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Abstract

The history-dependent behaviors of classical plasticity models are often driven by internal variables evolved according
to phenomenological laws. The difficulty to interpret how these internal variables represent a history of deformation, the
lack of direct measurement of these internal variables for calibration and validation, and the weak physical underpinning
of those phenomenological laws have long been criticized as barriers to creating realistic models. In this work, geometric
machine learning on graph data (e.g. finite element solutions) is used as a means to establish a connection between nonlinear
dimensional reduction techniques and plasticity models. Geometric learning-based encoding on graphs allows the embedding of
rich time-history data onto a low-dimensional Euclidean space such that the evolution of plastic deformation can be predicted
in the embedded feature space. A corresponding decoder can then convert these low-dimensional internal variables back into
a weighted graph such that the dominating topological features of plastic deformation can be observed and analyzed.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

The composition of a macroscopic plasticity model often requires the following steps. First, there are observations
of causality relations deduced by modelers to hypothesize mechanisms that lead to the plastic flow. These causality
relations along with constraints inferred from physics and universally accepted principles lead to mathematical
equations. For instance, the family of Gurson models employs the observation of void growth to employ the yield
surface [1]. Crystal plasticity models relate the plastic flow with slip systems to predict the anisotropic responses of
single crystals [2–6]. Granular plasticity models propose theories that relate the fabric of force chains and porosity
to the onset of plastic yielding and the resultant plastic flow [7–12]. Finally, the mathematical equations are then
either used directly in engineering analysis and designs (e.g. the Mohr–Coulomb envelope) or are incorporated into
a boundary value problem in which the approximation solution can be obtained from a partial differential equation
solver that provides incremental updates of stress–strain relations.
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However, a subtle but significant limitation of this paradigm is that it imposes the burdens on modelers of
being able to describe the mechanisms verbally via terminologies or atomic facts (cf. [13,14].) before they can
convert the theoretical ideas into mathematical equations or computer algorithms. Our perception of mechanics is
therefore limited by our language or more precisely the limited availability of descriptors that enable us to record
hypotheses and proposed causalities [12,15–17]. What if there exists a mechanism or more precisely an evolution of
spatial patterns that dominate the macroscopic responses but there have not yet been a proper set of terminologies to
describe them properly? What happens if the underlying mechanisms for plastic deformation or other path-dependent
behaviors cannot be described in a manner that is simultaneously elegant, precise, and sufficient?

Note that macroscopic plasticity is often formulated based on the assumption that an effective medium that
is homogenized at the macroscopic scale exists such that it yields comparable constitutive responses to the real
materials. As such, not only the volume-averaged physical qualities, such as porosity and dislocation density but
also how these history-dependent patterns evolve over space and time, may affect the overall constitutive responses.
The evolution of patterns, however, is often more difficult to be precisely described in mathematical terms than
the volume averaged or homogenized physical quantities (such as dislocation density and porosity), and hence less
likely to be incorporated into constitutive laws directly. The consequence is that, while many models can accurately
capture the essence and general trend of the plasticity at the macroscopic scales, the lack of predictions on the
underlying spatial patterns within the representative elementary volume makes it difficult to further improve the
accuracy of constitutive models due to the insufficient precision afforded by the existing descriptors.

The classical alternative to bypass this issue is to introduce additional internal variables and the corresponding
phenomenological evolution laws for these internal variables such that, as Rice [2] points out, the internal
arrangement not describable through explicit state variables can be captured (cf. Section 2.4 [2,18]). For in-
stance, Karapiperis et al. [19] criticize the implicit and ad-hoc nature of the internal variables and propose the
model-free paradigm as a potential alternative. This paradigm could be feasible if new data could be generated
on-demand in a cost-efficient manner, or if the existing database has sufficiently dense data points to capture all
types of path-dependent behaviors of an RVE. However, the curse of dimensionality, the lack of a proper distance
structure, and the demand for a large amount of data could all be obstacles to model-free inelasticity solver, as
demonstrated, for instance, in [20–22]. A second alternative to bypass the use of internal variables is to introduce a
concurrent (e.g. [23–25]) or hierarchical multiscale scheme (e.g. [26–30]). The trade-off of these multiscale schemes
is the additional cost required to upscale the constitutive responses through computational homogenization. As such,
the training of a neural network (cf. [31]) or other alternatives such as Gaussian processes (e.g. [32,33]) can provide
a cost-saving way to generate surrogates that bypass the on-the-fly computational homogenization. Nevertheless,
without a set of internal variables to represent history in a low-dimensional space, how and whether history-
dependent effects are sufficiently captured become ambiguous. For instance, early machine learning constitutive
models, which are also free of internal variables, may simply employ a few previous incremental strains as inputs
to introduce a path-dependent effect [31,34]. However, determining the optimal incremental steps involved in the
predictions for a given loading rate is not trivial. Wang and Sun [11] and later Mozaffar et al. [35] introduce
long short-term memory (LSTM) networks to incorporate path dependence for constitutive laws while avoiding
the vanishing gradient issues that might otherwise be encountered in the training. However, adversarial examples
generated from deep reinforcement learning (cf. [17]) have revealed the difficulty of generating a robust extrapolation
of predictions outside the sampling ranges.

This paper presents a new alternative to introducing evolution laws of internal variables to solve elastoplasticity
problems with a new focus on connecting the macroscopic internal variables with the spatial patterns of plastic
deformation at the sub-scale level through machine learning. Instead of introducing internal variables doomed to be
not explicitly describable, as stated in [2], our goal here is to create a generic framework where a graph convolutional
neural network may deduce internal variables that can double as low-dimensional descriptors of microstructural
patterns of representative elementary volume. Here, we consider a multiscale modeling problem in which high-
fidelity finite element simulations of microstructures or digital image correlation generate weighted graph data. By
using the encoder of a graph-based autoencoder to embed the plastic deformation data stored in a finite element
mesh onto a low-dimensional vector space, we introduce an autonomous approach to represent strain history in a
low-dimensional Euclidean space where evolution laws can be then deduced. Meanwhile, the graph decoder maps
this low-dimensional vector space back to the weighted graph that represents the plastic patterns and therefore
illustrates the dominant patterns that govern the geometry of the yield surface and the evolution of the plastic
flow [36–40].
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The rest of the paper is organized as follows. In Section 2, we discuss the representation of plastic distribution
patterns as graphs, the graph autoencoder architecture that will be utilized to generate the encoded graph-based
descriptors, as well as how they will be incorporated into the neural network elastoplastic constitutive model to
make forward interpretable predictions. In Section 3, we describe the generation of the elastoplastic database of
graphs for complex microstructures and the training of the graph autoencoder as well as conduct parametric studies
on the robustness of the architecture. In Section 4, we investigate the forward prediction capacity of the proposed
neural network constitutive model, compare it with recurrent neural networks from the literature, and discuss the
ability to decode the predicted graph-based descriptors to interpret the behavior in the microscale. Section 5 provides
concluding remarks.

2. Geometric learning for graph-based multiscale plasticity descriptors

In this section, our objective is to explain how we generate graph-based internal variables to represent complex
elastoplastic microstructures and how these machine learning-generated internal variables are incorporated into
a component-based neural network plasticity model [41]. In Section 2.1, we discuss the interpretation of the
plastic distribution of a microstructure as a node-weighted undirected graph. In Section 2.2, we describe the graph
convolutional filter that extracts topological information from these graphs and the overall graph autoencoder
architecture for the generation of the encoded feature vector internal variables. In Section 2.3, we discuss the
constitutive model components that comprise the neural network elastoplastic model. Finally, in Section 2.4, we
present the return mapping algorithm that will interpret these model components to make forward interpretable
elastoplastic predictions.

2.1. Low-dimensional representation of internal history variables in a finite element mesh

In finite element simulations, there is no direct access to the internal variables as a smooth field. Constitutive
updates only occur at the locations of integration points. While a projection may enable the construction of smooth
field data suitable for supervised learning conducted via a convolution neural network, such a projection may
introduce errors especially when strain localization occurs [42–44]. As such, we use a collection of undirected
weighted graphs as an alternative to represent the patterns of the plastic deformation in the RVE to bypass the need
of reconstructing a smooth field in the Euclidean space.

