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Abstract
This article presents a multi-phase-field poromechanics model that simulates
the growth and thaw of ice lenses and the resultant frozen heave and thaw set-
tlement in multi-constituent frozen soils. The growth of segregated ice inside
the freezing-induced fracture is implicitly represented by the evolution of two-
phase fields that indicate the locations of segregated ice and the damaged zone,
respectively. The evolution of two-phase fields is induced by their own driving
forces that capture the physical mechanisms of ice and crack growths, respec-
tively, while the phase-field governing equations are coupled with the balance
laws such that the coupling among heat transfer, solid deformation, fluid diffu-
sion, crack growth, and phase transition can be replicated numerically. Unlike
phenomenological approaches that indirectly capture the freezing influence on
the shear strength, themultiphase-fieldmodel introduces an immersed approach
where both the homogeneous freezing and the ice-lens growth are distinctively
captured by the freezing characteristic function and the driving force accordingly.
Verification and validation examples are provided to demonstrate the capacities
of the proposed models.
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1 INTRODUCTION

Ice-lens formation at the microscopic scale is a physical phenomenon critical for understanding the physics of frost heave
and thawing settlement occurred at the field scale under the thermal cycles. Since ice lens may affect the freeze–thaw
action and cause frost heave and thawing settlement sensitive to the changing climate and environment conditions,
knowledge on the mechanism for the ice-lens growth is of practical value for many civil engineering applications in
cold regions.1–5 For example, substantial heaving and settlement caused by the sequential formations and thawing of
ice lenses lead to uneven deformation of the road, which also damages the tires, suspension, and ball joints of vehicles.
In the United States alone, it was estimated that two billion dollars had been spent annually to repair frost damage of
roads.6Moreover, extreme climate change over the last few decades has brought increasing attention to permafrost degra-
dation, since unusual heat waves may cause weakening of foundations and increase the likelihood of landslides triggered
by the abrupt melting of the ice lens.7–11 Under these circumstances, both the fundamental understanding of the ice-lens
growth mechanisms and the capacity to predict and simulate the effect beyond the one-dimensional models becomes
increasingly important.
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2308 SUH et al.

Since the pioneering work on the ice lens by Stephan Taber in the early 20th century,12,13 there has been a considerable
amount of progress in the geophysics and fluid mechanics community to elucidate the mechanisms in the ice segregation
process (e.g.,Peppin and Style14 and references cited therein). During the freezing phase, it is now known that the crys-
tallized pore ice surrounded by a thin premelted water film develops a suction pressure (i.e., cryo-suction) that attracts
the unfrozen water towards the freezing front15–17. These films remain unfrozen below the freezing temperature and form
an interconnected flow network that supplies water to promote ice crystal growth. Accumulation of pore ice crystals
accompanies the void expansion andmicro-cracking of the host matrix, whichmay result in the formation of a horizontal
lens of segregated ice. However, despite these substantial amounts of work, the criterion for the ice-lens initiation and its
detailed mechanism still remains unclear. Based on the thermo-hydraulic model proposed by Harlan,18 Miller19–21 intro-
duces a concept of stress partitioning and assumed that an ice lens starts to form if the solid skeleton experiences tensile
stress. This idea has been further adopted and further generalized in Refs.22,23 via an asymptoticmethod. Gilpin24 suggests
that the ice-lens formation takes place when the ice pressure reaches the particle separation pressure depending on the
particle size and the interfacial tension between the water and ice, whereas Zhou and Li25 propose the idea of separation
void ratio as a criterion for the ice lensing. Konrad and Morgenstern26 present an alternative approach that can describe
the formation and growth of a single ice lens based on segregation potential, of which the applicability has been demon-
strated in Refs.27–29 On the other hand, Rempel30,31 develops regime diagrams that delineate the growth of a single lens,
multiple lenses, and homogeneous freezing. In this line of work, the one-dimensional momentum and mass equilibrium
equations are coupled with the heat flow in a step-freezing Stefan configuration to calculate the intermolecular force that
drives the premelted fluid to the growing ice lenses.While the proposedmethod is helpful for estimating the lens thickness
and spacing, the one-dimensional setting is understandably insufficient for the geo-engineering applications that require
understanding of the implication of ice lenses on the shear strength. More recently, Style et al.32 propose a new theory on
the ice-lens nucleation by considering the cohesion of soil and the geometric supercooling of the unfrozen water in the
pore space. Although the aforementioned studies formed the basis to shed light on explaining the ice-lens formation, they
are limited to the idealized one-dimensional problems and often idealized soil as a linear elastic material and hence not
sufficient for applications that require a more precise understanding of the constitutive responses of the ice-rich soil.
Meanwhile, within the geomechanics and geotechnical engineering community, a number of theories and numerical

modeling frameworks have been proposed based on themixture theory and thermodynamics principles33–36 with a variety
of complexities and details. By adopting the premelting theory and considering the frozen soil as a continuummixture of
the solid, unfrozen water, and ice constituents, the freezing retention behavior of frozen soil can be modeled in a manner
similar to those for the unsaturated soil. The resultant finite element implementation of these models enables us to simu-
late freeze-thaw effects in two- or three-dimensional spaces often with more realistic predictions on the solid constitutive
responses. Nevertheless, the presence of crystal ices in the pores and that inside the expanded ice lens is often represented
via phenomenological laws.36,37 Since the morphology, physics, and the mechanisms as well as the resultant mechanical
characteristics of the ice lens and ice crystals in pores are profoundly different, it remains difficult to develop a predic-
tive phenomenological constitutive law for an effective medium that represents the multi-constituent frozen soil with ice
lenses.38
This study is an attempt to reconcile the fluid mechanics and geotechnical engineering modeling efforts on modeling

the frozen soil under changing climates. Our goal is to (1) extend the field theory for ice lens such that it is not restricted to
one-dimensional problems and (2) introduce a framework that may incorporate more realistic path-dependent constitu-
tive laws. As such, the couplingmechanism among phase transition, fluid diffusion, heat transfer, and solidmechanics can
be captured without solely relying on phenomenological material laws. In particular, we introduce amathematical frame-
work and a corresponding finite element solver thatmay distinctively capture the physics of ice lens and freezing/thawing.
We leverage the implicit representation of complex geometry afforded by a multiphase-field framework to first overcome
the difficulty of capturing the evolving geometry of the ice lens. By considering the ice lens as segregated bulk ice inside
the freezing-induced fracture, we adopt two-phase field variables that represent the state of the fluid phase constituent
and the regularized crack topology, respectively. This treatment enables us to take account of the brittle fracture that may
occur during ice-lens growth and explicitly incorporate the addition and vanishing shear strength and bearing capacity
of the ice lens under different environmental conditions. The phase transition of the fluid is modeled via the Allen–Cahn
equation,39,40 while we adopt the phase-field fracture framework to model brittle cracking in a solid matrix.41–43 The
resultant framework may provide a fuller picture to analyzing the growth of the ice lens in the frozen soil, while verifi-
cation exercises also confirm that the model may reduce to a classical thermo-hydro-mechanical model and isothermal
poromechanics model under limited conditions.
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SUH et al. 2309

The rest of the paper is organized as follows. Section 2 summarizes the necessary ingredients for the mathematical
framework, while we present the multi-phase-field microporomechanics model that describes the coupled behavior of a
fluid-saturated phase-changing porous media in Section 3. For completeness, the details of the finite element formulation
and the operator splitting solution strategy are discussed in Section 4. Finally, numerical examples are given in Section 5
to verify, validate, and showcase the model capacity, which highlights its potential by simulating the growth and melting
of multiple ice lenses.
As for notations and symbols, bold-faced and blackboard bold-faced letters denote tensors (including vectors which

are rank-one tensors); the symbol “⋅” denotes a single contraction of adjacent indices of two tensors (e.g., " ⋅ # = $%&% or' ⋅ ( = )%*+*,); the symbol “:” denotes a double contraction of adjacent indices of tensor of rank two or higher (e.g.,ℂ ∶ / =0%*,12,1); the symbol “⊗” denotes a juxtaposition of two vectors (e.g.," ⊗ # = $%&*) or two symmetric second-order tensors
[e.g., (4 ⊗ 5)%*,1 = 6%*7,1]. We also define identity tensors: 8 = 9%* , : = 9%,9*1, and :̄ = 9%19*,, where 9%* is the Kronecker
delta. As for sign conventions, unless specified, tensile stress and dilative pressure are considered positive.

