
Acta Biomaterialia 112 (2020) 29–51 

Contents lists available at ScienceDirect 

Acta Biomaterialia 

journal homepage: www.elsevier.com/locate/actbio 

Review article 

Past, Present, and Future of Affinity-based Cell Separation Technologies 

Kaitlyn Bacon 
a , † , Ashton Lavoie 

a , † , Balaji M. Rao 
a , c , Michael Daniele 

b , Stefano Menegatti a , c , ∗

a Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA 
b Joint Department of Biomedical Engineering, North Carolina State University – University of North Carolina Chapel Hill, North Carolina, United States 
c Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA 

a r t i c l e i n f o 

Article history: 

Received 27 March 2020 
Revised 29 April 2020 
Accepted 5 May 2020 
Available online 19 May 2020 

Keywords: 

Cell purification 
Immunoaffinity 
MACS 
FACS 
Microfluidics 

a b s t r a c t 

Progress in cell purification technology is critical to increase the availability of viable cells for therapeu- 
tic, diagnostic, and research applications. A variety of techniques are now available for cell separation, 
ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtra- 
tion, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence- 
assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice 
of cell purification method is crucial, since every method offers a different balance between yield, purity, 
and bioactivity of the cell product. For most applications, the requisite purity is only achievable through 
affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and 
current methods for developing cell-targeting affinity ligands and their application in cell purification, 
along with the benefits and challenges associated with different purification formats. We further present 
new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improv- 
ing the viability and throughput of cell products for tissue engineering and regenerative medicine. Our 
comparative analysis provides guidance in the multifarious landscape of cell separation techniques and 
highlights new technologies that are poised to play a key role in the future of cell purification in clinical 
settings and the biotech industry. 

Statement of significance 

Technologies for cell purification have served science, medicine, and industrial biotechnology and 
biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting 
the scope and relevance of all known methods for cell isolation, old and new alike. The first section cov- 
ers the main classes of target cells and compares traditional non-affinity and affinity-based purification 
techniques, focusing on established ligands and chromatographic formats. The second section presents 
an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially 
focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, 
the third section presents an overview of new technologies and emerging trends, highlighting how the 
progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high- 
throughput and high-purity cell isolation processes. This review is designed to guide scientists and engi- 
neers in their choice of suitable cell purification techniques for research or bioprocessing needs. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

The ability to sort cells into distinct, mono-disperse popula- 
tions is crucial to advance our knowledge of specific phenotypes, 
and explore their potential in tissue engineering and regenerative 
medicine [ 1 , 2 ]. Efficient cell separation is therefore paramount in a 
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multitude of fields, including personalized cell therapy [3-6] , organ 
recellularization [7-11] , diagnostics and disease monitoring [12-17] , 
drug discovery [18-22] , and basic cell biology [23-25] . To meet the 
growing demand for highly pure cell products, there has been con- 
siderable effort to develop efficient and high-throughput separa- 
tion methods. As a result, a multitude of techniques have emerged, 
which are classified into separations by (i) physical characteristics 
( i.e. , cell volume and shape, density, and light scatter properties 
or fluorescence), (ii) surface properties ( i.e. , electrical charges, hy- 
drophobicity, etc.) and cell constituents ( i.e. , such as nucleic acids, 

https://doi.org/10.1016/j.actbio.2020.05.004 
1742-7061/© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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Fig. 1. Cell properties and corresponding purification techniques. 

Fig. 2. Cell purification technologies. 

enzymes and other proteins), and (iii) adherence/affinity features 
[26-29] ( Fig. 1 ). 

When supplying cells for therapeutic applications, separation 
technologies must meet analytical benchmarks and regulatory 
compliance [30-32] . Consistency in product quality, in terms of cell 
viability and phenotype purity, is highly controlled to ensure prod- 
uct efficacy and patient safety [33-35] . The presence of adventi- 
tious agents is also rigorously monitored, and all processing steps 
must be compatible with sterility requirements [ 33 , 36 , 37 ]. 

Affinity-based separations have emerged as the main technol- 
ogy for cell isolation, as they meet the demand for high yield and 
purity, together with scalability and sterility [ 27 , 38 ]. After three 
decades of developments, however, a systematic review is needed 
to recapitulate the diversity and complexity of affinity-based cell 
separation technologies and guide new users through the selec- 
tion of appropriate purification methods. To this end, we present 
a comprehensive survey of affinity-based methods for cell purifi- 
cation, including traditional chromatographic techniques to more 
recent, non-chromatographic or pseudo-chromatographic systems 
( Fig. 2 , Table 1 ). These methods employ a variety of biorecognition 
agents for capture, ranging from traditional protein ligands to syn- 
thetic binders. Through this comparison, we also aim to identify 
emerging opportunities for improving the manufacturing of cells 
for tissue engineering and regenerative medicine. 

2. Cells of interest 

A list of clinically relevant cell products is provided in Fig. 3 . 
The isolation of erythrocytes is a prerequisite for estimating ery- 
throcyte aging [39] and diagnosing conditions such as anemia 
[40] as well as vascular [41] and neurodegenerative diseases 
(Alzheimer’s and Parkinson’s) [ 12 , 42 ]. Similarly, the isolation of 
lymphocytes is needed when assessing immune activation [ 13 , 14 ], 
and as such, these cells are valuable in diagnosing or studying 
HIV infections [43] , autoimmune diseases [44] , post-operative in- 
fections [45] , transplant rejection [46] , and graft-versus-host dis- 
ease (GvHD) [ 47 , 48 ]. Mast cells (MCs) also represent a relevant 

class of targets, especially for studying innate immune response, 
as their specific role in vivo is still unclear; while often associ- 
ated with allergic response, specifically anaphylaxis, and hypersen- 
sitivity reactions [ 49 , 50 ], MCs have also been found to have sig- 
nificant roles in a host’s defense against infections [51-53] , angio- 
genesis during pregnancy [54] , wound healing [ 55 , 56 ], and autoim- 
mune diseases [57] . Obtaining pure mast cell isolates has the po- 
tential to greatly improve our knowledge of disease mechanisms 
through the study of mast cell activation and immune response 
stimulation [ 58 , 59 ]. Stem and progenitor cells are key ingredients 
in regenerative medicine and developmental biology, where they 
are used to reconstruct decellularized organs or to seed scaffolds 
for tissue and organ engineering [ 7 , 9 , 60 ]. For these reasons, stem 

cells have shown promise to help relieve the shortage of transplant 
organs [ 61 , 62 ], to treat a number of conditions including macular 
degeneration [63] and Parkinson’s disease [ 64 , 65 ], or as a therapy 
to repopulate heart tissue after myocardial infarction [ 66 , 67 ]. The 
isolation of stem cells involves an additional challenge compared 
to common cell purification, as undifferentiated cells must be re- 
moved prior to implantation to reduce the risk of teratoma forma- 
tion [ 68 , 69 ]; with an average of 10 7 - 10 9 cells being required for a 
transplant [ 70 , 71 ], even a 0.1% impurity level can result in a load of 
10 6 undifferentiated cells and teratoma formation [ 72 , 73 ]. Several 
technologies have been developed for stem cell purification based 
on cell phenotype, including density-gradient separation [ 74 , 75 ], 
fluorescence-activated cell sorting (FACS) [ 73 , 76 , 77 ], and metabolic 
selection [78] . Improved cell purification techniques would also be 
beneficial to detect and monitor circulating tumor cells [ 79 , 80 ] and 
pathogen infections [81] . It is in fact particularly difficult to isolate 
circulating tumor cells due to their rarity ( ∼ 1 circulating tumor 
cell per 10 8 red blood cells [82] ). Additionally, cell separation tech- 
niques have been used to remove virus-infected cells from a pa- 
tient to reduce their overall viral load, as shown with malaria and 
hepatitis C [83-87] . Improved pathogen infection detection is not 
only beneficial for human related infections like those caused by 
HIV [ 88 , 89 ], but also for the monitoring of food-related pathogens 
[90-92] . 
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Table 1 

Comparison of physical (non-affinity) and affinity-based cell separation techniques. 
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Fig. 3. Cell targets and their diagnostic or therapeutic applications. 

