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Figure 1: Left: The system we built to simultaneously evaluate 3D pupil localization and gaze estimation on a real dataset. Middle: We
utilize a biologically advanced eye model to replace the commonly used simple eye model and propose a new deep learning-based
2D refraction correction method to achieve better accuracy. Right: Gaze estimation results under three different viewing angles, the

light blue arrow indicates the estimated gaze direction.

ABSTRACT

Eye tracking has already made its way to current commercial wear-
able display devices, and is becoming increasingly important for
virtual and augmented reality applications. However, the existing
model-based eye tracking solutions are not capable of conducting
very accurate gaze angle measurements, and may not be sufficient
to solve challenging display problems such as pupil steering or eye-
box expansion. In this paper, we argue that accurate detection and
localization of pupil in 3D space is a necessary intermediate step
in model-based eye tracking. Existing methods and datasets either
ignore evaluating the accuracy of 3D pupil localization or evaluate
it only on synthetic data. To this end, we capture the first 3D pupil-
gaze-measurement dataset using a high precision setup with head
stabilization and release it as the first benchmark dataset to evaluate
both 3D pupil localization and gaze tracking methods. Furthermore,
we utilize an advanced eye model to replace the commonly used over-
simplified eye model. Leveraging the eye model, we propose a novel
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3D pupil localization method with a deep learning-based corneal
refraction correction. We demonstrate that our method outperforms
the state-of-the-art works by reducing the 3D pupil localization error
by 47.5% and the gaze estimation error by 18.7%. Our dataset and
codes can be found here: link.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented reality; Com-
puting methodologies—Aurtificial intelligence—Computer vision—
Computer vision problems

1 INTRODUCTION

Eye tracking enables dozens of applications in augmented and
virtual reality (AR/VR), physiologically informed rendering such
as foveation, gaze-based interaction, diagnosis of conditions like
Parkinson’s disease, and so on. Typically, existing near-eye tracking
solutions employ cameras that are looking at the user’s eye to track
their gaze. Specifically, in model-based eye tracking, an approxi-
mate elliptical model is first fit to the pupil as tracked by the cameras,
the 2D pupil is then unprojected into a 3D pupil represented as a
circle, and the vector joining the center of the eyeball (or cornea)
and the center of the 3D pupil is the estimated user’s gaze. While
such model-based eye tracking methods have been widely adopted
recently in a variety of commercial eye trackers (e.g. Pupil Labs)
and near-eye displays (e.g. HTC Vive), they are still not sufficiently
accurate, as per performance standards described in prior papers,
such as [6].

As a necessary step of model-based gaze estimation, the sig-



nificance of 3D pupil localization is overlooked. In addition to
the benefit in gaze estimation, accurate 3D pupil localization itself
forms an essential part of the solution to steering the tiny eyebox
of (holographic) displays, display dynamic uniformity correction,
and display dynamic distortion correction. Moreover, it is essential
to also mitigate the pupil swim of world-locked rendering. In this
work, we analyze and argue that even minor inaccuracies in the 3D
pupil localization result in severe errors in model-based gaze esti-
mation. The state-of-the-art works either did not consider corneal
refraction [9, 26] or used oversimplified eye models [4,5]. More
importantly, as far as we know, no work conducted evaluations of
3D pupil localization on real datasets.

We overcome the major challenges of pupil localization in near-
eye tracking by 1) specially designing a precision hardware tracker
to measure the ground truth of the relative location of the pupil
in 3D space, 2) capturing a high accuracy pupil localization and
gaze tracking dataset, which is the first to include real 3D pupil
movement and the corresponding gaze angle for every individual
frame of all the tracking cameras, 3) employing an anatomically-
aware advanced eye model, and finally, 4) proposing an image-based
refraction correction neural network that can decrease the gaze errors
caused by corneal refraction and can be easily added to most of the
existed gaze estimation methods using detected pupil contours.

Precision Hardware for Pupil Localization To better evaluate
the existing 3D pupil localization methods and encourage progress
in this direction, we build a precise hardware system to create the
first real eye dataset benchmark for 3D pupil localization, which
can also measure the accuracy of gaze estimation. This system has
robust head and chin stabilization and can evaluate the existing 3D
pupil localization methods at a very fine level (0.02mm).

3D Pupil-Gaze Dataset With the precise eye tracking system,
the relative 3d pupil center ground truth is measured by moving
the optical stage while keeping the viewing angle and head position
constant. Our dataset also contains ground truth of 2D pupil and gaze
directions. We detect the 2D pupil position by fitting an ellipse using
the state-of-the-art method [15] followed by manual adjustment for
incorrect detection.

