
and the best lower bound is the tightest bound over the flow vectors x1,Xa, ..., Xk seen

over successive iterations thus far:

BLB = mkax {LB(xy)}. (23)

The relative gap is then given by

gap(x)

RG'(X) = — :
®) IBLB|
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The average excess cost is defined as

gap(x)
Z(r,s) ez? drs

Observe that the numerator of all three gap functions is the same, and they differ only in
how they are normalized. The ratio of AEC and RG equals the ratio of SPTTand } ., 2 drs,
which is the average travel time on the all-or-nothing assignment. As SPTT stabilizes close to
convergence, the ratio between AEC and RG will approach a constant representing average
travel time.

To compare RG and RG’/, we compare LB and SPTT, and see that their ratio is

AEC(X) = — (25)

B  Lipeao tOOAX  SPTT() — TSTT(0)
SPTT(x) SPTT(x) SPTT(x)

(26)

The second term in this equation is —RG(x), which approaches zero as equilibrium is
reached. To analyze the first term, we note that SPTT(x) and TSTT(x) become asymptotically
equal, and so

Xij Xij
Y ijen Jo ti() dx N Y ijyen Jo! (%) dx
SPTT(x) 2 ijyea Xiftij (i)

(27)

On the right-hand side of equation (27), both the numerator and denominator include a
sum over links. For any specific link, the difference between its term in the numerator and
its term in the denominator is illustrated in Figure 1, which shows a typical link performance
function. The hatched area is the term in the numerator, whereas the area of the rectangle is
its term in the denominator. We see visually that these two areas are approximately equal.
To compare them numerically, consider a link for which t; = t3(1 + 0.15(x;/uj)*), where
t,(-j). and uj are its free-flow time and ‘practical capacity’, respectively.! When the link is used
relatively heavily (x; = uj), the ratio between the areas is 0.89. Even when the link is highly

vic =1 v/c

Figure 1. Visualization of RG and RG’ ratio term.
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congested (x; = 1.5uj), the ratio between the areas is 0.65, and the areas are of the same
order of magnitude. We thus expect the ratio LB(x) /SPTT(x) to be fairly close to one, and
thus RG and RG’ to have a similar order of magnitude.

To summarize, we expect our results for RG (which will be given in terms of order of
magnitude) to translate more or less directly to RG’, although the specific numerical value
may differ by up to 30%. To translate them to AEC, one must multiply by the average travel
time in the network (whose order of magnitude can be estimated a priori). If travel times are
reported in minutes and the network represents a typical metropolitan region, we would
expect the AEC for a given solution to be one to two orders of magnitude higher than
the RG, and our results can be adapted accordingly. Our experiments below validate this
analysis numerically.

3. Data and experiment design

The main objective of this paper is to determine the relationship between ATSTT, AVMT,
PUL, PUP, and PSD (which carry more practical meaning) and the corresponding RG level
(which can be calculated without knowing the equilibrium solution). We choose to index
these results to relative gap, rather than iteration count or another measure of progress,
because gap functions serve as an absolute measure of convergence that can be applied
regardless of algorithm or parameter settings.

This section explains the procedures we used to determine the relationship between the
five convergence metrics and relative gap. We first discuss the networks and algorithms
used, and choices of specific parameters. We next discuss how we obtained solutions of a
particular relative gap level for analysis.

The networks studied in this paper are shown in Table 1, all obtained from the Trans-
portation Networks for Research repository (Stabler 2019). For ease of reference, we cate-
gorize the networks roughly by size: Sioux Falls through Anaheim are designated as small,
Chicago Sketch through Terrassa are designated as medium, and the remaining networks
are designated as large. The last column in this table shows the average equilibrium flow-
to-capacity ratios, excluding centroid connectors. We consider networks with ratios of less
than 0.5 to be uncongested, with ratios between 0.5 and 1.0 to be semi-congested, and net-
works with ratios greater than 1.0 to be congested. The Terrassa network is a clear outlier in
this regard, assigning over 25 million trips in a region whose current population is around

Table 1. Description of networks used.

Average flow-
to-capacity
Network name Zones Links Nodes Trips ratio
SiouxFalls 24 76 24 360,600 1.612
Eastern-Massachusetts 74 258 74 65,576 0.163
Anaheim 38 914 416 104,694 0.297
Chicago-sketch 387 2950 933 1,260,907 0.257
Berlin-Prenzlauerberg-Center 98 2184 975 23,648 0.121
Barcelona 110 2522 1020 184,679 1.137
Winnipeg 147 2836 1052 64,784 2.028
Terrassa 55 3264 1609 25,225,700 5.964
Austin 7388 18,961 7388 739,351 0.875
Berlin-Center 865 28,376 12,981 168,222 0.092
Chicago-Regional 1790 39,018 12,982 1,360,427 0.522

Philadelphia 1525 40,003 13,389 18,503,872 0.949
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200,000, resulting in a flow-to-capacity ratio of almost 6. While such a demand level may not
be realistic, we nevertheless include this network as a ‘stress test’ to see whether consistent
trends can be seen even in extremely congested networks.