3. Non-affinity methods 

Outside of affinity-based methods, cell separation is typically 
based on the physical properties of cells [ 93 , 94 ]. These methods 
include density gradient centrifugation [95-100] , dielectrophore- 
sis [101-105] , field-flow fractionation [ 102 , 106-111 ], filtration [112- 
118] , and elutriation centrifugation [119-123] . While useful for pri- 
mary enrichment, these methods lack the specificity and resolu- 
tion to achieve the levels of purity required for therapeutic and 
analytical applications [ 93 , 94 , 124 , 125 ], and typically afford low 

yield for rare cell types [ 107 , 126 ]. To overcome these limitations, 
affinity-based methods have been implemented to improve re- 
covery and purity [ 29 , 127-131 ]. These rely on the specific recog- 
nition and binding of a cell surface target by a complementary 
molecule, called ligand , immobilized on a suitable carrier or surface 
[ 132 , 133 ]. Protein ligands, especially antibodies, are currently the 
major workhorse in affinity-based cell purification, owing to their 
high capture strength and selectivity [134-137] . Biological ligands, 
however, are expensive and often suffer from low biochemical sta- 
bility. Furthermore, their strong binding often makes the elution 
of cells challenging [ 133 , 138 , 139 ]. Thus, improvements in affin- 
ity methods are needed to enable therapeutic and analytical ap- 
proaches that rely on consistent and cost-effective cell purification. 
The main channels of innovation are (i) the identification of cost- 
effective synthetic affinity or pseudo-affinity ligands for replacing 
biological ligands, (ii) the development of purification formats that 
improve upon classic chromatography originally designed for pro- 
tein purification, and (iii) the determination of unique surface re- 
ceptors on the target cells that are appropriate for use as affinity 
targets to ensure high phenotypical purity of the cell product. 

4. Conventional Affinity Ligand Formats and Selection for Cell 

Separation 

In cell separations, ligands bind proteins that are ideally unique 
or overexpressed on the cell membrane of the population of inter- 
est. Three ligand families are currently the most employed in cell 
separation: antibodies, proteins, and lectins. More recently, how- 
ever, novel synthetic ligands have emerged as promising and cost- 
effective alternatives. In this section, conventional ligands used for 
cell separation are described as well as the desired ligand proper- 
ties to achieve successful cell purification. 

4.1. Cell properties that determine the outcome of affinity-based cell 

purification 

Cell sorting relies on the identification of a target receptor on 
either the cell phenotype of interest (positive cell enrichment) 
or the background cells (negative cell enrichment) [ 13 , 14 , 140 , 141 ], 
based on the target’s abundance on the cell surface, the hetero- 

geneity of cell population, and the requirements for the final cell 
product [142-144] . Typically, each receptor forms only ∼ 0.01% of 
the total membrane protein content [ 145 , 146 ], although proteins 
considered of “low-abundance” can be considerably less, as occurs 
on T or B lymphocytes [147] . The difficulty in identifying unique 
biomarkers for a target cell phenotype complicates the separation 
process and renders the assessment of cell product purity challeng- 
ing [ 140 , 148-150 ]. Cell surface receptors may vary among donors 
and different tissues isolated from an individual donor [151-153] . 
This heterogeneity complicates the selection of target cell markers 
for affinity purification and has slowed considerably the study of 
certain cell classes. This has particularly been the case for mast- 
cells [ 51 , 53 , 56 ], whose purification by affinity is predominantly 
based on CD117 (c-Kit) targeting, although this receptor is not spe- 
cific to mast cells and is present in many stem cell phenotypes 
[154] . For target cells featuring a particularly low surface density 
of unique receptors, negative enrichment is the preferred strategy 
[ 13 , 155-157 ]. When low expression level is combined with low tar- 
get cell abundance, microfluidic devices integrating negative selec- 
tion strategies and physical separation methods ( e.g. , fluid, elec- 
tric, or magnetic field) represent the technology of choice [ 156 , 158- 
160 ]. 

Additional considerations when selecting the target receptor 
come from the biochemical effects that occur upon receptor 
binding. External cell receptors are inherently connected to cell 
metabolism, and ligand/receptor interactions can trigger undesired 
events such as internalization of the receptor, metabolic alteration, 
and even differentiation, in the case of stem cells [ 151 , 152 , 161 ]. 
Metabolic changes caused by affinity binding have been observed 
on mast cells enriched by targeting c-kit and Fc εRI; while utilized 
for the positive selection of mast cells, these markers are crucial in 
IgE activation and are likely to impact cellular metabolism [ 58 , 162 ]. 

Ligand selection must also take into account both kinetic ( k on 
and k off) and thermodynamic (K D ) binding parameters [163-166] . 
Binding strength (K D ) is crucial to ensure product purity, and, in 
the case of positive selection, to ensure that the target cells can be 
eluted from the affinity adsorbent. High-affinity ligands (low K D ), 
while binding target cells specifically, make cell elution difficult, 
whereas low-affinity ligands (high K D ), while allowing for easier 
elution, may not provide sufficient throughput. Thus, an ideal affin- 
ity ligand offers a balance between specific binding and effective 
elution [133] . Furthermore, quantifying cell adsorption in terms of 
K D only is not accurate, due to multi-point interactions between a 
target cell and multiple immobilized ligands known as avidity. Cell 
size, aspect ratio, and receptor density can be used to estimate the 
number of interactions per cell, and to select an appropriate ligand 
density for a given value of K D [ 167 , 168 ]. Finally, cell elution con- 
ditions are also crucial, as they strongly affect the viability of the 
recovered cells [138] . Elution can be achieved (i) non-specifically, 
by manipulating the salt concentration, pH, or temperature, or (ii) 
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Fig. 4. Cell immunoaffinity chromatography. (A) Contacting a mixture of cells with the affinity substrate (e.g., an immunoaffinity adsorbent); (B) Removing the unbound cells 
by washing; (C) Eluting the target cell. 

specifically, by using eluents that inhibit the ligand-cell interac- 
tions [ 139 , 140 ]. Non-specific methods can damage the cells, while 
specific methods tend to be expensive. To overcome these issues, 
specific elution methods using multivalent competitive inhibitors 
have been presented, which have shown increased cell recovery 
compared to monovalent inhibitors [ 139 , 169 ]. 

4.2. Antibodies 

“Immunoaffinity”, i.e. the use of antibodies as affinity ligands 
( Fig. 4 ), has been widely applied for cell purification, owing to the 
antibodies’ binding selectivity and ability to operate effectively un- 
der physiological conditions [ 93 , 150 , 170-175 ]. Following the sem- 
inal work by Peterson [176] and Wigzell [ 177 , 178 ], immunoaffin- 
ity has been employed to purify a wide variety of cells, includ- 
ing pathogenic bacteria [179] , lymphocytes [180-185] , mast and in- 
flammatory cells [ 186 , 187 ], neural cells [ 188 , 189 ], and stem cells 
[190-192] . Recently, antibody fragments, such as Fabs and scFvs, 
have been utilized as ligands in lieu of whole antibodies, as they 
possess the same binding activity while being produced more af- 
fordably [ 193 , 194 ]. The strength of the interaction between the an- 
tibody and target protein, however, requires harsh elution condi- 
tions that may impact the cells’ viability. To address this issue, elu- 
tion strategies have included competitive elution [ 181 , 195 , 196 ] and 
cleavable linkers [ 197 , 198 ]. 