Anatomically-aware Advanced Eye Model Existing solu-
tions use a LeGrand eye model that approximates the eye structure
using two intersecting spheres; a large one representing the eyeball
and a small one representing the cornea. While this over-simplified
eye model accelerates the computation, it also introduces additional
errors [4,25]. Therefore, we use a biologically more accurate eye
model to conduct 3D pupil localization where the eye is represented
as a precise multi-layer quadratic surface with different refractive
indices.

Image-based Refraction Correction  As corneal refraction is
a non-negligible error source of 3D eye tracking [8], we propose
a novel neural network based method to accomplish image-based
refraction correction. Compared to previous refraction correction
methods, our method does not assume an over-simplified eye model
and is also not method-dependent, which can be generalized to most
of the existing image-based gaze estimation methods. Compared to
the state-of-the-art works, our method achieves higher accuracy of
3D pupil detection and gaze estimation with an increase of 47.5%
and 18.7%.

The contributions of our work are presented as follows:

* We build an eye tracking system to conduct more accurate 3D
pupil localization and gaze estimation. This system includes
a display, eyeglasses with two Pupil Labs cameras attached
on an optical stage that can shift the eyeglasses at a very fine
level, and a head stabilization device to mitigate the error due
to small head movement.

* We create a real dataset for tracking the accurate movement of
3D pupil position, which could be served as a benchmark to
evaluate different 3D pupil localization methods.

* We theoretically analyze the significant impact of small er-
ror of 3D pupil localization on the accuracy of model-based
gaze estimation and propose a novel 3D pupil localization
method with deep learning based refraction correction using
an advanced eye model.

* We conduct extensive experiments qualitatively and quanti-
tatively, achieving a 18.7% lower gaze angle error in gaze
estimation and a 47.5% lower error of 3D pupil location com-
pared to the state-of-the-art works.

2 RELATED WORK
2.1 Model-based gaze estimation

Model-based gaze estimation predicts gaze based on a 3D eye model
which can be fitted to features extracted from the eye and/or face
images. Yamazoe et al. [31] first built a 3D eye-face model, where
gaze direction can be determined by tracking facial features and
locating iris centers. Pupil Labs [15] utilized detected pupil contours
to infer gaze direction using an average 3D eye model. Wang et
al. [29] proposed a 3D eye-face model to enable 3D eye gaze estima-
tion with a single web camera and introduced a unified calibration
algorithm to simultaneously reconstruct an individual 3D eye-face
model and estimate personal eye parameters. For a more detailed
survey of model-based gaze estimation, please refer to the latest
survey [16].

2.2 3D Pupil Localization

3D pupil localization methods could be categorized as glint-based
(i.e. using LED reflections) and glint-free (i.e. without using LED re-
flections), where glint-based methods play the dominant role due to
their higher accuracy. Before computing the 3D pupil position, most
of the glint-based methods estimated the 3D cornea center either by
triangulating glints location with coaxial camera and LEDs [3] or by
intersecting multiple reflection planes with assumed cornea radius
[20,28,30]. On the other hand, glint-free methods required simpler
hardware configuration and can operate in outside environments.
Our method is also glint-free. [7] utilized stereo matching to esti-
mate the 3D pupil center with detected two 2D pupil centers. [26]
proposed a temporal approach to conduct glint-free model-based eye
tracking using only a single camera. However, both of them com-
puted 3D virtual pupil but not actual pupil, as they did not consider
the impact of corneal refraction. [4,27] provided a detailed analysis
of the effects of refraction in glint-free gaze estimation. [4] also
introduced an inverse ray-tracing based cost function that accounted
for refraction. As follow-up work, [5] accelerated the non-linear
optimization process by re-casting model optimization as a least-
squares intersection of lines. Despite great results, all their methods
are based on the simple Le Grand eye model [21] which has signifi-
cant approximation errors [4,25]. Moreover, all the evaluations of
the accuracy of 3D pupil detection are based on synthetic datasets,
not real datasets.

2.3 Eye dataset

Current real eye datasets mainly contain information on gaze an-
gles [10,19], 2D pupil [10-13], and 2D eye features represented as
segmentation masks [10, 14, 17, 23], but no gold standard 3D labels
(e.g. 3D pupil or eyeball center) are provided due to the difficulty of
collecting accurate ground truth. To this end, synthetic eye datasets
have been used extensively for evaluating the accuracy of eyeball
and pupil localization algorithms in 3D. Dierkes et al. [S5] generated
synthetic images at 640x480 pixels resolution using a ray-tracing
pipeline and evaluated the accuracy of their methods for eyeball cen-
ter detection and gaze estimation based on the synthetic eye images.
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Figure 2: Schematic diagram of eyeball coordinate system and eyeball
horizontal rotation. The left image visualizes the eyeball without
rotation, while the right image illustrates a 15° horizontal eyeball
rotation.