2 KINEMATICS AND EFFECTIVE STRESS PRINCIPLE FOR FROZEN SOILWITH ICE
LENS

In this section, we introduce the ingredients necessary to derive the field theory for the phase-field modeling of frozen soil
presented later in Section 3. Similar to the treatments in Refs.33–35, we first assume that the frozen soil is fully saturated
with either water or ice and therefore idealize the frozen soil as a three-phase continuum mixture that consists of solid,
water, and ice-phase constituents whereas the ice lens is a special case in which the solid skeleton no longer holds bear-
ing capacity. This treatment enables us to formulate a multiphase-field approach to employ two-phase field variables as
indicator functions for the state of the pore fluid (in ice or water form)40,44,45 and that of the solid skeleton (in damage or
intact form).41–43We then extend the effective stress theory originated from damage mechanics46 to incorporate the inter-
nal stress of ice lenses caused by the deformation of the effective medium into the Bishop’s effective stress principle for
frozen soil where the introduction of phase-field provides smooth transition of the material states for both the pore fluid
and the solid skeleton. This procedure allows us to incorporate both the capillary pressure of the ice crystal surrounded
by the water thin film as well as the volumetric and deviatoric stresses triggered by the deformation of the ice lens.

2.1 Continuum representation and kinematics

Based on the mixture theory, we idealize our target material as a multiphase continuum where the solid-, water-, and
ice-phase constituents are overlapped. For simplicity, this study assumes that there is no gas phase inside the pore such
that the pore space is either occupied by water or ice. The volume fractions of each phase constituent are defined as

<= = +>=
dV ;<? = +>?

dV ;<% = +>%
dV ;<= + ∑

6={?,%}<6 = 1, (1)

where the indices =,?, and % refer to the solid-, water-, and ice-phase constituents, respectively, while +> = +>= + +>? ++>% denote the total elementary volume of the mixture. Note that an index used as a subscript indicates the intrinsic
property of a phase constituent, while it is used as a superscript when referring to a partial property of the entire mixture.
By letting @=, @?, and @% denote the intrinsic mass densities of the solid, water, and ice, respectively, the partial mass
densities of each phase constituent are given by

@= = <=@=; @? = <?@?; @% = <%@%; @= + ∑
6={?,%} @6 = @, (2)

where @ is the total mass density of the entire mixture. We also define the saturation ratios for the fluid phase constituents6 = {?, %} as
A? = <?< ; A% = <%< ; ∑

6={?,%} A6 = 1, (3)
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2310 SUH et al.

F IGURE 1 Schematic of
multiphase-field approach coupled with a
thermo-hydro-mechanical model

where < = 1 − <= is the porosity.
Since the solid (=), water (?), and ice (%) phases do not necessarily follow the same trajectory, each constituent possesses

its own Lagrangianmotion function thatmaps the position vector of the current configurationC at time D to their reference
configurations. In this study, we adopt a kinematic description that traces the motion of the solid matrix by following the
classical theory of porous media.47–50 Hence, the motion of the solid phase is described by using the Lagrangian approach
via its displacement vector E(C, D), whereas the fluid phase (6 = {?, %}) motions are described by the modified Eulerian
approach via relative velocities G̃? and G̃% , instead of their own velocity fields G? and G% , that is,

G̃6 = G6 − G, (4)

where G = Ė is the solid velocity, while ̇(∙) = d(∙)∕dD is the total time derivative following the solid matrix.
2.2 Multiphase-field approximation of freezing-induced crack

In this current study, we assume that the path-dependent constitutive responses of the frozen soil is due to the fracture
in the brittle regime and the growth/thaw of the ice lens in the void space that could be opened by the expanded ice.
While plasticity of the solid skeleton as well as the damage and creeping of the segregated ice may also play important
roles on the mechanisms of the frost heave and thaw settlement, they are out of the scope of this study. As such, this study
follows Miller’s theory, which assumes that a new ice lens may only form if and only if the compressive effective stress
becomes zero or negative.19–21,51 Since opening up the void space is a necessary condition for the ice lens to grow inside,
we introduce a phase-field model that captures the crack growth potentially caused by the ice lenses growth. In this work,
our strategy is to adopt diffuse approximations for both the phase transition of the pore fluid and the crack topology, where
each requires a distinct phase-field variable. As illustrated in Figure 1, introducing two-phase fields not only enables us to
distinguish the homogeneous freezing from the ice-lens growth but also leads to a framework that can be considered as a
generalization of a thermo-hydro-mechanical model.
The first phase-field variable ) ∈ [0, 1]used in this study is an order parameter thatmodels the freezing ofwater (melting

of ice) in a regularized manner.44,45 In other words, we employ a diffuse representation of the ice–water interface using
variable ) that is a function of C and D:

) = )(C, D) with ⎧
⎪
⎨
⎪⎩

) = 0 ∶ completely frozen,) = 1 ∶ completely unfrozen,) ∈ (0, 1) ∶ diffuse ice-water interface, (5)

which is the solution of the Allen–Cahn phase-field equation39,40 that will be presented later in Section 3.1. Based on this
setting, we consider the degree of saturation of water as an interpolation function of the phase-field ), that is, A? = A?()),
that monotonically increases from 0 to 1 as

A?()) = )3(10 − 15) + 6)2), (6)

which guarantees smooth variation of different material properties between ice and water and at the same time enables
us to properly include the latent heat effect in the energy balance equation in Section 3.1.1. Note that the evolution of the
phase-field variable ) itself does not necessarily imply the ice-lens growth since both the homogeneously frozen region
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SUH et al. 2311

and segregated ice can reach ) = 0, regardless of the level of the effective stress or stored energy that drives the crack
growth (Figure 1).
The second phase-field variable+ ∈ [0, 1] adopted in this study is a damage parameter that treats the sharp discontinuity

as a diffusive crack via implicit function.41–43,52 In particular, we have

+ = +(C, D) with ⎧
⎪
⎨
⎪⎩

+ = 0 ∶ intact,+ = 1 ∶ damaged,+ ∈ (0, 1) ∶ transition zone, (7)

to approximate the fracture surface area LΓ as LΓ+ , which is the volume integration of crack surface density Γ+(+,∇+)
over a body , that is

LΓ ≈ LΓ+ = ∫ Γ+(+,∇+)dV;Γ+(+,∇+) = +221+ + 1+2 (∇+ ⋅ ∇+), (8)

where 1+ is the length scale parameter that controls the size of the transition zone. In this case, the crack resistance force+ can be expressed as
+ = PQ+P+ − ∇ ⋅(PQ+P∇+) ;Q+ = +Γ+ (+,∇+) , (9)

where + is the critical energy release rate that quantifies the resistance to cracking. As hinted in Figure 1, in order to guar-
antee crack irreversibility, the thermodynamic restriction Γ̇+ ≥ 0must be satisfied42,53–55 unlike the reversible freezing and
thawing process. In other words, we require non-negative crack driving force + based on the microforce balance. Among
multiple options, this study adopts themost widely used quadratic degradation function R+(+) = (1 − +)2 following53, that
reduces the thermodynamic restriction into +̇ ≥ 056,57 and satisfies the following conditions:

R+(0) = 1; R+(1) = 0; PR+(1)P+ = 0; PR+(+)P+ ≤ 0for+ ∈ [0, 1]. (10)

Based on this setting, we define an indicator functionS% ∈ [0, 1] for the segregated ice inside the freezing-induced fracture
as follows:

S%(), +) = [1 − A?())][1 − R+(+)], (11)

such that S% = 1 implies the formation of the ice lens, which is different from the in-pore crystallization of the
ice-phase constituent.

2.3 Effective stress principle

Leveraging the similarities between freezing/thawing anddrying/wetting processes,Miller and co-workers19–21,51 proposed
the concept of neutral stress that partitions the net pore pressure T̄ into the pore water and pore ice pressures (T? and T%),
respectively:

T̄ = A?())T? + [1 − A?())]T% . (12)

Clearly, Equation (12) alone cannot capture the deviatoric stress induced by the deformation of the ice lens. Previous efforts
on modeling frozen soil often relies on an extension of critical state theory that evolves the yield function according to the
degree of saturation of ice (and therefore introduces the dependence of the tensile and shear strength on the presence of
ice).33,35 However, this treatment is not sufficient to consider the soil that may become brittle at low temperature due to
the lowmoisture content and the influence of ice lens on the elasticity. Hence, this study extends Miller’s approach into a
phase-field framework by decomposing the effective stress tensor Ū′ into two partial stresses for the solid and ice lens via
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2312 SUH et al.

the damage phase field doubled as a weighting function, that is

Ū′ = R+(+)U′int + [1 − R+(+)]U′dam (13)

where the second term on the right hand side of Equation (13) depends on the saturation A?()). Specifically, the effective
stress contribution from the solid skeleton U′int degrades due to the damage when the ice lens grows, but may also evolve
by the change of U′dam in the presence of ice lens [for instance, see Equation (29) in Section 3.2]. From a physical point
of view, we propose Equation (13) based on the assumption that there is no relative motion between the solid skeleton
and the ice lens in the sense that the ice lenses cannot be squeezed out from the host matrix, which also has a benefit of
ensuring continuous displacement field. Similarmodels that capture the constituent responses of porousmedia consisting
of multiple solid constituents can also be found in Borja et al.58 In addition, this study also considers the volumetric
expansion due to the phase transition from water to ice while neglecting the thermal expansion or contraction of each
phase constituent. Specifically, we incorporate an additional term for the total Cauchy stress tensorU that describes phase-
transition-induced volumetric expansion, which stems from the Helmholtz free energy functions of the solid- and ice-
phase constituents postulated in Refs.59,60 Hence, similar to Refs.,33,35 as a modification of the Bishop’s equation, the total
Cauchy stress tensor can be expressed as follows:

U = Ū′ − T̄8 − <[1 − A?())]6̄WX%8, (14)

where 6̄W = R+(+)6W,int + [1 − R+(+)]6W,dam is the net volumetric expansion coefficient, which is influenced by the evolu-
tion of the fracture. In particular, we assume that the volumetric expansion coefficient of the ice lens 6W,dam is greater than
that of the pore ice crystal 6W,int due to the degradation of the solid skeleton.
3 MULTIPHASE-FIELDMICROPOROMECHANICSMODEL FOR PHASE-CHANGING
POROUSMEDIA

This section presents the balance principles and constitutive laws that capture the thermo-hydro-mechanical behavior of
the phase-changing porous media. We first introduce the coupled field equations that govern the heat transfer and the
ice–water phase transition processes, which involve the latent heat effect. Unlike previous studies that model the phase
transition of the pore fluid by using the semi-empirical approach, which links either the Gibbs–Thomson equation34
or the Clausius–Clapeyron equation33,35 with the van Genuchten curve,61 we adopt the Allen–Cahn type phase-field
model39,40with a driving force that depends both on the temperature and the damage.We then presentmicroporomechan-
ics and phase-field fracture models that complete the set of governing equations, which is not only capable of simulating
freeze–thaw action but also the freezing-induced or hydraulically driven fractures. The implications of our model will be
examined via numerical examples in Section 5.

3.1 Thermally induced phase transition

3.1.1 Heat transfer

Since underground freezing and thawing processes may span over long temporal scales, this study employs a single tem-
perature field Y by assuming that all the phase constituents reach a local thermal equilibrium instantly.57 We also neglect
thermal convection by considering the case where the target material possesses low permeability. Let Z denote the internal
energy per unit volume and [ the heat flux. Then, the energy balance of the entire mixture can be expressed as57,62

Ż = −∇ ⋅ [ + ]̂; Z = Z= + ∑
6={?,%} Z6, (15)

where ]̂ indicates the heat source/sink, Z= = @=)=Y and Z6 = @6)6Y are the partial energies for the solid- and fluid-phase
constituents, respectively, while )= and )6 are their heat capacities. Although the freezing temperature of water (melting
temperature of ice) depends on the curved phase boundaries due to the intermolecular forces, that is, freezing point
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SUH et al. 2313

depression,63 for simplicity, we assume that the freezing temperature of water remains constant Y_ = 273.15 K, so that
the internal energy of the entire mixture Z in Equation (15) can be rewritten as

Z = @=)=Y + (@?)? + @%)%)(Y − Y_) + (@?)? + @%)%)Y_. (16)

From the relations shown in Equations (1)–(3), substituting Equation (16) into Equation (15) yields the following:

(@=)= + @?)? + @%)%)Ẏ + <[(@?)? − @%)%)(Y − Y_) + @%`Y]Ȧ?()) +∇ ⋅ [ = ]̂, (17)

where

`Y = (@?@% )? − )%)Y_ (18)

is the latent heat of fusion which is set to be `Y = 334 kJ/kg for pure water.33,44,64,65 Notice that the second term on the left-
hand side of Equation (17) describes the energy associated with the phase change of the fluid phase constituent 6 = {?, %},
which is responsible for the constant temperature during the transformation processes, that is, where ) is changing with
time since Ȧ?()) = {PA?())∕P)})̇. For the constitutivemodel that describes the heat conduction, this study adopts Fourier’s
law where the heat flux can be written as the dot product between the effective thermal conductivity and the temperature
gradient, that is

[ = −(<=a= + ∑
6={?,%}<6a6

) ⋅ ∇Y, (19)

where a= and a6 denote the intrinsic thermal conductivities of the solid- and fluid-phase constituents, respectively. This
volume-averaged approach, however, is only valid for the case where all the phase constituents are connected in parallel.
Although there exists alternative homogenization approaches such as Eshelby’s equivalent inclusion method,66–68 deter-
mination of correct effective thermal conductivity often requires knowledge of the pore geometry and topology.67,69,70
Since the information is not always readily approachable, this extension will be considered in the future.

3.1.2 Phase transition

By using the phase field variable ) defined in Equation (5), we adopt the Allen–Cahn model that is often used to simulate
dendrite growth ormultiphase flow.39,71,72 Following Boettinger et al.,40 we consider one of the simplest forms of the Gibbs
free energy functional Ψ):

Ψ) = ∫ c) +> = ∫ d)(Y, )) + e2)2 |∇)|2 +>, (20)

where d)(Y, )) is the free energy density that couples the heat transport with the phase transition, while e) is the gradient
energy coefficient. From Equation (20), we consider the evolution of the phase field ) over time, which yields the well-
known Allen–Cahn equation or time-dependent Ginzburg–Landau equation, that is

− 1f) )̇ = Pc)P) − ∇ ⋅( Pc)P∇)) = Pd)P) − e2)∇2), (21)

where ∇2(∙) = ∇ ⋅ ∇(∙) is the Laplacian operator and f) is the mobility parameter. Since this study does not consider
solute transport or any other chemical effects, we focus on the pure water–ice phase transition such that the free energy
density d)(Y, )) can be written as

d) =Q)R)()) + )(Y)T)()), (22)
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F IGURE 2 (A) The double well potential R)()), and (B) the interpolation T)()) functions. Thin colored curves correspond to the values
outside the range of the phase field )
where R)()) = )2(1 − ))2 is the double well potential (Figure 2A) that can be regarded as an energy barrier at the ice–
water interface with the height of Q), and T)()) = A?()) = )3(6)2 − 15) + 10) is the interpolation function (Figure 2B)
that ensures minima of the free energy density d) at ) = 0 and ) = 1, respectively. The driving force )(Y) that induces
ice–water phase transition should describe the thermodynamically equilibrated state of water- and ice-phase constituents,
which can be derived from the following relation73:

+T% = @%@? +T? − @%`Y +YY . (23)

Then, integrating Equation (23) yields the Clausius–Clapeyron equation

T% − T? = ( @%@? − 1)T? − @%`Y ln YY_ . (24)

Equation (24) suggests that the surface tension develops along the ice–water interface, establishing the relation among
water pressure (T?), ice pressure (T%), and temperature (Y). However, as pointed out in Nishimura et al.,33 the ice–water-
phase transition ismainly governed by the temperature while the influence of pressure on the ice saturation A% is relatively
minor.Hence, for simplicity, we define the driving force)(Y) as an approximation of the pressure difference, by neglecting
the effect of pore water pressure and adopt its first-order Taylor approximation following Boettinger et al.40 as follows:

T% − T? ≈ )(Y) = @%`Y(1 − YY_). (25)

As pointed out in Refs.,40,44 since Equation (21) captures the evolution of the regularized ice–water interface, numerical
parameters e),Q), andf) can be related to the ice–water surface tension g%?, the interface thickness 9), and the kinetic
coefficient h) as

2) = √6giw9);Q) = 3giw9) ;f) = h)Y_6@%`Y9) , (26)

where the procedure that yields the relationships among the parameters is summarized in Appendix A. However, physical
range of the width of the ice–water interface is at the atomic scale, that is, 10−10 m, which makes macro-scale simulations
unfeasible.45,74 In addition to the interfacial tension g%?, this study, therefore, treats the interface thickness 9) and the
gradient energy coefficient e) as input material parameters, since they could be increased according to the mesh size
without significantly influencing the interface evolution.44,75,76
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SUH et al. 2315

F IGURE 3 Different growth rates of the ice phases when a heat sink of ]̂ = −109 W/m3 is placed at a small region at the center with the
area of L) = 10−10 m2

Furthermore, since the existence of segregated ice governs the heave rate of frozen soil,36,77 this study considers different
rates between homogeneous freezing and ice-lens growth. Specifically, while employing different volumetric expansion
coefficients for the in-pore crystallization and the formation of ice lens [Equation (14)], we replace the driving force)(Y) with ∗) (Y, +) that contains an additional term that describes the intense growth of ice lenses similar to the kinetic
equation proposed by Espinosa et al.,78 which is often used to model salt crystallization in porous media54,79,80:

∗) (Y, +) = @%`Y(1 − YY_) + [1 − R+(+)]X∗)(1 − YY_)R∗) , (27)

where X∗) > 0 and R∗) > 0 are the kinetic parameters. The effect of the additional term in Equation (27) is illustrated in
Figure 3, wherewe simulate thewater–ice-phase transition by placing aheat sink at the centerwhile the kinetic parameters
are set to be X∗) = 5.0 GPa and R∗) = 1.2. By considering two different cases where the entire 1mm2 large water-saturated
square domain remains intact and is completely damaged, Figure 3 shows that the modified driving force ∗) is capable
of capturing different growth rates depending on the damage parameter +.
3.2 Freezing-induced fracture in microporoelastic medium