4.3. Protein A/G 

Another antibody-based method for cell isolation relies on Pro- 
tein A and Protein G, two antibody-binding proteins expressed re- 
spectively by Staphylococcus aureus and group C and G Streptococ- 
cal bacteria [199] . In Protein A/G-based methods, a cell mixture 
is incubated with a receptor-specific antibody and passed through 
a Protein A/G-linked adsorbent [200-205] , where the antibody- 
labeled cells are selectively retained ( Fig. 5 ). As the binding to Pro- 
tein A/G is less impacted by steric hindrance than binding to im- 
mobilized antibodies directly, this variant of immunoaffinity cell 
chromatography is more efficient, and has been demonstrated in 
different formats, such as rosetting [ 206 , 207 ] and solid-phase chro- 
matography [ 201 , 208 ]. 

4.4. Protein and synthetic antigens 

Antigens represent a broad class of ligands ranging from pro- 
teins to small synthetic molecules [ 93 , 171 , 209-211 ]. The use of 
antigenic ligands for purifying white cells has been pioneered by 
Wigzell et al. , who isolated immunized mouse lymph node cells 
using glass and plastic beads functionalized with human serum al- 
bumin, bovine serum albumin, and ovalbumin with yields between 

60-95%, but poor enrichment (2.5-fold) [212] . Later work on lym- 
phocytes has utilized enzyme-substrate interactions to isolate lym- 
phocytes raised against enzyme antigens [213] . To purify enzyme- 
binding lymphocytes, Deluca et al . contacted white cells with the 
antigen enzyme and then exposed the solution to beads decorated 
with the enzyme’s substrate to specifically capture enzyme-bound 
lymphocytes [210] . 

Synthetic antigens represent the first use of synthetic ligands 
for cell purification [214-217] . Truffa-Bachi et al. utilized haptens 
as antigens to stimulate an immune response, and subsequently as 
immobilized ligands to isolate white cells with anti-hapten activity 
[ 214 , 215 ]. This method addresses two main difficulties encountered 
in affinity-based capture, namely (i) non-specific binding of non- 
target cells and (ii) detaching cells from the adsorbent without im- 
pacting their viability. In this context, Haas et al . utilized a gelatin 
matrix containing dinitrophenyl as a ligand for adsorbing mouse 
spleen cells, demonstrating that 30-fold enrichment and high vi- 
ability could be achieved by melting the gelatin, providing for a 
gentle elution strategy [217] . 

4.5. Lectins 

Lectins recognize specific carbohydrate sequences on glycopro- 
tein cell surface markers and have been widely utilized for cell 
fractionation ( Fig. 6 ) [218] . Herz et al. have used soybean agglu- 
tinin as a ligand to isolate T lymphocytes from peripheral blood 
for use in the prevention of graft vs. host disease in bone marrow 

transplants [219] . Hellström et al . have shown how helix pomatia A 

hemagglutinin can bind T cells treated with neuraminidase by tar- 
geting surface carbohydrates [220] ; because only a small fraction of 
B cells interact with helix pomatia hemagglutinin, this method rep- 
resents an efficient strategy to separate T cells from B cells [221] . 
This work shows how lectins enable highly specific cell fractiona- 
tion as they target post-translational modifications; helix pomatia 
hemagglutinin, in fact, is selective for human T cells over many B 
cells since T cells express proteins with unique post-translational 
modifications [222] . Another major advantage of lectins is that 
cell elution can be triggered by mono- and disaccharides, which 
are harmless to cells [171] . In one instance, though, the elution 
of mouse thymocytes from concanavalin A was accomplished by 
cleaving the mercury-sulfur bond conjugating the lectin ligands 
from the chromatographic substrate using a short thiol, affording 
quantitative recovery and high cell viability [223] . 

5. Formats of affinity-based cell separation 

The principles of affinity purification have been applied in 
different ways for cell capture, depending on the source fluids 
and the required throughput [ 26 , 100 , 140 , 150 ]. Cell-binding ligands 
have been immobilized onto solid substrates (chromatographic-like 
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Fig. 5. Protein A-based cell affinity chromatography. (A) Mixing the target cell and other cells with target-specific antibodies; (B) Incubating antibody bound cell mixture 
with a Protein A functionalized surface. (C) Removing the unbound cells by washing; (D) Eluting the target cell. 

Fig. 6. Lectin-based cell affinity chromatography. (A) Contacting a mixture of cells with the lectin substrate; (B) Removing the unbound cells by washing; (C) Eluting the 
target cells using a mixture of sugars. 

methods) [128] or polymer carriers (pseudo-/non-chromatographic 
method) [224] as well as magnetic particles (MACS) [225] and fluo- 
rescent markers (FACS) [226] that enable separation by an electro- 
magnetic field. More recently, affinity ligands have been displayed 
on the channels of microfluidic devices. This latest frontier of cell 
separation offers higher resolution and holds great promise to ex- 
pedite the clinical implementation of cellular therapies relying on 
rare cell types. 

5.1. Rosetting 

Rosetting was the first isolation method to combine affin- 
ity with traditional density-gradient separation methods [ 150 , 227- 
229 ]. In this technique, antigen-specific cells are incubated with 
antigen-coated erythrocytes, with which they form aggregates, 
called “rosettes”, that are separated from non-rosetted cells by 
gradient centrifugation ( Fig. 7 ) [230] . Rosetting was first utilized 

to separate two mouse immune cell populations using sheep red 
blood cells [231] . Further work demonstrated that greater quan- 
tities and purities of rosette-forming antigen-specific cells could 
be obtained through avidin-biotin affinity [207] , gradient density 
centrifugation [18] , and in combination with magnetic fields [232] . 
Rosetting is now routinely employed for purifying B and T lym- 
phocytes and stem cells [233] , with commercial products such as 
the RosetteSep TM kit from StemCell, which offer good recovery and 
purity. 

5.2. Chromatography 

Besides recovery and purity, other parameters, such as scala- 
bility and capacity, are critical to extend cell separation processes 
to clinical and commercial applications [ 128 , 234 ]. In this context, 
cell affinity chromatography (CAC) shows great promise as a scal- 
able technology [235] , given its successful use in industrial pro- 
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Fig. 7. Cell rosetting technique. (A) Contacting the target cell and other cells with bi-specific (target cell and red blood cells) ligands resulting in (B) the formation of a 
complex; (C) Incubating the tagged target cells with red blood cells; (D) Procedure of cell purification by rosetting and density gradient centrifugation. 

tein purification [ 236 , 237 ]. In CAC, cells are injected into a col- 
umn packed with a porous material functionalized with affinity 
ligands. Target cells are retained by affinity on the chromatographic 
medium, while other components flow through ( Fig. 4 ). While 
similar to traditional protein chromatography, CAC faces unique 
challenges, due to the major differences between cells and pro- 
teins: cells are large, sensitive to shear stress [204] , and pos- 
sess a low diffusivity, which results in the need for convective 
transport to achieve sufficient interaction with the affinity sur- 
face [238-240] . Most importantly, high binding avidity requires 
harsh elution conditions to elute the cells from the chromato- 
graphic substrate [ 204 , 241-243 ]. These challenges have highlighted 
the need for matrices that are tailored for chromatographic cell 
separations. 