NVGaze [17] is another widely used synthetic dataset, in which the
images were labeled with the exact 2D gaze vector, 3D eye location,
and 2D pupil location. The 3D pupil location can then be inferred
easily.

However, there is still a clear gap between synthetic datasets and
real datasets in terms of image quality and realism. Real datasets
contain different types of noise that cannot be simulated in a syn-
thetic environment, which leads to a large performance drop when
applying the method trained on synthetic datasets to real datasets.
Our work aims to provide a real dataset with 2D and 3D pupil ground
truth that can be used to evaluate the accuracy of pupil localization
and gaze estimation algorithms.

3 THEORETICAL ANALYSIS

Model-based glint-free gaze estimation methods compute the optical
axis by connecting the 3D pupil center and eyeball center or obtain-
ing the normal of the 3D pupil. In both cases, computing the 3D
pupil center position is a necessary step. We conduct a theoretical
analysis to investigate the impact of the estimation error of 3D pupil
center on the accuracy of gaze angle estimation. We argue that
even a small error of 3D pupil localization worsens the accuracy of
model-based gaze estimation significantly.

As shown in Fig. 2, we set the center of the eyeball as the ori-
gin, the eye direction of the eyeball axial length as z axis, the up
direction as y axis, and the axis parallel to them while intersecting
at the origin as x axis. To compute the correlation between the 3D
pupil center error and gaze angle error, we first fix a gaze angle 6
and express the ground truth gaze vector as g = (dsin0,0,d cos0),
where d is the distance between the eyeball center and 3D pupil
center. Then we express the erroneous gaze vector ¢ after adding a
small error & to 3D pupil center estimation as (dsin0 +8,0,d cos 0),
(dsin6,6,dcos0), and (dsin6,0,dcos 0 + ) in x, y, and z axis, re-
spectively. In the experiment, we set 8 to 0°, 10°, 20°, 30°, d to
10.39cm [5].

Finally, we compute the angle error between the ground truth
gaze vector g and the erroneous gaze vector ¢ using Equation 1:
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Note we only consider the horizontal movement of the eye in the
analysis, since the vertical movement of the eye gives the same
result.
Fig. 3 illustrates the change of gaze angle error with 3D pupil
position error when the gaze angle 6 is 0°, 10°, 20°, 30°, respectively.
We observed that, when 6 = 0°, the 3D pupil center errors in x
and y axis have the same effect on gaze angle error, making angle

error increases linearly as the pupil error increases. while the 3D
pupil center error in z axis has no effect on gaze angle error. As
0 increases, the error curve in y axis keeps the same, the error
curve in x axis shows an increasing asymmetry in the positive and
negative directions, while the error curve in z axis illustrates a more
significant impact of 3D pupil error to the gaze angle error, but the
impact is still smaller than other two axes.

Most importantly, we found that, at any angle, a 0.5mm(1mm)
error of 3D pupil estimation in x or y axis induces a 3°(5°) error of
gaze angle, which emphasizes the importance of accurate assessment
of existing 3D pupil localization works. In later sections, we will
also demonstrate that on our benchmark, current methods are still far
from accurate, and developing a more accurate 3D pupil localization
method is necessary.

4 DATASET

In this section, we describe our dataset building process in three steps.
First, we present our hardware setup used to capture real eye data and
build the benchmark. Second, we introduce the specific experimental
procedures to obtain all necessary eye videos and raw data. Finally,
we illustrate the methods of computing the ground truth of 2D pupil,
3D pupil as well as the gaze direction from captured images and raw
data.

4.1 Setup building

To acquire high quality eye datasets, we carefully design our setup
with two high resolution Pupil Labs cameras attached to eyeglasses,
a head stabilization frame, and a display for visualizing target points.
The whole setup can be seen in Fig. 4.

For image capturing, we utilize two high quality near-eye Pupil
Labs cameras [15] attached to the eyeglasses. We adjust the camera
positions to enable the eye to occupy a large space in the whole
image, while allowing the eye to move freely without exceeding
the edge of the image. Each camera is placed where clear and
unobstructed eye images can be captured at any horizontal and
vertical rotation angles within +-30°, avoiding the heavy eyelashes
occlusion when the eyes look down.