Calculating ATSTT, AVMT, PUL, PUP, and PSD requires the equilibrium link flow and most
likely path flow solutions. Near-equilibrium link flows x* and proportional path flows h*
were obtained using the TAPAS implementation by Perederieieva et al. (2015) (with default
settings for TAPAS parameters used to determine cost-effective PAS and flow-effective
PAS), setting a relative gap of 10~'2 as the termination criterion. Our experiments will cover
solutions over a range of gap levels between 1073 and 1078, Over this range, we expect the
distinction between using our reference solution with a gap of 1072, and an exact equilib-
rium, to be small. For calculating the proportions of unconverged links and unconverged
paths, we chose a threshold of € = 0.01, to be consistent with Boyce, Ralevic-Dekic, and
Bar-Gera (2004). (The results contain a sensitivity analysis with respect to this parameter.)
All experiments were conducted on a machine with Ubuntu 18.04, 8 GB of memory and
Intel i5 processor @ 3.30 GHz.

Our analysis involves solutions at six target gap levels: 1073,1074,107>,...,1078. To
facilitate comparison between different networks, we obtained solutions on each network
whose relative gap was within 10% of these levels (e.g. between 0.0009 and 0.0011 for
10~3). Obtaining solutions on each network with such specific gap levels is not trivial, since
algorithms for TAP are designed to reach equilibrium as rapidly as possible, and not aim for
a specific nonzero gap level. Therefore, we used the procedure described below to gener-
ate solutions at a specified target gap level y. This procedure involves a hybrid of the TAPAS
implementation described above, and an implementation of Frank-Wolfe (Boyles 2019)
with ten bisection iterations per flow shift.

(1) Run TAPAS with a termination criterion of y as relative gap. If the solution is in the
acceptable range [0.9y, 1.1y], return the link flows x and path flows h, along with the
values of ATSTT, AVMT, PUL, PUP, and PSD.

(2) If the returned solution has a gap level less than 0.9y, examine the solution from the
previous iteration to see if it is in the acceptable range [0.9y, 1.1y 1. If so, return the link
and path flows, and the five metrics, for that solution.

(3) If neither of the above solutions is in the acceptable range, initialize Frank-Wolfe with
the TAPAS solution from the previous iteration. Perform iterations of Frank-Wolfe until
the gap is in the acceptable range [0.9y, 1.1y], and return that solution and the corre-
sponding metrics. Frank-Wolfe is used due to its relatively slow solution improvement,
which leads to flow values within the desired gap range without ‘skipping over'.

This process is repeated for each network and target gap level. This procedure worked for
all but seven scenario-RG value combinations, due to the Frank-Wolfe algorithm in the last
step jumping over the acceptable gap range. In these remaining cases, we repeated the
last step, restarting Frank—Wolfe algorithm with the prior flow pattern, but fewer bisection
iterations.

Our experiments are divided into the following analyses:

(1) Identify the convergence rates of TSTT, VMT, and path/link flows to their equilibrium
values using the procedure described above. We use both the base demand levels and
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adjusted demand levels to study how congestion levels affect the convergence of these
metrics. (This set of experiments is the most extensive, and is used as the basis for our
core recommendations.)

(2) Repeating the analysis using Algorithm B (Dial 2006) to investigate transferability of
results to algorithms besides TAPAS.

(3) Repeating the analysis in a setting with toll roads and two user classes with distinct
values of time.

(4) Investigating the effect of different convergence levels when evaluating candidate
solutions as a subproblem in network design, a bilevel program.

(5) Comparison of the alternative gap measures RG, RG’, and AEC so results can be trans-
lated appropriately. The intent is to numerically validate the mathematical analysis in
the previous section, which involved several approximations.

For the second set of experiments, we used our own implementation of Algorithm B; the
source code is available at Boyles (2019). Aggregate metrics (TSTT, VMT) and PUL were cal-
culated from these experiments. The path-based metrics PUP and PSD were not calculated,
since Algorithm B does not aim to maximize entropy or provide a proportional path flow
solution.

For the third set of experiments, we introduced two user classes distinguished by their
value of time ($15/h and $30/h), and used the toll values given in the network instances,
where present. For networks without toll roads, we randomly selected 10% of links to be
tolled. These experiments used Algorithm B, as our implementation supports multi-class
assignment and the available TAPAS implementation does not.

For the fourth set of experiments, we formulated a network design problem, in which a
discrete set of links had to be chosen for “upgrade’. An upgrade increased a link’s capacity
by 50%, and had a cost proportional to its length. The budget allowed upgrading up to 5%
of the total length of all links, and the objective is to minimize TSTT subject to equilibrium
constraints. This is a classic bilevel problem which is intractable to solve exactly. We thus
solved it heuristically, using the genetic algorithm implementation in the pyeasyga library
(Remi-Omosowon 2020). Such an algorithm involves solving a number of TAP instances
as subproblems to evaluate fitness of candidate solutions. We used the default values for
parameters in this library. For each network, we varied the RG level used for evaluating the
TAP fitness function. Each combination of objective function and RG level was solved five
times, and average performance reported.

For the fifth set of experiments, we calculate RG, RG’, and AEC for the solutions obtained
in the previous analyses, and conduct a linear regression to investigate whether RG ~ RG/,
and that RG and AEC differ by a nearly constant multiplicative factor, as was suggested by
the approximate mathematical analysis in the previous section.

4, Results

This section reports the results from the experiments described above. Each set of results
is presented in its own subsection. Experiment 1 forms the core of our analysis, and is
described in the greatest detail. The remaining experiments are described more briefly,
highlighting key differences from the core analysis results. The Appendix to the paper
contains detailed results, separated for each of the 12 networks under consideration. The
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Figure 2. Stabilization behavior of metrics at default demand, small networks.

figures and tables in this section present summaries of this data, presenting the most
important findings from each experiment.