Computational modeling has been utilized to simulate cell in- 
teractions with affinity surfaces and guide the design of CAC sub- 
strates. Hammer et al. modeled the receptor-mediated adhesion of 
cells to ligand-decorated surfaces [238] and found that adhesion 
mainly depends on (i) the cell receptor-ligand interaction, such 
as the bond formation rate ( k on ) and strength (K D ), and (ii) the 
fluid mechanical force, receptor mobility, and contact area [244- 
250] . The model predicts two regimes governing CAC, i.e. a rate- 
controlled high-affinity regime and a low-affinity regime. Addi- 
tional studies have expanded on CAC modeling [251] by imple- 
menting advanced analytical [252-254] and numerical [ 244 , 255- 
257 ] approaches, understanding the effect of contact time and 
presence of inhibitors on cell adhesion [258] , evaluating the effect 
of cell deformability on adhesion to surfaces [ 259 , 260 ], and observ- 
ing cell binding in microfluidic channels [ 261 , 262 ]. A model based 
on “cell rolling” behavior, inspired by leukocytes rolling against 
blood vessel walls [ 263 , 264 ], was designed to increase the likeli- 
hood of ligand-receptor interactions [ 143 , 145 , 256 , 265-268 ], reduce 
residence times, and secure the binding of cells with low surface 
marker density. 

In place of traditional chromatographic substrates, alternatives 
such as fluidized bed CAC, cryogel CAC, and microfluidic CAC, have 
been proposed [234] . 

5.3. Fluidized Beds 

Fluidized bed, or expanded-bed, affinity adsorption is frequently 
used to harvest from crude feedstocks [269] . A fluidized bed is 
comprised of porous particles coated with cell-binding affinity lig- 
ands that are agitated by an upward flow of fluid containing the 
target cells ( Fig. 8 ). The advantages of this technique over tra- 
ditional CAC are (i) improved mass transfer and (ii) large inter- 
particle volume, and (iii) high surface area [ 221 , 270-272 ]. In one 
study, perfluorocarbon-based beads functionalized with lectin Con- 
canavalin A were utilized to capture Saccaromyces cervisiae cells 
[ 271 , 273 ]. The rapid adsorption kinetics enabled the capture of up 
to 6.8 . 10 9 cells/mL, although elution was hindered by the “avid- 
ity” effect; to facilitate elution, ion-exchange groups were used in 
lieu of Concanavalin A [ 270 , 271 ]. Fluidized bed separation was also 
utilized to isolate monocytes labeled with biotinylated antibodies 
from human peripheral blood using streptavidin beads [272] ; cells 
were eluted using mechanical shear to a purity of 90%, yield of 
77%, and viability of greater than 65%. While promising, fluidized 
beds suffer from limitations such as shear stress on cells, the need 
for large columns, long equilibration times, non-specific capture by 
the adsorbent base material, limited flow velocities, disengagement 
of absorbed cells from ligands [270] , and fouling of the beads [274] . 

5.4. Cryogels 

Another alternative to traditional CAC is represented by mono- 
lithic cryogels [ 128 , 234 , 275 , 276 ]. Cryogel matrices are prepared by 
gelation or polymerization at sub-zero temperatures to create a 
continuous macroporous structure that enables cell suspensions 
to flow through [275] ( Fig. 9 ). While initially designed for the 
separation of proteins [277] , oligonucleotides [278] , and plasmids 
[279] , cryogels have been shown to be ideal for the purification 
of viruses [280] , cell organelles [281] , and whole cells [234] ow- 
ing to their (i) uniform and highly interconnected pores [ 128 , 234 ], 
(ii) high channel width ( > 30 μm) that provides for efficient trans- 
port of cells between 2 and 15 μm [ 128 , 282 ], (iii) efficient ligand 
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Fig. 8. Cell purification by expanded bed chromatography. (A) Filling the column with beads; (B) Expanding the beads; (C) Loading the cell mixture; (D) Compacting and 
washing the beads; (E) Eluting the target cells. 

Fig. 9. Process of cryogel production. 

conjugation [ 204 , 205 , 283 ], and (iv) high elasticity and hydrophilic- 
ity, which is particularly suited for mammalian cells [ 234 , 284 ]. 
Finally, cryogels are attractive for large scale manufacturing as 
they exhibit high storage stability and have an extended life cycle 
[ 205 , 285 ]. The two main approaches for cell capture using cryo- 
gels are mechanical entrapment in the cryogel matrix and ligand- 
mediated binding [ 140 , 275 , 286 , 287 ]. Ligands are conjugated to the 
cryogel either during or after cryogenic pore formation [ 281 , 288 ]. 
A wide array of ligand formats [ 234 , 285 , 288 ] including antibodies 
[ 204 , 205 , 247 , 289 , 290 ], proteins [ 128 , 204 , 205 , 286 , 291 ], lectins, and 
synthetic ligands [ 290 , 292-294 ] have been incorporated into cryo- 
gels for the separation of lymphocyte cells [ 128 , 204 , 285 ], myeloid 
cells [ 276 , 295 ], microbial cells like Staphylococcus aureus [290] , Es- 
cherichia coli [ 286 , 291 , 296 ], Bacillus halodurans [297] , and yeast 
cells [ 286 , 291 ]. Elution from cryogels can be achieved by tradi- 
tional methods, as well as by elastic deformation and thermally- 
induced shrinkage of the matrix to ensure viability of the recov- 
ered cell product [291] . 

6. Pseudo-chromatographic systems 

6.1. Gel Affinity Separation 

Among polymer-based media, gels are particularly attractive as 
single-use adsorbents for cell purification, as they can be disin- 
tegrated thermally or enzymatically to release viable cells [298- 
305] . Haas and Layton developed antigen-coated gelatin layers to 
separate spleen cells with a 30-fold enrichment [217] ; the bound 
lymphocytes were recovered by melting the gelatin. Because cell 
recovery could only be performed below gelatin’s melting tem- 

perature, Maoz et al . modified this process by including matrix- 
specific enzymes ( i.e. , collagenase) [303] ; less than 5% of non- 
specific cells bound the gel, and non-adherent cells had signifi- 
cantly lower cytotoxicity than the bound cells, indicating that this 
method can specifically isolate functional T cells. Bröcker et al . de- 
veloped antigen-functionalized gelatin for purifying T cells with up 
to 100-fold enrichment and purity of 80-90% [304] . Similarly, Webb 
et al. used an anti-mouse IgG for the selective capture of B cells 
[302] ; on average 250 cells/mm 2 attached to the immobilized an- 
tibody and the B cells had a minimum viability of 60%. 

