
Accelerating Large Scale de novo Metagenome Assembly Using
GPUs

Muaaz Gul Awan, Steven Hofmeyr, Rob Egan,
Nan Ding, Aydin Buluc, Jack Deslippe, Leonid

Oliker
Lawrence Berkeley National Laboratory

Berkeley, California, USA
mgawan@lbl.gov

Katherine Yelick
University of California
Berkeley, California, USA

Lawrence Berkeley National Laboratory
Berkeley, California, USA

kayelick@lbl.gov

ABSTRACT
Metagenomic workflows involve studying uncultured microorgan-
isms directly from the environment. These environmental samples
when processed by modern sequencing machines yield large and
complex datasets that exceed the capabilities of metagenomic soft-
ware. The increasing sizes and complexities of datasets make a
strong case for exascale-capable metagenome assemblers. However,
the underlying algorithmic motifs are not well suited for GPUs.
This poses a challenge since the majority of next-generation su-
percomputers will rely primarily on GPUs for computation. In this
paper we present the first of its kind GPU-accelerated implemen-
tation of the local assembly approach that is an integral part of a
widely used large-scale metagenome assembler, MetaHipMer. Local
assembly uses algorithms that induce random memory accesses
and non-deterministic workloads, which make GPU offloading a
challenging task. Our GPU implementation outperforms the CPU
version by about 7x and boosts the performance of MetaHipMer by
42% when running on 64 Summit nodes.

CCS CONCEPTS
•Computingmethodologies→ Self-organization; Self-organization;
• Applied computing→ Computational genomics; Bioinfor-
matics; Computational genomics.

KEYWORDS
metagenomic, genomic, GPU, CUDA, sequence assembly, sparse
data structures, graph algorithms

ACM Reference Format:
Muaaz Gul Awan, Steven Hofmeyr, Rob Egan, Nan Ding, Aydin Buluc, Jack
Deslippe, Leonid Oliker and Katherine Yelick. 2021. Accelerating Large Scale
de novoMetagenome Assembly Using GPUs. In The International Conference
for High Performance Computing, Networking, Storage and Analysis (SC
’21), November 14–19, 2021, St. Louis, MO, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3458817.3476212

SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8442-1/21/11.
https://doi.org/10.1145/3458817.3476212

1 INTRODUCTION
With the rapid development of genome sequencing technologies it
is now possible to sample and study genomes at an unprecedented
scale [5]. This includes the study of uncultured micro organisms
which have to be sampled as a group from their environment [27].
The majority of micro organisms cannot be cultured in the lab and
have to be sampled directly from the heterogeneous communities
of micro organisms that are found living in different environments
[15]. The study of these microbial communities has unveiled impor-
tant and complex relationships that exist within these communi-
ties as well as the associations they form with their environments.
Among other benefits, metagenomic studies pave way for better
antibiotics [15], understanding the impact of climate change [18],
forensics [29] and understanding different environments and their
impact on life [30] [10].

Collective sampling of micro organisms leads to very large and
complex datasets which cannot be processed and analyzed using
regular genome-assembly approaches that have been developed for
the study of single genomes [5][13][21]. A typical metagenomic
workflow involves sampling DNA reads (short strands of DNA
obtained using sequencing technologies) from an environmental
sample and trying to rebuild the contiguous regions of the underly-
ing genomes. DNA reads are redundant, repetitive, error prone and
when obtained from an environmental sample they may contain
proportional bias depending upon the population of different organ-
isms in the sample. This makes metagenome assembly significantly
different and more complex than single genome assembly, where
the sample contains genetic material from only a single cultured or-
ganism. Since the majority of single-cell organisms have never been
sequenced there is no reference genome present and this process
has to be done de novo, which further compounds the problem.

With the advent of modern sequencing technologies the speed of
metagenomic data generation has far exceeded the computational
capabilities of both software and hardware. Metagenome datasets
are very large in size and assembling even a moderately-sized sam-
ple exceeds the memory capacity of a typical shared-memory server
[9]. The bioinformatics software community has attempted to over-
come these challenges through the development ofmemory efficient
methods combined with techniques like multiassembly (assembling
parts of a dataset separately and then taking consensus), but these
result in long run times and poor assembly quality [13] [9]. To over-
come these challenges, MetaHipMer was introduced as a large-scale
metagenome assembler that can leverage the large memory and
compute capacities of supercomputers to coassemble terabase-scale

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3458817.3476212
https://doi.org/10.1145/3458817.3476212
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC ’21, November 14–19, 2021, St. Louis, MO, USA M.G. Awan et al.

datasets [7]. MetaHipMer’s performance and accuracy in compari-
son with other state-of-the-art metagenome assemblers have been
studied at length [9].

Originally, MetaHipMer was written in UPC and MPI, but it has
subsequently been completely rewritten in UPC++; this new version
is called MetaHipMer2. Throughout this paper we use the term
MetaHipMer when referring to MetaHipMer in general (including
all versions) and we use the termMetaHipMer2 when we are talking
about the specific implementation, since we used the recent most
version for all the experimentation.

MetaHipMer’s continuous development has kept it on par with
the increasing challenges posed by the ever-increasingmetagenome
data sizes. With the ongoing development of next-generation su-
percomputers, which derive a significant portion of their computa-
tional power from Graphics Processing Units (GPUs), it has become
important to evolve MetaHipMer to exploit GPU processing. Many
bioinformatics algorithms (such as the majority in metagenome
assembly) are not amenable to GPUs because of their sparse and
irregular nature. Furthermore, lack of support for dynamic con-
tainers like hash tables, strings and vectors on GPUs makes the
implementation of bioinformatics algorithms on GPUs a challenge
[31].

Figure 1: An overview of the MetaHipMer2 pipeline. The Lo-
cal Assemblymodule (shown in red) takes up the largest per-
centage of total run time for many datasets.

As shown in Figure 1, MetaHipMer has a complex workflow that
consists of independent components performing different stages
of the assembly pipeline. A breakdown of a single MetaHipMer
run in Figure 2a shows that about one third of the total execu-
tion time is spent in the Local Assembly module, which, true to
its name, is performed locally on each node, in contrast to other
modules, which spend most of the time in communication across
processes. The local assembly module involves constructing thou-
sands of hash tables in parallel and then using those hash tables to
perform contig (contiguous strand of DNA) extension walks. The
CPU implementation of local assembly relies heavily on dynamic
structures like hash tables, vectors and strings, which are a chal-
lenge to implement on GPUs. In addition, the algorithmic motif
of local assembly induces a random memory-access pattern with

a non-deterministic amount of work, which makes implementing
this module on GPUs a very challenging problem. In this paper, we
present an optimized GPU implementation of local assembly that
is integrated in the MetaHipMer pipeline. Our experiments on a
real-world dataset show 7x faster performance when using GPUs
and an overall pipeline speedup of 42%.