4.1. Experiment 1: Network metric behavior results

The values of the main convergence metrics (ATSTT, AVMT, PUL, PUP, and PSD) are shown
in Figures 2-4 (presented according to network and size), and in Figures 5-9 (presented
according to each metric). In the latter set of figures, the thin lines represent the values of
each metric in one of the twelve networks tested, and the thick line represents the average
value. Both sets of figures use logarithmic axes both for the relative gap, and for each metric,
to focus on the orders of magnitude in these values. Table 2 shows the numerical values of
the metric means, as well as the highest and lowest values seen at a particular level across
all networks. The raw data, containing the specific values for over all twelve networks, is
found in the Appendix (Table A1).

All five metrics converged at roughly similar rates, despite significant differences in the
size and congestion level of the networks tested. This is encouraging from the standpoint
of providing transferable, practical advice on convergence thresholds.

In all of the networks, the aggregate metrics (TSTT and VMT) are already very near sta-
bilization at a relative gap of 1073, For the small and medium networks, these values are
within 1% of the equilibrium values when the relative gap is 1074, and for the large net-
works, they are within 2%. Both ATSTT and AVMT converge at roughly similar rates, but
AVMT is usually slightly lower at a particular gap level. We believe this is because the link
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Figure 3. Stabilization behavior of metrics at default demand, medium networks.
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Figure 4. Stabilization behavior of metrics at default demand, large networks.
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Figure 5. ATSTT trends for different gap levels.
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Figure 6. AVMT trends for different gap levels.

lengths are constant, and thus only the flows are changing between iterations when cal-
culating VMT. By contrast, the calculation of TSTT involves flows and travel times, both of
which are changing.

The proportion of unconverged links was the metric originally studied by Boyce, Ralevic-
Dekic, and Bar-Gera (2004) for the Philadelphia regional network. They found that a gap of
10~ was required to approach convergence for freeway links, defining convergence as a
PUL of 1% or less. To achieve this level of convergence for arterial links as well as freeway
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Figure 7. PUL trends for different gap levels.
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Figure 8. PUP trends for different gap levels.

links, a relative gap of 10~ was needed. Our results show that this latter conclusion gener-
ally holds across the other networks tested, and that 99% of link flows are accurate to within
1% of equilibrium values at this gap level.

Link flow behavior for multiple € thresholds can be seen in Figure 10. Trends are similar
within network size grouping, and variations therein are caused by differing congestion
levels. For instance, Austin and Philadelphia show a similar proportion of links in various
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Figure 9. PSD trends for different gap levels.

Table 2. Metric stabilization behavior data (average) using TAPAS.

ATSTT AVMT PUL

Min Mean Max Min Mean Max Min Mean Max

1E-03 1.72% 2.56% 4.05% 1.01% 1.93% 2.84% 4.89% 8.46% | 18.23%
1E-04 0.76% 1.26% 2.02% 0.46% 0.92% 1.52% 2.22% 3.92% 8.10%
1E-05 0.20% 0.65% 1.52% 0.10% 0.46% 1.27% 0.77% 1.07% 1.52%
1E-06 0.10% 0.42% 1.01% 0.07% 0.33% 0.76% 0.00% 0.58% 0.91%
1E-07 0.05% 0.19% 0.66% 0.03% 0.14% 0.46% 0.00% 0.21% 0.49%
1E-08 0.02% 0.07% 0.30% 0.01% 0.03% 0.10% 0.00% 0.07% 0.20%
PUP PSD
Min Mean Max Min Mean Max

1E-03 6.08% | 18.07% | 48.60% | 8.10% | 15.41% | 30.38%
1E-04 2.03% 7.19% | 17.21% | 3.04% 7.63% | 18.23%
1E-05 1.01% 2.93% 5.26% 1.25% 3.47% 8.10%
1E-06 0.41% 1.04% 2.03% 0.51% 1.06% 2.03%
1E-07 0.23% 0.56% 1.01% 0.13% 0.53% 1.01%
1E-08 0.04% 0.11% 0.26% 0.04% 0.22% 0.56%

Gap Level

Gap Level

relative error regimes, but Winnipeg and Chicago Sketch differ due to higher congestion
on the Winnipeg network. This also relates to the relationship between congestion level
and stabilization, explored later.

The remaining two metrics (proportion of unconverged paths and path set deviation) are
the last to stabilize. Relative gap levels of 1076 were needed before these metrics decreased
to 1% or less. We believe this occurs because the number of used paths grows quickly with
network size. For instance, in the Philadelphia network, the equilibrium solution uses over
300 million paths. Most of these paths necessarily have small flow, and changes in even a
single link will change the flows across many paths.
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Figure 10. Link flow trends for various € thresholds.

Table 3 shows how the values of PUP vary across networks for different choices of ¢, for
a fairly converged solution of RG = 1078, This allows us to see the distribution of path con-
vergence, similar to Figure 10 for links. We see that virtually all paths (= 98%) are within 1%
of their equilibrium values; almost all (% 95% or more) are within 0.1% of their equilibrium
values; and the significant majority ( > 85%) are within 0.01%. A negligible number of paths
(roughly one in a thousand) remain more than 10% from their equilibrium values.