6.2. Fiber-based affinity separations 

Arrays of parallel hollow fibers have gained popularity as sub- 
strates for affinity purification of cells [306-313] . Fibers introduce a 
new component in cell adhesion, represented by the fiber’s cross- 
section geometry and flexibility [ 309 , 312 ]. Fiber-based adsorbents 
are also attractive as they can be regenerated by washing at high 
shear [ 308 , 312 ] and can be manufactured affordably at large-scale. 
The first use of fibers for cell isolation was published by Edelman 
et al. [306] , who described the isolation of spleen cells from mice, 
immunized against Dnp38-bovine IgG, using nylon fibers coated 
with Dnp38-BSA, tosyl 30 -BSA, and BSA antigens. The cells were 
detached mechanically, chemically, or competitively by incubation 
with inhibitors. While the eluted cells were up to 90% viable, sig- 
nificant non-specific binding occurred, which limited purity to 63- 
88%. To increase specificity, several authors have coupled antibod- 
ies and antigens to the luminal surface of cellulose hollow fiber 
modules. Pope et al . covalently attached goat anti-mouse antibod- 
ies to cellulose fibers to capture CD4 + lymphocytes, resulting in 
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63-99.9% depletion of the CD4 + cells from the starting population 
[314] . Similarly, Nordon et al . covalently coupled an anti-CD34 an- 
tibody directly to the luminal surface of their system’s fibers to 
enrich CD34 + cells from mononuclear cells at 94% purity and 61% 
yield [307] . Other groups have developed fusion proteins compris- 
ing an antibody-binding domain and a fiber-binding domain for 
mediating the adhesion of antibody-labeled cells onto the fibers. 
Specifically, Craig et al . developed a fusion protein (“protein LG”) 
that captured more than 90% of the antibody-labeled CD34 + cells 
onto a cellulose fiber module [311] . The use of these chimeric pro- 
teins helps overcome problems associated with ligand conjugation 
to hollow fibers such as low yield, random orientation, and struc- 
tural alterations or degradation caused by the conjugation chem- 
istry [311] . Hollow fiber systems enable the implementation of un- 
conventional elution techniques. For example, bound cells can be 
fractionated into populations with varying binding strength by ad- 
justing the flow rate (shear elution) [312] . Bound cells can also be 
eluted if labile links ( e.g. , a disulfide bond) are included between 
the ligands and fibers. 

6.3. Affinity Membranes 

Membranes are suitable substrates for affinity cell separations, 
as the balance between trans-membrane flux and fluid velocity 
parallel to the surface can be easily controlled to optimize ad- 
sorption and elution [ 138 , 315 ]. Additionally, the pore size of mem- 
branes and surface shear can be varied to minimize concentration 
polarization and fouling, which is advantageous when processing 
high-density cell suspensions. In an early example, Mandrusov et 
al . used a cellophane dialysis membrane functionalized with goat 
anti-mouse immunoglobulin to purify mouse B-lymphocytes [316] : 
cells were eluted with a low pH buffer by trans-membrane diffu- 
sion, while a shear-producing flow was applied to promote detach- 
ment of the cells from the membrane and neutralization of the 
acidic environment. Feeding the elution buffer on the membrane 
side opposite to the bound cells afforded a 100% yield and 60% vi- 
ability, indicating that a trans-membrane pH gradient is needed to 
elute cells effectively without decreasing cell viability. 

Affinity membranes enable cell separation processes that em- 
ploy bubble-induced cell detachment [317] . This technique is at- 
tractive as cells can be removed from adsorption surfaces without 
excessive dilution. Wang et al . utilized this method with tubular 
capillaries coated with antibodies to purify specific blood cell pop- 
ulations [127] , obtaining 85.7% yield, 97.6% purity, and 85.8% viabil- 
ity of CD4 + cells isolated from blood samples. Specifically, > 90% 
of cells detached by bubble-induced elution, whereas compression 
and flow-induced elution resulted in 40-80% and 10-40% of cell de- 
tachment, respectively [317] . 

Thermo-responsive polymers have also been integrated 
in membranes to improve elution. Specifically, a poly(N- 
isopropylacrylamide)-grafted polypropylene (PNIPAAm-g-PP) 
membrane functionalized with monoclonal antibody ligands was 
developed for purifying CD80 + cells [318] . PNIPAAm displays a 
thermo-responsive phase transition at 32 °C, where it switches 
from a hydrophilic to a hydrophobic state. At 37 °C, antibody 
ligands adhere to the PNIPAAm-g-PP membranes by hydropho- 
bic interaction, enabling the affinity capture of CD80 + cells; at 
4 °C, the IgG ligands detach from the PNIPAAm coating, thereby 
releasing the cells. The recovered cells were enriched from a 1:1 
cell suspension to 72%, proving to be the first case of affinity- 
based capture of cells where temperature is used for cell elution. 
In a similar work, anti-CD34 antibodies were adsorbed onto a 
PNIPAAm-g-PP membrane and utilized to enrich CD34 + cells. The 
CD34 + cell concentration was increased from 50% in the feedstock 
to 85% in the eluate, and 95% of the recovered cells were viable 
[319] . 

7. Non-chromatographic affinity purification methods 

A variety of non-chromatographic techniques have been devel- 
oped, such as two-phase separations, magnetic-activated cell sort- 
ing (MACS) and fluorescence-activated cell sorting (FACS) [148] . 
Two-phase separations employ polymeric materials often labeled 
with affinity ligands to drive the selective migration of cells into 
an aqueous phase ( Fig. 10 ). In MACS and FACS, the target cells are 
tagged with labeled affinity ligands that enable separation; mag- 
netic labels are used in MACS ( Fig. 11 ), while fluorescent labels are 
used in FACS ( Fig. 12 ). While MACS and two-phase separations iso- 
late cells into bulk groups, FACS is unique in its ability to analyze 
and sort single cells, allowing for more precise cell separation. 

7.1. Affinity two-phase partitioning 

Affinity two-phase partitioning is a powerful preparative 
method for cells, cell membranes and organelles, and viruses 
[ 140 , 320-329 ]. Aqueous two-phase systems (ATPS) form when two 
polymers added to a water solution produce two non-miscible 
liquid layers, across which other components in solution migrate 
based on their differential affinity towards the polymers ( Fig. 10 ). 
To improve the selectivity of cell migration, affinity ligands such 
as lectins, antibodies, and receptor-specific molecules have been 
conjugated to the phase-forming polymers [ 330 , 331 ]. Polyethylene 
glycol (PEG) and dextran are the most commonly utilized poly- 
mers for ATPS, with PEG being used as the ligand carrier and the 
dextran-rich phase acting as the receptacle for the bulk contami- 
nants [ 325 , 332-334 ]. Monoclonal antibodies coupled to PEG have 
been utilized for separating human red blood cells from sheep and 
rabbit blood cells, resulting in up to 92% partitioning of the human 
red blood cells to the top phase [ 321 , 335 , 336 ]. Antibody-PEG con- 
jugates have also been used to purify hybridoma 16-3F cells from 

their parental NS-1 cell line, resulting in 24% recovery and 80% pu- 
rity [332] . 

Two-phase affinity partitioning has flourished with the intro- 
duction of stimuli-responsive polymers. Kumar et al. have utilized 
PNIPAM decorated with antibody ligands to separate CD34 + hu- 
man acute myeloid leukemia KG-1 cells from Jurkat cells (immor- 
talized human T lymphocytes) [337] . While more than 80% of the 
KG-1 cells were partitioned to the top phase, a small contamina- 
tion of Jurkat cells was observed; however, incomplete recovery 
of the conjugates lowered the yield of KG-1 cells to 75% during 
subsequent use. In addition to antibodies, cell separation by two- 
phase partitioning has also been demonstrated with other ligands, 
such as transferrin [323] , synthetic dyes [338-342] , and immobi- 
lized metals [ 333 , 343 ]. 

Owing to its biocompatibility, mild operating conditions, and 
scalability, ATPS is regarded as a high-potential technology for the 
recovery of cell targets for which the minimization of mechani- 
cal stimuli is critical ( e.g. , stem cells and neurons) [ 327 , 328 ]. Sousa 
et al. used PEG800-dextran functionalized with anti-CD34 antibod- 
ies to separate and recover CD34 + stem cells from umbilical cord 
blood [325] . The CD34 + cells were enriched from a starting popu- 
lation of ∼ 0.2% CD34 + cells to ∼ 42% in the final population, and 
recovered with 81-95% yield; in contrast, with PEG alone, a cell 
enrichment of 13% and 2.3% recovery was achieved. Using a three- 
polymer (PEG, ficoll, dextran) system and an anti-CD133 antibody, 
González-González et al . recovered CD133 + stem cells from umbili- 
cal cord blood with a final recovery of 62% and 98% viability [328] . 