2 BACKGROUND
2.1 Literature Review
Depending on the type of study and the availability of a reference
genome, sometimes it is possible to align the DNA reads against
a reference genome. This process at its core involves a dynamic
programming technique that has been shown to do well on GPUs
because of a predictable and recurring memory access pattern [1]
[16] [3] [26]. For metagenomics studies, reference genomes are
rarely available and hence assemblies are done de novo. Assembling
a genome of cultured organisms de novo without the help of a refer-
ence genome is a well studied problem. Typically this is performed
using assembly-graph approaches, which can take two forms [25].
The first is the de Bruijn graph approach, which builds a graph
using short sub-strings of DNA reads known as k-mers [23], where
each k-mer is represented by a vertex in the graph and an edge
connects two vertices when the two corresponding k-mers overlap.
The underlying genome can be assembled by finding a path in the
de Bruijn graph subject to certain constraints. The second approach
is the overlap graph, which uses full DNA reads for vertices, instead
of k-mers, and edges correspond to an overlap between the two
reads [14]. A path through the overlap graph corresponds to the
underlying genome. DNA reads are error prone, redundant and
may not cover the complete genome. This makes the task of finding
a path through an assembly graph very hard. Typically, the overlap
approach is only used for long reads, because the computational
cost of doing an all-to-all alignment of all reads is prohibitive for
datasets that have many more shorter reads.

There have been multiple approaches to accelerating genome as-
sembly using GPUs. Some of the popular GPU-accelerated genome
assemblers include LaSAGNA [8], which uses the overlap string-
graph approach and utilizes GPUs for operations like sorting and
prefix scan, but performs most of the assembly-graph related com-
putations on the CPU. It achieves a performance improvement of
about 3x over a CPU-only parallel assembler. Another genome as-
sembler, GPU-Euler [19], uses the de Bruijn graph approach and
performs most of the assembly-graph related operations on GPUs.
GPU-Euler demonstrated a speedup of about 5x against a serial CPU
approach. GAGM [11] is another GPU-accelerated assembler, which
also uses the de Bruijn graph approach and implements an almost
end-to-end GPU-offloaded workflow, with some CPU operations. It
showed a speedup of about 7x over a CPU-based parallel assembly
approach that was run using a quad core CPU. Some of the as-
sembly approaches perform an additional step of aligning different
parts of intermediate contigs using sequence-alignment algorithms;
sequence alignment is an expensive process but more amenable to
GPUs than the rest of the graph-based algorithms. GrassHopper
[28] is one such assembler: it keeps most of the assembly pipeline
on the CPU and offloads the sequence-alignment portion to GPUs.
Another GPU-accelerated genome assembler uses bi-directed de

Accelerating Large Scale de novo Metagenome Assembly Using GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

Bruijn graphs and performs assembly-graph construction on GPUs
[17], and comparing only the graph construction phases of CPU-
only approaches against their GPU approach, they demonstrated
a speedup of between 2 to 7x. The CPU-only assemblers used for
comparison took advantage of multiple CPU cores.

All of these GPU-accelerated genome assemblers were chal-
lenged by the nature of algorithms involved and the data and
memory-intensive nature of the assembly problem. This is due to
the irregular memory-access patterns induced by assembly-graph
construction, graph traversal and hash-table construction and prob-
ing. Furthermore, the limited memory on GPUs poses another chal-
lenge due to low CPU-GPU communication bandwidths. Despite
these challenges, GPU-accelerated genome assemblers have demon-
strated performance improvements over the CPU-only versions.
However, the set of challenges for metagenomic assembly go be-
yond those discussed above and are further compounded because
of the larger and more complex datasets involved.

Metagenome assembly requires a more specialized approach and
the existing genome-assembly approaches cannot be used here.
Some of the popular metagenome assemblers include MetaHipMer
[7], Megahit [13] and MetaSpades [21]. Megahit and MetaSpades
are shared-memory assemblers and are not capable of processing
datasets that exceed the memory requirement of a single node.
MetaHipMer can scale across multiple nodes and is capable of
handling terabase-scale datasets [9]. Because of the challenges in
GPU-acceleration of the algorithms involved, little work has been
done in porting metagenome assembly to GPUs. Megahit demon-
strated usage of GPUs in one of its earlier versions by offloading
the k-mer counting phase to GPUs; however, in the recent work it
has been shown that a well optimized CPU-only version of Megahit
can outperform the earlier GPU-accelerated version [13]. By con-
trast, MetaHipMer has seen clear performance gains from the use
of GPUs (in alignment operations) [3].

2.2 MetaHipMer
MetaHipMer is the only known distributed-memory metagenome
assembler that can scale to thousands of nodes while matching the
quality of state-of-the-art shared-memory assemblers [9]. MetaHip-
Mer uses an iterative de Bruijn graph approach to build contiguous
strands of DNA, known as contigs, from the input DNA reads [24].
It also uses a specialized scaffolding method that stitches together
multiple contigs to increase the lengths of final contigs.

The MetaHipMer pipeline consists of multiple components that
perform the complete assembly as shown in Figure 1. It starts by
breaking down the input reads into shorter sub-strings of length 𝑘
known as k-mers. After filtering out erroneous k-mers (those that
occur only once), these are then used for constructing a de Bruijn
graph. Unambiguously connected paths in the resulting graph are
traversed to obtain contiguous regions of genomes. This is followed
by the alignment stage, where contigs are aligned against reads to
find reads that can be used to further extend the contigs. The reads
that align to the ends of contigs are then used for extending the
contigs in both directions using the local assembly module. The
local assembly module also performs de Bruijn graph construction
and traversal, but does so separately for the reads that align to each
contig end. And finally, the contigs generated in the previous stages

27.0%

5.3%

21.3%

34.2%

10.6%

merge reads

k-mer analysis

contig generation

alignment

aln kernel

local assembly

scaffolding

file IO

MetaHipMer profile (CPU local assembly)

(a) MetaHipMer2 run time breakdown when using CPU local assembly. Total
time 2128 seconds

37.9%

7.7%

30.8%

6.3%

14.8%

merge reads

k-mer analysis

contig generation

alignment

aln kernel

local assembly

scaffolding

file IO

MetaHipMer profile (GPU local assembly)

(b) MetaHipMer2 run time breakdown when using GPU local assembly. Total
time 1495 seconds

Figure 2: Pie charts here show run time breakdown in per-
centage for different phases of MetaHipMer2 when running
on 64 nodes of Summit system using the marine communi-
ties dataset [12].

are connected together in the scaffolding phase to further increase
the contiguity.

Previously, only a part of the alignment phase in MetaHipMer
had been offloaded to GPUs [3]. A time breakdown of MetaHipMer
in Figure 2a shows that 34% of total time is spent in the local assem-
bly for one particular dataset on 64 OLCF (Oak Ridge Leadership
Computing Facility) Summit nodes. The exact fraction of time spent
in any one stage depends on the dataset and the concurrency, but
the time taken in local assembly is always a significant part of the
overall run-time. Though not the most GPU-amenable part of the
pipeline, most of local assembly is performed locally on each node,
in contrast to the other phases, which are distributed in nature and
are dominated by network communication. Thus local assembly is
a good candidate for GPU offloading.