Table 4 provides the entropy values for Chicago-Regional and the Philadelphia networks
at various RG levels. The entropy values show a clear increasing and convergent trend
towards the final entropy value for each network-algorithm pair. Thus, as the network flow
stabilizes, it tends to increase entropy, regardless of the algorithm used. As path flow pat-
terns are intricately linked to entropy values, it stabilizes to within 1% of the convergence
value at a RG level of 1070 and below, in line with the observed behavior of PUP and PSD
metrics.
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Table 3. PUP sensitivity analysis w.r.t. €.

Sensitivity analysis for PUP(g) (RG level of 10°°)
Net € | 0.0001 | 0.001 0.01 0.1
Sioux Falls 7.02% 2.24% 0.91% 0.05%

Anaheim 4.53% 1.38% 0.41% 0.02%

Chicago 8.92% 3.30% 1.01% 0.03%
Winnipeg 5.42% 1.85% 0.67% 0.01%

Austin 9.18% 3.79% 1.01% 0.06%
Philadelphia | 14.23% 5.41% 2.03% 0.17%

Table 4. Entropy values for varying RG values.

Chicago-regional

Relative gap AlgB TAPAS AlgB TAPAS

1073 370,682.16 850,027.30 2,609,915.27 4,797,572.35
1074 380,578.59 863,914.76 2,654,382.74 4,958,732.03
10> 389,116.51 885,997.08 2,724,551.75 5,054,152.48
106 395,337.48 898,332.39 2,783,409.60 5137,311.26
1077 397,353.30 908,074.29 2,793,543.55 5,189,488.01
108 397,600.29 919,463.21 2,794,690.11 5,218,702.51
1012 397,654.25 920,159.60 2,794,750.93 5,226,184.24

Table 5. Used paths (in millions) for various relative gap values.

Gap Level | Chicago Regional Philadelphia
1E-03 86.877 352.014
1E-04 88.819 358.008
1E-05 91.837 371.205
1E-06 91.482 368.607
1E-07 91.866 369.873
1E-08 91.895 369.998
1E-12 92.265 370.108

We further investigate how path flows converge on the largest networks, by showing
how the number of used paths stabilizes on the Chicago Regional and Philadelphia net-
works at convergence levels up to 1072 relative gap. This is shown in Table 5. We see
that the number of used paths increases with the solution precision, but that this number
appears to converge, perhaps to the number of used paths at the exact equilibrium.
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Table 6. Metric stabilization behavior data (average) for Algorithm B.

Gap ATSTT AVMT PUL
Level

TAPAS AlgB TAPAS AlgB TAPAS AlgB
1E-03 2.56% 2.38% 1.93% 1.73% 8.46% 7.57%
1E-04 1.26% 1.13% 0.92% 0.83% 3.92% 3.57%
1E-05 0.65% 0.56% 0.46% 0.38% 1.07% 0.98%
1E-06 0.42% 0.34% 0.33% 0.26% 0.58% 0.54%
1E-07 0.19% 0.14% 0.14% 0.09% 0.21% 0.21%
1E-08 0.07% 0.04% 0.03% 0.02% 0.07% 0.06%

4.2. Experiment 2: Algorithm B comparison

The second experiment was performed using Algorithm B, to test transferability of the
results to other traffic assignment algorithms. The results are summarized in Table 6, which
compares the average values of each metric between TAPAS and Algorithm B.

The full data from these results are shown in Tables A2 (raw data for Algorithm B) and A3
(for a side-by-side comparison). The path-based metrics are not computed or compared
in this experiment, since Algorithm B does not attempt to provide a most likely path flow
solution, and therefore its path flow results cannot be fairly compared to those of TAPAS
(and indeed should not be used in practice, as with any other path flow solution which
does not have high entropy).

The trends are very similar between the two algorithms, and the values of each metric
are always of the same order of magnitude, and almost always nearly identical numerically.
This finding is encouraging, suggesting that the conclusions of Experiment 1 are applicable
to other algorithms, and that the relative gap is a good universal measure of convergence,
regardless of the specific assignment algorithm.

4.3. Experiment 3: Heterogeneous driver results

The third experiment divided the travel demand into two groups with different values
of time, introducing tolls on 10% of the network links. Table 7 compares the values of
each metric between the base case (Experiment 1) and this two-class setting. Raw data is
shown in Table A4. Since these experiments were performed using our implementation of
Algorithm B, path-based metrics are not computed or compared for the same reasons as in
Experiment 2.

All three metrics behave extremely similar to single-class Algorithm B experiment metric
behavior, indicating that the presence of multiple user classes does not significantly affect
the convergence rates of these metrics.

4.4. Experiment 4: Network design application results

Our fourth experiment investigated the effects of subproblem precision in the network
design problem, a bilevel program. In this experiment set, we varied the RG threshold used
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Table 7. Metric stabilization behavior data (average) for single-class and multi-class Algorithm B.

Gap ATSTT AVMT PUL
Level

AlgB | Multiclass| AlgB | Multiclass| AlgB | Multiclass
1E-03 2.38% 2.37% 1.73% 1.68% 7.57% 7.27%
1E-04 1.13% 1.01% 0.83% 0.77% 3.57% 3.37%
1E-05 0.56% 0.52% 0.38% 0.37% 0.98% 0.96%
1E-06 0.34% 0.32% 0.26% 0.26% 0.54% 0.52%
1E-07 0.14% 0.12% 0.09% 0.09% 0.21% 0.19%
1E-08 0.04% 0.04% 0.02% 0.03% 0.06% 0.06%
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Figure 11. Network design performance with varying RG levels.

in the TAP solutions used in the lower level of this optimization problem, ranging from 103
to 10~8), for minimizing TSTT. The resulting solutions at the end of the heuristic were then
evaluated to a gap of 1078 to compare their performance with a ‘benchmark’ solution to
the network design problem with solved all of its subproblems to a gap of 1078,

Figure 11 shows the gap between the objective function values with the subproblems
solved at a looser gap to those with 1 08 (measured by the percentage difference), and the
computation times (reported as the fraction of time taken when solving all subproblems to
10~8). The plotted values are averaged over five solutions of the genetic algorithm, which
operates randomly.