A significant limitation of two-phase separations is the recur- 
ring presence of impurities in the top (product) phase. Accordingly, 
separations using ATPS generally result in lower purity than what 
is achieved using chromatographic technologies. Further work to 
improve ATPS separations, especially by increasing the partition 
preference of antibodies to a top clean phase, is considered a 
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Fig. 10. Cell purification by affinity-based aqueous two-phase partition. (A) Suspending the cell mixture; (B) Adding the affinity-polymer forming the second phase; (C) 
Mixing the two phases; (D) Allowing the two phases to separate and recovering the target cells in the top affinity phase. 

Fig. 11. Cell purification by MACS. (A) Contacting the cell mixture with ligand-functionalized magnetic beads; (B) Suspending the magnetic beads in the cell mixture; (C) 
Applying a magnetic field to isolate the magnetized target cells and remove all unbound cells; (D) Resuspend and wash the magnetized target cells; (E) Elute the target cells 
from the magnetic beads. 

worthwhile effort to achieve a truly scalable process for cell sepa- 
ration. 

7.2. Magnetic-activated cell sorting (MACS) 

MACS is a relatively recent cell separation technology that em- 
ploys affinity ligands conjugated to magnetic particles comprising 
an iron core coated by a hydrophilic shell to reduce non-specific 
binding ( Fig. 11 ) [344] . Upon incubating ligand-coated particles 

with a cell mixture, a magnetic field is applied to separate the 
target cells bound to the magnetic particles from the unbound 
cells [345] . Pioneered by Zborowski and co-workers [ 142 , 346-350 ], 
MACS is now recognized for its speed of separation, with rates 
in the range of ∼10 11 cells/hour [100] . Recent developments en- 
able simultaneous separation of multiple cell types using magnetic 
field gradients [ 348 , 351 ] or in combination with microfluidic de- 
vices [ 352 , 353 ]. The predominant MACS format is antibody-based, 
where target cells are either directly bound onto antibody-coated 
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Fig. 12. Cell purification by FACS. 

beads [ 225 , 347 ], or are labeled in solution with a primary antibody 
and subsequently captured onto beads coated with a secondary an- 
tibody [ 354 , 355 ]. 

Ligand immobilization techniques are highly dependent on 
the nature of the ligand. Methods for antibody immobiliza- 
tion to magnetic particles include covalent binding [ 356 , 357 ], 
streptavidin-mediated immobilization (specific for biotinylated an- 
tibodies) [ 358 , 359 ], Protein A-/G-mediated immobilization [360] , 
conjugation to boronic acid or hydrazinyl groups [ 360 , 361 ], and 
oligo-dT coating [362] . Besides antibodies [ 225 , 345 , 363-365 ], other 
affinity ligands have been successfully utilized in MACS [366- 
375] . Herr et al . utilized DNA aptamers to capture acute leukemia 
cells from complex mixtures with a 40% recovery [371] . Mag- 
netic nanoparticles coated with bis-Zn-DPA, a synthetic ligand that 
binds Gram-positive and Gram-negative bacteria, have been uti- 
lized for separating Escherichia coli from blood with complete bac- 
terial clearance in two separation cycles [375] . This work has also 
demonstrated that nanoparticles outperform micrometer-scale par- 
ticles in terms of binding capacity and kinetics, and separation out- 
put. 

The increasing relevance of immunomagnetic separation tech- 
nology is demonstrated by the recent FDA approval of the 
CellSearch system, which can isolate circulating tumor cells using 
a epithelial cell-adhesion molecule (EpCAM) antibody [376-378] . 

7.3. Fluorescent-Activated Cell Sorting (FACS) 

In FACS, fluorescently-tagged ligands are utilized to individu- 
ally sort cells using fluorescence and light scattering [379-381] . 

When injected into the sorter, the stream of cells tagged with flu- 
orescent ligands is broken into droplets that contain a single cell; 
each droplet passes through an illumination detection zone, and a 
charge is placed onto any cell that meets the separation criteria. 
As the charged droplets fall through electrostatic deflecting plates, 
they are sorted into different containers based on their charge 
( Fig. 12 ). FACS has been extensively utilized for sorting therapeutic 
cell products, especially stem cells [ 29 , 31 , 382-384 ] and blood cells 
[ 385 , 386 ]. FACS has gained popularity as it provides highly pure 
( > 95%) cell populations and can sort at the single cell level due 
to the high sensitivity of fluorescence detection [ 100 , 387 ]. FACS 
also allows population-averaged single cell data, as it can be used 
to efficiently perform high throughput cell sorting and counting 
[387] . Recent advances in fluorescent dyes and laser detectors al- 
low researchers to simultaneously track multiple cell parameters 
[ 388 , 389 ]. On the other hand, FACS requires the use of expensive 
equipment and suffers from limited throughput ( ∼ 10 7 cells/hour) 
and long processing times (3-6 hours), which prevents its use in 
large scale manufacturing of therapeutic cells [380] . 

Elements of MACS and FACS sorting can be combined in a 
method known as “ratcheting cytometry” to perform multicom- 
ponent purifications of specific subpopulations [390] . This method 
is frequently used for continuous and quantitative purification of 
T cell subsets for cell therapy manufacturing. Specifically, T cells 
from apheresis or peripheral blood mononuclear cell samples are 
magnetically labeled using magnetic particles featuring different 
iron oxide content and size as well as antibody functionalizations. 
As magnetic particles travel differently within the sorting cartridge 
based on their magnetization and size, cells specifically bound to 
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a magnetic particle population can be isolated from other cells in 
the mixture [390] . Ratcheting cytometry also enables sorting cells 
based on differential levels of antigen, as this determines the num- 
ber of magnetic particles bound to a cell. This method has been 
used to simultaneously isolate CD4 + and CD8 + T cells from a sam- 
ple via labeling with antigen-specific magnetic particles [391] . 

8. Emerging Trends 

Cell purification technology is rapidly evolving, owing to the 
introduction of target-specific biorecognition moieties for capture 
( i.e. , biological and synthetic ligands) and emerging isolation for- 
mats ( e.g. , microfluidic devices). 

8.1. Microfluidic devices for cell separation 

The latest frontier of CAC is represented by microfluidic devices 
that comprise sub-millimeter channels coated with affinity ligands 
(M-CAC) [ 129 , 131 , 159 , 392-396 ]. The high surface-area-to-volume 
ratio of microfluidic channels, enhanced by micro-fabricated struc- 
tures with complex geometry, has enabled the capture of cells at 
extremely low concentrations by M-CACs [ 261 , 392 , 397-399 ]. M- 
CAC systems have been utilized to separate T- and B-lymphocytes 
at high purity ( > 97%) from mixed suspensions [ 127 , 175 , 400 ]. To 
ensure binding specificity, the channels are often grafted with hy- 
drophilic polymer brushes ( e.g. , PEG) or coated with hydrogels ( e.g. , 
alginate) functionalized with antibody ligands [ 401 , 402 ]. Chang et 
al. have developed a M-CAC system coated with E-selectin IgG 

molecules to separate HL-60 and U-937 myeloid cells with purity 
greater than 70% and 200-fold enrichment [262] . M-CAC also en- 
ables the sorting and capture of multiple cell types from a complex 
mixture. Li et al. incorporated a pneumatic-actuated control layer 
into an affinity separation layer to create different antibody-coated 
regions within the same channel [129] . Ramos cells were flown 
through anti-CD19- and anti-CD71- coated regions, with the anti- 
CD19 region having a capture density 2.44-fold higher than the 
anti-CD71 region. The authors also coated a second channel with 
two different antibodies targeting either Ramos or HuT 78 cells, 
allowing specific retention of the cells in their complementary re- 
gion at greater than 90% purity. Lastly, a four-region antibody- 
coated device was developed for the simultaneous capture of three 
different cell lines in a single channel, thereby enabling multi- 
plexed cell sorting. 