SC ’21, November 14–19, 2021, St. Louis, MO, USA M.G. Awan et al.

2.3 Local Assembly Module
Metagenome samples are complex, containing populations of differ-
ent organisms with varying abundance, which leads to sequencing
machines sampling some organisms more than others. Sequencing
errors and commonality of DNA fragments across organisms can
result in the erroneous overlap of paths in the global de Bruijn
graph, producing unresolvable forks. Local assembly addresses this
issue by performing the de Bruijn graph traversal entirely locally,
using only the reads that map to the end of a contig to extend that
end.

Local assembly is performed in an embarrassingly parallel man-
ner in the current CPU-only version. It is a two-step process which
is iteratively performed until the correct termination condition
is met. Each process picks a local subset of contigs and obtains
the candidate reads that align to each contig. Reads for right and
left sides of the contigs are kept separate. The same algorithm is
repeated for both right and left sides of each contig.

Algorithm 1 kmer hash table construction
1: C← contigs
2: for each contig 𝑐 in 𝐶 do
3: for each read 𝑟 in 𝑔𝑒𝑡_𝑟𝑒𝑎𝑑𝑠 (𝑐) do
4: for each kmer 𝑘 in 𝑟 do
5: 𝑘𝑚𝑒𝑟_ℎ𝑡 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑘)
6: end for
7: end for
8: end for

Algorithm 2 DNA walks
1: c← contig
2: 𝑤𝑎𝑙𝑘 ← 𝑒𝑚𝑝𝑡𝑦

3: 𝑤𝑎𝑙𝑘_𝑠𝑡𝑎𝑡𝑒 ← 𝑒𝑚𝑝𝑡𝑦

4: kmer← 𝑔𝑒𝑡_𝑘𝑚𝑒𝑟 (𝑐)
5: for 𝑖 = 0 𝑡𝑜 𝑖 < 𝑚𝑎𝑥_𝑤𝑎𝑙𝑘_𝑙𝑒𝑛 do
6: if 𝑙𝑜𝑜𝑝_𝑒𝑥𝑖𝑠𝑡𝑠 (𝑘𝑚𝑒𝑟) then
7: end_walk
8: end if
9: ext← 𝑘𝑚𝑒𝑟_ℎ𝑡 .𝑙𝑜𝑜𝑘𝑢𝑝 (𝑘𝑚𝑒𝑟)
10: if 𝑒𝑥𝑡 == 𝑒𝑛𝑑 | |𝑒𝑥𝑡 == 𝑓 𝑜𝑟𝑘 then
11: 𝑤𝑎𝑙𝑘_𝑠𝑡𝑎𝑡𝑒 ← 𝑒𝑥𝑡

12: break
13: end if
14: 𝑤𝑎𝑙𝑘+ = 𝑒𝑥𝑡

15: 𝑘𝑚𝑒𝑟 = 𝑛𝑒𝑥𝑡_𝑘𝑚𝑒𝑟 (𝑘𝑚𝑒𝑟, 𝑒𝑥𝑡)
16: end for

Once all the data are available locally, the first step is to build a
k-mer hash-table from all the reads, where k-mers are used as keys
and the values are extensions. An extension object contains the
base (nucleotide character) that follows the k-mer and also contains
information about the quality of that base and counts (number of
occurrences) for that k-mer. The process of inserting k-mers in the
hash table is repeated for all the candidate reads for each contig;
pseudo code for this can be seen in Algorithm 1. The second step is

to performmer-walks, as discussed in [6] and [7]. A mer-walk slices
a k-mer from the end of a contig and looks that up in the hash table,
and if the k-mer is available, the corresponding extension base is
appended to the end of contig. This is repeated until a dead-end or
a fork is encountered (see Algorithm 2). If a fork is encountered k
(the length of the k-mer) is increased or up-shifted and the whole
process starting from the first step is repeated; in case of a dead-end
k is downshifted. The mer walk phase terminates when a fork is
encountered after downshifting or when a dead-end is met after
up-shifting the value of k.

2.4 Challenges in GPU offloading
The local assembly module posed three types of challenges for GPU
offloading:
• There is a lack of support for dynamic containers on GPUs.
As discussed above, the underlying algorithm relies heavily
on hash tables and string resizing, both of which require dy-
namic memory allocation, which is not supported on GPUs.
• There is limited memory available on GPUs. The combined
memory of all six GPUs on a Summit node is 96 GBs, while
the total DRAM available to the CPUs on the same node
is 512 GB [22]. This limits the amount of work that can be
offloaded to GPUs.
• The memory access patterns and work distribution in local
assembly are not well-suited to GPUs. Hash tables introduce
a memory access pattern that is random in nature and leads
to non-coalesced memory accesses on GPUs, which incur a
large performance penalty. Furthermore, mer walks need to
be done sequentially and their final lengths cannot be deter-
mined beforehand. This creates a highly random workload
which leads to warp stalling on GPUs.

These challenges make local assembly and metagenome assem-
bly in general a hard problem for GPUs, both from the perspective
of implementation complexity and difficulty of obtaining good per-
formance.

3 GPU-ACCELERATED LOCAL ASSEMBLY
In this section we discuss our approach to offloading the local
assembly module to GPUs and address the above challenges and
describe the solutions that we employed. For this work we used
NVIDIA’s CUDA API for GPU offloading. An overview of the GPU-
accelerated local assembly can be seen in Figure 4; various aspects
of our implementation are detailed below.

3.1 Data binning for better load balance
Each contig from the upstream pipeline can have a varying number
of candidate reads used to extend it in the local assembly phase. This
number can range from zero to up to 3000 (an empirical upper limit).
The larger the number of candidate reads, the more work is required.
Offloading all the contigs without any type of sorting would lead
to load imbalance across warps, which will cause a few threads of
the warps to stall the remaining, and result in poor performance.
As a solution, we sort the contigs on the CPU side into three bins
based on the number of candidate reads. Bin limits were chosen
based on an empirical analysis: the first bin contains those contigs
which have zero reads; the second bin contains all those contigs

Accelerating Large Scale de novo Metagenome Assembly Using GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

which have fewer than 10 reads; and all the remaining contigs go
into the third bin. Our studies showed that typically the majority
of contigs have zero reads while the percentage of contigs assigned
to the second bin may vary between 10% and 30%, and the third bin
gets less than 1% of contigs. An example contig distribution across
bins (for the arcticsynth [9] dataset) can be seen in Figure 3.

k-mer size

P
er

ce
nt

ag
e

of
 c

on
tig

s

0

25

50

75

100

21 33 55 77

Bin-3 Bin-2 Bin-1

Distribution of contigs across bins

Figure 3: Distribution of contigs across three bins for the arc-
ticsynth [9] dataset. It can be seen that Bin-3 consistently
gets less than 1% of total contigs while Bin-2 varies between
10% and 30%. Larger k-mer size leads to larger number of
contigs having candidate reads greater than zero.

