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ABSTRACT

Traffic assignment is used for infrastructure planning, based onmet-
rics like total system travel time (TSTT), vehicle-miles traveled (VMT)
and link or path flows. Algorithms for traffic assignment converge
to an equilibrium solution over multiple iterations, but these metrics
converge at different rates. Current guidance indicates that freeway
link flows stabilize at a relative gap of roughly 10−4. This study gen-
eralizes this guidance by testing additional networks and metrics, in
more experimental settings. Our results reveal that aggregate met-
rics (VMT and TSTT) stabilize earlier (relative gap 10−4) than link flows
(relative gap 10−5), which in turn stabilize slightly before the set of
most likely used paths and flows on these paths (relative gap 10−6).
These results are stable across the TAPAS and Algorithm B methods
for solving assignment. Our results also show strong linear correla-
tions between alternative gapmeasures, allowing for the translation
of stabilization results across other gap definitions as well.
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1. Introduction

Traffic assignment is a common tool in transportation planning and predicts how travelers

will choose routes accounting for congestioneffects. Traffic assignment is used in long-term

planning, as the final step of the traditional four-step model, to assist in decision-making

based on link flows, select link analysis, or shortest path analysis. It also appears as a sub-

problem in network design, toll-setting, and other related bilevel optimization problems.

Despitemany advances in dynamic trafficmodeling, static assignment remains common in

current practice. And despite advances in technology and algorithmic efficiency, computa-

tion times are still a relevant issue as agenciesmove tomore detailed,multi-classmodels, or

when assignment is a subproblem in a larger iterative scheme (feedback models, trip table

estimation, network design, and so forth). This article therefore focuses on the static traffic

assignment problem (TAP) as it is traditionally formulated.

Algorithms for traffic assignment converge to an equilibrium solution in the limit, so a

convergence criterion must be introduced to ensure output in finite time. Rose, Daskin,
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andKoppelman (1988) considered the convergencebehavior of the Frank–Wolfe algorithm

on small networks (16 nodes). Their study used the relative gap metric (a common con-

vergence criterion, defined below) based on the duality gap. They concluded that it was

very difficult to obtain precise estimates of the equilibrium flows in networkswhich contain

only a few O-D pairs with overlapping paths and called for more research on convergence

behavior. Boyce, Ralevic-Dekic, and Bar-Gera (2004) found that link flows in the Philadel-

phia network stabilized once the relative gap (a different definition, also defined below)

was below 10−4. This article investigates the convergence behavior of other metrics –

specifically total system travel time, vehicle-miles traveled, equilibrium path flows, and

the set of used paths – on 12 standard networks. We thus aim to generalize the recom-

mendations of Boyce, Ralevic-Dekic, and Bar-Gera (2004) based on other networks and

metrics.

These metrics were chosen to represent a variety of applications. Aggregate measures,

such as total system travel time or vehicle-miles traveled, are used to capture the overall

state of a network (Harrison et al. 2006; Weisbrod 2008; Higgins 2013; Moudon and Stew-

art 2013). For instance, the North Carolina Department of Transportation strategic plan

uses total system travel time to monitor network performance (Carolina Department of

Transportation 2015), Litman (2016) uses vehicle-miles traveled as a sustainability indica-

tor, Qian and Zhang (2012) use total system travel time and vehicle-miles traveled as factors

to compare interstate closure scenarios in Sacramento, and the California Department of

Transportation uses a reduction in vehicle-miles traveled as a strategic target (California

Department of Transportation 2015). A few other examples include usage in the analysis

of delivery vehicle impact (José, Cruz, and Ban 2013), credit- or permit-based demandman-

agement (Lessan and Fu 2019) andwithin network design problems as project selection cri-

teria (Shayanfar and Schonfeld 2019). Disaggregate measures, such as link and path flows,

more finely describe the impacts of projects on specific regions andpopulations. Suchmea-

sures are commonly used by many practitioners and researchers (Cherlow 1981; Daniels,

Ellis, and Stockton 1999; Bureau of Transportation Statistics 2015; Seattle Department of

Transportation 2016; US Department of Transportation 2016, 2017; Astroza et al. 2017;

Boyles et al. 2018; Maryland Department of Transportation 2018).

1.1. Why is static traffic assignment still relevant?

Static traffic assignment has been studied for over five decades now, starting with the con-

vex optimization formulation by Beckmann, McGuire, and Winsten (1956) and described

at length in Patriksson (1994) and Boyles, Lownes, and Unnikrishnan (2020). With signif-

icant advances in traffic flow theory and traffic assignment in the interim, including the

development of dynamic traffic assignment and micro-simulation techniques, it is worth

asking whether the traditional traffic assignment problem is still worth studying. Despite

the important roles that these other methods play in transportation analysis, there are still

several settings where static assignment remains a valuable tool.

Well-known advantages of static assignment include a standard formulation, efficient

and provably correct solution algorithms, and guarantees of equilibrium existence and

uniqueness. The latter concerns are not strictly mathematical, but have important impli-

cations for practice – it is unclear how projects should be evaluated or ranked if multiple,

potentially very different solutions exist, or none at all.
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A less-appreciated advantage is its greater robustness to errors in input data, such as

origin-destination matrices or link and node parameters. Many dynamic traffic assignment

models feature queue spillback, which is a significant contributor to traffic congestion in

the field. However, spillback introduces discontinuities into the assignment process, poten-

tially amplifying any error or noise in the model inputs. Boyles and Ruiz Juri (2019) showed

that when the error in the trip table is sufficiently large, a model without spillback actually

produces a smaller absolute error in delay estimations than a model with spillback. Relat-

edly, static models are easier to calibrate; despite advances in travel demand modeling,

forecasting a time-dependent trip table in a large network remains highly challenging.