3.2.1 Microporomechanics of the phase-changing porous medium

Focusing on the ice-lens formation that involves a long period of time up to annual scales,81,82 this study neglects the
inertial effects such that the balance of linear momentum for the three-phase mixture can be written as

∇ ⋅ U + @j = k. (28)

Based on the observation that geological materials remain brittle at a low temperature,83,84 we assume that the evolution
of the damage parameter + replicates themechanism of brittle fracture. In this case, undamaged effective stressU′int can be
considered linear elastic, while the stress tensor inside the damaged zone should remainU′dam = k unless the temperature
is below Y_ to form bulk ice. Moreover, since the ice flow with respect to the solid phase is negligible compared to that
of water,34,35 both U′int and U′dam can be related to the strain measure / = (∇E +∇ET)∕2 by approximating G̃% ≈ k. Given
these considerations, we define the constitutive relations for U′int and U′dam as

U′int = X2vol8 + 2l/dev;U′dam = [1 − A?())](X%2vol8 + 2l%/dev), (29)

where 2vol = tr (/) and /dev = / − (2vol∕3)8, while X and X% are the bulk moduli; and l and l% are the shear moduli
for the solid skeleton and the ice, respectively. Based on this approach, U′dam can be interpreted as a developed stress
due to the ice-lens growth, since it not only depends on the fracturing process but also on the state of the fluid phase.
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2316 SUH et al.

F IGURE 4 Freezing characteristic function [Equation (31)] used in this study

The net pore pressure T̄, on the other hand, is a driver of deformation and fracture due to the formation of ice crystal
that exerts significant excess pressure on the premelted water film. This pressure is referred to as cryo-suction =cryo that
induces the ice pressure T% to be far greater than the water pressure T?. As shown in Equations (12) and (24), the net pore
pressure can be rewritten as T̄ = [1 − A?())]=cryo − T?, while =cryo = T% − T? can be determined based upon the Clausius–
Clapeyron equation. In practice, however, the Clausius–Clapeyron equation is typically replaced by an empirical model,
such as the exponential85 or the van Genuchten61 curves, which is considered to bemore accurate, since freezing retention
characteristics are affected by both the pore size distribution and the ice–water interfacial tension86–89:

A?∗ = exp (&m⟨Y − Y_⟩−) ; =∗cryo = Tref[{A?())}− 1_vG − 1] 1nvG , (30)

where &m, Tref, _Wl , and nWl are empirical parameters while ⟨∙⟩± = (∙ ± | ∙ |)∕2 is the Macaulay bracket. Note that we
use a superscripted symbol ∗ to indicate that the corresponding variables are empirically determined. Yet, these empiri-
cal models still yield unrealistic results in some cases. For example, the derivative of the exponential model possesses a
discontinuity at the freezing temperature Y_, while =∗cryo approaches infinity if A?())→ 0 if adopting the van Genuchten
model. Hence, in this study, we combine the two models to obtain the freezing retention curve that bypasses such issues
(Figure 4):

=∗cryo = Tref{[{exp (&m⟨Y − Y_⟩−)}]− 1_Wl − 1} 1nWl , (31)

and we replace =cryo with =∗cryo for the net pore pressure such that: T̄ = [1 − A?())]=∗cryo − T?. For all the numerical exam-
ples presented in Section 5, we adopt the same values used in Refs.35,89: &m = 0.55 K−1, Tref = 200 kPa, _Wl = 0.8, andnWl = 2.0.
Recall Section 2 that our material of interest is a fluid-saturated phase-changing porous media. Thus, this study

considers the balance of mass for three-phase constituents (i.e., solid, water, and ice) as follows:

@̇= + @=∇ ⋅ G = _̇=, (32)

@̇? + @?∇ ⋅ G +∇ ⋅ @?G̃? = _̇?, (33)

@̇% + @%∇ ⋅ G +∇ ⋅ @%G̃% = _̇% , (34)
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SUH et al. 2317

where _̇=, _̇?, and _̇% indicate the mass production rate for each phase constituent.34,35,54 Here, we assume that only the
water- and ice-phase constituents exchange mass among constituents (i.e., _̇= = 0 and _̇? = −_̇%). Hence, summation of
Equations (33) and (34) yields

<̇{A?())@? + [1 − A?())]@%} + <Ȧ?())(@? − @%) + <{A?())@? + [1 − A?())]@%}∇ ⋅ G +∇ ⋅ @?G̃? = 0, (35)

since G̃% ≈ k, while Equation (32) can be rewritten as
<̇ = (1 − <)∇ ⋅ G. (36)

Substituting Equation (36) into Equation (35) yields the mass balance equation for the three-phase mixture:

<Ȧ?())(@? − @%) + {A?())@? + [1 − A?())]@%}∇ ⋅ G +∇ ⋅ @?G̃? = 0. (37)

In this study, we focus on the case where the water flow inside both the porous matrix and the fracture obeys the general-
ized Darcy’s law while considering the pore blockage due to the water–ice-phase transition.90–92 In other words, we adopt
the following constitutive relation between G̃? and T?:

p? = −,]qr? (∇T? − @?j), (38)

where p? = <G̃? is Darcy’s velocity, q is the permeability tensor, r? is the water viscosity, and ,] is the saturation
dependent relative permeability:

,] = A?())1∕2{1 − [1 − A?())1∕_Wl ]_Wl}2. (39)

Remark 1. Note that the linear elasticity model in Equation (29) is insufficient to accurately predict the elastoplastic
behaviors during the thawing. A more comprehensive approach to capture the thawing process must take account of the
healing of the soil (e.g., Eigenbrod93), the evolution of the hydraulic conductivity, the changes of the compressibility due
to the reduction of over-consolidation ratio due to the effective stress built up during the thawing, as well as the geometric
nonlinear due to the substantial settlement of the soil.33,35,94,95 Incorporating these extensions with the phase-field ice-lens
model will be considered in the future but is out of the scope of this study.

3.2.2 Damage evolution

Following Hyoung Suk,57 this study interprets cracking as the fracture of the solid skeleton. In other words, we define the
crack driving force + ≥ 0 as

+ = −PR+(+)P+ c′int;c′int = 12X(2vol)2 + l(/dev ∶ /dev), (40)

such that the damage evolution equation can be obtained from the balance between the crack driving force + and the
crack resistance+57,96,97:

+ − + = PR+(+)P+ c′int + +1+ (+ − 12+∇2+) = 0. (41)

Recall Section 2.2 that our choice of degradation function R+(+) reduces the thermodynamic restriction into +̇ ≥ 0, which
requires additional treatment to ensure monotonic crack growth. In this study, we adopt the same treatment used in
Refs.56,98 By considering the homogeneity ∇+ = k, Equation (41) yields the following expression:

+̇ = 2(1 + 2)2 ̇ ≥ 0; = c′+int+∕1+ , (42)
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2318 SUH et al.

implying that non-negative +̇ is guaranteed if ̇ ≥ 0. Here, notice that we adopt the volumetric-deviatoric splitting scheme
proposed by Amor et al.99 to avoid crack growth under compression. Specifically, we decompose the elastic strain energy
into two parts, that is, c′int = c′+int + c′−int,

c′int = 12X⟨2vol⟩2+ + l(/dev ∶ /dev);c′int = 12X⟨2vol⟩2−, (43)

and only degrade the expansive volumetric and deviatoric parts, while ⟨∙⟩± = (∙ + | ∙ |)∕2. To ensure ̇ ≥ 0, as a simple
remedy, we replace  with ∗, which is defined as the pseudo-temporal maximum of normalized strain energy, while
considering a critical valuecrit that restricts the crack to initiate above a threshold strain energy56,100–102:

∗ = maxs∈[0,D] ⟨ −crit⟩+, (44)

such that Equation (41) accordingly becomes

PR+(+)P+ ∗ + (+ − 12+∇2+) = 0. (45)

For either partially or fully saturated soils, crack healing may occur during the thawing process. In specific, when ice
lenses melt in a highly plastic clayey soil, cracks may heal due to the interactions between water molecules, whereas in a
less cohesive soil, the precipitation of eroded particles may result in the clogging of cracks or cavities.93,103,104 One possible
approach tomodel the crackhealing process is to allow crack driving force to decrease and incorporate a constitutivemodel
that can capture the thaw-weakening process properly. For example, Ma and Sun105 assumed that the healing process is
activated when the material experiences volumetric compression, while the stiffness recovery rate becomes slower along
the healing process. This extension is out of scope of this study, and hence, we assume that cracking is irreversible.
In order to model the fracture flow in a fluid-infiltrating porous media, we adopt the permeability enhancement

approach that approximates the water flow inside the fracture as the flow between two parallel plates106–109:

q = qmat + q+ = ,mat8 + +2,+(8 − t+ ⊗ t+), (46)

where ,mat is the effective permeability of the undamagedmatrix, t+ = ∇+∕‖∇+‖ is the unit normal of crack surface, and,+ = ?2+∕12 describes the permeability enhancement due to the crack opening, which depends on the hydraulic aperture?+ based on the cubic law. However, freezing-induced fracture involves different situations where the pore ice crystal
growth drives fracture, but at the same time blocks the pore that may hinder the water flow therein. Hence, we adopt the
approach used in Choo et al.,54 which assumes a linear relationship between the hydraulic aperture ?+ and the water
saturation A?()):

?+ = A?())1⟂(t+ ⋅ / ⋅ t+), (47)

where 1⟂ is the characteristic length of a line element perpendicular to the fracture,which is often assumed to be equivalent
to the mesh size.106,110 Furthermore, by assuming that the crack opening leads to complete fragmentation of the solid
matrix, we adopt the following relation for the porosity57,111:

< = 1 − R+(+)(1 − <0)(1 − ∇ ⋅ E), (48)

such that the porosity approaches 1 if the solid skeleton is completely damaged.