Consider the body of a representative elementary volume discretized in finite elements. In each finite element,
there is at least one integration point where the constitutive update is carried out. In our numerical examples, we
consider a two-dimensional triangular mesh with one integration point per element. In this case, the integration
points of the finite elements constitute the vertex set V and the position and the plastic strain constitute the weight
w. Finally, we connect a pair of graph nodes with an edge if and only if the two finite elements of this pair of
integration points share at least one finite element node (see Fig. 1). Repeating this process connects all integration
points V across elements with an adjacent edge set E to form an undirected graph G = (V,E), a two-tuple that
represents the topology of the integration points where V = {v1, . . . , vN } is the vertex/node set that represents the
N number of integration points of the mesh and E ✓ V⇥V is the edge set that represents the element connectivity.
The resultant undirected unweighted graph then represents the topology of the integration points and provides a
data structure to store the history data to generate internal variables.

We attempt to represent the irreversible/memory-dependent patterns stored in the vertices of the graph in a
compressed low-dimensional space. In other words, we attempt to create a low-dimensional vector space RDenc

where an element ⇣i 2 RDenc of this space may (1) represent memory effects stored in these integration points in
the graph G and (2) any vector admissible ⇣ must fulfill the necessary conditions for the valid internal variables,
which are listed below [2,45].

– The plastic portion of the total strain is caused by the change in internal variables for a fixed stress (and
temperature).

– The elastic portion of the total strain is caused by the change of stress (and/or temperature) while holding the
internal variable fixed.
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Fig. 1. Interpretation of a finite element mesh as an undirected graph. The nodes of the graph represent the integration points of the mesh.
Two nodes are connected with an edge when the integration points they represent are from neighboring elements — their respective triangular
elements share at least one vertex.

The dimension of the latent space of the vertex-weighted graph G0, denoted as Denc, is a hyperparameter of which
the optimal value may vary on a case-by-case basis but can be fine-tuned through trial and error, as shown in
Section 4.

For a multiscale model where a surrogate model is constructed to replace the direct numerical simulations at
the RVE and provides the constitutive updates, a feasible candidate is to consider the coordinates of the integration
points and the plastic strain with the RVE as the vertex weight to form a vertex(node)-weighted graph, a 3-tuple
G0(V,E, w). The vertex weight of a vertex-weighted graph w : V ! RD maps an element of the vertex set onto a
vector weight where D = 5 for two-dimensional cases and D = 9 for three-dimensional cases. The dimension of
the vertex weight vector here is the sum of the dimensions of the position vector and the number of independent
components of the plastic strain tensor.

We then run direct numerical simulations of the RVE to collect snapshots of this vertex-weighted graph under
different loading cases and prescribed boundary conditions of the RVE, with a coverage requirement similar to
those used for constructing orthogonal bases for reduced order simulations via the method of snapshots [46–48].
Assuming that the sampling for the path-dependent behaviors is sufficient, the next step is to establish a pair of
mappings between these weighted graphs and their low-dimensional representation. This pair is obtained by training
a graph autoencoder in which the encoder maps onto a vector space spanned by the collection of encoded feature
vectors ⇣i and the decoder maps a given vector ⇣ onto a weighted graph that can, in turn, be interpreted via a finite
element mesh (see Fig. 1). As such, the autoencoder is used as a tool to perform nonlinear dimensionality reduction.
The architecture of this graph autoencoder is described in Section 2.2.

Remark 1. In this work, the plasticity graphs can be sufficiently represented with two set of data stored in matrices.
The first set of data stored in the adjacency matrix A, which records the connectivity of the graph. The adjacency
matrix has dimensions N ⇥ N . If nodes of the connectivity graph ni and n j are the endpoints of an edge, then the
entry Ai j is 1. If not, Ai j = 0. The second set of data is represented by a node feature matrix X that has dimensions
N ⇥D where D is the number of features for each node in the vertex set with N elements. Each node in the plasticity
graphs has a feature vector of length D, which can be viewed as the graph weight of the corresponding node. Each
row of the node feature matrix represents the features of a node. These two data structures will also be the actual
input of the graph autoencoder described in the following section.

2.2. Graph autoencoder for the generation of graph-based internal variables

The plasticity graphs described in the previous section will be the basis for the generation of the internal variables
that will characterize the plastic behavior at the macroscale. With the recent increased demand on geometric learning
for graph and manifold data, many applications of autoencoders have expanded to the non-Euclidean space. Similar
to the autoencoder designed for Euclidean data, a graph autoencoder can perform a variety of common tasks such

4



N.N. Vlassis and W. Sun Computer Methods in Applied Mechanics and Engineering 404 (2023) 115768

as, latent representation and link prediction [49], graph embedding [50], and clustering [51]. This section focuses
on how a graph autoencoder architecture can be used to generate internal variables that are directly connected to
spatial patterns of a RVE. Autoencoder architectures [36,37,52] have been used on high-dimensional data structures
to perform non-linear unsupervised dimensionality reduction. Autoencoder architectures consist of two parts, an
encoder and a decoder. The encoder compresses the high-dimensional structure in a latent space of a much smaller
dimensionality, extracting features and patterns from the structure represented as an encoded feature vector. The
decoder decompresses the encoded feature vector back to the original higher dimension attempting to accurately
reconstruct the autoencoder input. Convolutional autoencoders in the Euclidean space have been widely used in
applications on images to perform – among others – dimensionality reduction, classification, resolution increase,
and denoising tasks [39,53–55].

In this work, the plasticity simulation data are processed through a graph autoencoder L that aims to encode and
reconstruct the plastic strain features at the graph nodes. The autoencoder inputs a plasticity graph G as described
in Section 2.1 and outputs its reconstruction bG = L (G). The capacity of the autoencoder is two-fold and is driven
by the two parts that constitute the architecture, the encoder Lenc and the decoder Ldec. The primary objective of the
encoder is to represent, or encode, the graph structure so that it can be easily exploited by other machine learning
models, such as the yield function and kinetic law architecture described in Section 2.3. The encoder interpolates
the node feature data (topology and plastic strain tensor) that represent the entire domain of the simulation into a
vector space of much smaller dimensionality. These encoded feature vectors represent the patterns recorded during
the elastoplastic loading and can be utilized as internal variables for data-driven macroscopic elasto-plastic models.
The neural network components that constitute the constitutive update algorithm are described in Section 2.3.

The decoder decodes these encoded internal variables and reconstructs the distribution of the plastic strain
within the RVE represented by the corresponding decoded weight graph. As such, the reconstructed graph node
values is corresponding to the plastic strain values of the integration points in the finite element mesh. This
connection between internal variables and graph data makes the evolution of the internal variables interpretable
through decoding. As shown in the latter sections, a salient feature of the proposed framework is the capacity to
indirect predict the evolution of the high-dimensional pattern rearrangement in the microscopic scope through the
kinetic law of the low-dimensional encoded feature vector. This treatment open a new door to predict the spatial
patterns of the plastic strain that are also compatible with the physical constraints of the up-scaled constitutive laws
(e.g. consistency condition, incremental stress correction from plastic flow, Karush–Kuhn–Tucker conditions) upon
homogenization.

2.2.1. Graph autoencoder architecture

In recent years, graph neural network (GNN) techniques [56] based on node-neighborhood aggregation and
graph-level pooling [57–60] have become increasingly popular tools to embed graph data. In general, graph neural
network layers utilize recursive aggregation or message passing methods to aggregate and interpolate the feature
vectors of a node and its neighbors to compute a new feature vector. A representation of the entire graph feature
can be achieved by global pooling or other graph-level operators [61,62]. These graph layers extract information
from the graph connectivity and graph feature to be learned/encoded by other neural network layers.

The graph convolutional layers present in this work are Graph Isomorphism Network (GIN) layers introduced
by [63]. This variant of the GNN was shown to discriminate/represent graph structures as well as the Weisfeiler–
Lehman graph isomorphism test [64]. The Weisfeiler–Lehman test checks the isomorphism between two graphs —
it tests if the graphs are topologically identical. This is achieved by a robust injective aggregation algorithm update
that maps different node neighborhoods to different unique feature vectors. To maximize its representation capacity,
a graph aggregation algorithm should be injective and not map two different neighborhoods of nodes to the same
representation. The suggested Graph Isomorphism Network borrows these aggregation concepts and generalizes
the Weisfeiler–Lehman test. The GIN architecture attempts to maximize the capacity of graph neural networks by
ensuring that two isomorphic graph structures are embedded in the same representation and two non-isomorphic
ones to different representations.