The first bin is not offloaded to GPUs and is returned without
performing any extensions since there are no reads for the contigs
to be extended against. For the second and third bins, separate
kernel loops are launched. This sorting ensures that contigs which
can be processed quickly are launched on a separate kernel and do
not face long warp-stalling delays while the contigs that require
the longest time are grouped together on a separate kernel. Note
that even though the third bin contains less than 1% of the total
contigs, it still might take up most of the computational time.

Figure 4: Overview of GPU local assembly module.

3.2 Minimizing device memory usage
The total size of all the k-mers in a read is much larger than the
memory occupied by a single read. A read of length 𝑙 will occupy 𝑙
bytes, assuming each character is stored in a byte. The total memory
in bytes occupied by the k-mers of the same read would be (𝑙 − 𝑘 +
1) ∗ 𝑘 . When performing local assembly on GPUs it is important
to conserve memory so that maximum amount of data and hence

work can be offloaded. This is particularly important because local
assembly is a memory-bandwidth limited algorithm and one of the
ways to get performance is to offload as much work to the GPUs as
possible. This is also helpful because of the latency-hiding nature
of GPUs i.e. while data for one warp is not available, another warp
can be scheduled to advance.

Figure 5: Overview of GPU local assembly extension kernel.
Dotted green arrows show threads that have been masked
out. One contig is assigned per CUDA warp.

To minimize memory usage and maximize the amount of work
that is offloaded we used measures to re-use data that was stored
in global memory. Our analysis showed that largest amount of
memory on the GPUs was being used by the hash tables. The
algorithm uses two different hash tables for extending each contig:
one for storing k-mers and extensions, and another for keeping
track of k-mers visited (to avoid cycles). Most implementations of
hash tables require them to resize depending on their load factor.
A load factor is the percentage of hash table slots that have been
filled. A higher load factor may lead to increased hash collisions
and consequently longer insertion and access times. On the GPU
we could not enable the resizing of hash tables because of limits on
dynamic memory allocation. A naive way would be to compute the
size of largest possible hash table for all the extensions and reserve
that much memory for each extension but this quickly takes up all
the GPU global memory. As a workaround, we compute the exact
size of hash table that would be needed by any contig extension
and store all the sizes in an array called ℎ𝑡_𝑠𝑖𝑧𝑒𝑠 . Then we compute
the total memory used by all the hash tables and allocate that on
the GPU. With the help of the ℎ𝑡_𝑠𝑖𝑧𝑒𝑠 array we can keep track
of the start and end of each hash table and minimize the overall
memory-usage. The size of a hash table depends on the number
of maximum unique k-mers that exist in a set of candidate reads:
assuming that each k-mer is unique, the size of hash table would be
(𝑙−𝑘+1) ∗𝑟 ∗𝐻 , where 𝑙 is the maximum read-length, 𝑘 is the k-mer
size, 𝑟 is the total candidate reads for a contig, and 𝐻 is the size
of each entry in the hash table. In order to prevent the hash table
from reaching high load factors we use 𝑙 ∗ 𝑟 ∗𝐻 as the hash table

SC ’21, November 14–19, 2021, St. Louis, MO, USA M.G. Awan et al.

size. This limits the hash-table load factor to a maximum of about
0.93. Using this method we were able to minimize the total GPU
memory allocated for hash tables while maximizing the hash-table
performance. The load factor for the above discussed strategy can
be computed as:

Load Factor =
𝑙 − 𝑘 + 1
𝑙 − 𝑘

To compute the worst-case load factor, we replace 𝑙 with the
longest-possible read length and 𝑘 with the shortest-possible k-
mer length. Short reads have a maximum length of 300 while the
shortest k-mer length for reasonable accuracy is 21, giving:

Worst Case Load Factor =
300 − 21 + 1

300
= 0.93

As discussed above, the constituent k-mers of a read use up more
space than the read itself. However, k-mers can also be obtained
directly from the reads if the start location and length of a k-mer is
known. As shown in Figure 6, instead of storing complete k-mers
in the hash table on GPUs, we just store the pointer to the start
location of the k-mer and the length of the k-mer. For instance, to
store a k-mer of length 77, same number of bytes will be required.
However, to store the same k-mer using the technique in Figure
6 would require just 5 bytes using about 15𝑥 less memory per k-
mer. This helps free a significant amount of memory overall. We
use a similar strategy in the DNA-walks phase by storing only the
pointers to different k-mers in reads instead of storing complete
k-mers.

Figure 6: The table on the left stores complete k-mers while
the table on the right stores only the pointers to the k-mer
starting position inside the stored read alongwith the length
of k-mer. The k-mers in the right table are same as those in
the table on the left.

3.3 Warp Local Hash table construction
The first step in local assembly is the construction of the k-mer hash
table for each contig using its candidate reads. This is performed
using the method outlined in Algorithm (Pseudo Code 1). For the
GPU implementation we assigned one CUDA warp to construct
one hash table as shown in Figure 5. A CUDA warp is the smallest
unit of threads that is scheduled onto the GPU hardware. Each
warp on NVIDIA hardware consists of 32 threads. There are several
advantages that can be exploited when working on a warp level,
for instance threads of a warp can communicate with each other
through register-to-register direct data transfers and threads can
be synchronized within a warp.

We start the hash-table construction by mapping the threads
of a warp to the first candidate read such that the threads point
to contiguous k-mers in that read, as shown in Figure 7. Each
thread inserts the k-mer assigned to it into the hash table using the
murmurhash2 function [2]. During hash table insertions there are
couple of scenarios that can occur; these are shown in Figure 7 and
discussed below:
• Hash Collisions: In case a thread runs into a hash-table
entry that is already occupied, we perform a key-to-key
comparison where the keys are the k-mer being inserted and
the k-mer that is already present. If the keys are a match we
increment the k-mer count and update the quality metric
for its extension. If the keys do not match, that is a hash
collision and is resolved using linear probing where the key
is inserted in the very next available empty slot.
• Thread Collisions: This happens when two threads get the
same k-mer, for example in Figure 7. This creates a unique
situation where two threads are competing to insert the
same k-mer at the same location. To resolve such a situation
an exclusive region is needed, however, exclusive regions
cannot be created on a GPU. As a solution we use CUDA’s
compare and swap (CAS) atomic operation to mark an entry
as occupied exclusively by a thread. The CAS atomic ensures
that only one of the colliding threads will be able to mark the
entry as occupied; call this thread the winning thread. Next
we use CUDA’s match_any_sync operation to obtain a mask
suggesting which of the threads in a warp are colliding and
we synchronize them. Immediately after the synchronization
we allow the winning thread to initialize the entry of the
hash table inside an if block and then again synchronize
the colliding threads after the if block using the mask from
above. Once the entry has been added by the winning thread,
the remaining threads involved in the collision can access
the entry and update the values atomically.

Figure 7: In the table on the left thread 1 and 2 get a differ-
ent k-mer each but they both hash to the same location. This
type of collision is resolved through linear probing, i.e. find-
ing the very next empty slot. In the table on the right threads
1 and 4 get the same k-mer, which leads to a thread collision
that is resolved using exclusive regions.