Remark 2. Fragmentation and damage of the solid constituent may alter the microstructure of the solid skeleton. Never-
theless, if the constituent remains incompressible, then damage (e.g., split of incompressible particles) should not change
the volume of the solid constituent constituted by a controlled mass and hence should not change the porosity. The only
exception is when the fragmented particles eroded and flow inside the void space in which case a portion of solid mass
is lost due to the damage (e.g., Refs. 112–114). In our case, we are using a regularized phase field to implicitly represent
the crack surfaces and hence the dependence of damage in Equation (48) is used to capture the erosion. Note that a more
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SUH et al. 2319

precise predictions may require a function difference from R+(+) to establish the relation between erosion and damage as
well as the calculation of effective viscosity due to the erosion (see Pope115), which are out of the scope of this study but
will be considered in the future.

4 FINITE ELEMENT IMPLEMENTATION

This section presents a finite element discretization of the set of governing equations described in Section 3, and the
solution strategy for the resulting discrete system. We first formulate the weak form of the field equations by following
the standard weighted residual procedure. In specific, we adopt the Taylor–Hood element for the displacement and pore
water pressure fields, while employing linear interpolation functions for all other variables in order to remove spurious
oscillations. We then describe the operator split solution scheme that separately updates {Y, )} and {E,T?}, while the
damage parameter + is updated in a staggered manner for numerical robustness.
4.1 Galerkin form

Let domain  possesses boundary surface P composed of Dirichlet boundaries (displacement Pv, pore water pressurePT, and temperature PY) andNeumann boundaries (traction PD, watermass flux P?, and heat flux Pw) that satisfies
P = Pv ∪ PD = PT ∪ P? = PY ∪ Pw; ∅ = Pv ∩ PD = PT ∩ P? = PY ∩ Pw. (49)

Then, the prescribed boundary conditions can be specified as

⎧
⎪
⎨
⎪⎩

E = Ê on Pv,T? = T̂? on PT,Y = Ŷ on PY, ;
⎧
⎪
⎨
⎪⎩

U ⋅ t = {̂ on PD,−p? ⋅ t = ?̂? on P?,−[ ⋅ t = ŵ on Pw, (50)

where t is the outward-oriented unit normal on the boundary surface P. Meanwhile, the following boundary conditions
on P are prescribed for the phase fields ) and +:

∇) ⋅ t = 0;∇+ ⋅ t = 0. (51)

For model closure, the initial conditions for the primary unknowns {E,T?, Y, ),+} are imposed as
E = E0;T? = T?0; Y = Y0; ) = )0;+ = +0, (52)

at time D = 0. We also define the trial spaces >v, >T, >Y, >), and >+ for the solution variables as
>v = {E ∶  → ℝ3 | E ∈ [}1()]3, E|Pv = Ê},
>T = {T? ∶  → ℝ | T? ∈ }1(), T?|PT = T̂?},
>Y = {Y ∶  → ℝ | Y ∈ }1(), Y|PY = Ŷ},
>) = {) ∶  → ℝ | ) ∈ }1()},
>+ = {+ ∶  → ℝ | + ∈ }1()}, (53)
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2320 SUH et al.

which is complimented by the admissible spaces:

>~ = {� ∶  → ℝ3 | � ∈ [}1()]3, �|Pv = k},
>� = {� ∶  → ℝ | � ∈ }1(), �||PT = 0},
>� = {� ∶  → ℝ | � ∈ }1(), �||PY = 0},
>g = {g ∶  → ℝ | g ∈ }1()},>� = {� ∶  → ℝ | � ∈ }1()}, (54)

where }1 indicates the Sobolev space of order 1. By applying the standard weighted residual procedure, the weak state-
ments for Equations (17), (21), (28), (37), and (45) are to: find {E,T?, Y, ),+} ∈ >v × >T × >Y × >) × >+ such that for all{�, �, �, g,�} ∈ >~ × >� × >� × >g × >�,

lv = lT = lY = l) = l+ = 0, (55)

where

lv = ∫∇� ∶ U +> − ∫ � ⋅ @j +> − ∫PD � ⋅ {̂ +Γ = 0, (56)

lT = ∫ �[<Ȧ?())(@? − @%)] +> + ∫ �{A?())@? + [1 − A?())]@%}∇ ⋅ G +>
− ∫∇� ⋅ (@?p?) +> − ∫P? �(@?p̂?) +Γ = 0, (57)

lY = ∫ �(@=)= + @?)? + @%)%)Ẏ +> + ∫ �{<[(@?)? − @%)%)(Y − Y_) + @%`Y]Ȧ?())} +>
− ∫∇� ⋅ [ +> − ∫ �]̂ +> − ∫Pw �ŵ +Γ = 0, (58)

l) = ∫ g 1f) )̇ +> + ∫ gPd)P) +> + ∫∇g ⋅ (e2)∇)) +> = 0, (59)

l+ = ∫ �PR+(+)P+ ∗ +> + ∫ �+ +> + ∫∇� ⋅ (12+∇+) +> = 0. (60)

4.2 Operator-split solution strategy

Although one may consider different strategies to solve the coupled system of equations [Equations (56)–(60)], the solu-
tion strategy adopted in this study combines the staggered scheme42 and the isothermal operator splitting scheme.116,117
Specifically, we first update the damage field + via linear solver while the variables {E,T?, Y, )} are held fixed. We then
apply the isothermal splitting solution scheme that iteratively solves the thermally induced phase transition problem
to advance {Y, )}, followed by a linear solver that updates {E,T?} by solving an isothermal poromechanics problem,57
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SUH et al. 2321

that is

⎡
⎢
⎢
⎢
⎢
⎢⎣

EnT?,nYn)n+n
⎤
⎥
⎥
⎥
⎥
⎥⎦

l+=0�����������������������→9E=k, 9T?=0, 9Y=0, 9)=0
⎡
⎢
⎢
⎢
⎢
⎢⎣

EnT?,nYn)n+n+1
⎤
⎥
⎥
⎥
⎥
⎥⎦⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

Linear solver

Iterative solver⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞
lY=l)=0������������������→9E=k, 9T?=0, 9+=0

⎡
⎢
⎢
⎢
⎢
⎢⎣

EnT?,nYn+1)n+1+n+1
⎤
⎥
⎥
⎥
⎥
⎥⎦

lv=lT=0����������������→9Y=0, 9)=0, 9+=0
⎡
⎢
⎢
⎢
⎢
⎢⎣

En+1T?,n+1Yn+1)n+1+n+1
⎤
⎥
⎥
⎥
⎥
⎥⎦⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

Linear solver

, (61)

wherewe adopt an implicit backwardEuler time integration scheme. The implementation of themodel including the finite
element discretization and the solution scheme relies on the finite element package FEniCS118–120 with PETSc scientific
computational toolkit.121

5 NUMERICAL EXAMPLES

This section presents three sets of numerical examples to verify (Section 5.1), validate (Section 5.2), and showcase (Sec-
tions 5.3 and 5.4) the capacity of the proposed model. Since the evolution of two-phase fields ) and + requires a fine mesh
to capture their sharp gradients, we limit our attention to one- or two-dimensional simulations while considering the dif-
fusion coefficient e) as an individual input parameter independent to the interface thickness 9), which may additionally
reduce the computational cost.45,122 We first present two examples that simulate the latent heat effect and 1d consolida-
tion to verify the implementation of our proposed model. As a validation exercise, we perform numerical experiments
that replicate the physical experiments conducted by Feng et al.,123 which studies the homogeneous freezing of a phase
change material (PCM) embedded in metal foams. We then showcase the performance of the computational model for
simulating the ice-lens formation and the thermo-hydro-mechanical processes in geomaterials undergoing freeze–thaw
cycle, and also its capacity to simulate nonplanar ice-lens growth that follows the crack trajectory.