The GIN layer models an injective neighborhood aggregation of multisets (features of a neighborhood of nodes)
by approximating multiset functions with neural networks. The layer’s formulation is based on the assumption
that a neural network can serve as a universal approximator of any function as shown by [65] and, thus, can also
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Fig. 2. Graph autoencoder neural network architecture. The autoencoder encodes the original node-weighted plasticity graph into an encoded
feature vector. The encoded feature vector is then decoded to a reconstructed plasticity graph.

approximate a parametrized aggregation function. The GIN layer formulation is the following:

h
(k)
v = MLP(k)
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(k�1)
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A , (1)

where h
(k)
v is the node v feature representation of the kth layer of the architecture, ✏ is a learnable parameter or a

fixed scalar, N is the number of nodes, and MLP is the multi-layer perceptron to learn the aggregation function
approximation. The layer can also be formulated in terms of the adjacency matrix A and the feature matrix X :

X (k) = MLP(k) �(A + (1 + ✏) · I) · X (k�1)� . (2)

This graph operator extracts features from local neighborhoods in the plasticity graph structure. In order to get
a graph-level representation, we also utilize a graph-level pooling operation on the features of all of the nodes. The
pooling operation used was a global average pooling defined as:

r(k) = 1
Ni

NiX

n=1

h(k�1)
n

, (3)

where r(k) is the global pooled feature vector of the graph. This global feature vector will be learned and encoded
by the following multi-layer perceptron architecture to create the encoded feature vector of the graph.

A schematic of the neural network architecture used on the plasticity graphs is provided in Fig. 2. The neural
network consists of GIN convolutional, graph pooling, and fully-connected layers. The network’s inputs include a
graph adjacency matrix A and a node feature matrix X as described in Section 2.1. The network’s output is the
approximated reconstruction of the node feature matrix bX . All the graphs in the data set have a constant connectivity
matrix as the connectivity originates from the finite element mesh. The node features of the graph correspond to
the plastic strain distribution at the current time step and change during loading. Thus, the autoencoder maps the
input graph 3-tuple G(V,E, w) to the reconstructed graph bG(V,E,bw).

The encoder Lenc architecture compressed the high-dimensional graph into an encoded feature. The graph
adjacency matrix A and the node feature matrix X are input in GIN layer with 64 output channels/filters — the
dimensionality of the feature representation for every node is increased from D to 64. This is achieved by setting
up a fully-connected layer of 64 neurons that will serve as the MLP of the aggregation function as shown in Eq. (2).
The activation function for this layer is set to be the Rectified Linear Unit function (ReLU). The constant ✏ is set
constant and equal to zero. The convolutional layer is followed by a global average pooling layer as described in
Eq. (3) to generate a global representation of 64 features. This is fed into a fully-connected Dense layer of 64
neurons with a ReLu activation function. The output is connected to another Dense layer that will produce the
encoded feature vector of dimension Denc.

The decoder Ldec architecture decompresses the encoded feature vector back to the original graph space. The
first layer of the decoder is a Dense layer with N · Denc neurons, where N is the number of nodes in the graph, with
a ReLU activation function. The output of this layer is reshaped to form a N ⇥ Denc feature matrix. This feature
matrix is passed on GIN convolutional layer along with the adjacency matrix A. The GIN layer has a number of
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filters equal to D – the MLP approximator of the aggregation is a Dense layer with a width of D neurons. The
layer has a linear activation function. The output of the decoder is the approximated reconstructed feature matrix
of the graph bX .

The reconstruction loss function for the autoencoder is set up to minimize the discrepancy between the input
node feature matrix X and the output approximated feature matrix bX of every graph sample. Since the coordinates
of the nodes remain constant, the loss function is targeting the accuracy of the predicted plastic strain tensor at
the nodes. The loss function is modeled after a node-wise mean squared error loss function of the features. The
autoencoder function is parametrized by weights W and biases b such that L = L (A, X|W , b) and the training
objective can be defined as:

W 0, b0 = argmin
W ,b

 
1
M

MX

k=1

 
1
N

NX

l=1

���xpl
k,l �bxpl

k,l

���
2

2

!!

, (4)

where M is the number of graph samples in the data set, N is the number of graph nodes, and xpl
k,l , bx

pl
k,l are the

true and approximated plastic strain tensor components of node l of graph k respectively.
The optimization of the autoencoder weights and biases is performed using the Adam optimizer [66] with the

learning rate set to 1�3 and the rest of the parameters selected as the PyTorch default ones. The layers’ kernel
weight matrices and bias vectors were initialized using the default He normal initialization [67]. The autoencoder
was trained for 2000 epochs with a batch size of 20 graph samples. The graph autoencoder architecture is
built and optimized using the PyTorch neural network library [68] and its geometric learning extension PyTorch
Geometric [69].

2.3. Supervised learning problems for the graph-enhanced constitutive model

In this work, we propose the learning problems required to establish components for the constitutive laws that
are integrated together to perform elastoplasticity predictions — including the predictions of the encoded feature
vector internal variables as described in Section 2.2 that will be used to interpret the spatial patterns of the RVE.
The formulation of the Sobolev learning problem for the elasticity model component is omitted for brevity and to
avoid repetitions (see [70–72] for more implementation details). A brief discussion of the training of this model for
a specific RVE is provided in Section 4.1. The reader may also refer to Vlassis et al. [70] for an implementation of
a geometric learning elasticity model intended to predict anisotropic elasticity for a family of RVEs with different
microstructures.

The plastic components of the neural network-based elastoplasticity framework will be driven by three neural
networks, i.e.,

1. a feed-forward neural network-based yield function that predicts the plastic yielding given the current stress
and loading history;

2. a recurrent neural network-based kinetic law that infers the microstructural evolution represented by the
encoded feature vector from the history of macroscopic plastic strain;

3. a feed-forward neural network that predicts the macroscopic non-associative plastic flow based on the rate
of change of the encoded feature vector.

These three components will be integrated along with the hyperelastic energy functional using a strain-space
return mapping algorithm to predict the material’s macroscopic elastoplastic behavior as described in Section 2.4.
What follows is the formulation of the learning problems that generate these neural networks.

2.3.1. Feed-forward neural network-based yield function

In this work, we adopt the level set plasticity concept [71,73] in which a neural network is used to generate the
yield function inferred from a set of point data of the homogenized stress points collected via microscale simulations.
As such, we circumvent the need to hand-craft a yield function model by replacing the construction of the yield
function with a neural network level set initialization problem. To generate the yield function, every yield surface
point cloud stress point at each time step is paired with an encoded feature vector obtained at the same instant of
the RVE simulations. The establishment of a yield function will distinguish the elastic path-independent responses
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from the plastic path-dependent counterparts. In addition, we also impose a restriction such that the evolution of the
encoded feature vector internal variables may only occur during the plastic loading and stop upon elastic unloading.
Hence, it will allow for the interpreted plastic distribution in the microscale to only evolve during a plastic increment.

The yield function neural network inputs the stress state and the current accumulated plastic strain. Presumably,
one may also establish yield function as a function of stress and encoded feature vectors where the evolution of
the encoded feature vector is captured by a recurrent neural network. However, the construction of such a yield
function can be complicated due to the high dimensionality.

As such, we borrow the ideas from generalized plasticity models [74] where we introduce a yield function at a
low-dimensional parametric space but introduce a more elaborated effort to capture the complexity of the plastic flow
by predicting the path-dependent relationships among (1) the homogenized plastic strain, (2) the encoded feature
vectors that represent the dominating plastic strain patterns at the RVE, and (3) the resultant plastic flow. As such, the
yield function is only represented in the two stress invariant p � q space. Thus, we reduce the stress representation
from six dimensions (symmetric stress tensor) to an equivalent two-dimensional representation x(p, q) where p is
the mean pressure and q the deviatoric stress invariants of the Cauchy stress tensor.