In our experiment, an essential source of error is the head move-
ment of subjects during the capture. Traditional eye tracking setup
normally constrains the head movement using a chinrest, however,
our experiment has a significantly higher requirement for head stabi-
lization, as even a 0.5mm error leads to a large 3°gaze angle error.
Using a chinrest only, subjects can still easily move their heads at
least 1cm left and right. To this end, we design a head stabilization
setup in consist of a helmet and a chinrest. The helmet with metal
horns can be placed in the corresponding slots on a fixed frame to
tightly control the forehead movement, while the chinrest controls
the chin movement as in prior studies.

One thing worth noting is that we do not directly measure the
absolute ground truth of 3D pupil center, as 3D pupil center is
covered by the cornea and anterior chamber and cannot be measured
directly. Current medical instruments can only measure eye shape
parameters (e.g. cornea thickness) to a very fine level, but not the
position relative to outside cameras. Thus, our dataset captures high-
precision relative ground truth that represents the relative change
of 3D pupil center. To obtain the relative ground truth, we attach
the eyeglasses to an optical stage that can shift the whole eyeglasses
with cameras in a very small amount of 0.02 mm.

Finally, we place a display in front of the user to visualize dots in
known positions from the user’s point of view, which enables data
collection under a variety of gaze angles. We calibrated the position
of the display in the eye camera coordinate using an external camera.

4.2 Dataset collection procedure

Before the data capture process, we first calibrate and fix each sub-
ject’s head on our head stabilization setup. We used two thin boards
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Figure 3: The correlation between 3D pupil center error and gaze angle error at 0°, 10°, 20°, and 30° horizontal gaze angle.
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Figure 4: The hardware setup we used to capture our real dataset. First column: optical stage for moving cameras precisely; Second column:
helmet with metal horns that can be placed in the corresponding slots for fixing the subject’s head position, used with the chinrest; Third column:
eyeglasses with two eye cameras that capture eye images; Fourth column: screen for showing the dots enabling calibration, calibrating boards for

ensuring a zero gaze direction.

with three small holes that form a right-angle shape to calibrate the
zero gaze angle. Two aligned thin boards are vertically placed in
front of the display with a 20cm distance. At a sight angle of zero,
the subject is expected to see three complete dots at pre-calculated
positions on the screen through holes in both boards. By adjusting
the chin rest in all three axes, all users’ eyes can then be calibrated
in the same 3D position. To synchronize the Pupil Labs cameras and
the display, we match their timestamps using the system clock.

After all preparations are completed, we turn on the cameras and
run the experiment program by visualizing 25 dots on the display
that are arranged in 5 rows and 5 columns and span a space of +-12
vertical degrees and +-15 horizontal degrees. Following [22], users
are required to click the dot using a mouse to ensure their fixation
on the dot. To sharpen the user’s focus, the dot is set to shrink after
clicking and fully disappears in another 0.5 seconds.

The 25 dots focus experiment is repeated 9 times with different
eyeglasses (as well as camera) positions, where both cameras move
1.27mm, 2.54mm, and 3.81mm in each of the three axes together.
Since the user’s head does not move during the experiment, the
gaze direction of focusing on the same dot is always the same no
matter how the cameras move. The whole experiment procedure
is illustrated in Algorithm 1 and lasts about 10 minutes for each
subject.

4.3 Ground truth generation

With the raw videos captured by two Pupil Labs cameras and the
corresponding dot positions on the display, we create a dataset with
accurate ground truth of 2D pupil, 3D pupil, and gaze angle. Our

dataset is the only one that includes data on 2D pupil, 3D pupil, and
gaze angle.

2D pupil We first compute the 2D pupil position in the eye
images based on the state-of-the-art 2D pupil detection method [15],
which approximates the 2D pupil as an ellipse and estimates the
2D pupil center, axes, and radius. This method can already achieve
ground truth level accuracy in general, but still contains detection
errors in some cases, such as eyelid occlusion and rapid eye move-
ment. We manually check every image and relabel all the detection
errors.

3D pupil  As we only move the cameras, not the user’s head, the
head position is fixed relative to the display. Thus, when the eye
looks at the same target on the display, the eye rotation is always
the same in the world coordinate, no matter how the camera moves.
Given the same eye rotation, the relative distance of the 3D pupil
center in two frames can then be represented as the fine-grained
distance the camera moves. For example, at the same gaze angle,
assuming two frames are captured before and after the 1.27mm
movement of the optical stage along the x-axis, the ground truth
distance of 3D pupil centers in two frames should also be 1.27mm.