Static assignment can also be solved in a shorter amount of time. Even as computa-

tional resources expand and more efficient algorithms are developed, in the amount of

time required to run a single dynamic assignment it is possible to runmultiple static assign-

ments. In applications requiring hundreds or thousands of assignment runs – examples

include Monte Carlo simulation to simulate distributions over input parameters (Waller,

Schofer, and Ziliaskopoulos 2001; Zhao and Kockelman 2002; Ukkusuri, Mathew, and

Waller 2007; Duthie, Unnikrishnan, andWaller 2011), sensitivity analysis (Boyles 2012; Jafari,

Pandey, and Boyles 2017), trip table estimation (Yang 1995; Lundgren and Peterson 2008),

network design (Yang 1997; Yang and Bell 1998; Josefsson and Patriksson 2007), network

pricing (YangandLam1996), andother bilevel optimizationproblems (Yin 2000) – the com-

putational advantages of static assignment are compelling, if for no other reason than a

preliminary screening of alternatives to form a ‘shortlist’ for more detailed modeling.

We lastly point out a recent line of research showing how a variety of static and dynamic

models can be generalized into a single common framework (Bliemer et al. 2017; Bliemer

and Raadsen 2020), suggesting that research into one type of traffic assignmentmodelmay

have relevance to the other as well.

For all of the reasons above, static assignment remains a commonly used tool in trans-

portation planning practice. To be clear, none of this is to argue that static assignment

should be universally applied. In applications where the input data are known with high

precision, detailed congestion information is essential, and computation times are not con-

straining (e.g. present-day studies of work zone impacts), dynamic traffic assignment or

even microsimulation are likely superior tools. Yet there remain applications where static

assignment is preferred, as when inputs are poorly known, or when rapid assessment of

a large number of alternatives is preferred to an in-depth assessment of a few (e.g. long-

range regional planning, bilevel optimization), and it is such applications that this paper

has in mind.

1.2. Why are runtimes still an issue?

With advances in computing and solution algorithms, it is worth asking whether run

times are still relevant in static assignment, particularly given the time frame of long-term

planning. As discussed in the previous section, there are applications requiring a large

number of assignment runs, often with traffic assignment as a subproblem in an iterative

scheme. For this reason, research continues in assessing and improving the computational

performance of static assignment (Galligari and Sciandrone 2019; Schneck andNökel 2020).

Furthermore, as computation power advances, networkmodels have increased in scope

and resolution. Regional planning models today commonly include tens of thousands of
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links and nodes, multiple user classes, and feedback to earlier modeling stages to ensure

consistency. For largemetropolitan areas, even using cutting-edge software and hardware,

it is not uncommon for a single model run to take several hours. For a single scenario, this

may be acceptable; as part of a bilevel trip table optimization requiring thousands of runs,

it is clearly not.

The goal of this paper is to provide guidance on the level of convergence needed,

depending on the metric of interest. This allows computational resources to be used as

effectively as possible, and not wasted on unnecessary precision beyond the requirements

of a particular application.

1.3. Contributions

The central question addressed in this paper is the level of precision needed in the solution.

An insufficiently converged solution will not produce reliable estimates for planning. An

overly-stringent convergence criterion, on the other hand,wastes computational resources

that can be better spent on other model components or tasks. (For instance, examining

additional alternatives in a Monte Carlo simulation or solutions in a bilevel program.) The

appropriate convergence level depends on the application context: the specific network,

the specific metrics of interest, and the decision being made. In particular, the appropriate

convergence criterion when producing a single point prediction is likely different than that

when selectingapreferredalternative amongseveral. The latter problem introduces several

complications relative to the former, so this article focuses primarily on the convergence

level needed to stabilize a metric for a single modeling scenario.

The primary guidance to date is based on Boyce, Ralevic-Dekic, and Bar-Gera (2004), and

a relative gap level of 10−4 or 10−5 is common in current software as a default conver-

gence criterion. The manual for Caliper’s TransCAD software further suggests that ‘since

traffic assignment problems vary in many dimensions, some experimentation is warranted

to arrive at howmuch convergence is enough’. (Caliper Corporation 2018). While the study

by Boyce, Ralevic-Dekic, and Bar-Gera (2004) played a critical role in determining the neces-

sary level of precision, its experiments were conducted on a single network and considered

a single metric (freeway link flows).

The main contribution of this article is to identify the convergence behavior of five

metrics on twelve different networks, thus generalizing the analysis of Rose, Daskin, and

Koppelman (1988) and Boyce, Ralevic-Dekic, and Bar-Gera (2004). We examine the rates of

convergence of these metrics compared to that of relative gap (the most common con-

vergence metric), and identify trends based on network size and congestion level. We

additionally describe theheterogeneity in convergence rates betweendifferent linkswithin

the same network. These analyses primarily have implications for choosing a convergence

level for analysis of a particular scenario, and also lay the groundwork for future studies on

appropriate convergence criteria for multi-scenario analyses. Our experiments also include

tests of different traffic assignment algorithms, and examining a scenario with heteroge-

neous user classes. We also compare alternative gap functions in current use, suggesting

how our results for one gap function can be translated to these alternatives.

The rest of this article is structured as follows: Section 2 provides mathematical spec-

ifications of TAP and the metrics we study and reviews current solution algorithms. We

next describe our experimental structure, the networks we use, and the design of particular
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scenarios in Section 3. We next provide the results of these experiments, and our interpre-

tation of these results in Section 4. We finally conclude with a summary of our findings and

topics for future study.