TRANSPORTMETRICA A: TRANSPORT SCIENCE . 1265

Table 8. Regression of RG' and AEC with RG.

RG' AEC

Network Coefficient Intercept R? Coefficient Intercept R?

Sioux Falls 0.716 0.000 0.999 22.301 0.000 0.999
Anaheim 1.023 0.000 0.999 6.923 0.000 0.999
Chicago Sketch 0.968 0.000 0.999 27.565 0.000 0.999
Barcelona 0.913 0.000 0.999 8.935 0.000 0.995
Austin 1.008 0.000 0.999 7.819 0.000 0.998
Philadelphia 0.974 0.000 0.999 18.276 0.000 0.999

For the higher convergence levels, there was no objective function gap, because the
best-found solutions involved expanding the same set of links as in the solution for a gap of
1078, At these gap levels (around 1076 or 10~7), there was no advantage in solving the sub-
problems further. When the subproblems are solved to a relative gap of 10~ or tighter, the
objective function was within 2% of the benchmark value, and run times were decreased
by 40-60%. This may be acceptable in certain applications, given the uncertainty in other
components of the planning process (model specification, demand forecasting, etc.).

4.5. Experiment 5: Gap function comparison

The fifth experiment set compared the values of three gap functions for the solutions
obtained in the previous experiments: RG, RG', and AEC. Linear regressions were performed
on RG' vs. RG, and AEC vs. RG, with the results shown in Table 8.

The two definitions of relative gap (RG’' and RG) are nearly identical, as shown by R? values
greater than 0.999, an intercept of essentially zero, and a coefficient close to one. This con-
firms the analysis at the end of Section 2, and suggests that our conclusions can be equally
applied regardless of which relative gap definition is being used.

We also observe that the ratio between AEC and RG is essentially constant within each
network (R?2 > 0.99 and essentially zero intercept). As expected, this constant differs by net-
work, as it reflects the average travel time on the shortest path available to travelers. For
the sizes of networks used in common practice, and for the common choice of minutes as
the unit for travel time, we see that AEC is roughly an order of magnitude larger than RG.
This suggests that our conclusions can be readily transferred to the AEC gap measure by
translating them accordingly.

5. Conclusions

We studied the convergence rate of five metrics as the relative gap reduces over succes-
sive iterations of traffic assignment, in twelve networks of varying size and congestion
levels. Across these networks, we observed trends for network metric behavior which are
summarized below:

e The aggregate metrics (total system travel time and vehicle-miles traveled) were within
1% of their equilibrium values once the relative gap was below 10~ (earlier for smaller
networks)
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e Link flows achieved stability (less than 1% of the links more than 1% away from equilib-
rium values) at a relative gap of 107>.

e Path flows and the sets of used paths stabilized later, at a relative gap of 1075.

e The above conclusions were seen whether TAPAS or Algorithm B was used to solve for
equilibrium, and for both single and two-class assignments.

e Inthe network design problem, solving the subproblems to a gap level of 10~ instead of
10~8 increased the objective function value by less than 2%, but decreased computation
time by 40-60%.

e There are strong linear relationship between RG, RG' and AEC (R? > 0.99). This indicates
the transferability of results between different gap metrics: RG and RG’ can essentially be
used interchangeably, whereas AEC differs from RG by a constant multiple representing
average travel time.

The main limitations of the work are (1) that we propose no underlying theory to explain
these findings, but present the analysis empirically; and (2) that we restrict our investigation
to absolute levels of accuracy, as if a point prediction were sought for a single scenario in
isolation. It is also unclear whether this guidance can be generalized to other traffic models,
such as dynamic traffic assignment.

Future research should address all of these issues. In particular, regarding (1), the consis-
tent convergence trends across very different networks (spanning several orders of mag-
nitude in both size and congestion level) suggest that there may be a more fundamental
relationship between relative gap and these metrics. It may be possible to derive analyt-
ical relationships describing such a relationship, at least in stylized settings that roughly
approximate practical traffic networks. While the current empirical results span a variety of
network sizes and congestion levels to provide meaningful trends and useful guidelines to
practitioners and researchers, theoretical bounds shall help generalize the findings of this
study.

Regarding (2), another common application involves comparison of multiple alterna-
tives or scenarios, where it is important to determine a stable ranking (or at least a preferred
alternative). It would be valuable to see what gap levels are needed before project rank-
ings become stable, although such a gap level would depend critically on how distinct the
project impacts are, and a careful investigation is needed to account for this factor.

Note

1. This is the commonly used Bureau of Public Roads function with standard values for its shape
parameters Bureau of Public Roads (1964).
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Appendix. Raw data

Table A1. Metric stabilization behavior using TAPAS.