Gaze direction To obtain the accurate gaze direction in the
eye image, we extract the 2D dot position on the display and then
transfer it to a 3D point in millimeters with the knowledge of the
transformation between pixels and millimeters and the transforma-
tion between the eye and display coordinate. The gaze is represented
as a 3D vector (gx, gy, g;) pointing from the eye rotation center to
the target on the screen.



Algorithm 1: Dataset collection process

Cameras Activation: Adjust the positions of two Pupil Labs
cameras to see appropriate eye images. Note we only need
to do this once for all subjects;

Subject-specific Calibration: Calibrate the eye origin
position with zero eye rotation for a specific user using a
thin board with holes;

Head Stabilization: Stabilize user head using chin rest and
the helmet with metal horns that can be placed in the
corresponding slots;

Data Capture:

for a € {x,y,z} do

for 1 < 0 to 0.15 inch (3.81mm) by 0.05 inch (1.27mm)
do

Move all cameras t inch along a axis while setting
two other axes to 0 ;

for vert <— —12° to 12° by 6° do

for hori <~ —15° to 15° by 7.5° do
Visualize a dot on the display at (vert, hori)
degree;
Shrink the dot 0.5 seconds after the user
clicks on it;
Record the dot position and timestamp;
end
end

end

end

5 3D PUPIL LOCALIZATION

As we have shown in Sect. 3, the accuracy of model-based gaze
estimation is significantly subject to the estimation error of 3D pupil
localization. To achieve better 3D pupil localization, we propose a
novel method utilizing a biologically more accurate eye model [1]
and developing a deep learning-based refraction correction method
to mitigate the error introduced by corneal refraction, as shown in
Fig. 7. Results are evaluated in our captured real dataset.

5.1 Advanced eye model

Currently, all the state-of-the-art glint-free 3D pupil localization
methods are based on a simple two-sphere eye model [21], i.e.
LeGrand model. As shown in Fig. 5, the LeGrand eye model approx-
imates the eye structure using two intersecting spheres, the large
one representing the eyeball, and the small one representing the
cornea. Pupil and iris are modeled as two concentric circles in the
intersecting plane perpendicular to the optical axis. Using spheres
to approximate the eyeball and cornea simplifies and accelerates the
computation process, especially when computing the reflection and
refraction of light. However, this over-simplified eye model also
introduces non-negligible errors. To achieve more accurate 3D pupil
localization results, we argue that using an advanced eye model can
improve the 3D pupil localization results by a large margin.

The biologically more accurate eye model we use is based on [1,
2]. In this eye model, the eye is represented as more precise multi-
layer quadratic surfaces with different refractive indices that are set
for the wavelength domain used to illuminate the eye. The cornea
consists of the anterior and posterior surface that differ by 0.55mm,
where the anterior surface of the cornea is modeled as a tri-axial
ellipsoid. Another important feature of this eye model is that it also
incorporates dynamic eye properties. The simple eye model assumes
the eyeball sphere center as the fixed rotation center, but experiments
revealed that the center of rotation for horizontal eye movements
is deeper than that for vertical eye movements [2]. Therefore, the
advanced eye model also parameterized the depth of the rotation
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Anterior Cornea
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Figure 5: Eye model comparison. Left: A simple two-sphere eye
model that is commonly used, Right: The more advanced eye model
of [2].

center for horizontal and vertical eye movements.

5.2 Deep learning-based refraction correction

With the advanced eye model, we now develop a novel deep learning
based refraction correction method to reduce 3D pupil errors caused
by corneal refraction.

3D pupil localization normally starts with 2D pupil detection by
fitting an ellipse in the image. It is worth noting that this ellipse is
distorted and magnified by cornea surfaces with a refractive index
bigger than 1, especially when the viewing angle is large. [8] showed
that as viewing angle increases, the virtual pupil moves forward, tilts,
and curves towards the observer’s direction. Fig. 6 is a schematic
figure illustrating the pupil location with and without considering
refraction. We can observe an apparent change of size and position
when comparing the real pupil and virtual pupil, which results in a
significant decrease in the accuracy of 3D pupil localization. Glint-
based methods [28] utilize glints (i.e.first purkinje image or anterior
corneal reflection) to estimate cornea center and shape that benefit
refraction correction, but the glint-free methods can only rely on
pupil information. [4] and [5] are two recent glint-free methods that
incorporated refraction correction into eyeball center estimation and
3D pupil localization. [4] proposed an optimization-based method
based on the unprojection of 2D ellipse in 3D space, while [5]
presenting a faster and simpler method for estimating two empirical
correction functions of eyeball center and gaze direction to account
for corneal refraction effects. However, their empirical correction
functions assume an over-simplified eye model as we mentioned in
Sect. 5.1 and correct method-dependent errors, so that the system
correction cannot be generalized to other methods. In contrast, we
propose a novel refraction correction method that operates on the
general 2D space. Instead of assuming no refraction during the
computation and then adding the refraction effects, we directly de-
refract the detected 2D pupil, which can be modeled as a neural
network. Our method is not tied to a specific 3D algorithm and can
be easily applied to other 3D pupil localization methods, where 2D
pupil detection is a necessary step.