The accumulated plastic strain and the stress invariants can be seen as the coordinates of a point cloud of
yielding surface f� samples. In previous work, the yield stress point cloud collected from experiments would be
pre-processed into a yield function level set �. The evolution of this level set (hardening) would be predicted through
a neural network that emulates the solution of the Hamilton–Jacobi level set extension problem. The incremental
solutions of this problem is the evolving level set taken at a given monotonically increasing pseudo-time t , which
is the accumulated plastic strain internal variable ⇠ in our case. The yield function instance fn that corresponds
to a plastic strain level ✏

p

n and – in turn an encoded feature vector ⇣
n

– would be the level set solution of the
Hamilton–Jacobi problem �n

To generate the neural network yield function, we first recast the yield function f into a signed distance function
�, such that f (p, q, ⇠ ) = �(p, q, ⇠ ). We define a neural network approximation of the level set yield function f

as bf = bf (p, q, ⇠ |W , b), parametrized by weights W and biases b.
The training objective of the neural network optimization is modeled after the minimization of the L2 norm

of yield surface points in the data set and the Eikonal equation solution that reads |rx�| = 1, while prescribing
the signed distance function to 0 at x 2 f� . Minimizing the Eikonal equation solution loss term will implicitly
ensure the construction of the yield function level set. The training loss function at training samples (xi , ⇣ i

) for
i 2 [1, . . . , M] is defined as:

W
0, b

0 = argmin
W,b

 
1
M

MX

i=1

⇣�� fi � bfi

��2
2 + w

⇣��rx bfi

��2
2 � 1

⌘⌘!

, (5)

where w is a weight hyperparameter for the Eikonal equation term. Unlike previous level set plasticity models
(e.g. [71]) which focus on using Sobolev training to bypass the use of the non-associative flow rule, this modeling
framework predicts the history dependence of the plastic flow via a neural network non-associative flow rule. This
treatment avoids the potential gradient conflict issues for multi-objective training and simplifies the neural network
training [75]. In this work, a feed-forward neural network is trained to predict how the current spatial patterns
represented by the encoded feature vectors lead to the changes in plastic flow. Meanwhile, the encoded feature
vector itself is predicted by another recurrent neural network that links the history of the homogenized plastic strain
of a particular RVE to an encoded feature vector that represents the current plastic strain field within this RVE
(see Section 2.3.3). Directly predicting the plastic flow from phenomenological observations between the evolution
of hand-picked microstructural descriptors and the resultant macroscopic plastic flow is not a new idea. In fact,
this treatment is commonly used in generalized plasticity models [8,74,76–78]. The key innovation here is the
replacement of the hand-picked descriptors with a generic encoded feature vector approach that can efficiently reduce
the dimensions of the topological information without losing the information that might otherwise compromise the
accuracy of predictions.

2.3.2. Recurrent neural network-based kinetic law for the encoded feature vector

In this work, the evolution of the encoded feature vector internal variables is characterized by a macroscopic
kinetic law that takes the history of the homogenized plastic strains of an RVE as input and outputs the change of
the encoded feature vector that represents the spatial patterns of plastic strain field of this specific RVE. We assume
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no prior knowledge of the exact parameterization of this kinetic law. Instead, we obtain the approximation of this
kinetic law by training a recurrent neural network that provides the solution of a dynamical system [79,80].

Here, we hypothesize that (1) the mapping from the homogenized plastic strain and the encoded feature vector
is surjective but not necessarily injective and that (2) the evolution of the encoded feature vector solely depends
on the time history of the plastic strain tensor. The first condition is reasonable as it is possible to have different
plastic strain fields within the same RVE that can be homogenized to the same macroscopic plastic strain, while
the second condition is adopted for simplicity.

As such, the trained recurrent neural network takes the history of the homogenized plastic strain tensor ✏
p
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where the back-propagation occurs through time such that the history of the plastic strain tensor is trained as time
series data.

The kinetic law neural network is utilized in the return mapping algorithm described in Section 2.4 to predict
the change of the encoded feature vector at every constitutive update. Since the encoded feature vector is designed
to change only during the plastic step, the kinetic law is only needed when the material is yielding. The kinetic law
neural network will be used in parallel with the yield function neural network described in the previous section in
the return mapping scheme to make forward predictions that are consistent with the current plastic strain. At every
step of the elastoplastic simulation, be it in the elastic or plastic behavior, there is access to the encoded feature
vector that can in turn be decoded into the original plasticity graph space to interpret the plastic strain distribution
of the material. A demonstration and discussion of this capacity are described in Section 4.3. The predicted encoded
feature vector will also be utilized to predict the plastic flow direction of the current plastic step.

2.3.3. Feed-forward neural network-based multiscale coupling plastic flow

The last constitutive model component introduced in this work is a plastic flow neural network. This network
maps the encoded feature vector internal variable to the current plastic flow direction in the macroscale. Assuming
the existence of a plastic potential function # and the plastic flow is non-associative, the following relationship
holds,

✏̇p = �̇
@#

@�
, (7)

where � is the plastic multiplier. The plastic flow direction is not derived by the yield function stress gradient to allow
a more precise prediction of the plastic flow made possible by the newly gained knowledge of the microstructural
evolution (represented by the kinetic law of the encoded feature vector). For the general 3D case, the stress gradient
of the plastic potential can be spectrally decomposed such that:
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and �A is the principal stress and nA the respective principal direction.
In this work, the plastic potential has not been explicitly reconstructed from the plastic flow, although it might be

possible as demonstrated in [72]. Instead, a generalized plasticity framework is adopted. As such, the mapping from
the change of the encoded feature vector �⇣ to the plastic flow g is, approximated by a neural network architecture
defined as bg = bg(�⇣ ) and parametrized by weights W and biases b. The training objective for samples g
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where �⇣
i

is the interpolated change of the encoded feature vectors, which can be approximated via the Backward or
Forward Euler method. Note that, in contrast to the kinetic law that is approximated via a recurrent neural network
(see Section 2.3.2), we assume that the mapping from the encoded feature vector to the macroscopic plastic flow
can be sufficiently represented with a feed-forward neural network. This is a reasonable because the encoded feature
vector is used to represent the entire plastic strain field within an RVE and the plastic flow can simply be inferred
by homogenizing the graph data decoded from the encoded feature vector. Presumably, one may even bypass the
training of neural network plastic flow predictor by performing exactly this calculation. This learning problem is
nevertheless introduced for ease of implementation. As demonstrated in Section 4.1, training a sufficiently accurate
neural network predictor for plastic flow is feasible.

2.4. Return mapping algorithm

In this section, we provide the implementation details for the return mapping algorithm to make forward
elastoplasticity predictions. The fully implicit stress integration algorithm allows for the incorporation of the graph-
based internal variables generated from the autoencoder architecture as described in Section 2.2 in the prediction
scheme. The return mapping algorithm is designed in the principal strain space is described in Algorithm 1.

This formulation of the return mapping algorithm requires all the strain and stress measures are in principal
axes. However, this is not limiting for the choice of strain and stress space formulation of the constitutive law
components as the framework allows for coordinate system transformation through automatic differentiation. The
automatic differentiation is facilitated with the use of the Autograd library [81]. The yield function is written in
a two stress invariant formulation – (p, q) as described in Section 2.3.1. Through automatic differentiation and a
series of chain rules the constitutive model predictions are expressed in the principal axes, allowing for any invariant
formulation of the yield function during training.

The elastoplastic behavior is modeled through a predictor–corrector scheme that integrates the elastic prediction
with the corrections by the yield function neural network. It is noted that the elastic update predictions for the
hyperelastic energy functional and the plasticity terms encountered in the return mapping algorithm are evaluated
as neural network predictions using the offline trained energy functional, yield function, and kinetic law using
the Tensorflow [82] and Keras [83] machine learning libraries. The hyperelastic neural network is based on the
prediction of an energy functional with interpretable first-order and second-order derivatives (stress and stiffness
respectively). The plasticity neural networks utilized in this algorithm are described in Section 2.3. Besides the
capacity to predict the values of the approximated functions, these libraries also allow for the automatic evaluation
of the approximated function derivatives that are required to perform the return mapping constitutive updates and
constructing the local Newton–Raphson tangent matrix as well as the necessary coordinate set transformation chain
rules.