5.1 Verification exercises: latent heat effect and 1d consolidation

Our first example simulates one-dimensional freezing of water-saturated porous media to investigate the phase transition
of the fluid phase 6 = {?, %} and the involved latent heat effect. By comparing the results against the models presented by
Lackner et al.124 and Sweidan et al.,45 this example serves as a verification exercise that ensures the robust implementation
of the heat transfer model involving phase transition [i.e., Equations (58) and (59)]. Hence, this example considers a rigid
solid matrix while neglecting the fluid flow, following Lackner et al.124 As illustrated in Figure 5A, the problem domain is
a fully saturated rectangular specimen with a height of 0.09m and a width of 0.41m.While the initial temperature of the
entire specimen is set to be Y0 = 283.15K, the specimen is subjected to freezing with a constant heat flux of ŵ = 100W/m2
on the top surface, whereas all other boundaries are thermally insulated. Here, we choose the same material properties
used in Lackner et al.124 and Sweidan et al.45 as follows: <0 = 0.42, @= = 2650 kg/m3, @? = 1000 kg/m3, @% = 913 kg/m3,)= = 740 J/kg/K, )? = 4200 J/kg/K, )% = 1900 J/kg/K, a= = 7.694 W/m/K, a? = 0.611 W/m/K, and a% = 2.222 W/m/K.
In addition, we set h) = 0.001 m/s, g) = 0.03 J/m2, 9) = 0.005 m, and e) = 1.25 (J/m)1∕2 for the Allen–Cahn phase-field
model, while we use the structured mesh with element size of ℎZ = 0.6mm and choose the time step size of ∆D = 100 s.
As shown in Figure 5B,measured temperatures at points A, B, and C during the simulation first linearly decrease due to

the applied heat flux ŵ until they reach the freezing temperature of Y_ = 273.15 K. As soon as the phase transition starts,
the freezing front propagates through the specimen while the release of the energy associated with the phase transition
prevents the temperature decrease (i.e., latent heat effect). Once the phase change is complete, the temperature linearly
decreases over time again since the heat transfer process is no longer affected by the latent heat. More importantly, a good
agreement with the results reported in Refs.45,124 verifies that our proposed model is capable of capturing the thermal
behavior of the phase-changing porous media.
For the second verification exercise, we choose the classical Terzaghi’s 1d consolidation problem since it possesses an

analytical solution,125 which can directly be compared with the results obtained via poromechanics model [Equations (56)
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2322 SUH et al.

F IGURE 5 (A) Schematic of geometry and boundary conditions for the 1d freezing example; (B) temperature evolution at points A, B,
and C

F IGURE 6 (A) Schematic of geometry and boundary conditions for Terzaghi’s problem; (B) time-dependent pore water pressures along
the height of the specimen

and (57)]. Our problem domain shown in Figure 6A consists of a 10-m high water-saturated linear elastic soil mass. While
a 1-MPa compressive load {� is imposed on the top surface, we replicate the single-drained condition by prescribing zero
pore water pressure at the top (T̂? = 0) and a no-slip condition at the bottom. By assuming that the temperature of the
soil column remains constant during the simulation (Y = 293.15 K), we only focus on its hydro-mechanically coupled
response while the material parameters are chosen as follows: <0 = 0.4, @= = 2650 kg/m3, @? = 1000 kg/m3, X = 66.67
MPa, l = 40MPa, ,mat = 10−12 m2, and r? = 10−3 Pa⋅s. Here, we choose ℎZ = 0.1m and ∆D = 20 s.
Figure 6B illustrates the pore water pressure profile during the simulation at D = 50, 150, 350, and 750 s. The results show

that the applied mechanical load {� builds up the pore water pressure, affecting the pore water to migrate towards the top
surface, which leads to the dissipation of the excess pressure over time (i.e., consolidation). By comparing the simulation
results (circular symbols) to the analytical solution (solid curves), Figure 6B verifies the reliability of our model to capture
the hydro-mechanically coupled responses.
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SUH et al. 2323

F IGURE 7 (A) Schematic of the experimental setup for the unidirectional freezing test conducted in Feng et al.123; (B) temperature
boundary condition applied at the bottom surface of the copper foam (AA’) for the numerical simulation

5.2 Validation example: homogeneous freezing

This section compares the results obtained from the numerical simulation against the physical experiment conducted
by Feng et al.123. This experiment is used as a benchmark since it considers the unidirectional freezing of distilled water
filled in porous copper foams, which does not involve a fracturing process and yields a clear water–ice boundary layer
due to the microstructural attributes of the host matrix. As schematically shown in Figure 7A, a 30-mm-wide, 50-mm-
long water-saturated copper foam is mounted on a 4-mm-thick copper block. While the initial temperature is measured
to be Y0 = 285.55 K, the experiment is performed by applying a constant temperature of Ŷ = 264.15 K at the bottom part
of the copper block at D = 0. Temperature measurements during the experiment are made by three thermocouples (TC2-
TC4) located at 10, 28, and 46mm from the bottom of the foam (AA’), whereas TC1 records the temperature of the block.
For the numerical simulation, instead of considering the problem domain as a layered material, we only focus on the
water-saturated copper foam and apply time-dependent Dirichlet boundary condition on AA’ by using the temperature
measured by TC1 (Figure 7B). We also assume an unlimited water supply from the top surface by imposing T̂? = 0 and
applying a fixed boundary condition at the bottom part of the foam. Moreover, we consider two different types of copper
foams (Foam 1 and Foam 2) with different initial porosity and thermal conductivity (Figure 7a). As summarized in Table 1,
our numerical simulation directly adopts the same thermal properties compared to the physical experiment whereas the
solid phase thermal conductivities of the foams are computed based upon the effective properties reported in Feng et al.123
For all other material parameters that are not specified in Feng et al.,123 we choose the properties that resemble those of
the water-saturated copper foam. In this section, the Allen–Cahn parameters are chosen as: h) = 0.0001m/s, g) = 0.065
J/m2, 9) = 0.0001m, and e) = 0.75 (J/m)1∕2, while adopting a structured mesh with ℎZ = 2.5mm and ∆D = 60 s.
Figure 8 illustrates the evolution of the freezing front within a water-saturated copper foam (Foam 2). In both the

physical and numerical experiments, water freezing starts from the bottom (AA’) and migrates towards the upper part of
the foam over time, depending on the conductive heat transfer process. While it shows a qualitative agreement between
the two, Figure 9 quantitatively confirms the validity of our model, where we use the circular symbols to indicate the
experimental measurements whereas the solid curves denote the numerical results. As shown in Figure 9A, since Foam
1 possesses higher solidity (lower porosity) compared to Foam 2, the water–ice interface tends to grow relatively faster
because it exhibits higher effective thermal conductivity. In addition, temperature variations illustrated inFigure 9Bclearly
show the interplay between the thermal boundary layer growth and the latent heat, resulting in a nonlinear evolution of
the freezing front. Although has not been measured experimentally, we further investigate the time-dependent hydro-
mechanical response of the specimen from the simulation results shown in Figure 10. Based on the freezing retention
curve [Equation (31)] adopted in this study, positive suction starts to develop if Y < Y_ while the region where =∗cryo > 0
evolves over time following the same trajectory of that of the freezing front (Figure 10A). This process also involves a

 10969853, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3408 by Stanford U

niversity, W
iley O

nline Library on [02/01/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



2324 SUH et al.

TABLE 1 Material parameters for the validation exercise
Parameter Description [Unit] Value Reference@= Intrinsic solid mass density [kg/m3] 7800.0 -@? Intrinsic water mass density [kg/m3] 1000.0 123@% Intrinsic ice mass density [kg/m3] 920.0 123)= Specific heat of solid [J/kg/K] 0.385 × 103 -)? Specific heat of water [J/kg/K] 4.216 × 103 123)% Specific heat of ice [J/kg/K] 2.040 × 103 123a= Thermal conductivity of solid [W/m/K] 62.855, 44.48 123a? Thermal conductivity of water [W/m/K] 0.56 123a% Thermal conductivity of ice [W/m/K] 1.90 123X Bulk modulus of solid skeleton [Pa] 0.555 × 109 -X% Bulk modulus of ice [Pa] 5.56 × 109 -l Shear modulus of solid skeleton [Pa] 0.185 × 109 -l% Shear modulus of ice [Pa] 4.20 × 109 -<0 Initial porosity [-] 0.96, 0.98 123,mat Matrix permeability [m2] 3.25 × 10−7 -r? Viscosity of water [Pa⋅s] 1.0 × 10−3 -6W,int Volumetric expansion coefficient [-] 5.0 × 10−3 -

F IGURE 8 Comparison between the physical and numerical experiments on the evolution of the water–ice interface

volumetric expansion of the specimen that leads to an increase of the vertical displacement as shown in Figure 10B, due
to the difference between water (@?) and ice densities (@%). Since our framework idealizes the material as a multiphase
mixture of the solid-, water-, and ice-phase constituents, notice that relatively small displacement compared to the volume
expansion due to the ice–water phase transition is because of the mechanical properties of the host matrix, which is less
compressible compared to geological materials. It should be also noted that the freezing front always exhibits the largest
vertical displacement, implying that the water migration towards the freezing front induced by the suction triggers the
consolidation process above the frozen area, resulting in a small volumetric compression therein. This observation agrees
with the explanation in Amato et al.126 where the consolidation front of a frozen soil has been observed experimentally,
which corroborates the applicability of our proposed model.
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SUH et al. 2325