2. Background

Consider a directed network with a set of links A, and a set of zones Z. For each link (i, j) ∈ A,

let lij denote its physical length, and tij its travel time, assumed to be a function of its flow

xij alone. For each origin r ∈ Z and destination s ∈ Z, let drs denote the demand for travel

between these zones, and let�rs denote the set of network paths connecting these zones.

Further, let � be the set of all network paths. For a given path π , the number of travelers

choosing that path is given by hπ .

The classical formulation of TAP identifies a network state which reflects traveler behav-

ior (all travelers choose a shortest path between their origin and destination) and conges-

tion effects (these shortest paths depend on the choices made by other travelers). Under

mild regularity assumptions, such a network state canbe identified by solving the following

convex program (Beckmann, McGuire, and Winsten 1956):

min
x,h

∑

(i,j)∈A

∫ xij

0
tij(x)dx (1)

subject to:

xij =
∑

π∈�:(i,j)∈π

hπ ∀(i, j) ∈ A (2)

∑

π∈�rs

hπ = drs ∀(r, s) ∈ Z2 (3)

hπ ≥ 0 ∀π ∈ � (4)

If the link performance functions are strictly increasing, the objective function is strictly con-

vex, and thus has a uniqueminimum solution in the link flows, which we denote by x∗. This

solution is called the user equilibrium (UE) state.We say that a pathπ is used in a solution to

TAP if hπ is strictly positive, and define�+(h) to be the set of used paths at a given solution.

In general, the UE path flow solution is not unique, since many path flow vectors h

can generate the same link flow vector x. The most likely path flows are the unique

solution (denoted h∗) to the following optimization problem, representing entropy max-

imization (Rossi, McNeil, and Hendrickson 1989):

max
h

−
∑

(r,s)∈Z2

∑

π∈�rs

hπ log hπ (5)

subject to:
∑

π∈�:(i,j)∈π

hπ = x∗
ij ∀(i, j) ∈ A (6)

∑

π∈�rs

hπ = drs ∀(r, s) ∈ Z2 (7)

hπ ≥ 0 ∀π ∈ � (8)
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Note the constraint that the path flows must generate the UE link flows x∗. The most likely

path flows use as many paths as possible given the user equilibrium state (Bar-Gera 2006).

Additionally, the formula for entropy calculation can be expressed in terms of link flows

obtained from an origin-based assignment as follows:

E(x) = −
∑

p∈Z

∑

(i,j)∈A

x(i,j),p log

(

x(i,j),p

xj,p

)

(9)

where, x(i,j),p is the flow on link (i, j) from origin p and xj,p is the flow through node j

originating at p.

Link-based algorithms (Frank and Wolfe 1956; Daneva and Lindberg 2003; Mitradjieva

and Lindberg 2013), path-based algorithms (Jayakrishnan et al. 1994; Florian, Constantin,

and Florian 2009; Babazadeh et al. 2020), and bush-based algorithms (Bar-Gera 2002;

Dial 2006; Nie 2010; Gentile 2014) have all been proposed to solve TAP. Link-based algo-

rithms only track the link flows x at each iteration, and the path flows are implicit andmust

be calculated by post-processing. Such algorithms are economical on computer memory

but are slow toobtainhigh-precision solutions. Path-basedandbush-basedalgorithmspro-

duce precise solutions more quickly at the expense of additional memory requirements.

Path-based algorithms explicitly track a path flow vector h. Bush-based algorithms do not,

but structure a disaggregated link flow solution in a way that a corresponding path flow

vector can be easily calculated.

Most algorithms for TAP do not produce a most likely path flow solution, and a sec-

ond algorithm is needed for that purpose. TAPAS (Bar-Gera 2010) is a recent algorithm

whichboth solves TAP andprovides a path flow solution satisfyingproportionality, a slightly

weaker condition than entropy maximization. TAPAS, and related algorithms derived from

it, are highly efficient (Xie and Xie 2015). This study uses a combination of the TAPAS

and Frank–Wolfe algorithms for its primary experiments, and also uses Algorithm B (a

bush-based algorithm) to test transferability of the results.

In our analysis, we do not test any path-based algorithms. To economize on memory,

such algorithms employ ‘columndropping’ rules to store as fewpaths as possible. However,

such solutions have extremely low entropy (indeed, the most likely solution spreads flow

over asmanypaths aspossible), and thus the specific path flow solution is untrustworthy for

further analysis; see the discussion and empirical results from Bar-Gera (2006) and Bar-Gera

andLuzon (2007). Sincewewish to examine convergenceof thepath flows in the solution, it

is clearest to do sousing an algorithmwhich converges to the (unique) entropy-maximizing

path flow solution, rather than an arbitrary path flow equilibrium.

Given a feasible solution (x,h) to TAP, we select five metrics for analysis. (Since algo-

rithms for TAP converge only in the limit, we do not demand optimal solutions to the above

problems.) The total system travel time (TSTT) expresses the sumof each vehicle’s travel time

in the network:

TSTT(x) =
∑

(i,j)∈A

tijxij (10)

Vehicle-miles traveled (VMT) expresses the total distance traveledby vehicles in the network:

VMT(x) =
∑

(i,j)∈A

lijxij (11)
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To measure convergence of these metrics, we calculate the relative difference between

their values at the current solution x and the equilibrium solution x∗:

�TSTT(x) =
TSTT(x) − TSTT(x∗)

TSTT(x∗)
(12)

�VMT(x) =
VMT(x) − VMT(x∗)

VMT(x∗)
. (13)

Both TSTT and VMT are aggregate metrics. To represent convergence of the specific link

and path flows themselves, we measure the proportion of links (or paths) within a given

relative threshold ǫ of their equilibrium values. Let A∗
ǫ (x) denote the set of links with flows

within this threshold:

A∗
ǫ (x) = {(i, j) ∈ A : |xij − x∗

ij | < ǫx∗
ij }. (14)

Let �∗
ǫ (h) denote the set of paths whose flows are within this threshold:

�∗
ǫ (h) = {π ∈ �+(h∗) : |hπ − h∗

π | < ǫh∗
π }, (15)

whereh∗ is the (entropy-maximizing) solution to themost likelypath flowsproblemat equi-

librium. Note that �∗
ǫ (h) is a subset of the used path set at equilibrium. Using these sets,

we define the proportion of unconverged links (PUL) as

PUL(x, ǫ) = 1 −
|A∗

ǫ (x)|

|A|
, (16)

and the proportion of unconverged paths (PUP) as

PUP(h, ǫ) = 1 −
|�∗

ǫ (h)|

|�+(h∗)|
. (17)

Finally, we define the path set deviation (PSD) to represent how the set of used paths

converges to set of equilibrium paths by defining

PSD(h) = 1 −
|�+(h) ∩ �+(h∗)|

|�+(h∗)|
. (18)

We thus have PSD = 1 if the set of currently used paths and the set of equilibrium paths is

disjoint, and PSD = 0 if every equilibrium path is in the current set of used paths. As with

the other metrics, it should decrease to zero over successive iterations.

Both PUP and PSD are calculated with respect to the used paths at equilibrium. Some

restriction of the path set is necessary, since the number of paths grows exponentially with

network size and the vast majority of these are unused. Such paths should not be consid-

ered in our metrics, and we decided to measure PUP and PSD relative to the equilibrium

path sets to be consistent with the other metrics (which are measured relative to the equi-

librium link flows and most likely path flows). Defining PUP only based on the set of used

paths at equilibrium is important becausePUP is a relative errormeasure; anypath forwhich

h∗
π = 0 would thus appear ‘unconverged’ even with an infinitesimal flow value. This is not

a serious deficiency, because any solution placing positive flow on a non-equilibrium path

must also place the ‘wrong’ value on at least one path in �+(h∗) (by flow conservation),

which would be detected by PUP with an appropriate ǫ value.
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These five metrics – �TSTT, �VMT, PUL, PUP, and PSD – are directly related to practical

applications of traffic assignment, and converge to zero as x and h approach x∗ and h∗,

respectively. However, they are not suitable convergence criteria because they can only

be evaluated if the equilibrium link flows or most likely path flows are already known, and

there would be no need to solve TAP if this were true. Therefore, in practice convergence is

measured using information available even at intermediate solutions.

The relative gap is one suchmeasure. There are several definitions of relative gap in com-

mon practice; we use the following one for our experiments, and later discuss relationships

with its alternatives. Let κrs(x) denote the travel time on the shortest path from origin r to

destination s using the link travel times corresponding to x. The shortest path travel time

(SPTT) can then give the total travel time we would expect if all vehicles were on shortest

paths (as the UE condition requires):

SPTT(x) =
∑

(r,s)∈Z2

κrs(x)drs (19)

The gap and relative gap of a feasible solution, as defined in Rose, Daskin, and Koppel-

man (1988), are:

gap(x) = SPTT(x) − TSTT(x) (20)

and

RG(x) = −
gap(x)

SPTT(x)
=

TSTT(x)

SPTT(x)
− 1. (21)

Relative gap is non-negative, and equal to zero only at equilibrium solutions, and thus is a

valid gap function. Other gap metrics used for convergence include alternative definitions

of relative gap, average excess cost (AEC) and average total reduced cost. We next define a

variant of relative gap, the one used by Boyce, Ralevic-Dekic, and Bar-Gera (2004), and AEC,

and discuss their relationship with the RG definition of equation (21). This section contains

a brief mathematical discussion, and our results include an empirical comparison.

An alternate definition of relative gap (RG′) normalizes the gap by a lower bound on the

optimal value of the Beckmann function in equation (1). The lower bound calculated from

a particular solution is given by

LB(x) =
∑

(i,j)∈A

∫ xij(k)

0
tij(x)dx + gap(x), (22)

and the best lower bound is the tightest bound over the flow vectors x1, x2, . . . , xk seen

over successive iterations thus far:

BLB = max
k

{LB(xk)}. (23)

The relative gap is then given by

RG′(x) = −
gap(x)

|BLB|
. (24)
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The average excess cost is defined as

AEC(x) = −
gap(x)

∑

(r,s)∈Z2 drs
. (25)

Observe that the numerator of all three gap functions is the same, and they differ only in

how they are normalized. The ratio of AEC and RG equals the ratio of SPTT and
∑

(r,s)∈Z2 drs,

which is the average travel timeon the all-or-nothingassignment. As SPTT stabilizes close to

convergence, the ratio betweenAEC and RGwill approach a constant representing average

travel time.

To compare RG and RG′, we compare LB and SPTT, and see that their ratio is

LB(x)

SPTT(x)
=

∑

(i,j)∈A

∫ xij
0 tij(x)dx

SPTT(x)
+

SPTT(x) − TSTT(x)

SPTT(x)
(26)

The second term in this equation is −RG(x), which approaches zero as equilibrium is

reached. To analyze the first term,wenote that SPTT(x) andTSTT(x)becomeasymptotically

equal, and so

∑

(i,j)∈A

∫ xij
0 tij(x)dx

SPTT(x)
≈

∑

(i,j)∈A

∫ xij
0 tij(x)dx

∑

(i,j)∈A xijtij(xij)
. (27)

On the right-hand side of equation (27), both the numerator and denominator include a

sum over links. For any specific link, the difference between its term in the numerator and

its term in the denominator is illustrated in Figure 1, which shows a typical link performance

function. The hatched area is the term in the numerator, whereas the area of the rectangle is

its term in the denominator. We see visually that these two areas are approximately equal.