3.4 DNA walks
Once the k-mer hash table has been constructed, one thread among
the 32 threads (which constructed the hash table) of a warp traverses
the table to perform the DNA walks as described in section 2.3 and
shown in Algorithm 2. For each warp, all the threads except the first
one are masked out for this step since walks cannot be performed

Accelerating Large Scale de novo Metagenome Assembly Using GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA

in parallel (see Figure 5). Local assembly is an iterative process that
repeats until an acceptable walk is found. If an acceptable walk is
not found at the end of walk, the k-mer hash-table is reconstructed
with a different k value to redo the DNA walks. The computation to
check if a walk has been accepted or rejected is performed by the
same thread that performs the walk. It is important to broadcast
the information about the state of the walk (accepted or rejected) to
other threads of the warp so that they can be masked or unmasked
depending on if the hash table needs to be reconstructed. For each
extension, the state of the walk is stored as a variable in a register
and then that value is shared with other threads of the warp using
shuffle instructions that enable inter-thread communication within
the warp as discussed in section 3.3. An overview of the kernel
implementation with details about thread participation can be seen
in Figure 5.

4 PERFORMANCE ANALYSIS
To analyze the performance of the GPU-accelerated local assembly
module we first studied its standalone performance and then inte-
grated the module in MetaHipMer’s most recent release MetaHip-
Mer2 to study the overall improvement in performance of MetaHip-
Mer.

4.1 Test systems and datasets
The CUDA API from NVIDIA was used for the development of the
GPU local-assembly kernel, and CUDA version 10.1.2 was used for
building all the CUDA modules. UPC++ release 2021.3.0 was used
for building MetaHipMer from source. For all the following studies
we obtained the source code of MetaHipMer2 from the master
branch at git commit 80𝑎𝑑090. CPU-only runs were performed by
using that exact same version while for GPU integration we started
from the above version.

For the standalone performance-analysis we used the Cori sys-
tem’s GPU partition [20]. Each node on the Cori GPU partition
contains eight V100 NVIDIA GPUs with two sockets of Intel Sky-
lake processors with 20 CPU cores each. The total available DRAM
on each node is 384GB while each NVIDIA V100 has a total global
memory of 16GB. For the large-scale studies we used the Summit
supercomputer [22]. Each node of Summit consists of two POWER9
processors and six NVIDIA V100 GPUs. Total RAM available to
CPUs is 512GB while each GPU contains 16GB of global memory.

For small-scale tests on fewer nodes, we used the arcticsynth
dataset [9], which contains 32 million synthetic reads of length
150 bp, and for large-scale tests we used the WA dataset, which
is a collection of marine microbial communities from the Western
Arctic Ocean and consists of 813 GB of 2, 465, 328, 090 Illumina
HiSeq paired-end reads of length 150 [12].

For standalone runs we used the arcticsynth [9] dataset and pro-
cessed it through the MetaHipMer pipeline to dump the contigs and
their candidate reads that are input to the local assembly module.
This data dump was then used to evaluate the performance of the
GPU local-assembly kernels.

4.2 Roofline Analysis
To understand the device utilization and the algorithm’s limita-
tions we made use of the Instruction Roofline [4]. The Instruction

Roofline model is a visually-intuitive method to understand the
performance of a given kernel based on a bound-and-bottleneck
analysis approach. It allows us to analyze instruction throughput
and quantify efficiency of memory accesses. Generally, the Instruc-
tion Roofline model characterizes a kernel’s performance in bil-
lions of instructions (GIPS, y-axis) as a function of its instruction
intensity (II, x-axis). Instruction Intensity is defined as warp instruc-
tions per memory transaction of memory traffic. In an instruction
roofline, the plotted instruction dots show the performance and
utilization by a kernel. The further these solid dots (instruction
throughput) are to the upper right corner of the figure, the better
performance/utilization that kernel achieves. For the open dots
(memory pattern), the closer to the rightmost memory wall they
are, the higher the memory-access efficiency of the kernel.

We evaluated two different versions of the GPU local-assembly
module that were obtained from its development cycle. The first
version (referred to v1) used only a single CUDA thread for k-mer
hash-table construction (see Figure 8), while the second version
(referred to as v2) used a single warp (thirty-two threads) per k-mer
hash-table (see Figure 9). For both versions the second step of DNA
walks is performed by a single thread per extension.

The v2 kernel extracts k-mers from a read such that threads of
a warp access contiguous memory locations, as shown in Figure
7, which reduces the number of global memory transactions. It
is apparent from Figures 8 (v1) and 9 (v2) that the L1 dot moves
in the upper-right direction when moving from v1 to v2. This
demonstrates that v2 achieves a higher instruction throughput and
a better instruction intensity by reducing the number of global
memory transactions and global memory load/store instructions.
Figure 10 visualizes the instruction breakdown of the two implemen-
tations, and it can be observed that the number of global memory
instructions is significantly reduced. In addition, the Roofline plots
also show that v2 utilizes the memory bandwidth better than v1.
However, this does not improve the memory access patterns while
inserting in the hash table, but parallel insertions do improve per-
formance. It can be further observed that both versions are close to
the Stride-1 memory wall due to the nature of the random access
of the hash table.

The dotted line in the Roofline figure shows the number of non-
predicated warp instructions that can be achieved by the underlying
kernel. The gap between the red dot and the dotted line indicates
the presence of thread predication. This shows that both v1 and v2
kernels suffer from thread predication. Most of the thread predica-
tion occurs in second step of the algorithm, where the majority of
the threads have to be masked out (Figure 5) to perform sequential
DNA-walks and the amount of work is non-deterministic and varies
greatly across threads. For instance, a DNA walk can be up to 300
steps long for some threads while for another it might terminate
right at the start. For v2, thread predication decreases moderately
because multiple threads are utilized for building hash tables.

In conclusion none of the versions achieve close to peak per-
formance, but with v2 achieving a higher peak performance of
14.4 GIPS. This is mostly due to the nature of the algorithm, with
randomly-accessed global memory and large usage of local mem-
ory. Approximately 70% of L1 memory transactions and L1 memory
instructions are from local memory, which in this case limits the
performance.

SC ’21, November 14–19, 2021, St. Louis, MO, USA M.G. Awan et al.

Figure 8: Instruction roofline for single
thread version of extension kernel (v1)

Figure 9: Instruction roofline for per
warp version of extension kernel (v2)

v1 v2

0.5

1

1.5

2

2.5

N
um

be
r o

f i
ns

tru
ct

io
ns

1010
Global_memory_inst
Local_memory_inst

FP_inst
INT_inst

23%

7%

40%

30%
15%

37%

18%

30%

v1 v2

500

1000

1500

2000

2500

3000

3500

4000

4500

Ti
m

e
(m

s)

Figure 10: Performance insights
breakdown

4.3 Integration in MetaHipMer
For testing the impact of GPU offloading of the local assembly phase
on MetaHipMer’s performance, we used the most recent version i.e.
MetaHipMer2, which is written in UPC++. The GPUmodule of local
assembly was integrated into MetaHipMer2 using a driver function
that performs all the CPU-side data packing, device-to-rank map-
ping, and launches device kernels. Use of a driver function allows
for complete isolation of GPU and CPU codes which proves very
helpful given that UPC++ and CUDA codes need to be built sepa-
rately before being linked in. An overview of GPU local-assembly
integration in MetaHipMer2 can be seen in Figure 11.