The return mapping also incorporates a non-associative flow rule to update the plastic flow direction instead of
using the stress gradient of the yield function. This is achieved by incorporating the predictions of the plastic flowbg
network described in Section 2.3.3. Through the local iteration scheme, the solution for the true elastic strain values
can be retrieved using the solved for discrete plastic multiplier �� and the predicted flow direction as follows:

✏e
A

= ✏e tr
A

� ��
@b#
@�A

= ✏e tr
A

� ��bgA(b�⇣ ), A = 1, 2, 3. (10)

The return mapping algorithm requires a hyperelastic energy functional neural network b e, a yield function bf , a
kinetic law b⇣ , and a plastic flow bg neural network that are pre-trained offline. Given the elastic strain tensor at the
current loading step, a trial elastic stress state is calculated using the hyperelastic energy functional neural network.
The yield condition is checked for the trial elastic stress state and the current plastic strain level. If the predicted
yield function is positive, the trial stress is the in the elastic region and is the actual stress. The encoded feature
vector remains constant. If the yield function is non-positive the trial stress is in the inadmissible stress region and
an Newton–Raphson optimization scheme is utilized to correct the stress prediction. The current encoded feature
vector is predicted from the time history of plastic strain tensors and is used to predict the current plastic flow
directions. The goal of the return mapping algorithm is to solve for the principal elastic strains and the plastic
strain such that the predicted yield function is equal to zero and the stress updates is consistent with the plastic
flow. The encoded feature vector at every step can be converted back into the corresponding weighted graph via the

10



N.N. Vlassis and W. Sun Computer Methods in Applied Mechanics and Engineering 404 (2023) 115768

Algorithm 1 Return mapping algorithm in strain-space for encoded feature vector internal variable plasticity.

Require: Hyperelastic energy functional b e neural network, yield function bf neural network, the encoded feature
vector neural network b⇣ , and the plastic flow network bg.
1. Compute trial elastic strain

Compute ✏e tr
n+1 = ✏e

n
+ �✏.
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3, and ⇠n+1 such that bf (p, q, ⇠n+1) = 0.
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ntr,A ⌦ ntr,A and exit.

end if

graph decoder Ldec neural network. This weighted graph can be converted back into information in a finite element
mesh and therefore enable us to interpret the microstructure.

It is noted that the return mapping algorithm is formulated via the principle direction is provided in this section
for the generalization purpose. This setting is sufficient for isotropic materials. In our numerical examples, we only
introduce two-dimensional cases to illustrate the ideas for simplicity. The generalization of the return mapping
algorithm for anisotropic materials is straightforward, but the training of the yield function and the plastic flow
model in the higher dimensional parametric space is not trivial. This improvement will be considered in the future
but is out of the scope of this study.

3. Training of interpretable graph embedding internal variables

In this section, we demonstrate the procedure of embedding field simulation data to construct graph-based
internal variables. A graph convolutional autoencoder is used to compress the graph structures that carry the plastic
deformation distribution of a microstructure. In Section 3.1, we demonstrate the process of generating the plasticity
data through finite element method (FEM) simulations and post-processing them into weighted graph structures. In
Section 3.2, we showcase the performance capacity of the autoencoder architecture as well as its ability to reproduce
the plasticity graph structures. Finally, in Section 3.3, we perform a sensitivity training test for the autoencoder
architecture on different FEM meshes for the same microstructure.

3.1. Generation of the plasticity graph database

In this work, the autoencoders used for the generation of the graph-based internal variables and the neural network
constitutive models used for the forward predictions are trained on data sets generated by FEM elastoplasticity
simulations. To test the autoencoders’ capacity to generate encoded feature vectors regardless of the microstructure
and plastic strain distribution patterns the FEM mesh represents, we test the algorithm with two microstructures of
different levels of complexity. The two microstructures A and B are demonstrated in Fig. 3(a) and (b) respectively.
The outline of the microstructures is a square with a side of 1 mm. This figure also shows the meshing of the
two microstructures. The microstructures A and B are discretized by 250 and 186 triangular elements respectively
with one integration point each. An investigation of different mesh sizes and the sensitivity of the encoded feature
generation is demonstrated in Section 3.3. Each integration point of mesh corresponds to a node in the equivalent
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Fig. 3. Two microstructures represented as a finite element mesh and an equivalent node-weighted undirected graph as described in Section 2.1.

graph (also shown in Fig. 3). The integration points of the neighboring elements – elements that share at least one
vertex – are connected with an edge in the constructed graph as described in Section 2.1.

The constitutive model selected for the local behavior at the material points was linear elasticity and J2 plasticity
with isotropic hardening. The local behavior is predicted with an energy minimization algorithm that is introduced
in [84]. The local optimization algorithm is omitted for brevity. The local linear elastic material has a Young’s
modulus of E = 2.0799 MPa and a Poisson ratio of ⌫ = 0.3. The local J2 plasticity has an initial yield stress of
100 kPa and a hardening modulus of H = 0.1 E. During the simulation, the elastic, plastic, and total strain as well
as the hyperelastic energy functional and stress are saved for every integration point. The recorded plastic strain
tensor along with the initial integration points coordinates will be used as the node weight vector for the plasticity
graphs as described in Section 2.1. The strain, energy, and stress values will be volume averaged and used to train
the neural network constitutive models for the homogenized response as described in Section 2.3.

To capture varying patterns of distribution of plastic strain, the finite element simulations were performed
under various combinations of uniaxial and shear loading. The loading was enforced with displacement boundary
conditions applied to all the sides of the mesh for both microstructures A and B. The combinations of displacement
boundary conditions are sampled by rotating a loading displacement vector from 0� to 90� whose components are
the uniaxial displacements in the two directions for the pure axial displacement cases and the uniaxial and shear
displacements for the combined uniaxial and shear loading. The maximum displacement magnitude for axial and
shear loading vector components are ugoal = 1.5 ⇥ 10�3 mm. We sample a total of 100 loading combinations/FEM
simulations for each microstructure. During each of these simulations, we record the constitutive response at every
material point and post-process it as a node-weighted graph and a volume average response. For every simulation,
we record 100 time steps, thus collecting 10000 training sample pairs of graphs and homogenized responses for
each microstructure.

3.2. Training of the graph autoencoder

In this section, we demonstrate the training performance of the autoencoder architecture on the two microstructure
data sets described in Section 3.1. We also show the capacity of the autoencoder to reproduce the plasticity graphs
in the training samples. The autoencoder layer architecture and training procedure for both data sets are described
in Section 2.2.1. The dimension of the encoded feature vector in this example is set to Denc = 16. An examination
of the effect of the encoded feature vector size is described in Section 3.3.

The training curves for the autoencoder’s reconstruction loss function in Eq. (4) is shown in Fig. 4. The
autoencoder appears to have similar loss function performance for both microstructures. The autoencoder performs
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Fig. 4. Autoencoder reconstruction training loss for microstructures A and B (a and b respectively) as defined in Eq. (4).

Fig. 5. Prediction of the autoencoder architecture of the microstructure A for two loading paths (a and b). The graph node size and color
represent the magnitude of the accumulated plastic strain ✏ p . The node-wise predictions for ✏ p are also demonstrated.

slightly better for microstructure A as it is tasked to learn and reproduce patterns for a seemingly simpler
microstructure compared to microstructure B. The training loss curves in this figure demonstrate the overall
performance of the autoencoder architecture — the encoder and decoder components of the architecture are trained
simultaneously. The capacity of the autoencoder to reconstruct the plasticity distribution patterns is explored in
Figs. 5 and 6 for microstructures A and B respectively. In these figures, we showcase the reconstruction capacity of
the plastic strain for two different time steps for each microstructure. The time steps selected are from two different
loading path combinations resulting in different plasticity graph patterns. We demonstrate how the autoencoder can
reproduce these patterns by comparing the internal variable graph data – the autoencoder input – with the graph
reconstruction – the autoencoder output. We also show the accuracy of the node-wise prediction of the accumulated
plastic strain for these microstructures. It is noted that the autoencoder predicts the values of the full plastic strain
tensor at the nodes. However, these plots show the accumulated plastic strain ✏ p values calculated from the predicted
strain tensor at the nodes for easier visualization.

The autoencoder architecture provides the flexibility of utilizing its two components, the encoder Lenc and the
decoder Ldec, separately. In this section, we demonstrate the encoder’s ability to process the high-dimensional graph
structure in encoded feature vector ⇣ time histories. In Fig. 7(a) & (c) and Fig. 8(a) & (c), we show the predicted
encoded feature vector ⇣

n
for a time step of a loading path for microstructures A and B respectively. These encoded
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Fig. 6. Prediction of the autoencoder architecture of the microstructure B for two loading paths (a and b). The graph node size and color
represent the magnitude of the accumulated plastic strain ✏ p . The node-wise predictions for ✏ p are also demonstrated.