Microfluidic devices coated with antibodies against specific cell 
markers have gathered considerable interest as tools for detecting 
rare tumor circulating cells (CTCs) [ 397 , 403-405 ]. Isolating CTCs 
from the bloodstream enables the detection, characterization, and 
monitoring of non-hematological cancers [406] , but is made ex- 
tremely challenging by their low concentration (1 -100 CTCs per 
mL of blood [ 82 , 376-378 , 407 , 408 ]). Researchers have shown that 
microfluidic devices (CTC-Chip) containing an array of microposts 
functionalized with epithelial cell adhesion molecules (EpCAM) 
can capture CTCs [397] . Many attributes of the device have been 
explored to enhance CTC enrichment. Gleghorn et al. described 
how the geometry of the microposts can enhance CTC enrichment 
[398] . CTC-ligand binding has also been improved by introduc- 
ing a high-throughput microfluidic device called “HB-Chip”, which 
mixes the blood cells by generating micro-vortices that increase 
the interactions between the target CTCs and the antibody-coated 
channels [406] . To increase binding sensitivity, Myung et al. de- 
veloped high-avidity ligands by conjugating multiple EpCAM lig- 
ands to dendimers [409] . The combination of multivalent binding 
and cell rolling in the channels mediated by E-selectin granted 
high sensitivity and specificity towards CTCs. This work has led to 
a device, commercialized by Biocept, which employs streptavidin- 
coated microposts to capture CTCs tagged with biotinylated an- 

tibodies, followed by fluorescent microscopy-based detection and 
in situ cytogenic interrogation [ 399 , 410 ]. Another approach for the 
isolation of CTCs is represented by negative enrichment (or neg- 
ative selection) using microfluidic technologies [411] , which takes 
advantage of the physical and biochemical properties of cells [412] . 
Unlike hematopoietic cells, which display the cell surface mark- 
ers CD15 (granulocytes), CD66b (granulocytes) and CD45 (leuko- 
cytes), CTCs are CD15/66b/45-negative. Accordingly, negative en- 
richment technologies feature microfluidic channels, nanoparti- 
cles, and micro-scale adsorbents functionalized with anti-CD15, 
anti-CD66b and, most commonly, anti-CD45 antibodies [155-157] . 
Affinity-based negative selection alone, however, is often not suffi- 
cient to achieve the desired enrichment factor, and must be com- 
plemented by size exclusion-based or fluid dynamic-based separa- 
tion techniques [ 157 , 158 , 160 , 413 , 414 ]. 

Lastly, emerging technologies for droplet-based single cell anal- 
yses are flooding the contemporary literature landscape. While 
there is significant focus on droplet barcoding for single cell se- 
quencing and transcriptomics [415-418] , some efforts are aimed 
at employing droplet-based technologies for human cell isolation, 
sorting, and studying biomolecular interactions [419-425] . An in- 
depth review of droplet-based cell analyses was recently provided 
by Huck et al. [426] . Briefly, the formation of water-in-oil plug 
flow in microfluidics can generate picoliter-sized droplets for car- 
rying cells or other biomolecular residents, and these droplets can 
be generated in a highly repetitive and chemically-defined man- 
ner [427-430] . When employed for cell isolation and sorting, the 
physico-chemical properties of the droplet can be tuned to pro- 
mote interaction with specific surface features of the microfluidic 
device, resulting in droplet isolation and sorting [431-435] ; for ex- 
ample, the interfacial tension of the droplet can be made sensitive 
to pH causing the droplets to interact with the microfluidic chan- 
nel’s surface [422] . The physico-chemical properties of the resident 
cell can also be made responsive, so that the droplet can be sorted 
via imaging and fluorescence-activated techniques [436-440] . 

In regard to using these techniques for studying affinity-based 
chemistries, droplet microfluidics have been employed to screen 
drug and antibody binding by generating sub-nanoliter reactors 
[4 41-4 4 4] . In one example, hybridoma cells secreting antibod- 
ies were individually co-encapsulated with a target cell in nan- 
odroplets to select hybridoma clones expressing antibodies featur- 
ing affinity for the target cell [440] . While there have been lim- 
ited studies of strictly affinity-based sorting via droplet microflu- 
idics, based on the aforementioned examples, there is an emerging 
lane of study for using droplet microfluidics for therapeutic anti- 
body discovery, especially since the single-cell droplet approach is 
amenable to use with primary human plasma cells, which secrete 
antibodies. 

8.2. Synthetic Ligands 

A significant barrier to improving the affordability of cell prod- 
ucts is represented by the cost of biological ligands [133] . While 
highly selective, proteins and antibodies are biochemically labile 
[445] , and a complex engineering process is required to discover 
viable ligands [446] . Further, they are generally characterized by 
high binding strength, which can trigger undesired intracellular 
signaling cascades upon binding and even cell death [4 47-4 49] . To 
overcome these limitations, synthetic ligands have been proposed 
to maintain targeted affinity while lowering binding strength to fa- 
cilitate cell elution. In addition, synthetic ligands are biochemically 
stable and can be synthesized affordably at large scale. 

Hormones are the first small molecules to ever be uti- 
lized as affinity ligands [450] . In particular, histamine [ 451 , 452 ], 
catecholamines [453] , and prostaglandins [ 454 , 455 ] coupled to 
Sepharose beads have been used to separate 19S and 7S plaque- 
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forming cells from the total spleen leukocyte population. The 
hormone-based adsorbents were able to capture 56% and 84% of 
the 19S and 7S plaque-forming cells respectively. Similarly, glycans 
( e.g. , mannose) immobilized on Dowex resins have been utilized to 
separate E. coli K12 and Campylobacter jejuni NCTC 11168 cells with 
high yield (94–96%) and selectivity [456] . 

Recent advances in selection technology have spurred the use 
of synthetic ligands with engineered affinity and selectivity for 
any target cell [ 133 , 457-459 ]. Aptamers and peptides represent the 
main classes of synthetic ligands [ 449 , 460-470 ]. Aptamers consist 
of single-stranded DNA or RNA molecules and have seen rising 
popularity in cell purification [469] . The development of these lig- 
ands is supported by a high-throughput screening method known 
as “systematic evolution of ligands by exponential enrichment”
(SELEX) [ 464 , 471-474 ]. Xu et al. have selectively captured three 
leukemia cell lines (CCL-119, Ramos cells, and Toledo cells) us- 
ing a microfluidic device coated with cell line-specific aptamers, 
with up to 136-fold enrichment [475] . Aptamers have also been 
demonstrated as cell capture ligands in more traditional pseudo- 
chromatography applications, as described by Zhang et al. , where 
aptamers coupled to a hydrogel bound and eluted target cells 
with a resulting viability of ∼ 99% [476] . Aptamers have also been 
successfully used in MACS applications [ 371 , 372 , 475 , 477-480 ], mi- 
crofluidic devices, and hydrogels, with reported capture efficien- 
cies and cell purities at > 80% [ 131 , 403 , 4 81-4 83 ]. These case 
studies showcase the value of aptamers as cell capturing ligands. 
Nonetheless, some improvements are still needed, such as increas- 
ing binding selectivity to improve capture [484] , tuning the bind- 
ing strength to facilitate cell elution [485] , and addressing safety 
concerns by implementing rigorous tests of biocompatibility [486] . 