SiowxFalls
Gap Level] _atsTr avmr PuL Gap Level] _atstT avmT PUL PuP PsD GapLevel] _atsTr PuP PsD
1803 | 202 1a7% 5.26% 1603 | 215 155% 003% | ou% 1603 | 280% 2228% | 1620%
1604 | osr 059% 263% 1600 | 106 0.63% 4.05% 3.00% 1600 | 192% 6.85% 810%
1605 | o0 0.15% 131% 1605 | oar 0.26% 101% 125% 1605 | 1o1% 3.20% 5.06%
1606 | o 0.07% 0.00% 1606 | 026 0.18% 0.a1% 051% 1606 | o61% Lo1% 1a2%
1€07 | o0 0.00% 0.00% 1607 | 010 0.09% 0.30% 0.42% 1607 | 020% 0.30% 051%
1608 | oos 0.03% 0.00% 1608 | 0.0 0.02% 0.10% 011% 1608 | o00s% 0.10% 0.20%
Barcelona Berlin Center
Gap Level] _atsTr avmr UL pup PsD GapLevel] _atsTT avmr PuL bup PsD Gaplevel atstT | avwr PuL PuP PsD
1603 | 172% 134% 5.06% 7.05% 875% 1605 | 203% 17a% Gos% | 1a1s% | 111% 1605 | 2% 260% | 1215% | szao% | 2a30%
1€04 | o076% 0.46% 280% 4.05% 4.36% 1604 | 101% 102% 285% 6.08% 5.06% 160 | 202% 131% 5a7% | 15a%% | 1110%
1€05 | 030% 0.10% 0.91% 3.08% 282% 1605 | os2% 0.47% 101% 3.08% 203% 1605 | 113% 0.73% 142% 5.06% 5.06%
1606 | 020% 0.07% 0.71% 101% 0.74% 1606 | 0.20% 0.36% 073% 134% 101% 1606 | o077% 0.52% 091% 0.91% 111%
1€07 | o0os% 0.03% 0.a1% 0.76% 0.42% 1607 | _os% 0ar% 032% 0.68% 051% 1607 | o02% 0.18% 0.41% 0.61% 0.76%
1608 | o003% 0.01% 0.04% 0.10% 0.08% 1608 | o02% 0.03% 0.08% 0.10% 0.20% 1608 | o009% 0.04% 0.10% 0.11% 0.56%
Anaheim Winnipeg Chicago-Regional
Gap Level] _atsTT avmr Pu Pup [ Gaplevel] _atsTr avmr PUL pup Gaplevel| arsT | avi PUL PuP PsD
1605 | 259 e 285% 65 9 1603 | s.00% 203 612% 1603 | 263% 243 1316% | 2835% | 2228
€04 | oen 0.61% 26 3.0 5.06 1c0s | vom 105 245% 1e0a | 162% 111 Gos% | 1215% | 1ox
1605 | oaws 0.30% 0.77% 177% 203% 1605 | o0s% 035% 097% 1605 | oo1% o1 101% 5.26% .05
1606 | o026% 0.15% 0.25 a1 051% 1606 | 029% 033% 053% 1606 | 076% 055 0.81% 1.03% 10
1€07 | o 0.08% 0.0 0.3 032% 1607 | 0% oar: 0.8% 0.20% 1607 | o050% 0. 0.00% 0.54% 072
1608 | 005 0.01% 0.2 0.1 0.7 1608 | ooz 0.3 0.05% 0.08% 1608 | o015% 0.0 0.00% 0.00% 0.25°
Terrassa Philadelphia
Gap Level] _atsTT avmr Pu Pup PsD Gap Level] _atsTT avmr PuL bup PsD Goptevel] _atsTr | _avwr Pul PUP PsD
1603 | 209% 101 553 162 1515 1605 |2 223 705" 141 18.25 1603 | 405 25 182 4560 303
€04 | 101 [ 285° 6.08 7.9 160 | 116 101 3.0 6.08° 10.0 160 | 192 152 810 172 18.23
1605 | o0 025 101 203 203 1605 | o052 039 101 .05 405 1605 | 152 127 15 4.05 810
1606 | 02 005 0.3 101 0.5 1606 | 029 038 051 1.76° 1.46° 1606 | 101 076 01 2.03 203
1607 | 0. 0.04% 0.2 0.77 051 1607 | oa3% 005" 020% 095" 067 1607 | 066 0.46% 0.49% 101 1o1%
1608 | 004% 0.02% 0.08% 0.1 0.20% 1608 | 0.02% 0.0 0.08% 0.6 0.2 1608 | 03 0.05% 020% 0.2 052%
Table A2. Metric stabilization behavior data using Algorithm B.
Sioux Falls Berlin-Mitt enter Austin
Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL
1E-03 2.12% 1.52% 5.26% 1E-03 2.03% 1.45% 6.39% 1E-03 2.39% 2.18% 9.42%
1E-04 0.90% 0.66% 2.63% 1E-04 0.98% 0.58% 1.93% 1E-04 1.60% 1.09% 5.50%
1E-05 0.35% 0.18% 1.31% 1E-05 0.37% 0.23% 0.77% 1E-05 0.85% 0.58% 0.92%
1E-06 0.07% 0.03% 0.00% 1E-06 0.23% 0.17% 0.43% 1E-06 0.58% 0.40% 0.71%
1E-07 0.02% 0.01% 0.00% 1E-07 0.09% 0.08% 0.10% 1E-07 0.20% 0.19% 0.19%
1E-08 0.00% 0.00% 0.00% 1E-08 0.05% 0.02% 0.05% 1E-08 0.05% 0.04% 0.08%
Eastern Barcelona Berlin Center
Gaplevel|  ATSTT AVMT PUL Gaplevel|  ATSTT AVMT PUL GapLlevel|  ATSTT AVMT PUL
1E-03 1.80% 1.28% 4.59% 1€-03 1.79% 1.64% 5.63% 1€-03 2.57% 2.29% 10.77%
1E-04 0.77% 0.43% 2.64% 1E-04 0.94% 0.94% 2.55% 1E-04 1.90% 1.12% 4.71%
1E-05 0.29% 0.10% 0.86% 1E-05 0.44% 0.43% 0.91% 1E-05 0.99% 0.65% 1.21%
1E-06 0.20% 0.06% 0.73% 1E-06 0.23% 0.31% 0.66% 1E-06 0.63% 0.45% 0.79%
1E-07 0.05% 0.03% 0.42% 1E-07 0.12% 0.10% 0.28% 1E-07 0.19% 0.16% 0.33%
1E-08 0.03% 0.01% 0.04% 1E-08 0.02% 0.03% 0.08% 1E-08 0.08% 0.03% 0.09%
Anaheim Winnipeg Chicago-Regional
Gaplevel|  ATSTT AVMT PUL Gaplevel|  ATSTT AVMT pUL GapLlevel|  ATSTT AVMT pUL
1603 2.49% 1.40% 4.85% 1603 2.83% 1.84% 5.47% 1€-03 2.21% 1.54% 11.51%
1E-04 0.78% 0.56% 2.63% 1E-04 0.95% 1.01% 2.19% 1E-04 1.24% 0.86% 5.12%
1E-05 0.40% 0.30% 0.71% 1E-05 0.47% 0.31% 0.92% 1E-05 0.62% 0.43% 0.95%
1E-06 0.25% 0.19% 0.24% 1E-06 0.26% 0.30% 0.52% 1E-06 0.47% 0.35% 0.76%
1E-07 0.10% 0.08% 0.04% 1E-07 0.11% 0.10% 0.16% 1E-07 0.18% 0.08% 0.28%
1E-08 0.05% 0.01% 0.02% 1E-08 0.02% 0.03% 0.05% 1E-08 0.04% 0.02% 0.04%
Chicago Sketch Terrassa
Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL
1E-03 1.91% 0.94% 4.84% 1E-03 2.56% 2.16% 6.49% 1E-03 3.85% 2.49% 15.61%
1E-04 0.91% 0.45% 2.53% 1E-04 0.99% 0.98% 2.82% 1E-04 1.63% 1.22% 7.59%
1E-05 0.37% 0.25% 0.97% 1E-05 0.52% 0.37% 1.00% 1E-05 1.05% 0.78% 1.27%
1E-06 0.29% 0.08% 0.32% 1E-06 0.29% 0.37% 0.48% 1E-06 0.63% 0.35% 0.82%
1€-07 0.08% 0.04% 0.19% 1E-07 0.13% 0.08% 0.20% 1E-07 0.37% 0.14% 0.37%
1E-08 0.04% 0.02% 0.07% 1E-08 0.02% 0.03% 0.08% 1E-08 0.10% 0.03% 0.18%
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Table A3. Metric stabilization behavior comparison between TAPAS and Algorithm B.