Fig. 7. Prediction of encoded feature vector ⇣ by the encoder Lenc for microstructure A. (a, c) The encoded feature vector ⇣ n for a single
time step for the plastic graphs shown in Figs. 5a and 5b respectively. (b, d) The encoded feature vector ⇣ history for all the time steps in
the loading paths of Figs. 5a and 5b respectively.
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Fig. 8. Prediction of encoded feature vector ⇣ by the encoder Lenc for microstructure B. (a, c) The encoded feature vector ⇣ n for a single
time step for the plastic graphs shown in Figs. 6a and 6b respectively. (b, d) The encoded feature vector ⇣ history for all the time steps in
the loading paths of Figs. 6a and 6b respectively.

feature vectors specifically correspond to the graphs shown in Figs. 5 and 6 respectively. In Fig. 7(b) & (d) and
Fig. 8(b) & (d), we demonstrate the time series of plasticity graphs encoded in time series of encoded feature
vectors. It is highlighted that the encoded feature vector values do not change during the elastic/path-independent
part of the loading. This is directly attributed to the fact that the plasticity graph is constant (zero plastic strain at
the nodes) before yielding for all the time steps and will be further discussed in Section 4. The benefit of separately
using the decoder Ldec as a post-processing step to interpret the predicted encoded feature vectors is also explored
in the following sections.

3.3. Mesh sensitivity and encoded feature vector dimension

In this section, we investigate the behavior for different dimensionality of the graph data set and the compression
of the graph information. In the first experiment, we test the effect of the size of the input plasticity graph that will
be reconstructed by the autoencoder. We generate three data sets from finite element simulations with different mesh
sizes for microstructure A. All meshes consist of the same triangular elements described in the previous section.
The number of elements in the mesh and the corresponding nodes in the post-processed graphs are N = 100,
N = 250, and N = 576. For the mesh generation, we start with the N = 100 mesh and refine once to obtain the
N = 250 mesh and twice to obtain the N = 576 mesh. The refinement was performed automatically using the
meshing software library Cubit [85]. The data sets for the meshes of N = 100, N = 250, and N = 576 nodes
mesh were generated through the same FEM simulation setup and a subset of the combinations of uniaxial and
shear loading paths described in Section 3.1 gathering 2500 training samples of graphs.

The results of the training experiment on the mesh sensitivity are demonstrated in Fig. 9. The figure shows the
reconstruction loss Eq. (4) for the three mesh sizes. The autoencoder architecture was identical to the one described
in Section 2.2.1 with the only change being the number of input nodes. The reconstruction loss exhibits a minor
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Fig. 9. Autoencoder reconstruction training loss for microstructure A as defined in Eq. (4) with the size of the encoded feature vector
Denc = 16 and graph sizes of N = 100, N = 250, and N = 576 nodes.

Fig. 10. Autoencoder reconstruction training loss for microstructure A as defined in Eq. (4) with the size of the encoded feature vector
Denc = 2, Denc = 16, and Denc = 32.

improvement as the number of nodes in the graph increase. This is attributed to the density of the information
available for the autoencoder to learn the patterns from — there is a higher resolution of adjacent nodes’ features.
However, an increase in graph size may increase the duration of the training procedure. Since the benefit of
increasing the mesh size is not significant in this set of numerical experiments, we opt for the N = 250 node
mesh to use for the rest of this work.

In a second numerical experiment, we examine the effect of the size of the encoded feature vector on the capacity
of the autoencoder to learn and reconstruct the plasticity distribution patterns. We re-train the autoencoder using the
data set of 10000 graphs generated on the N = 250 node mesh for microstructure A as described in Section 3.1.
We perform three training experiments selecting different sizes Denc for the encoded feature vector – Denc = 2,
Denc = 16, and Denc = 32. The autoencoder architectures are identical to the one described in Section 2.2.1. All
the convolutional filters and the Dense layers have the same size. The only Dense layers that are affected are those
around the encoded feature vector whose input and output sizes are modified to accommodate the different sizes of
encoded feature vector.

The training performance for these three training experiments is demonstrated in Fig. 10. Compared to encoded
feature vector sizes Denc = 16 and Denc = 32, the Denc = 2 autoencoder architecture seems to fail to compress
the information as well with a loss performance difference of about two orders of magnitude. The maximum
compression achieved for this autoencoder architecture setup appears to be two features. This dimensionality appears
to be the smallest feasible encoding limit for this particular data set. It is also possible that more sampling from
different loading paths may also increase this minimal dimensionality. Jumping from Denc = 16 to Denc = 32
encoded feature vector components, only a small improvement in the reconstruction capacity is observed. The
reconstruction capacity is also illustrated in Fig. 11. The decoder fails to accurately reconstruct the plasticity graph
from the Denc = 2 encoded feature vector (Fig. 11 a). However, for Denc = 16 and Denc = 32 the decoder accurately
reproduces the plasticity patterns (Fig. 11 b and c). It is expected for dimensions larger than Denc = 32 the benefit
in reconstruction capacity will me minimal. Thus, the encoded feature vector dimension selected for the rest of this
work is Denc = 16 for which the dimension reduction capacity is considered adequate and computationally efficient.
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Fig. 11. Comparison of the autoencoder architecture’s capacity to reconstruct the accumulated plastic strain pattern of the microstructure A
with the size of the encoded feature vector (a) Denc = 2, (b) Denc = 16, and (c) Denc = 32. The graph node size and color represent the
magnitude of the accumulated plastic strain ✏ p . The node-wise predictions for ✏ p are also demonstrated.

Remark 2. It should be noted that the relatively small losses observed in Fig. 9 only indicate that the three
reconstructions are independently successful in the sense that the reconstructed graphs are all sufficiently close
to the original ones. It is plausible that a mapping can be constructed among the latent spaces of graphs originating
from different finite element meshes, as indicated by Fetty et al. [86] and Asperti and Tonelli [87]. The manipulations
and mapping between latent spaces are out of the scope of this paper but will be further investigated in the future.

4. Numerical example: Multiscale plasticity with graph internal variables

In this section, we demonstrate how the graph internal variables generated by the graph autoencoder are
incorporated into the predictions at the macroscale constitutive law as well as how they can be decoded and be used
to estimate and interpret the evolution of microstructures within an RVE. In Section 4.1, we demonstrate the training
results for the neural network constitutive models described in Section 2.3. In Section 4.2, the predictions of these
neural network constitutive models are integrated with a return mapping algorithm to make forward elastoplastic
predictions and how they compare with recurrent neural network architectures from the literature. In Section 4.3,
we show the forward prediction capacity of the neural network models in unknown loading paths and demonstrate
the behavior of the encoded feature vector prediction variables and how they can be translated back to the original
graph space with the help of the graph decoder.
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Fig. 12. Prediction and training loss of the hyperelastic energy functional  e constitutive models for microstructures (a) A and (b) B.

4.1. Training of constitutive models

In this section, we demonstrate all the training experiments for the neural network components that will be used
in the return mapping algorithm to make forward elastoplastic predictions as described in Section 2.3. The training
experiments for the hyperelastic energy functional, the yield function, and the kinetic law are performed for both
microstructures A and B.

In a first training experiment, we first validate the capacity of capturing the hyperelastic behavior of the material
in different loading directions. Neural network hyperelastic laws has been previously trained to be compatible
with mechanics knowledge (e.g. ployconvexity) and thermodynamic constraints [72,88,89]. The feed-forward neural
network inputs the elastic strain tensor in Voigt notation in two dimensions (✏11, ✏22, ✏12) and outputs the hyperelastic
energy function b e. Through differentiation of the network’s prediction, the stress and stiffness are also output and
are constrained with a higher-order Sobolev norm similarly formulated as in [71] that is omitted for brevity. The
hyperelastic network was trained and validated for each microstructure on a total of 10000 sample points (8000
used for training and 2000 for validation) that were gathered from the FEM simulations described in the previous
section. The hyperelastic constitutive response was recorded in both the elastic and plastic regions. During the
plastic response, the elastic increment that corresponds to the true plastic increment is recorded.

The neural network follows a multilayer perceptron architecture. It consists of a hidden Dense layer (100
neurons/ReLU), followed by one Multiply layer, then another hidden Dense layer (100 neurons/ReLU), and an
output Dense layer (Linear). The Multiply layer was first introduced in [71] to modify and increase the degree of
continuity of the neural network’s hidden layers. It performs a simple elementwise multiplication of a layer’s output
with itself. It was shown to increase the smoothness of the learned functions and also allow for better control and
reduction of the higher-order constraints, such as a H2 loss function terms. The layers’ kernel weight matrix was
initialized with a Glorot uniform distribution and the bias vector with a zero distribution. The model was trained for
1000 epochs with a batch size of 100 using the Nadam optimizer, set with default values. The training curves and
the predictions for all the samples in the data set are demonstrated in Fig. 12 for which equally great performance
was observed for both microstructures.
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Fig. 13. (a) Training loss curves for the yield surface and Eikonal equation loss terms (Eq. (5)) for microstructures A and B. (b) An instance
of the yield function level set prediction for microstructure A.