To compare them numerically, consider a link for which tij = t0ij (1 + 0.15(xij/uij)
4), where

t0ij and uij are its free-flow time and ‘practical capacity’, respectively.1 When the link is used

relatively heavily (xij = uij), the ratio between the areas is 0.89. Even when the link is highly

Figure 1. Visualization of RG and RG′ ratio term.



TRANSPORTMETRICA A: TRANSPORT SCIENCE 1253

congested (xij = 1.5uij), the ratio between the areas is 0.65, and the areas are of the same

order of magnitude. We thus expect the ratio LB(x)/SPTT(x) to be fairly close to one, and

thus RG and RG′ to have a similar order of magnitude.

To summarize, we expect our results for RG (which will be given in terms of order of

magnitude) to translate more or less directly to RG′, although the specific numerical value

may differ by up to 30%. To translate them to AEC, onemust multiply by the average travel

time in the network (whose order ofmagnitude can be estimated apriori). If travel times are

reported in minutes and the network represents a typical metropolitan region, we would

expect the AEC for a given solution to be one to two orders of magnitude higher than

the RG, and our results can be adapted accordingly. Our experiments below validate this

analysis numerically.

3. Data and experiment design

The main objective of this paper is to determine the relationship between �TSTT, �VMT,

PUL, PUP, and PSD (which carry more practical meaning) and the corresponding RG level

(which can be calculated without knowing the equilibrium solution). We choose to index

these results to relative gap, rather than iteration count or another measure of progress,

because gap functions serve as an absolute measure of convergence that can be applied

regardless of algorithm or parameter settings.

This section explains the procedureswe used to determine the relationship between the

five convergence metrics and relative gap. We first discuss the networks and algorithms

used, and choices of specific parameters. We next discuss how we obtained solutions of a

particular relative gap level for analysis.

The networks studied in this paper are shown in Table 1, all obtained from the Trans-

portation Networks for Research repository (Stabler 2019). For ease of reference, we cate-

gorize the networks roughly by size: Sioux Falls through Anaheim are designated as small,

Chicago Sketch through Terrassa are designated as medium, and the remaining networks

are designated as large. The last column in this table shows the average equilibrium flow-

to-capacity ratios, excluding centroid connectors. We consider networks with ratios of less

than 0.5 to be uncongested, with ratios between 0.5 and 1.0 to be semi-congested, and net-

works with ratios greater than 1.0 to be congested. The Terrassa network is a clear outlier in

this regard, assigning over 25 million trips in a region whose current population is around

Table 1. Description of networks used.

Network name Zones Links Nodes Trips

Average flow-
to-capacity

ratio

SiouxFalls 24 76 24 360,600 1.612
Eastern-Massachusetts 74 258 74 65,576 0.163
Anaheim 38 914 416 104,694 0.297
Chicago-sketch 387 2950 933 1,260,907 0.257
Berlin-Prenzlauerberg-Center 98 2184 975 23,648 0.121
Barcelona 110 2522 1020 184,679 1.137
Winnipeg 147 2836 1052 64,784 2.028
Terrassa 55 3264 1609 25,225,700 5.964
Austin 7388 18,961 7388 739,351 0.875
Berlin-Center 865 28,376 12,981 168,222 0.092
Chicago-Regional 1790 39,018 12,982 1,360,427 0.522
Philadelphia 1525 40,003 13,389 18,503,872 0.949
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200,000, resulting in a flow-to-capacity ratio of almost 6.While such ademand levelmaynot

be realistic, we nevertheless include this network as a ‘stress test’ to seewhether consistent

trends can be seen even in extremely congested networks.

Calculating�TSTT,�VMT, PUL, PUP, andPSD requires theequilibrium link flowandmost

likely path flow solutions. Near-equilibrium link flows x∗ and proportional path flows h∗

were obtained using the TAPAS implementation by Perederieieva et al. (2015) (with default

settings for TAPAS parameters used to determine cost-effective PAS and flow-effective

PAS), setting a relative gap of 10−12 as the termination criterion. Our experimentswill cover

solutions over a range of gap levels between 10−3 and 10−8. Over this range, we expect the

distinction between using our reference solution with a gap of 10−12, and an exact equilib-

rium, to be small. For calculating the proportions of unconverged links and unconverged

paths, we chose a threshold of ǫ = 0.01, to be consistent with Boyce, Ralevic-Dekic, and

Bar-Gera (2004). (The results contain a sensitivity analysis with respect to this parameter.)

All experiments were conducted on a machine with Ubuntu 18.04, 8 GB of memory and

Intel i5 processor @ 3.30GHz.

Our analysis involves solutions at six target gap levels: 10−3, 10−4, 10−5, . . . , 10−8. To

facilitate comparison between different networks, we obtained solutions on each network

whose relative gap was within 10% of these levels (e.g. between 0.0009 and 0.0011 for

10−3). Obtaining solutions on each network with such specific gap levels is not trivial, since

algorithms for TAP are designed to reach equilibrium as rapidly as possible, and not aim for

a specific nonzero gap level. Therefore, we used the procedure described below to gener-

ate solutions at a specified target gap level γ . This procedure involves a hybrid of the TAPAS

implementation described above, and an implementation of Frank–Wolfe (Boyles 2019)

with ten bisection iterations per flow shift.

(1) Run TAPAS with a termination criterion of γ as relative gap. If the solution is in the

acceptable range [0.9γ , 1.1γ ], return the link flows x and path flows h, along with the

values of �TSTT, �VMT, PUL, PUP, and PSD.