Sioux Falls ‘Winnipeg
ATSTT AVMT PUL ATSTT AVMT PUL
Gap Level Gap Level
TAPAS | Alg-B | TAPAS | Alg-B | TAPAS | Alg-B TAPAS | Alg-B | TAPAS | Alg-B | TAPAS | Alg-B
1E-03 2.02% 2.12% 1.47% 1.52% 5.26% 5.26% 1E-03 3.04% 2.83% 2.03% 1.84% 6.12% 5.47%
1E-04 0.81% 0.90% 0.59% 0.66% 2.63% 2.63% 1E-04 1.01% 0.95% 1.01% 1.01% 2.45% 2.19%
1E-05 0.20% 0.35% 0.15% 0.18% 1.31% 1.31% 1E-05 0.53% 0.47% 0.35% 0.31% 0.97% 0.92%
1E-06 0.10% 0.07% 0.07% 0.03% 0.00% 0.00% 1E-06 0.29% 0.26% 0.33% 0.30% 0.53% 0.52%
1€-07 0.05% 0.02% 0.04% 0.01% 0.00% 0.00% 1E-07 0.12% 0.11% 0.11% 0.10% 0.18% 0.16%
1E-08 0.04% 0.00% 0.03% 0.00% 0.00% 0.00% 1E-08 0.02% 0.02% 0.03% 0.03% 0.05% 0.05%
Anaheim Austin
Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL
TAPAS | Alg-B | TAPAS | Alg-B | TAPAS | Alg-B TAPAS | Alg-B | TAPAS | Alg-B | TAPAS | Alg-B
1E-03 2.53% 2.49% 1.44% 1.40% 4.89% 4.85% 1E-03 2.84% 2.39% 2.51% 2.18% 11.14% | 9.42%
1E-04 0.81% 0.78% 0.61% 0.56% 2.61% 2.63% 1E-04 1.92% 1.60% 1.25% 1.09% 5.87% 5.50%
1E-05 0.41% 0.40% 0.30% 0.30% 0.77% 0.71% 1E-05 1.01% 0.85% 0.65% 0.58% 1.11% 0.92%
1E-06 0.26% 0.25% 0.19% 0.19% 0.23% 0.24% 1E-06 0.61% 0.58% 0.49% 0.40% 0.81% 0.71%
1E-07 0.10% 0.10% 0.08% 0.08% 0.04% 0.04% 1E-07 0.20% 0.20% 0.20% 0.19% 0.20% 0.19%
1E-08 0.05% 0.05% 0.01% 0.01% 0.02% 0.02% 1E-08 0.05% 0.05% 0.04% 0.04% 0.08% 0.08%
Chicago-Sketch i i
ATSTT AVMT PUL ATSTT MT PUL
Gap Level Gap Level
TAPAS | Alg-B | TAPAS | Alg-B | TAPAs | Alg-B TAPAS | Alg-B Alg-B | TaPas | Alg-B
1E-03 2.03% 1.91% 1.01% 0.94% 5.53% 4.84% 1E-03 4.05% 3.85% 2.49% 18.23% | 15.61%
1E-04 1.01% 0.91% 0.51% 0.45% 2.86% 2.53% 1E-04 1.92% 1.63% 1.22% 8.10% 7.59%
1E-05 0.37% 0.37% 0.25% 0.25% 1.01% 0.97% 1E-05 1.52% 1.05% 0.78% 1.52% 1.27%
1E-06 0.28% 0.29% 0.09% 0.08% 0.34% 0.32% 1E-06 1.01% 0.63% 0.35% 0.91% 0.82%
1E-07 0.08% 0.08% 0.04% 0.04% 0.20% 0.19% 1€-07 0.66% 0.37% 0.14% 0.49% 0.37%
1E-08 0.04% 0.04% 0.02% 0.02% 0.08% 0.07% 1E-08 0.30% 10% 0.03% 0.20% 0.18%