To this end, we do not explicitly model parameters that affect
the appearance of 2D pupil (including eye structure, eye dynamic
movement, the transformation between eye and camera coordinate,
and camera projection), but directly input the 2D pupil into a small
3-layer neural network and output the corresponding de-refracted
pupil. We represent the pupil using an ellipse with five parameters
(cx,cy,a,b,y), where (cy,cy), (a,b), and y are ellipse center, axes
and tilt angle, respectively. Since our input and output dimensions
are both low, a 3-layer neural network can be trained fast and also
mitigate overfitting. During the training, we optimize a L1 loss
function that minimizes the distance between the normalized ground
truth ellipse vector and the predicted ellipse vector. Note that de-
refraction is also affected by other user-specific parameters (e.g.
cornea shape), this network can probably infer more accurate results
if we consider feeding cornea parameters as well. However, it
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Figure 6: Schematic figure illustrating the 3D pupil location with (real
pupil) and without (virtual pupil) considering refraction. With refraction,
two rays in red cast by two cameras are bent when passing through
the anterior and posterior cornea surface. Without refraction, the rays
in blue are not bent and form a virtual pupil in front of the real pupil.

is hard to obtain precise cornea-related parameters without using
medical-grade equipment. The intuition of our method is that ellipse
position, axes, and tilt angle indicate useful information about the
eyeball and cornea position in the camera coordinate, which leads to
better results compared to previous studies. One challenge with this
approach is that it is difficult to obtain the ground truth of the de-
refracted 2D ellipse in real data. We thus generate a synthetic dataset
including original and de-refracted 2D ellipses, built on the advanced
eye model. We express the 2D ellipse without corneal refraction
by setting the refractive index of the cornea and anterior chamber
to 1. Note in general, there is a domain gap between synthetic and
real data, it is mitigated in our case due to the low-dimensional
simple parameter space and the usage of the biologically accurate
eye model.

To build the synthetic dataset that can simulate the real situations
as much as possible, we randomly select a variety of eye and scene-
related parameters. Firstly, we sample the eye rotation in a large
area, -40 to 40 degrees horizontally and -10 to 50 degrees vertically.
As the rotation is represented in the camera coordinate, we sample
more upward-looking vertical angles based on the assumption that
current near-eye cameras are normally placed in front of or under
the eyes to avoid the interference of eyelashes and eyelids. Likewise,
the camera position is also bound to a constraint space to get closer
to the real distribution. Specifically, the camera translation is drawn
randomly from a uniform distribution within a box with a width
from -20 to 20cm, a height from -20 to Ocm, and a length from 20 to
40cm. To incorporate more pupil size changes, we randomly draw
it from a uniform distribution between 1mm to 4mm. We finally
save the 5-dimensional parameters of 2D ellipses before and after
refraction.

With the synthetic dataset, we are now capable of training the
2D de-refraction neural network using synthetic ground truth. After
obtaining the 2D de-refracted pupil, we compute 3D pupil location
using one or multiple cameras. We also develop a stereo camera-
based 3D pupil localization method using triangulation. We first
detect 2D pupil in the image and then feed it into the de-refraction
neural network. After getting the de-refracted 2D pupil in both

cameras, we triangulate the 2D pupil center to infer the final 3D
pupil center.

5.2.1 Network architecture

Our neural network is a 3-layer network with 2 hidden layers, the first
and second hidden layer contains 1024 and 512 nodes respectively.
We used ReLLU as our activation function.

5.2.2 Training details

We use PyTorch [24] to train our 3-layer neural network. For the
training, we use the Adam solver [18] with a learning rate of 0.003
and betas of (0.5, 0.999). To accelerate the training, We also set a
learning rate scheduler to lower the learning rate by 0.3 at epoch 50,
100, and 150. The whole training with 200 epochs on a dataset with
50000 data takes less than 10 minutes on a GTX 2080 Ti.