Similarly, the neural network yield function is trained on a total of 10000 sample points (8000 and 2000 for
training and validation respectively) for each microstructure. The formulation and training objective for the feed-
forward network is as described in Section 2.3.1. It consists of a hidden Dense layer (100 neurons/ReLU), followed
by a Multiply layer, then another hidden Dense layer (100 neurons/ReLU) and another Multiply layer, and the
output is fed in a Dense layer with a linear activation function. For all the Dense layers, the kernel weight matrix
was initialized with a Glorot uniform distribution and the bias vector with a zero distribution. Each model was
trained for 1000 epochs with a batch size of 100 with the Nadam optimizer, set with default values. The Eikonal
equation term weight in the loss function Eq. (5) is set to w = 1. The training results for the yield function neural
networks are showcased in Fig. 13. The training loss curves for the two terms of the training loss function in Eq. (5)
are shown in Fig. 13(a) with similar performance for both microstructures. The Eikonal equation loss term aims to
ensure the predicted yield function is a signed distance function and a predicted instance of it is demonstrated in
Fig. 13(b).

We fit the kinetic law neural networks as described in Section 2.3.2 to predict the encoded feature vectors as a
function of the plastic strain tensor time history. The architecture was trained for each data set of 10000 samples of
plastic strain and encoded feature vector pairs, split into an 8000 training and a 2000 validation set. The plastic strain
tensors were pre-processed in time history sequences of length ` = 4. The recurrent neural network architecture
is based on the Gated Recurrent Unit-based (GRU) [90]. The network consists of two GRU hidden layers of 32
units each with a sigmoid recurrent activation function and a tanh layer activation function). This is followed by
two Dense hidden layers (100 neurons and a ReLU activation function) and an output Dense layer (16 neurons and
a Linear activation function). The model was trained for 1000 epochs with a batch size of 128 using the Nadam
optimizer, set with default values, and the training curves and encoded feature vector components prediction are
showcased in Fig. 14.

In the last training experiment, we train the plastic flow neural networks to predict the plastic flow evolution
in the elastoplasticity simulations as described in Section 2.3.3. The architecture was trained for each data set of
10000 samples of encoded feature vector and plastic flow component pairs, split into an 8000 training and a 2000
validation set. The input encoded feature vector has 16 components. The multilayer perceptron architecture consists
of four hidden Dense layers of 100 neurons each and a ReLU activation function. The output of the neural network
is a Dense layer with 2 neurons and a Linear activation function. The layers’ kernel weight matrix was initialized
with a Glorot uniform distribution and the bias vector with a zero distribution. The model was trained for 1000
epochs with a batch size of 100 using the Nadam optimizer. The training curves for the plastic flow networks for
the two microstructures are demonstrated in Fig. 15. As expected these neural networks are very accurate as they
input the highly descriptive encoded feature vector structure that represents the entire plastic state distribution in
the microscale to predict the homogenized plastic flow behavior.
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Fig. 14. (a, d) Training loss curves for the encoded feature vector b⇣ kinetic law, (b, e) a prediction of the encoded feature vectors along a
loading path, and (c, f) prediction of all the encoded feature vector components in the data set for microstructures A and B.

Fig. 15. Training curves for the plastic flow network for microstructures A and B.

4.2. Comparison with recurrent neural network architectures

In this section, we test the capacity and robustness of the return mapping elastoplasticity model to make forward
path-dependent predictions on unseen loading paths. We compare this capacity with recurrent neural network models
from the literature that are commonly used to predict data structures in the form of time series and often plasticity.
We design training experiments for the two recurrent architectures: a GRU architecture and a 1D convolutional
architecture and test all models against unseen loading paths of increased complexity.

The first recurrent network used is based on the GRU layer architecture that is trained on a pair of total strain and
total stress time histories. For this 2D data set, the strain state is represented by the strain tensor ✏ in Voigt notation
(✏11, ✏22, ✏12), and the stress state is represented by the two stress invariants (p, q). Specifically, the network inputs
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Fig. 16. Training loss curves for the RNN architecture, RNN architecture with data augmentation, and the Conv1D architecture with data
augmentation.

Fig. 17. (a, b) Prediction of the RNN architecture on a monotonic loading curve. (c, d) Prediction of the RNN architecture for a loading
curve with unseen random unloading and reloading paths.

a time history of input strains of ` previous time steps to predict the current stress state. For the nth time step,
the network inputs the pre-processed time history of strain tensors as [✏n�`, . . . , ✏n�1, ✏n] and outputs the current
stress [pn, qn]. The time history length was chosen to be ` = 30. The recurrent neural network architecture (RNN)
consists of a series of two GRU hidden layers (32 units each, a sigmoid recurrent activation function, and a tanh
activation function) and a series of two Dense hidden layers (100 neurons and a ReLU activation function) with
an output Dense layer (2 neurons and a Linear activation function). The model was trained for 1000 epochs with a
batch size of 128 using the Nadam optimizer, set with default values, and a mean squared error loss function.

The second recurrent architecture used is based on the 1D convolutional layer architecture that uses a one-
dimensional variation of the convolutional filter [91,92] to extract information from time series of fixed length. The
plasticity data time series is similarly pre-processed and input as the previously described RNN architecture with
a time history length ` = 30. The 1D convolutional neural network architecture (Conv1D) consists of a series of
three 1D convolutional layers with 32, 64, and 128 filters respectively, with a kernel size of 4 with ReLU activation
functions. The output of the convolutional filter is flattened and fed into two Dense layers (100 neurons and ReLU
activation functions) and an output Dense layer (2 neurons and a Linear activation). The model was trained for 100
epochs with a batch size of 128, the Nadam optimizer, and a mean squared error loss function.

In a first training experiment, before we compare with the neural network return mapping model, we train the
RNN architecture with the same data set for microstructure A that the return mapping constitutive model was trained
on as described in Section 3.1. It is noted that all the loading paths in that data set were monotonic. The 10000
samples of strain–stress constitutive responses were pre-processed in 10000 strain time history samples and their
corresponding stress response — 8000 were used for training and 2000 were used for calibration. The training
loss curve for the RNN architecture is shown in Fig. 16. To test the capacity of the architecture to make forward
predictions, we first test the RNN in unseen monotonic loading paths. The results can be seen in Fig. 17(a & b)
where the RNN architecture can robustly predict monotonic loading patterns that resemble the ones used for training.
However, when we introduce several random unloading and reloading paths Fig. 17(c & d), the RNN architecture
cannot make predictions which is expected as it has not seen these types of patterns before in the training data set.
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Fig. 18. Prediction of the data augmented (a, b) RNN architecture, (c, d) Conv1D architecture, and (e, f) the neural network-based return
mapping algorithm for loading curves with unseen random unloading and reloading paths.

Thus, we design another training experiment for the recurrent architectures to compare more fairly with the
return mapping algorithm. We augment the training data set for the RNN and Conv1D architectures by introducing
random elastic loading and unloading paths of random lengths to the previously monotonic data set. The data set now
includes 32400 samples of strain and stress responses — the previous 10000 samples and 22400 samples generated
through the augmentation procedure. 25920 of these samples will be used for training and 6480 for validation. The
training curves for the Augmented RNN and Conv1D architectures are shown in Fig. 16.

We can now compare these augmented architectures with the neural network return mapping algorithm. It is
noted that all the return mapping algorithm models were still trained on the 10000 sample data set as described
in Section 4.1. The results of the comparison experiment for unseen loading paths are demonstrated in Fig. 18.
In Fig. 18(a, b, c, d), the augmented RNN and Conv1D architectures can now recognize loading and reloading
behaviors qualitatively better. While several unseen unloading–reloading paths are more accurate than others the
recurrent architectures are not robust in distinguishing the elastic from the plastic region. In some elastic paths,
we observe path-dependent phenomena that are potentially attributed to the network not seeing an elastic region at
the specific strain states. The return mapping algorithm model is observed to be both accurate and robust in these
predictions (Fig. 18(e & f)), even when trained to about a third of the data compared to recurrent architectures.
This is achieved by decoupling the elastic and plastic behavior with the help of the yield function neural
network — allowing the model to recognize when the elastic and elastoplastic behaviors should be used for the
predictions.