Table A4. Metric stabilization behavior data for multi-class assignment.

Sioux Falls Berlin-Mi iedril in-Center Austin

Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL
1E-03 2.05% 1.36% 3.94% 1E-03 2.08% 1.54% 6.96% 1E-03 2.43% 1.90% 9.32%
1E-04 0.87% 0.56% 1.97% 1E-04 1.02% 0.61% 2.17% 1E-04 1.13% 0.86% 4.53%
1E-05 0.24% 0.12% 0.98% 1E-05 0.38% 0.24% 0.81% 1E-05 0.76% 0.60% 1.03%
1E-06 0.07% 0.03% 0.00% 1E-06 0.25% 0.17% 0.41% 1E-06 0.47% 0.36% 0.62%
1E-07 0.03% 0.00% 0.00% 1E-07 0.10% 0.08% 0.12% 1E-07 0.16% 0.12% 0.15%
1E-08 0.00% 0.00% 0.00% 1E-08 0.05% 0.02% 0.06% 1E-08 0.04% 0.03% 0.06%

Eastern Barcelona Berlin Center

Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL
1E-03 1.68% 1.24% 4.92% 1E-03 2.00% 1.73% 5.78% 1E-03 2.69% 1.93% 9.28%
1E-04 0.76% 0.46% 2.93% 1E-04 0.96% 1.04% 2.73% 1E-04 1.22% 0.94% 4.21%
1E-05 0.30% 0.10% 0.90% 1E-05 0.51% 0.46% 0.96% 1E-05 0.84% 0.68% 1.19%
1E-06 0.18% 0.05% 0.67% 1E-06 0.23% 0.35% 0.71% 1E-06 0.52% 0.41% 0.77%
1E-07 0.04% 0.02% 0.35% 1E-07 0.12% 0.11% 0.31% 1E-07 0.19% 0.14% 0.37%
1E-08 0.02% 0.00% 0.03% 1E-08 0.02% 0.03% 0.08% 1E-08 0.08% 0.06% 0.09%

Anaheim Winnipeg Chicago-Regional

Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL
1E-03 2.73% 1.55% 4.83% 1E-03 3.05% 1.93% 5.81% 1E-03 2.20% 1.53% 10.54%
1E-04 0.81% 0.64% 2.48% 1E-04 1.03% 0.98% 2.41% 1E-04 1.15% 0.86% 5.13%
1E-05 0.41% 0.31% 0.75% 1E-05 0.51% 0.33% 0.95% 1E-05 0.69% 0.48% 0.77%
1E-06 0.26% 0.20% 0.23% 1E-06 0.29% 0.34% 0.53% 1E-06 0.42% 0.31% 0.74%
1E-07 0.11% 0.08% 0.04% 1E-07 0.12% 0.10% 0.17% 1E-07 0.13% 0.10% 0.00%
1E-08 0.05% 0.01% 0.02% 1E-08 0.02% 0.03% 0.05% 1E-08 0.04% 0.03% 0.00%

Chicago Sketch Terrassa

Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL Gap Level ATSTT AVMT PUL
1E-03 2.14% 0.96% 5.68% 1E-03 2.60% 2.17% 6.86% 1E-03 3.46% 2.63% 14.76%
1E-04 1.03% 0.52% 2.97% 1E-04 1.14% 0.97% 2.89% 1E-04 1.24% 0.98% 6.77%
1E-05 0.39% 0.25% 1.05% 1E-05 0.52% 0.40% 1.01% 1E-05 0.80% 0.60% 1.25%
1E-06 0.28% 0.09% 0.35% 1E-06 0.29% 0.37% 0.51% 1E-06 0.58% 0.42% 0.84%
1E-07 0.08% 0.04% 0.20% 1E-07 0.13% 0.09% 0.20% 1E-07 0.20% 0.16% 0.36%
1E-08 0.04% 0.02% 0.09% 1E-08 0.02% 0.03% 0.08% 1E-08 0.11% 0.08% 0.15%