F IGURE 9 (A) Evolution of the freezing front over time; (B) temperature variation within Foam 2measured from TC2, TC3, and TC4

F IGURE 1 0 Hydro-mechanical response of Foam 2 subjected to freezing: (A) cryo-suction (=∗cryo) and (B) vertical displacement (v�)
profiles

5.3 Freeze–thaw action: multiple ice lens growth and thawing in heterogeneous soil

In this section, we showcase the capability of our proposedmodel by simulating the formation andmelting of multiple ice
lenses inside a heterogeneous clayey soil specimen. As illustrated in Figure 11A, the problem domain is 0.04-m wide and
0.1-m long soil column that possesses a random porosity profile along the vertical axis with amean value of <ref = 0.4 such
that the specimen possesses layered microstructure. In addition, we introduce a set of heterogeneous material properties
that solely depends on the spatial distribution of initial porosity <0. Specifically, we adopt a phenomenological model
proposed by Uyanık127 for the shear modulus l, while we use a power law for the critical energy release rate + similar to
Kun & Sun, and Dunn et al. 108,128:

l = 32 (1 − 2h1 + h ) exp [10(1 − <0)] [MPa];+ = +,ref( 1 − <01 − <ref)n< . (62)

Here, we assume that the Poisson’s ratio remains constant h = 0.25 throughout the entire domain while we set +,ref = 1.5
N/m and n< = 50. Based on this setting, we attempt to incorporate ice-lens initiation criterion proposed by Zhou and
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2326 SUH et al.

F IGURE 1 1 (A) Schematic of geometry and boundary conditions for the numerical freeze–thaw test; (B) temperature boundary
condition applied at the top surface

TABLE 2 Material parameters for the numerical freeze-thaw test
Parameter Description [Unit] Value@= Intrinsic solid mass density [kg/m3] 2650.0@? Intrinsic water mass density [kg/m3] 1000.0@% Intrinsic ice mass density [kg/m3] 920.0)= Specific heat of solid [J/kg/K] 0.75 × 103)? Specific heat of water [J/kg/K] 4.20 × 103)% Specific heat of ice [J/kg/K] 1.90 × 103a= Thermal conductivity of solid [W/m/K] 7.69a? Thermal conductivity of water [W/m/K] 0.56a% Thermal conductivity of ice [W/m/K] 2.25X% Bulk modulus of ice [Pa] 5.56 × 109l% Shear modulus of ice [Pa] 4.20 × 109<ref Reference porosity [–] 0.4,mat Matrix permeability [m2] 1.0 × 10−13r? Viscosity of water [Pa⋅s] 1.0 × 10−3
+,ref Reference critical energy release rate [N/m] 1.51+ Regularization length scale parameter [m] 1.0 × 10−3
crit Normalized threshold strain energy [–] 0.056W,int Volumetric expansion coefficient (intact) [–] 5.0 × 10−36W,dam Volumetric expansion coefficient (damaged) [–] 80.0 × 10−3X∗) Kinetic parameter [Pa] 5.0 × 109R∗) Kinetic parameter [–] 1.25

Li,25 where a separation void ratio determines the positions of the ice lenses. For all other material properties that are
homogeneous, as summarized in Table 2, we choose values similar to those of the clayey soil. It should be noted that we
adopt 6W,dam = 0.08, which is identical to the theoretical value of 1 − @%∕@? for the expansion coefficient, whereas we set6W,int = 0.005 due to the existence of thin water film between the intact solid and the pore ice. Meanwhile, the parameters
for the Allen–Cahn phase-field equation are chosen as: h) = 0.0001 m/s, g) = 0.065 J/m2, 9) = 0.0001 m, and e) = 1.0
(J/m)1∕2, whereas we set ℎZ = 0.5mm and ∆D = 60 s.
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SUH et al. 2327

F IGURE 1 2 (A) Formation and melting of multiple ice lenses and (B) evolution of the fracture phase field + during the numerical
freeze–thaw test

F IGURE 1 3 Thermo-hydro-mechanical response of the specimen during the freezing phase: (A) vertical displacement (v�), (B)
cryo-suction (=∗cryo), (C) temperature (Y), and (D) ice saturation (A%) profiles along the central axis
While we set the initial temperature as Y0 = 276.15 K, the numerical freeze–thaw test is performed by applying a time-

dependent temperature boundary condition at the top, represented by a sinusoidal function. As shown in Figure 11B, the
freezing process starts at D = 3.75 h and continues until the top surface temperature reaches the melting temperature ofY_ = 273.15K at D = 11.25 h, where the frozen soil begins to thaw. During the simulation, the bottom part of the specimen
is held fixed while we prescribe zero pore water pressure boundaries (T̂? = 0) at both the top and the bottom surfaces.
The left and right boundaries, on the other hand, are subjected to zero water mass flux and heat flux conditions. Based on
this setting, the water is supplied from the bottom during the freezing phase, while the water expulsion towards the top
surface during the melting phase leads to a thawing settlement of the specimen.
Figure 12 shows the formation and melting of multiple ice lenses and the evolution of the fracture phase field during

the numerical freeze–thaw test. Here, we use a scaling factor of 5 while the color bar illustrated in Figure 12A represents
the value of the indicator function S% defined in Equation (11). As illustrated in Figure 13, the water freezes from the top
to the bottom during the freezing phase (3.75 h ≤ D ≤ 11.25 h), which leads to the development of the cryo-suction and a
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2328 SUH et al.

F IGURE 14 Thermo-hydro-mechanical response of the specimen during the thawing phase: (A) vertical displacement (v�), (B)
cryo-suction (=∗cryo), (C) temperature (Y), and (D) ice saturation (A%) profiles along the central axis
volumetric expansion due to the phase transition. Since the applied temperature at the top starts to increase after reaching
itsminimum, =∗cryo tends to decrease after D = 7.5 h due to the freezing characteristic function in Equation (31) although the
freezing front still propagates towards the bottom.Also, during the freezing phase, soil specimen tends to exhibit a constant
temperature distribution at the region below the freezing front due to the latent heat effect, similar to our previous example
shown in Section 5.2. More importantly, we observe a sequential development of the ice lenses at � = 0.092m, � = 0.066
m, and � = 0.042 m, respectively, which implies that separation void ratio (Zsep) can be approximated as ∼0.7525. This
result is expected, since those regions possess relatively high initial porosity compared to the other regions (Figure 11A).
If the freezing front reaches the porous zone where the critical energy release rate is relatively low, both the cryo-suction
and the exerted stress due to the phase transition initiate the horizontal crack.
Once the freezing-induced fracture is developed, segregated bulk ice tends to form inside the opened crack at higher

growth rates that lead to an abrupt volume expansion therein (Figure 12). As illustrated in Figure 14, we observe the
opposite response during the thawing phase (11.25 h ≤ D ≤ 15 h). At D = 11.25 h, once the applied temperature at the
top again reaches the melting temperature Y_ = 273.15 K, the soil specimen stops freezing and begins to thaw from the
top to the bottom. During the thawing process, the melting front tends to move downwards whereas the freezing front
remains unchanged since the bottom surface is thermally insulated. As the melted region where Y > Y_ evolves, the
vertical displacement tends to decrease over time due to both the volume contraction during the phase transition and the
water expulsion towards the top surface.
Figure 15 shows the evolution of the vertical displacement of the top surface during the freeze–thaw test (black curve).

For comparison,we introduce a control experimentwhere the phase-field solvers for both ice lens and damage are disabled
but otherwise thematerial parameters are identical (blue curve).Hence, the numerical specimen in the control experiment
may exhibit homogeneous freezing and thawing but not ice-lens formation and melting. The frost heave and thawing
settlement for both experiments are compared to assess the impact of the ice lenses on the material responses.
In the prime numerical experiment, ice lenses sequentially develop at � = 0.092m, � = 0.066m, and � = 0.042m (see

Figure 12), respectively. Each time the ice lens begins to form, the soil expands more rapidly and hence the steeper slope
of the black curve, which indicates the rapid expansion of the numerical specimen, at D = 4.2 h, D = 6.2 h, and D = 8.8
h. During the thawing phase, the prescribed temperature of the top surface increase. This temperature increase leads
to abrupt settlement within the first 2 h of the thawing phase.As the ice lenses melt and subsequently drain out from
the domain, the numerical specimen shrinks (black curve). In contrast, homogeneous freezing and thawing result in
considerably less amount of frost heaving and thawing settlement, due to the absence of cracks where ice lensesmay form.
The significant difference between the two simulations has important practical implications. It is presumably possible

to use an optimization algorithm to identify the material parameters such that the control experiment may match better
with the observed frost heave and thawing settlements of soil vulnerable to ice-lens formation. However, the apparent
match obtained from such an excessive calibration could be fruitless as it may lead to material parameters that are not
physical and therefore make the calibrated model weak at forward predictions. Results of these numerical experiments
again suggest that the ice lenses play a key role in frost heaving and the subsequent settlement of soils. This example
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SUH et al. 2329

F IGURE 1 5 Vertical displacement (v�) evolution of the top surface during the numerical freeze–thaw test. The black curve is obtained
from a thermo-hydro-mechanical simulation that enables ice lensing; the blue curve is obtained from the control experiment that takes out
the ice lensing capacity

F IGURE 1 6 Schematic of geometry and
boundary conditions for the single
edge-notched test

also highlights that our proposed model is capable of simulating the ice-lens growth and thaw in a fluid-saturated porous
media.