6 EXPERIMENTS

In this section, we evaluate our results of 3D pupil center localization
and gaze estimation on our proposed benchmark. We first demon-
strate and analyze our results qualitatively and quantitatively, and
then compare our results with state-of-the-art works and show that
our method outperforms existing methods by 47.5% on 3D pupil
localization and 18.7% on gaze estimation. Finally, we conduct
ablation studies to demonstrate the superiority of using the biologi-
cally advanced eye model and of our deep learning based refraction
correction.

6.1 Experiment settings
6.1.1 Dataset description

Our real dataset contains 5 subjects of different ages (15-50), genders
(3 females and 2 males), and races (1 Black, 3 Asian, and 1 White),
capturing gaze angles spanning in a +-15°space in the horizontal
direction and a +-12°space in the vertical direction. For each subject,
the dataset contains two 640x480 eye videos captured by two Pupil
Lab cameras and provides the corresponding .csv files recording the
target positions on the display, the time interval when the eye fixates
on each target, and the exact distance the camera has moved.

6.1.2 Evaluation metrics

3D pupil localization As we capture the relative ground truth,
namely ground truth that represents changes in data, it is not possi-
ble to compute the absolute error between the estimated 3D pupil
position and the ground truth one. Thus, to evaluate the accuracy of
various 3D pupil center localization methods on our benchmark, we
propose a novel evaluation metric fitted well to our relative ground
truth.

First, we assume that eye rotation is always the same when the
subject stares at the same target, as the user’s head does not move
relative to the display during the whole data capture process, thanks
to our carefully designed head stabilization setup. In the experiment,
the cameras are moved 8 times and have a total of 9 positions. The
data with the largest movement in z axis is removed due to the heavy
occlusion of eyeglasses in the images. We call each position of
the camera a spot. At each spot, the user looks at 25 targets on
the screen, in total 225 targets. For each target, we compute the
distance between two point sets by computing the euclidean distance
between the center of each point set. Note we don’t choose the
classical Hausdorft distance due to its high sensitivity to even a
single outlier. As we know how far the camera has moved relative
to the first spot (reference spot), we can obtain the exact movement
distance of 3D pupil center at all other spots when staring at the same
target. We expect to see the estimated position change of 3D pupil
center between two spots is the same at different gaze angles. We
also expect that the estimated position change is as close as possible
to the pre-measured spot distance. We design our evaluation criteria
based on these two expectations.
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Figure 7: Our pipeline of 3D pupil localization. We first detect 2D pupil in the image highlighted in red and then de-refract the 2D pupil using a
neural network trained on a biologically accurate eye model expressed in a yellow circle that is finally used to localize the 3D pupil.

Table 1: Comparison of Pupil,.., error with the state-of-the-art 3D
pupil localization methods, measured in (mm).

Method S1 S2 S3 S4 S5 Mean  Std
Swirski etal. [26] 3.60 11.14 135 434 145 438  3.58
Dierkes et al. [5] 293 939 129 346 179 377 2091
Ours (single) 147 864 109 418 1.07 329 291
Ours (stereo) 244 2.02 135 245 1.63 198 043

Table 2: Comparison of Pupilyy error with the state-of-the-art 3D pupil
localization methods, measured in (mm).

Method S1 S2 S3 S4 S5 Mean  Std
Swirski etal. [26] 2.82 134 1.06 2.88 0.89 1.80  0.87
Dierkes et al. [5] 228 115 054 172 0.76 129  0.64
Ours (single) 1.09 166 068 169 0.55 .13 047
Ours (stereo) 1.0 18 106 073 076 1.02 0.19

According to the first expectation we have:

s .
Epupityy = 3 X(Szd({x,»,j —Xo,lj=1,2,..25})) )
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where X ; and X; ; are the 3D pupil positions while staring at j-th
target at the reference spot and i-th spot. The second expectation
leads to the equation below:
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where d; is the ground truth distance between i-th spot and the
reference spot.

Gaze estimation To evaluate the gaze direction, we compute
the cosine angle between the estimated and real gaze angle using
Equation 1.

6.2 3D pupil localization

We compare our 3D pupil localization method with state-of-the-art
works. For a fair comparison, we only compare with glint-free
model-based methods as glint-based methods use additional glint
information. We don’t compare with [9] as they do neither directly
provide the 3D pupil center nor the indirect 3D eyeball center. We
also utilize the same 2D pupil detection method [15] to get the

Figure 8: Qualitative results of gaze estimation. The blue arrow repre-
sents the estimated gaze direction, while the green arrow represents
the ground truth gaze direction. We also highlight the detected 2D
pupil contour using a red ellipse.

initial 2D ellipse for all the methods. As for the compared methods,
we used the implementation they provided. Table 1 and Table 2
illustrate the advantages of our method in both criteria. We refer to
our method using triangulation with stereo cameras as Ours(stereo),
the method replacing the original refraction correction in [5] with
our 2D refraction correction function as Ours(single). We found that
our stereo method can achieve much more stable results (i.e. smaller
std) than all other methods with a 47.5% improvement. Our single
camera method also performs best in all of the single camera-based
methods.