Figure 11: Integration of the GPU local-assembly module
in MetaHipMer2. The green boxes show GPU related calls,
while the green arrows represent the thread that runs in the
background.

After all the needed data from multiple nodes has been collected,
binning of the contigs is performed based on candidate read counts
as described in section 3.1. Once the bins are available, the driver
function call is made inside a new thread and the third bin contain-
ing contigs with the larger number of candidate reads is passed to
the driver (Figure 11). Using a separate thread to launch GPU calls

allows for the control to be returned to the parent thread where
the CPU can start performing local assemblies on the second bin.
As soon as the GPU code returns, the second bin is also offloaded
to the GPU. In Figure 11 arrows colored in green show the newly
forked thread that runs in background.

The reason to launch the third bin on GPU first was based on an
empirical study which demonstrated that GPUs fair better when
using contigs with larger numbers of reads i.e. when the amount of
work is larger. This is true because GPUs are latency-hiding devices
and more work allows them to cater for the random memory access
patterns introduced by the underlying algorithm.

4.4 Performance Improvement
To study the performance improvement in theMetaHipMer2 pipeline
with the newly integrated GPU local-assembly, we used the two
datasets mentioned above. We obtained the previously mentioned
version of MetaHipMer2 and used that for performing runs with
CPU local-assembly and then changed the local assembly module
as described in previous sections and redid the runs using the same
datasets. MetaHipMer2 makes use of all the available cores on a
node when using the CPU local-assembly module, and uses all the
available GPUs when using the GPU-accelerated local assembly
module.

For small-scale runs we used two summit nodes. Figure 12 shows
that the GPU local-assembly outperforms the CPU local-assembly
module by about 4.3x and leads to an overall run-time improvement
of about 12%. Note that the amount of time spent in each module of
MetaHipMer is dependent on the dataset used. For the arcticsynth
dataset the overall time spent in the Local Assembly phase is about
14%, which is much smaller than when using the WA dataset as
shown in Figure 2a.

Figure 13 shows the comparison between the run times of CPU
and GPU versions of local assembly, which were extracted from the
complete runs of MetaHipMer2 when processing the WA dataset. It
can be seen that the GPU version performsmore than 7x faster when
running on 64 nodes, but the performance advantage deteriorates
with increasing numbers of nodes (although it is still 2.65x faster at
1024 nodes). This is because of a decrease in the amount of work
that can be offloaded to one GPU when running at larger scale,
which causes larger GPU overheads.

Accelerating Large Scale de novo Metagenome Assembly Using GPUs SC ’21, November 14–19, 2021, St. Louis, MO, USA
Ti

m
e

(s
ec

)

0

100

200

300

400

500

CPU Local Assembly GPU Local Assembly

file IO

scaffolding

local assembly

aln kernel

alignment

contig generation

k-mer analysis

merge reads

Time breakdown for 2 nodes run

Figure 12: Run time comparison for two node runs using
arcticsynth [9] dataset. Local assembly phase speeds up by
about 4.3x when offloaded to GPUs.

Nodes

Ti
m

e
(s

ec
)

S
pe

ed
 U

p

0

200

400

600

800

0

2

4

6

8

64 128 256 512 1024

Local Assembly (CPU) Local Assembly (GPU) Speed Up

CPU vs GPU

Figure 13: Comparison of run times for CPU and GPU ver-
sions of local assembly module. These run times were ob-
tained from complete runs of the MetaHipMer2 pipeline on
the Summit supercomputer.

Figure 14 shows the complete MetaHipMer2 pipeline run-time
comparisons with and without GPU local-assembly. GPU local-
assembly provides a peak performance improvement of about 42%
at up to 128 nodes. This performance improvement decreases as the
pipeline becomes dominated by communication with increasing
numbers of nodes. At larger scale, the amount of work available for
the GPUs also goes down and the advantage gained by offloading
the local assembly phase to GPUs is decreased, which is expected
since we are strong scaling. The sudden drop in the speedup when
going from 512 to 1024 nodes is due to the fluctuation in the time
spent in communication-heavy portions of the code. Averaging over
multiple runs would give a more linear drop in speedup; however,
because of limited resources, we performed only single runs for 512
and 1024 nodes. The expected variation was inferred by performing
smaller runs multiple times.

Figure 2b shows that overall for 64 nodes the local assembly
portion is reduced to just 6% of the total run time from 34% of total
when it was CPU-only as shown in Figure 2a.

Nodes

Ti
m

e
(S

ec
)

S
pe

ed
 U

p
(P

er
ce

nt
ag

e)

0

500

1000

1500

2000

2500

0

10

20

30

40

50

64 128 256 512 1024

With CPU Local Assembly With GPU Local Assembly Speed up

Overall Performance Comparison

Figure 14: The total run time of the MetaHipMer2 pipeline
when run with and without GPU local assembly support.

5 CONCLUSION AND FUTUREWORK
In this paper we presented a first-of-its-kind effort of accelerating
a large-scale metagenomic-assembly pipeline using GPUs. Metage-
nomic assembly relies on algorithms that are irregular and sparse
in nature, which makes them a challenging problem for GPUs.
With modern genome-sequencing technologies, large and complex
metagenomic datasets are being generated so rapidly that soon the
data will outpace the current state-of-the-art software tools. This
makes a strong case for exploiting exascale era supercomputers,
which will utilize GPUs for the bulk of their computational capa-
bilities. To this end, we identified and accelerated one of the most
computationally dominant portions of MetaHipMer, which is the
only large-scale metagenomic assembler available to the commu-
nity. The local assembly module of the MetaHipMer pipeline uses
hash tables, vectors and string resizing to perform DNA walks to
extend the contiguous regions of genomes. We used CUDA’s warp
level intrinsics and efficient methods of inter-thread communica-
tion to implement fast warp-local hash-tables and minimized the
use of GPU global memory to offload the maximum amount of work
to GPUs. This allowed us to better exploit the GPU’s latency-hiding
nature. We achieved speedups of up to 7x for the local assem-
bly module when running at scale on the Summit supercomputer
against MetaHipMer’s own CPU implementation. We also demon-
strated integration of a GPU-accelerated local assembly module in
the MetaHipMer pipeline to obtain a performance boost of up to
42% when running on the Summit supercomputer.

We have demonstrated that by leveraging a GPU’s latency-hiding
nature and low-level programming intrinsics we can gain signifi-
cant performance improvements in metagenomic analysis software.
For future work we are moving towards offloading other modules
of MetaHipMer to GPUs which pose different sets of challenges
for GPUs, such as distributed data structures, sparse graphs and
dominant communication times.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of two U.S. Department of Energy
organizations (Office of Science and the National Nuclear Security

SC ’21, November 14–19, 2021, St. Louis, MO, USA M.G. Awan et al.