(2) If the returned solution has a gap level less than 0.9γ , examine the solution from the

previous iteration to see if it is in the acceptable range [0.9γ , 1.1γ ]. If so, return the link

and path flows, and the five metrics, for that solution.

(3) If neither of the above solutions is in the acceptable range, initialize Frank–Wolfe with

the TAPAS solution from the previous iteration. Perform iterations of Frank–Wolfe until

the gap is in the acceptable range [0.9γ , 1.1γ ], and return that solution and the corre-

spondingmetrics. Frank–Wolfe is used due to its relatively slow solution improvement,

which leads to flow values within the desired gap range without ‘skipping over’.

This process is repeated for each network and target gap level. This procedure worked for

all but seven scenario-RG value combinations, due to the Frank–Wolfe algorithm in the last

step jumping over the acceptable gap range. In these remaining cases, we repeated the

last step, restarting Frank–Wolfe algorithm with the prior flow pattern, but fewer bisection

iterations.

Our experiments are divided into the following analyses:

(1) Identify the convergence rates of TSTT, VMT, and path/link flows to their equilibrium

values using the procedure described above. We use both the base demand levels and
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adjusteddemand levels to studyhowcongestion levels affect the convergenceof these

metrics. (This set of experiments is the most extensive, and is used as the basis for our

core recommendations.)

(2) Repeating the analysis using Algorithm B (Dial 2006) to investigate transferability of

results to algorithms besides TAPAS.

(3) Repeating the analysis in a setting with toll roads and two user classes with distinct

values of time.

(4) Investigating the effect of different convergence levels when evaluating candidate

solutions as a subproblem in network design, a bilevel program.

(5) Comparison of the alternative gap measures RG, RG′, and AEC so results can be trans-

lated appropriately. The intent is to numerically validate the mathematical analysis in

the previous section, which involved several approximations.

For the second set of experiments, we used our own implementation of Algorithm B; the

source code is available at Boyles (2019). Aggregate metrics (TSTT, VMT) and PUL were cal-

culated from these experiments. The path-basedmetrics PUP and PSDwere not calculated,

since Algorithm B does not aim to maximize entropy or provide a proportional path flow

solution.

For the third set of experiments, we introduced two user classes distinguished by their

value of time ($15/h and $30/h), and used the toll values given in the network instances,

where present. For networks without toll roads, we randomly selected 10% of links to be

tolled. These experiments used Algorithm B, as our implementation supports multi-class

assignment and the available TAPAS implementation does not.

For the fourth set of experiments, we formulated a network design problem, in which a

discrete set of links had to be chosen for “upgrade’. An upgrade increased a link’s capacity

by 50%, and had a cost proportional to its length. The budget allowed upgrading up to 5%

of the total length of all links, and the objective is to minimize TSTT subject to equilibrium

constraints. This is a classic bilevel problem which is intractable to solve exactly. We thus

solved it heuristically, using the genetic algorithm implementation in the pyeasyga library

(Remi-Omosowon 2020). Such an algorithm involves solving a number of TAP instances

as subproblems to evaluate fitness of candidate solutions. We used the default values for

parameters in this library. For each network, we varied the RG level used for evaluating the

TAP fitness function. Each combination of objective function and RG level was solved five

times, and average performance reported.

For the fifth set of experiments, we calculate RG, RG′, and AEC for the solutions obtained

in the previous analyses, and conduct a linear regression to investigate whether RG ≈ RG′,

and that RG and AEC differ by a nearly constant multiplicative factor, as was suggested by

the approximate mathematical analysis in the previous section.

4. Results

This section reports the results from the experiments described above. Each set of results

is presented in its own subsection. Experiment 1 forms the core of our analysis, and is

described in the greatest detail. The remaining experiments are described more briefly,

highlighting key differences from the core analysis results. The Appendix to the paper

contains detailed results, separated for each of the 12 networks under consideration. The
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Figure 2. Stabilization behavior of metrics at default demand, small networks.

figures and tables in this section present summaries of this data, presenting the most

important findings from each experiment.

4.1. Experiment 1: Networkmetric behavior results

The values of themain convergencemetrics (�TSTT,�VMT, PUL, PUP, and PSD) are shown

in Figures 2–4 (presented according to network and size), and in Figures 5–9 (presented

according to each metric). In the latter set of figures, the thin lines represent the values of

eachmetric in one of the twelve networks tested, and the thick line represents the average

value. Both sets of figures use logarithmic axes both for the relative gap, and for eachmetric,

to focus on the orders of magnitude in these values. Table 2 shows the numerical values of

the metric means, as well as the highest and lowest values seen at a particular level across

all networks. The raw data, containing the specific values for over all twelve networks, is

found in the Appendix (Table A1).

All five metrics converged at roughly similar rates, despite significant differences in the

size and congestion level of the networks tested. This is encouraging from the standpoint

of providing transferable, practical advice on convergence thresholds.

In all of the networks, the aggregate metrics (TSTT and VMT) are already very near sta-

bilization at a relative gap of 10−3. For the small and medium networks, these values are

within 1% of the equilibrium values when the relative gap is 10−4, and for the large net-

works, they are within 2%. Both �TSTT and �VMT converge at roughly similar rates, but

�VMT is usually slightly lower at a particular gap level. We believe this is because the link
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Figure 3. Stabilization behavior of metrics at default demand, medium networks.

Figure 4. Stabilization behavior of metrics at default demand, large networks.
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Figure 5. �TSTT trends for different gap levels.