We also list the two types of 3D pupil errors of each subject in
our dataset, our results are basically the lowest for most of the users,
showing the generalizability and robustness of our method. We
found that data of one subject (S2) raises an unusually high error
in most of the methods. After checking the data, we observed clear
nystagmus during the experiment, worsening the accuracy of the
ground truth and leading to bad results in most of the methods.

6.3 Gaze estimation

Qualitative results  We first visualize two examples of our gaze
estimation results in Fig. 8. The blue and green arrow represents the
estimated and the ground truth gaze direction, respectively. We also
highlight the 2D pupil using a red ellipse. The left image visualizes
an angle error of 3.64°, while the right image describes an angle
error of 0.75°.

Quantitative results We also compare our gaze estimation
method with the state-of-the-art methods on our proposed dataset as
shown in Fig. 9. Compared with other methods, our result achieves
a lowest mean error of 4.38°, 18.7% lower than [5], 23.0% lower
than [9], and 44.0% lower than [26]. This result also indicates the
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Figure 9: Gaze angular error of different methods for gaze estimation
on our dataset in degrees.

Table 3: Comparison of using simple eye model and advanced eye
model

Used eye model  Pupilyeqn(mm)  Pupilgy(mm)  Angle error (°)
Simple 3.51 1.69 5.16
Advanced 3.29 1.13 4.38

correlation between the 3D pupil localization and gaze estimation.
Methods that have a lower error on the 3D pupil localization task
also perform better in the gaze estimation task.

6.4 Ablation studies

Advanced eye model and simple eye model We conduct
additional ablation studies to analyze the effect of the advanced eye
model in terms of two 3D pupil evaluation criteria and the gaze
angle error as shown in Table 3. In the experiments, we replace the
advanced eye model with the simple eye model when generating the
synthetic dataset for training the de-refraction method. In all three
indicators, the advanced eye model performs better than the simple
eye model.

With and without refraction correction Eye refraction is an
important factor while doing 3D pupil localization. Here we evalu-
ate the effect of our refraction function added to different methods.
Compared to [5], our 2D neural network-based refraction correction
has a lower error in the pupil mean criteria and achieves the same
accuracy in pupil std criteria, indicating a more accurate 3D pupil
localization. Compared to [9] that did not consider refraction cor-
rection, with our de-refraction step, their method is able to achieve
a smaller gaze angle error, which again illustrates the generality of
our 2D-based refraction correction method.

Table 4: Comparison of methods with and without neural network
based refraction correction. w. RC and w/o RC represents with and
without our refraction correction, respectively. w. 3SDRC* indicates the
use of refraction correction proposed in [5].

Method Pupilyyeqn(mm)  Pupily,(mm)  Angle error (°)
[5] w. 3DRC* 3.77 291 5.39
[5] w. RC 3.29 291 4.38
[9] w/o RC - - 6.83
[9] w. RC - - 5.69

7 CONCLUSION

In this paper, we theoretically analyzed the importance of 3D pupil
localization on model-based gaze estimation, where 0.5mm 3D pupil
error may lead to a 3°angle error. We also proposed the first real
dataset including ground truth of gaze direction and relative 3D pupil
location, serving as the benchmark of current 3D pupil localization
and model-based gaze tracking methods. To obtain the gold standard
ground truth of the data, we built a setup with high stability. We also
introduced a novel 3D pupil localization method using an advanced
eye model and deep learning-based refraction correction. Extensive
experiments show that our method achieves a 47.5% higher accuracy
in the 3D pupil localization task than the state-of-the-art work and
a 18.7% higher accuracy in gaze estimation. We also found that
our image-based refraction correction can also improve methods
that ignore corneal refraction. We hope that our work can attract
more attention to 3D pupil localization and help solve challenges
in the field of display technologies. In future research, we plan to
capture a bigger dataset with more subjects to evaluate 3D pupil
localization results in a more varied environment. Moreover, as our
dataset precisely measures the movement of the head relative to the
camera, future research could be devoted to the development and
evaluation of slippage detection. We will also conduct experiments
on holographic displays with a tiny eye box to explore the practical
value of our 3D pupil localization method.
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