Administration) responsible for the planning and preparation of a
capable exascale ecosystem, including software, applications, hard-
ware, advanced system engineering, and early testbed platforms,
in support of the nation’s exascale computing imperative.

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725 and the resources of the
National Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract
No. DE-AC02-05CH11231.

REFERENCES
[1] Nauman Ahmed, Tong Dong Qiu, Koen Bertels, and Zaid Al-Ars. 2020. GPU

acceleration of Darwin read overlapper for de novo assembly of long DNA reads.
BMC bioinformatics 21, 13 (2020), 1–17.

[2] Appleby Austin. [n.d.]. Murmurhash2. https://sites.google.com/site/murmurhash
[3] Muaaz G Awan, Jack Deslippe, Aydin Buluc, Oguz Selvitopi, Steven Hofmeyr,

Leonid Oliker, and Katherine Yelick. 2020. ADEPT: a domain independent se-
quence alignment strategy for gpu architectures. BMC bioinformatics 21, 1 (2020),
1–29.

[4] Nan Ding and Samuel Williams. 2019. An instruction roofline model for gpus.
In 2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS). IEEE, 7–18.

[5] RA Leo Elworth, QiWang, Pavan K Kota, CJ Barberan, Benjamin Coleman, Advait
Balaji, Gaurav Gupta, Richard G Baraniuk, Anshumali Shrivastava, and Todd J
Treangen. 2020. To Petabytes and beyond: recent advances in probabilistic and
signal processing algorithms and their application to metagenomics. Nucleic
acids research 48, 10 (2020), 5217–5234.

[6] Evangelos Georganas, Aydın Buluç, Jarrod Chapman, Steven Hofmeyr, Chaitanya
Aluru, Rob Egan, Leonid Oliker, Daniel Rokhsar, and Katherine Yelick. 2015.
Hipmer: an extreme-scale de novo genome assembler. In SC’15: Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 1–11.

[7] Evangelos Georganas, Rob Egan, Steven Hofmeyr, Eugene Goltsman, Bill Arndt,
Andrew Tritt, Aydin Buluç, Leonid Oliker, and Katherine Yelick. 2018. Extreme
scale de novo metagenome assembly. In SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 122–134.

[8] Sayan Goswami, Kisung Lee, Shayan Shams, and Seung-Jong Park. 2018. Gpu-
accelerated large-scale genome assembly. In 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 814–824.

[9] Steven Hofmeyr, Rob Egan, Evangelos Georganas, Alex C Copeland, Robert Riley,
Alicia Clum, Emiley Eloe-Fadrosh, Simon Roux, Eugene Goltsman, Aydın Buluç,
et al. 2020. Terabase-scale metagenome coassembly with metahipmer. Scientific
reports 10, 1 (2020), 1–11.

[10] Curtis Huttenhower, Dirk Gevers, Rob Knight, Sahar Abubucker, Jonathan H
Badger, Asif T Chinwalla, Heather H Creasy, Ashlee M Earl, Michael G FitzGerald,
Robert S Fulton, et al. 2012. Structure, function and diversity of the healthy human
microbiome. nature 486, 7402 (2012), 207.

[11] Ashutosh Jain, Anshuj Garg, and Kolin Paul. 2013. GAGM: Genome assem-
bly on GPU using mate pairs. In 20th Annual International Conference on High
Performance Computing. IEEE, 176–185.

[12] JGI. 2021. Marine microbial communities from Western Arctic Ocean. https:
//gold.jgi.doe.gov/biosamples?id=Gb0192059

[13] Dinghua Li, Ruibang Luo, Chi-Man Liu, Chi-Ming Leung, Hing-Fung Ting, Kuni-
hiko Sadakane, Hiroshi Yamashita, and Tak-Wah Lam. 2016. MEGAHIT v1. 0: a
fast and scalable metagenome assembler driven by advanced methodologies and
community practices. Methods 102 (2016), 3–11.

[14] Zhenyu Li, Yanxiang Chen, Desheng Mu, Jianying Yuan, Yujian Shi, Hao Zhang,
Jun Gan, Nan Li, Xuesong Hu, Binghang Liu, et al. 2012. Comparison of the two
major classes of assembly algorithms: overlap–layout–consensus and de-bruijn-
graph. Briefings in functional genomics 11, 1 (2012), 25–37.

[15] Losee L Ling, Tanja Schneider, Aaron J Peoples, Amy L Spoering, Ina Engels,
Brian P Conlon, Anna Mueller, Till F Schäberle, Dallas E Hughes, Slava Epstein,
et al. 2015. A new antibiotic kills pathogens without detectable resistance. Nature
517, 7535 (2015), 455–459.

[16] Yongchao Liu and Bertil Schmidt. 2013. CUSHAW2-GPU: empowering faster
gapped short-read alignment using GPU computing. IEEE Design & Test 31, 1
(2013), 31–39.

[17] Mian Lu, Qiong Luo, Bingqiang Wang, Junkai Wu, and Jiuxin Zhao. 2013. Gpu-
accelerated bidirected de bruijn graph construction for genome assembly. In

Asia-Pacific Web Conference. Springer, 51–62.
[18] Chengwei Luo, Luis M Rodriguez-R, Eric R Johnston, Liyou Wu, Lei Cheng,

Kai Xue, Qichao Tu, Ye Deng, Zhili He, Jason Zhou Shi, et al. 2014. Soil micro-
bial community responses to a decade of warming as revealed by comparative
metagenomics. Applied and environmental microbiology 80, 5 (2014), 1777–1786.

[19] Syed Faraz Mahmood and Huzefa Rangwala. 2011. Gpu-euler: Sequence as-
sembly using gpgpu. In 2011 IEEE International Conference on High Performance
Computing and Communications. IEEE, 153–160.

[20] NERSC. [n.d.]. Cori GPU node configurations. https://docs-dev.nersc.gov/cgpu/
hardware/

[21] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner. 2017.
metaSPAdes: a new versatile metagenomic assembler. Genome research 27, 5
(2017), 824–834.

[22] OLCF. [n.d.]. Summit node configurations. https://docs.olcf.ornl.gov/systems/
summit_user_guide.html

[23] Jason Pell, Arend Hintze, Rosangela Canino-Koning, Adina Howe, James M
Tiedje, and C Titus Brown. 2012. Scaling metagenome sequence assembly with
probabilistic de Bruijn graphs. Proceedings of the National Academy of Sciences
109, 33 (2012), 13272–13277.

[24] Yu Peng, Henry CM Leung, Siu-Ming Yiu, and Francis YL Chin. 2012. IDBA-UD: a
de novo assembler for single-cell and metagenomic sequencing data with highly
uneven depth. Bioinformatics 28, 11 (2012), 1420–1428.