Figure 6. �VMT trends for different gap levels.

lengths are constant, and thus only the flows are changing between iterations when cal-

culating VMT. By contrast, the calculation of TSTT involves flows and travel times, both of

which are changing.

The proportion of unconverged linkswas themetric originally studied by Boyce, Ralevic-

Dekic, and Bar-Gera (2004) for the Philadelphia regional network. They found that a gap of

10−4 was required to approach convergence for freeway links, defining convergence as a

PUL of 1% or less. To achieve this level of convergence for arterial links as well as freeway
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Figure 7. PUL trends for different gap levels.

Figure 8. PUP trends for different gap levels.

links, a relative gap of 10−5 was needed. Our results show that this latter conclusion gener-

ally holds across the other networks tested, and that 99%of link flows are accurate towithin

1% of equilibrium values at this gap level.

Link flow behavior for multiple ǫ thresholds can be seen in Figure 10. Trends are similar

within network size grouping, and variations therein are caused by differing congestion

levels. For instance, Austin and Philadelphia show a similar proportion of links in various
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Figure 9. PSD trends for different gap levels.

Table 2. Metric stabilization behavior data (average) using TAPAS.

relative error regimes, but Winnipeg and Chicago Sketch differ due to higher congestion

on the Winnipeg network. This also relates to the relationship between congestion level

and stabilization, explored later.

The remaining twometrics (proportionof unconvergedpaths andpath set deviation) are

the last to stabilize. Relative gap levels of 10−6were neededbefore thesemetrics decreased

to 1% or less. We believe this occurs because the number of used paths grows quickly with

network size. For instance, in the Philadelphia network, the equilibrium solution uses over

300 million paths. Most of these paths necessarily have small flow, and changes in even a

single link will change the flows across many paths.
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Figure 10. Link flow trends for various ǫ thresholds.

Table 3 shows how the values of PUP vary across networks for different choices of ǫ, for

a fairly converged solution of RG = 10−6. This allows us to see the distribution of path con-

vergence, similar to Figure 10 for links. We see that virtually all paths (≈98%) are within 1%

of their equilibrium values; almost all (≈95% or more) are within 0.1% of their equilibrium

values; and the significantmajority (>85%) arewithin 0.01%. A negligible number of paths

(roughly one in a thousand) remain more than 10% from their equilibrium values.

Table 4 provides the entropy values for Chicago-Regional and the Philadelphia networks

at various RG levels. The entropy values show a clear increasing and convergent trend

towards the final entropy value for each network-algorithm pair. Thus, as the network flow

stabilizes, it tends to increase entropy, regardless of the algorithm used. As path flow pat-

terns are intricately linked to entropy values, it stabilizes to within 1% of the convergence

value at a RG level of 10−6 and below, in line with the observed behavior of PUP and PSD

metrics.
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Table 3. PUP sensitivity analysis w.r.t. ǫ.

Table 4. Entropy values for varying RG values.

Chicago-regional Philadelphia

Relative gap AlgB TAPAS AlgB TAPAS

10−3 370,682.16 850,027.30 2,609,915.27 4,797,572.35
10−4 380,578.59 863,914.76 2,654,382.74 4,958,732.03
10−5 389,116.51 885,997.08 2,724,551.75 5,054,152.48
10−6 395,337.48 898,332.39 2,783,409.60 5,137,311.26
10−7 397,353.30 908,074.29 2,793,543.55 5,189,488.01
10−8 397,600.29 919,463.21 2,794,690.11 5,218,702.51
10−12 397,654.25 920,159.60 2,794,750.93 5,226,184.24

Table 5. Used paths (in millions) for various relative gap values.

We further investigate how path flows converge on the largest networks, by showing

how the number of used paths stabilizes on the Chicago Regional and Philadelphia net-

works at convergence levels up to 10−12 relative gap. This is shown in Table 5. We see

that the number of used paths increases with the solution precision, but that this number

appears to converge, perhaps to the number of used paths at the exact equilibrium.
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Table 6. Metric stabilization behavior data (average) for Algorithm B.

4.2. Experiment 2: AlgorithmB comparison

The second experiment was performed using Algorithm B, to test transferability of the

results to other traffic assignment algorithms. The results are summarized in Table 6, which

compares the average values of each metric between TAPAS and Algorithm B.

The full data from these results are shown in Tables A2 (raw data for Algorithm B) and A3

(for a side-by-side comparison). The path-based metrics are not computed or compared

in this experiment, since Algorithm B does not attempt to provide a most likely path flow

solution, and therefore its path flow results cannot be fairly compared to those of TAPAS

(and indeed should not be used in practice, as with any other path flow solution which

does not have high entropy).

The trends are very similar between the two algorithms, and the values of each metric

are always of the same order of magnitude, and almost always nearly identical numerically.

This finding is encouraging, suggesting that the conclusions of Experiment 1 are applicable

to other algorithms, and that the relative gap is a good universal measure of convergence,

regardless of the specific assignment algorithm.

4.3. Experiment 3: Heterogeneous driver results

The third experiment divided the travel demand into two groups with different values

of time, introducing tolls on 10% of the network links. Table 7 compares the values of

each metric between the base case (Experiment 1) and this two-class setting. Raw data is

shown in Table A4. Since these experiments were performed using our implementation of

Algorithm B, path-basedmetrics are not computed or compared for the same reasons as in

Experiment 2.

All threemetrics behave extremely similar to single-class AlgorithmB experimentmetric

behavior, indicating that the presence of multiple user classes does not significantly affect

the convergence rates of these metrics.

4.4. Experiment 4: Network design application results

Our fourth experiment investigated the effects of subproblem precision in the network

design problem, a bilevel program. In this experiment set, we varied the RG threshold used
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Table 7. Metric stabilization behavior data (average) for single-class and multi-class Algorithm B.