Another important point is that the black-box recurrent neural networks do not allow access to other plasticity
metrics during the forward prediction simulations. Unless there is another network training to predict metrics such
as the accumulated plastic strain or other descriptors that evolve in the plastic region, we neither monitor nor can
we estimate how the microstructure evolves upon yielding. In the following section, we will demonstrate how these
feature vectors can be interpreted with the help of the graph decoder to have a complete understanding of the
predicted plastic state distribution within the RVE.
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Fig. 19. (a, b, c) Prediction of stress invariants p, q , and accumulated plastic strain ✏ p using the return mapping algorithm for a monotonic
loading of microstructure A. (d, e) Prediction of all the encoded feature vector ⇣ components and the corresponding decoded internal variable
graph for a monotonic loading of microstructure A.

4.3. Interpretable multiscale plasticity of complex microstructures

In this last section, we demonstrate the capacity of the models to make forward predictions for unseen loading
paths and interpret them in the microstructure. The return mapping algorithm does not only predict the strain–stress
response of the material but also the plastic strain response and the encoded feature vector variables. These can then
be decoded by the graph decoder Ldec to interpret the microstructures’ elastoplastic behavior. We provide tests of
unseen loading path simulations for both microstructures A and B. The training of the constitutive models used to
make the forward predictions is described in Section 4.1 and the decoder used for each microstructure is described
in Section 3.2.

We first test the models’ capacity to make predictions of the plastic state on monotonic data. We demonstrate the
result for the predicted stress state in Fig. 19(a & b) and Fig. 20(a & b) for microstructures A and B respectively. We
also record the homogenized plastic strain tensor of the microstructures. For simplicity, we are demonstrating the
predicted accumulated plastic strain measure ✏ p in Fig. 19(c) and Fig. 20(c). Using the trained kinetic law neural
network, we can make forward predictions of the encoded feature vectors b⇣ that are consistent with the current
predicted homogenized plastic state. The results of these predictions are shown in 19(d) and Fig. 20(d). These
predicted curves are a close match to the benchmark data and can closely capture the behavior in the macroscale.
We can now interpret this homogenized behavior as the corresponding one in the microscale. Using the trained
decoder for each microstructure, we can recover the plastic strain distributions as shown in Fig. 19(e) and Fig. 20(e)
for microstructures A and B respectively. It is noted that while only the node-wise prediction of the accumulated
plastic strain ✏ p is shown, the decoded recovers the entire plastic strain tensor ✏ p. This is done for simplicity of
presentation. The node-wise predictions of the plastic strain are accurate and the decoder can qualitatively capture
the general plastic distribution patterns and the plastic strain localization nodes in the microstructure.

We also demonstrate the capacity of the model to predict the plastic flow with the help of the encoded feature
vector internal variables. In Fig. 21, we compare the computed plastic flow components using the neural network
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Fig. 20. (a, b, c) Prediction of stress invariants p, q , and accumulated plastic strain ✏ p using the return mapping algorithm for a monotonic
loading of microstructure B. (d, e) Prediction of all the encoded feature vector ⇣ components and the corresponding decoded internal variable
graph for a monotonic loading of microstructure B.

Fig. 21. Prediction of the plastic flow components for two loading cases for microstructures A and B (a & b respectively). Both the predicted
via yield function stress gradient @ bf

@�A
and the non-associative plastic flow @b#

@�A
predictions are shown.

yield function stress gradient @ bf
@�A

prediction and the plastic potential stress gradient @b#
@�A

as predicted by the plastic
flow bg network with the benchmark simulations. The results demonstrated are for two blind prediction curves for
each microstructure – Fig. 21(a) corresponds to Figs. 19 and 21(c) corresponds to Fig. 20. The accuracy of the bg
network predictions on the flow is higher than that of the yield function stress gradient. This is attributed to the
decoupling of the yielding and hardening from the plastic flow directions allowing for more flexibility of the neural
networks to fit these complex laws. Network bg also utilizes the highly descriptive encoded feature vector b⇣ input
that allows for more refined control of the plastic flow than the volume averaged accumulated plastic strain metric
used in the yield function formulation.

Finally, we conduct a similar blind test experiment but with added blind unloading and reloading elastic paths
in the loading strains. The results for microstructures A and B are demonstrated in Figs. 22 and 23 respectively.
As discussed in Section 4.2, the model does not have any difficulty recognizing the elastic and plastic regions of
the loading path since the behaviors are distinguished with the help of the neural network yield function. This
also constrains the evolution of the plastic strain and the encoded feature vector to happen only during the plastic
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Fig. 22. Prediction of deviatoric stress q , accumulated plastic strain ✏ p , and the encoded feature vector ⇣ components using the return
mapping algorithm for a cyclic loading of microstructure A.

Fig. 23. Prediction of deviatoric stress q , accumulated plastic strain ✏ p , and the encoded feature vector ⇣ components using the return
mapping algorithm for a cyclic loading of microstructure B.

loading. Since the kinetic law neural network is a feed-forward architecture, there is no history dependence and no
change in the plastic strain corresponds to no change in the encoded feature vector. The decoder architecture is also
path-independent so no change in the encoded feature vector corresponds to no change in the respective decoded
plastic graph. This is also achieved by the specific way the encoded feature vectors are constructed. The input node
features in the autoencoder are the mesh node coordinates and the plastic strains as described in Section 2.1. This
specific design ensures that the plastic graph does not evolve during elastic unloading/reloading and prevents any
artificial memory effect in the elastic regime. The lack of memory effect in the elastic regime is necessary for the
encoded feature vector to be internal variables for rate-independent plasticity models where the history-dependent
effect is only triggered once the yield criterion is met. This would not be the case if other integration point data,
such as the total strain or stress, are incorporated into the graph encoder.

Note that this switch between path-independent and path-dependent behaviors may also have implications for
other neural network constitutive laws. In particular, if a black-box recurrent neural network is used to forecast
history-dependent stress–strain responses, then one must ensure that the history-dependent effect is not manifested
in the elastic region. For instance, if the LSTM architecture is used, then one must ensure that the forget gate is
trained to turn on to filter out any potential artificial influence of the strain history.

5. Conclusion and future perspectives

The macroscopic inelastic behaviors of materials are manifested from the evolution of microstructures. As such,
the major challenges of the macroscopic models used in engineering practice are just establishing sophisticated
physics-informed predictions between input and output, but also exploring an efficient and economic way to
represent the evolution of microstructures in a lower-dimensional space where it is easier to establish models.
In this work, we introduce a graph autoencoder framework that deduces internal variables that can effectively
represent graph data obtained from representative elementary volumes. The encoder component of the autoencoder
architecture maps data stored in a weighted graph onto a vector space spanned by low-dimensional descriptors
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that represents the key spatial features that govern the macroscopic responses, while the decoder component of the
architecture projects these encoded feature vector-based descriptors for a robust interpretation of the material’s
behavior at the microscopic scale. By establishing this multiscale connection through the graph autoencoder,
we introduce a new internal variable-driven plasticity framework where the long-lasting issues of the lack of
interpretability of internal variables can be resolved. A particularly important aspect of this framework is that it
bypasses the process of hand-picking descriptors or geometric measures to establish theories for plastic flow. This
flexibility afforded by the graph autoencoder identifies a set of internal variables that are tailored to the specific
way the micro-structures evolve, without hand-crafting physical measures or descriptors of the mechanisms. Note
that, while the graphs that store the data could be high-dimensional, the macroscopic surrogate model is built in
a low-dimensional space. Introducing a higher dimensional parametric space for the yield function and the plastic
flow (by, for instance, assuming no material symmetry or incorporating higher-order kinematics) may potentially
lead to an even more accurate and precise model, but also at the expense of increased difficulty in training and
validation. Another interesting aspect is to study the robustness of the proposed framework against different types
of noise stored in different data structures. In this work, we have not focused on mechanisms to generalize the
learned model against noise as the graph data is obtained through direct numerical simulations. Exploring different
options to properly de-noise different forms of stored data, such as point sets (e.g. sensors distributed in three-
dimensional objects), graphs (e.g. finite element solutions or network data), and manifolds using the autoencoders
or other techniques is another important topic we have not investigated. Research in these directions are currently
in progress.
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