[25] Raffaella Rizzi, Stefano Beretta, Murray Patterson, Yuri Pirola, Marco Previtali,
Gianluca Della Vedova, and Paola Bonizzoni. 2019. Overlap graphs and de
Bruijn graphs: data structures for de novo genome assembly in the big data era.
Quantitative Biology 7, 4 (2019), 278–292.

[26] Edans Flavius de O Sandes and Alba Cristina MA de Melo. 2011. Smith-waterman
alignment of huge sequences with gpu in linear space. In 2011 IEEE International
Parallel & Distributed Processing Symposium. IEEE, 1199–1211.

[27] Thomas J Sharpton. 2014. An introduction to the analysis of shotgun metage-
nomic data. Frontiers in plant science 5 (2014), 209.

[28] Aleksandra Swiercz, Wojciech Frohmberg, Michal Kierzynka, Pawel Woj-
ciechowski, Piotr Zurkowski, Jan Badura, Artur Laskowski, Marta Kasprzak,
and Jacek Blazewicz. 2018. GRASShopPER—An algorithm for de novo assembly
based on GPU alignments. PloS one 13, 8 (2018), e0202355.

[29] Silvana R Tridico, Dáithí C Murray, Jayne Addison, Kenneth P Kirkbride, and
Michael Bunce. 2014. Metagenomic analyses of bacteria on human hairs: a
qualitative assessment for applications in forensic science. Investigative genetics
5, 1 (2014), 1–13.

[30] Thomas R Turner, Karunakaran Ramakrishnan, John Walshaw, Darren Heavens,
Mark Alston, David Swarbreck, Anne Osbourn, Alastair Grant, and Philip S Poole.
2013. Comparative metatranscriptomics reveals kingdom level changes in the
rhizosphere microbiome of plants. The ISME journal 7, 12 (2013), 2248–2258.

[31] Katherine Yelick, Aydın Buluç, Muaaz Awan, Ariful Azad, Benjamin Brock, Rob
Egan, Saliya Ekanayake, Marquita Ellis, Evangelos Georganas, Giulia Guidi, et al.
2020. The parallelism motifs of genomic data analysis. Philosophical Transactions
of the Royal Society A 378, 2166 (2020), 20190394.

https://sites.google.com/site/murmurhash
https://gold.jgi.doe.gov/biosamples?id=Gb0192059
https://gold.jgi.doe.gov/biosamples?id=Gb0192059
https://docs-dev.nersc.gov/cgpu/hardware/
https://docs-dev.nersc.gov/cgpu/hardware/
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We ran the the GPU local assembly module that has been devel-
oped as a result of this study as a stand alone software on Cori’s
GPU cluster. We used only a single GPU on one of the nodes
to perform roofline analysis. For building the CUDA kernels we
used CUDA 10.1.2. For this study we used ArcticSynth dataset
that was developed for a controlled study performed in this paper:
Hofmeyr, Steven, et al. "Terabase-scale metagenome coassembly
with metahipmer." Scientific reports 10.1 (2020): 1-11.

Availability of all the datasets is mentioned at the end.
For large scale studies we used OLCF’s Summit super-

computer. We obtained the recent most version of MetaHip-
Mer2 software that is available on the master branch here:
https://bitbucket.org/berkeleylab/mhm2/src/master/ and used it as
the baseline. We then integrated our newly developed GPU kernels
in the same version of MetaHipMer2 and merged the two versions.
The merged version is available on the same link on branch: "GPU",
commit id f9c2d0f. This new version with GPU kernels integrated
was then used for performing performance analysis studies. UPC++
release 2021.3.0 along with CUDA versions 10.1.2 was used for
building both the versions of MetaHipMer2 (with and without GPU
local assembly module).

Update 1: we have updated the branch name and commit id
above, this was because we have been continuing the development
on other parts of the software but the results for the local assembly
module discussed in this paper should still be reproducible from
this new branch and commit id.

Update 2: to provide the reviewers with the exact commit of
the software that we used for CPU and GPU runs, we have cre-
ated a separate repo (separate from the production repo refer-
enced above) here: https://github.com/mgawan/mhm2_staging .
The gpu_locassem branch at this repo contains the exact ver-
sion we used for testing our GPU local assembly module and the
cpu_locassem branch contains the base version of MetaHipMer2
that contains the corresponding CPU local assembly module. Re-
viewers can run both these versions (available on separate branches)
and then compare the timings of local assembly module from the
log file to observe the performance improvement. This staging repo
is behind a DOI which is also linked below.

datasets availability:
For large scale performance studies the dataset

used was a metagenomic dataset from marine com-
munities of western arctic that is available here:
https://gold.jgi.doe.gov/biosamples?id=Gb0192059

The ArcticSynth dataset is not available publicly,
we are making it available through Globus here:
https://app.globus.org/file-manager?origin_id=e4794a66-c4c1-
11eb-87e2-559da91cd9a3&origin_path=%2F

Deploying MetaHipMer2:
Instructions on how to build and deploy MetaHipMer2 on

different supercomputers and linux servers can be found here:
https://bitbucket.org/berkeleylab/mhm2/src/ae57a4ce84d33ca0b723a53e63675e47d1ccc331/docs/mhm_guide.md

After building, the experiments can be run using below lines
in a job script. Below instructions are for running MetaHipMer2
on Summit as was done for experiments in this paper. If reviewers
want to run it on a different machine please look the mhm_guide
available on the link provided above.

exportMHM2_BUILD_ENV=<mhm2_directory>/mhm2/contrib/environments/summit/gnu.sh
source <mhm2_directory>/mhm2/contrib/environments/summit/gnu.sh

cd <mhm2_directory>/mhm2/install/bin
./mhm2.py -r –checkpoint=off -o <output_directory> –pin=none

–ranks-per-gpu=7
where mhm2_directory is where the MetaHipMer2 repo is lo-

cated.

Author-Created or Modified Artifacts:

Persistent ID:

https://zenodo.org/badge/latestdoi/393159384↩→

Artifact name: MetaHipMer2 with GPU accelerated local

assembly module↩→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: OLCF’s Summit supercomputer
(https://docs.olcf.ornl.gov/systems/summit_user_guide.html),
NERSC’s Cori System’s GPU partition (https://docs-
dev.nersc.gov/cgpu/), GPUs used in the both machines were
NVIDIA’s V100 devices.

Compilers and versions: CUDA 10.1.2, UPC++ 2021.3.0, gcc 7.4

Applications and versions: MetaHipMer2

Libraries and versions: UPC++ 2021.3.0

Key algorithms: de bruijn graph construction and traversal

	Abstract
	1 Introduction
	2 Background
	2.1 Literature Review
	2.2 MetaHipMer
	2.3 Local Assembly Module
	2.4 Challenges in GPU offloading

	3 GPU-Accelerated Local Assembly
	3.1 Data binning for better load balance
	3.2 Minimizing device memory usage
	3.3 Warp Local Hash table construction
	3.4 DNA walks

	4 Performance Analysis
	4.1 Test systems and datasets
	4.2 Roofline Analysis
	4.3 Integration in MetaHipMer
	4.4 Performance Improvement

	5 Conclusion and Future Work
	Acknowledgments
	References