Figure 11. Network design performance with varying RG levels.

in the TAP solutions used in the lower level of this optimization problem, ranging from10−3

to 10−8), for minimizing TSTT. The resulting solutions at the end of the heuristic were then

evaluated to a gap of 10−8 to compare their performance with a ‘benchmark’ solution to

the network design problem with solved all of its subproblems to a gap of 10−8.

Figure 11 shows the gap between the objective function values with the subproblems

solved at a looser gap to thosewith 10−8 (measured by the percentage difference), and the

computation times (reported as the fraction of time takenwhen solving all subproblems to

10−8). The plotted values are averaged over five solutions of the genetic algorithm, which

operates randomly.
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Table 8. Regression of RG′ and AEC with RG.

RG
′ AEC

Network Coefficient Intercept R
2 Coefficient Intercept R

2

Sioux Falls 0.716 0.000 0.999 22.301 0.000 0.999
Anaheim 1.023 0.000 0.999 6.923 0.000 0.999
Chicago Sketch 0.968 0.000 0.999 27.565 0.000 0.999
Barcelona 0.913 0.000 0.999 8.935 0.000 0.995
Austin 1.008 0.000 0.999 7.819 0.000 0.998
Philadelphia 0.974 0.000 0.999 18.276 0.000 0.999

For the higher convergence levels, there was no objective function gap, because the

best-found solutions involved expanding the same set of links as in the solution for a gap of

10−8. At these gap levels (around 10−6 or 10−7), therewas no advantage in solving the sub-

problems further. When the subproblems are solved to a relative gap of 10−4 or tighter, the

objective function was within 2% of the benchmark value, and run times were decreased

by 40–60%. This may be acceptable in certain applications, given the uncertainty in other

components of the planning process (model specification, demand forecasting, etc.).

4.5. Experiment 5: Gap function comparison

The fifth experiment set compared the values of three gap functions for the solutions

obtained in the previous experiments: RG, RG′, and AEC. Linear regressionswere performed

on RG′ vs. RG, and AEC vs. RG, with the results shown in Table 8.

The twodefinitionsof relativegap (RG′ andRG) arenearly identical, as shownbyR2 values

greater than 0.999, an intercept of essentially zero, and a coefficient close to one. This con-

firms the analysis at the end of Section 2, and suggests that our conclusions can be equally

applied regardless of which relative gap definition is being used.

We also observe that the ratio between AEC and RG is essentially constant within each

network (R2 > 0.99 and essentially zero intercept). As expected, this constant differs by net-

work, as it reflects the average travel time on the shortest path available to travelers. For

the sizes of networks used in common practice, and for the common choice of minutes as

the unit for travel time, we see that AEC is roughly an order of magnitude larger than RG.

This suggests that our conclusions can be readily transferred to the AEC gap measure by

translating them accordingly.

5. Conclusions

We studied the convergence rate of five metrics as the relative gap reduces over succes-

sive iterations of traffic assignment, in twelve networks of varying size and congestion

levels. Across these networks, we observed trends for network metric behavior which are

summarized below:

• The aggregate metrics (total system travel time and vehicle-miles traveled) were within

1% of their equilibrium values once the relative gap was below 10−4 (earlier for smaller

networks)
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• Link flows achieved stability (less than 1% of the links more than 1% away from equilib-

rium values) at a relative gap of 10−5.

• Path flows and the sets of used paths stabilized later, at a relative gap of 10−6.

• The above conclusions were seen whether TAPAS or Algorithm B was used to solve for

equilibrium, and for both single and two-class assignments.

• In thenetworkdesignproblem, solving the subproblems to agap level of 10−4 insteadof

10−8 increased the objective function value by less than 2%, but decreased computation

time by 40–60%.

• There are strong linear relationship between RG, RG′ and AEC (R2 > 0.99). This indicates

the transferability of results between different gapmetrics: RG and RG′ can essentially be

used interchangeably, whereas AEC differs from RG by a constant multiple representing

average travel time.

Themain limitations of thework are (1) that we propose no underlying theory to explain

these findings, but present the analysis empirically; and (2) thatwe restrict our investigation

to absolute levels of accuracy, as if a point prediction were sought for a single scenario in

isolation. It is also unclear whether this guidance can be generalized to other trafficmodels,

such as dynamic traffic assignment.

Future research should address all of these issues. In particular, regarding (1), the consis-

tent convergence trends across very different networks (spanning several orders of mag-

nitude in both size and congestion level) suggest that there may be a more fundamental

relationship between relative gap and these metrics. It may be possible to derive analyt-

ical relationships describing such a relationship, at least in stylized settings that roughly

approximate practical traffic networks. While the current empirical results span a variety of

network sizes and congestion levels to provide meaningful trends and useful guidelines to

practitioners and researchers, theoretical bounds shall help generalize the findings of this

study.

Regarding (2), another common application involves comparison of multiple alterna-

tives or scenarios, where it is important to determine a stable ranking (or at least a preferred

alternative). It would be valuable to see what gap levels are needed before project rank-

ings become stable, although such a gap level would depend critically on how distinct the

project impacts are, and a careful investigation is needed to account for this factor.

Note

1. This is the commonly used Bureau of Public Roads function with standard values for its shape

parameters Bureau of Public Roads (1964).
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Appendix. Raw data

Table A1. Metric stabilization behavior using TAPAS.

Table A2. Metric stabilization behavior data using Algorithm B.
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Table A3. Metric stabilization behavior comparison between TAPAS and Algorithm B.

Table A4. Metric stabilization behavior data for multi-class assignment.