5.4 Vertical ice-lens growth in edge-notched specimen

While numerical example presented in Section 5.3 demonstrated horizontal ice-lens formation perpendicular to the freez-
ing direction, in this section, we simulate vertical ice-lens growth, which is parallel to the freezing direction, by leveraging
the proposed driving force [Equation (27)] for the Allen–Cahn equation. Specifically, our objective is to demonstrate the
formation of an ice lens that follows the crack trajectory that leads to a nonplanar ice growth.Hence, as shown in Figure 16,
the problem domain is a 0.06-m-wide and 0.02-m-long rectangular globally undrained porous specimen that contains a
0.005-m-long initial vertical edge notch along the central axis, while considering an ideal case whereU′dam = k and 6̄W = 0
to focus on the ice-lens growth along the crack by decoupling the interactions between the two. By setting the initial
temperature as Y0 = 274.15 K, the numerical experiment is performed by applying a constant heat flux of ŵ = 25W/m2
that induces conductive vertical cooling from the top surface, with prescribed vertical displacement Ê at a rate of −10−6
mm/s to promote crack growth from the notch tip. Here, we assume that the material is homogeneous while the material
parameters are chosen as follows: <0 = 0.2, @= = 2500 kg/m3, @? = 1000 kg/m3, @% = 920 kg/m3, � = 2.5 GPa, h = 0.3,,mat = 10−15 m2, r? = 10−3 Pa⋅s, )= = 0.9 × 103 J/kg/K, )? = 4.2 × 103 J/kg/K, )% = 1.9 × 103 J/kg/K, a= = 7.55W/m/K,
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2330 SUH et al.

F IGURE 17 Transient response of porous specimen at D = 45min. (A) Fracture phase field +; (B) �-displacement v� ; (C) pore water
pressure T? ; and (D) Allen–Cahn phase field )
a? = 0.5W/m/K, a% = 2.25W/m/K, + = 2.25 N/m, 1+ = 1.0 × 10−3 m, X∗) = 5.0 × 109 Pa, and R∗) = 1.25. In addition, we
set h) = 0.0001, g) = 0.05 J/m2, 9) = 0.0001m, and e) = 0.5 (J/m)1∕2 for theAllen–Cahn phase-fieldmodelwhile adopting
the structured mesh with element size of ℎZ = 0.25mm and the time step size of ∆D = 1min.
Based on this setting, as shown in Figure 17, prescribed compression results in tensile stresses perpendicular to the

loading direction that stimulates crack growth,while permeability enhancement [Equation (46)] and relative permeability
[Equation (39)] yield relatively lowporewater pressure inside the notch similar to the results shown inHyoung Suk et al.109
The phase transition process of porewater begins once the temperature at the top surface reaches the freezing temperatureY_ in both the damaged and undamaged regions, however, since the proposed driving force for theAllen-Cahn equation in
Equation (27) leads to an intense growth of ice inside the fracture (i.e., ice lens) such that the phase-field ) tends to evolve
faster inside the damaged region (Figure 17A,D).
As evidenced in Figure 17D, ice phase tends to continuously grow along the pre-existing notch until crack initiates from

the tip. Then, as illustrated in Figure 18, once crack starts to propagate due to the combined effect of ice–water-phase
transition and the applied load, ice lens tends to follow the crack trajectory. We can also see from Figure 18 that crack
opening leads to complete fragmentation of the solid matrix due to the relation shown in Equation (48), which results
in more realistic ice-lens simulations since it possesses zero solidity, that is, 1 − <. More importantly, the results indicate
that our proposed framework is not only restricted to simulating planar ice lenses but also capable of modeling nonplanar
ice lenses that are not necessarily perpendicular to the freezing direction, which may have a more profound impact on
microporomechanical problems that involve water adsorption processes, which can affectmicroscopic fluidmotion inside
the heterogeneous matrix and hence the freezing patterns.

6 CONCLUSIONS

We introduce a multiphase-field microporomechanics theory and the corresponding finite element solver to capture the
freeze–thaw action in a frozen/freezing/thawing porousmedium that may form ice lenses. By introducing two-phase field
variables that indicate the phase of the ice/water and damaged/undamaged material state, the proposed thermo-hydro-
mechanical model is capable of simulating the freezing-induced fracture caused by the growth of the ice lens as segregated
ice.We also extend the Bishop’s effective stress principle for frozen soil to incorporate the effects of damage and ice growth
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SUH et al. 2331

F IGURE 1 8 Evolution of ice lens (S%) and porosity (<) during vertical freezing of edge-notched specimen
and distinguish them from those of the freezing retention responses. This treatment enables us to take into account the
shear strength of the ice lenses and analyzes how the homogeneous freezing process and the ice-lens growth affect the
thermo-hydro-mechanical coupling effects in the transient regime. The model is validated against published freezing
experiments. To investigate how the formation and thawing of ice lens affect the frost heave and thaw settlement, we con-
duct numerical experiments that simulate the climate-induced frozen heave and thaw settlement in one thermal cycle and
compare the simulation results with those obtained from a thermo-hydro-mechanical model that does not explicitly cap-
ture the ice lens. The simulation results suggest that explicitly capturing the growth and thaw of ice lensmay providemore
precise predictions and analyses on the multi-physical coupling effects of frozen soil at different time scales. Accurate and
precise predictions on the frozen heave and thaw settlement are crucial for many modern engineering applications, from
estimating the durability of pavement systems to the exploration of ice-rich portions of Mars. This work provides a foun-
dation for amore precise depiction of frozen soil by incorporating freezing retention, heat transfer, fluid diffusion, fracture
mechanics, and ice-lens growth in a single model. More accurate predictions nevertheless may require sufficient data to
solve the inverse problems and quantify uncertainties as well as optimization techniques to identify material parameters
from different experiments. Such endeavors are important and will be considered in the future studies.
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APPENDIX A: RELATIONSHIP AMONG THE ALLEN-CAHNMODEL PARAMETERS AND PHYSICAL
PROPERTIES
In this section, we consider an idealized one-dimensional transition zone between water () = 1) and ice () = 0) phase
constituents to obtain the relationship among the parameters (Equation (26)) for the Allen–Cahn phase field equation.
Here, we assume planar ice–water transition zone, where the phase field ) varies along the � direction. Since ∇2) =P2)∕P�2 in one-dimensional setting, an equilibrium solution ()̇ = 0) at the freezing temperature Y = Y_ can be obtained
as follows:

)(�) = 12[1 + tanh( �29))], (A1)

where 9) is a measure of interface thickness which can be expressed as40,44:
9) = e)√2Q) . (A2)

As pointed out in Boettinger et al.,40 the interface thickness 9) balances two opposing effects. The transition zone tends
to become narrow depending on the energy hump parameterQ), and at the same time tends to be diffusive in order to
reduce the energy associated with∇), based on the coefficient e). From Equations (A1) and (A2), Figure A1 illustrates the
variations of the phase field ) and the integrand of Equation (20) normalized byQ) along the distance � across a flat ice–
water interface at the freezing temperature. Since the area under the curve shown in Figure A1B is the ice–water interface
energy (i.e., interfacial tension g%?),39 we can obtain the first two expressions in Equation (26) by taking the limit 9) → 0
while keeping g%? fixed.

 10969853, 2022, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nag.3408 by Stanford U

niversity, W
iley O

nline Library on [02/01/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1002/nag.3408


2336 SUH et al.

F IGURE A 1 Variations of (A) phase-field variable ) and (B) the normalized energy density with distance �, across a flat ice–water
interface

On the other hand, to investigate a moving interface in one-dimensional space, we consider the case where ) moves at
a constant velocity W0 while neglecting the diffusion process. In this case, we can assume that

)̇ = −W0 P)P� , (A3)

and substituting Equation (A3) into Equation (21) yields the following expression:

W0f)
( P)P�) = Pd)P) . (A4)

Note that Equation (A4) has no solution if Y = Y_, however, a solution does exist for a small 9) if the temperature is given
by Refs.40,129

Y = Y_ − W0h) . (A5)

In this case, the kinetic coefficient h) can be estimated as Wheeler et al.74:

h) = 6f)@%`Ye)Y_√2Q) . (A6)

By rearranging Equation (A6), the expression for the parameterf) in Equation (26) can be obtained.
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