Peptides have also emerged as robust and cost-effective alter- 
natives to protein ligands [133] . Over the past two decades a num- 
ber of selection techniques have been developed, ranging from the 
screening of biological and synthetic libraries in liquid or solid 
phase to in silico approaches, such as computational design and 
machine learning. This has resulted in a myriad of peptides tar- 
geting analytical and medically relevant target cells. Veleva et al. 
identified an angiogenic tumor-binding peptide via in vitro enrich- 
ment of a peptide library against peripheral blood outgrown en- 
dothelial cells followed by in vivo screening of the enriched li- 
brary to identify tumor-binding peptides [487] . Similarly, Oyama 
and coworkers identified peptides from a phage library to bind hu- 
man lung cancer cell lines and noted that the selected peptides 
were specific towards the target cancer cells without negative se- 
lection [ 461 , 466 ]. In 2008, Choi et al. identified a Raji cell-targeting 
peptide as a model for Burkitt lymphoma cells with seemingly 
high specificity for these cells as determined by lack of binding 
to normal, non-cancerous B cells, peripheral blood cells, or other 
leukemia cells [488] . Wang et al. also utilized phage display to 
identify affinity peptides for imaging detection of human colorectal 
cancer cells (Caco-2); the specificity of the peptide was confirmed 
using negative-control cell lines HEK293, SGC-7901, and SMMC- 
7721 [489] . Peptide ligands have also been employed in a number 
of cell adhesion applications, which are of primary interest for cell 
separations. De et al. demonstrated the use of peptides in pathogen 
removal applications by isolating pancreatic beta-cells infected by 
Mycoplasma arginii from healthy cells, showcasing a 10-fold reduc- 
tion in the number of infected cells [490] . Success in separating 
different phenotypes of primary cells has also been shown in mul- 
tiple cases by microcontact printing of tetrameric peptides in mi- 
crofluidic devices. These have been used for the separation of os- 
teoblasts from fibroblasts by Hasenbein and coworkers [491] , or 
the fractionation and characterization of different human cell phe- 
notypes by Murthy and coworkers [4 92-4 94] . Peptide ligands have 
been discovered for a number of cell surface markers that iden- 
tify analytically or therapeutically relevant cells, including CD34 

[4 95] , CD133 [ 4 96 , 4 97 ], CD38 [4 98] , VCAM1 [4 99-502] , and FLT3 
[ 503 , 504 ]. 

Large peptides, developed from non-antibody scaffolds, also 
represent a viable alternative for cell separation purposes. Our 
group has identified the first non-antibody binders for CD117 by 
screening a yeast-display scaffold library against magnetized yeast 
cells expressing the extracellular domain of CD117 [505] . Two 
nanobody mutants were identified with good affinity ( i.e. , 131 and 
204 nM) for CD117. While binding of these mutants for CD117 was 
only confirmed for yeast displayed CD117, a combination of these 
ligands would likely enable the purification of phenotypically pure 
cells such as endothelial stem and progenitor cells (ESCs, EPCs), 
and hematopoietic stem and progenitor cells (HSCs, HPCs) [506- 
517] . Additionally, the mid-nanomolar affinities of the nanobody 
ligands promote gentler elution compared to antibody ligands. 

Peptide ligands can also be engineered to enable the control 
of cell binding and release upon exposure of biocompatible stim- 
uli. To this end, stimuli-responsive monomers can be incorporated 
into the amino acid sequence, allowing the peptide to reversibly 
switch between a binding and a non-binding mode upon cool- 
ing, or exposure to light or a magnetic field ( Fig. 13 ). Our group, 
for example, has developed VCAM1-binding azobenzene-cyclized 
peptides for the light-controlled labeling of endothelial progenitor 
cells [518] . Upon exposure to light, the ligands undergo a remark- 
able ∼ 1300-fold variation in binding strength, which enables se- 
lective and stable light-controlled labeling of cells. Notably, modi- 
fied azobenzene linkers have been engineered to photo-switch in 
different wavelength windows, namely red, green, and blue (RGB) 
light [519-524] . Therefore, a combination of peptide ligands tar- 
geting different cell markers, whose binding/release is triggered 
at different wavelengths, could be used to produce and dynami- 
cally modify patterns of cells on solid substrates by exposure to 
sequences of red, green, or blue photo-patterns, for example using 
liquid crystal display light-emitting diodes (LCD-LED) arrays. 

9. Conclusions 

Cell separation technologies have progressed steadily to meet 
the demands for basic research, diagnostic, and therapeutic appli- 
cations, resulting in cell isolation methods that are more efficient, 
scalable, and dependable. Affinity-based approaches are now the 
most utilized, owing to their ability to achieve high purity. A wide 
variety of affinity-based approaches are available, ranging from 

traditional chromatographic to pseudo- and non-chromatographic 
systems. Each system has advantages and disadvantages, as out- 
lined in this work, which must be carefully considered when 
choosing a cell separation method. Microfluidic technologies rep- 
resent the next frontier of cell manufacturing as they offer the ca- 
pacity to perform multiple functions (mixing, counting, lysis, sin- 
gle cell analysis, etc.) in a single device. Advances in parallelization 
and scale-up hold great promise to overcome the low throughput 
of current devices and enable processing of large sample volumes. 
Further, the ability to integrate post-sorting molecular, cellular, and 
functional characterization furthers the appeal of using microflu- 
idic devices for cell separation. 

On the biorecognition front, affinity-based separations are shift- 
ing from protein and antibody ligands towards synthetic ligands. 
Biological ligands, in fact, while highly specific, are limited by 
their high cost and exceedingly strong binding. Synthetic ligands, 
on the other hand, can be synthesized affordably, at large scale, 
and with no batch-to-batch variability. The need to develop gentle 
cell elution conditions has stimulated the development of stimuli- 
responsive ligands, such as photo-switchable peptides, whose bind- 
ing activity can be controlled by exposure to biocompatible stim- 
uli. In this regard, further progress in the fields of in vitro and 
in silico selection methods is needed to expand the portfolio of 
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Fig. 13. Cell purification using stimuli-responsive peptide ligands. (A) Reversible photo- or thermo-switching of an azobenzene-cyclized peptide; (B) Principle of cell capture 
and release using stimuli-controlled cyclic peptides. 

peptides and aptamers with tailored binding and affinity for cell 
surface markers. Further studies – both experimental and mod- 
eling – are also needed to understand the relationship between 
affinity and multivalent binding as a function of surface marker 
expression, in order to optimize the balance between efficient 
cell capture and elution, ultimately enabling high recovery and 
bioactivity. 

Currently, the major challenge for cell therapies and related 
clinical applications resides in achieving rapid, efficient, and afford- 
able separation while minimizing costs and attaining the required 
purity, yield, and functionality of the cellular product. Membrane- 
based separations show exceptional potential in large-scale pro- 
duction, particularly in combination with cell-specific biorecogni- 
tion moieties that ensure high recovery, purity, and bioactivity of 
the cell product. Owing to their high pore diameter and poros- 
ity, in fact, membranes enable the processing of large volume cell 
suspensions at high flow rates, thereby increasing throughput and 
minimizing processing time, which aids in maintaining the viabil- 
ity of the cell product. On the front of basic cellular research and 
personalized medicine, the continued identification of highly spe- 
cific markers defining cell populations [525] , combined with the 
advancements in integrating physical and affinity-based strategies 
in miniaturized devices, will be critical for the fruition of patient- 
specific cellular therapies. 
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